summaryrefslogtreecommitdiffstats
path: root/CONTRIBUTING.rst
diff options
context:
space:
mode:
authorDaniel Pfeifer <daniel@pfeifer-mail.de>2016-08-17 22:24:24 (GMT)
committerBrad King <brad.king@kitware.com>2016-08-23 12:56:59 (GMT)
commitf29d18477360388cf66be5f1c17e2aae5fb14453 (patch)
treede9739165c94945e32e2fd354924b65126486ca1 /CONTRIBUTING.rst
parent373b2e483d983136415190dcc838e636077e5991 (diff)
downloadCMake-f29d18477360388cf66be5f1c17e2aae5fb14453.zip
CMake-f29d18477360388cf66be5f1c17e2aae5fb14453.tar.gz
CMake-f29d18477360388cf66be5f1c17e2aae5fb14453.tar.bz2
fix a batch of include-what-you-use violations
Diffstat (limited to 'CONTRIBUTING.rst')
0 files changed, 0 insertions, 0 deletions
a> 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
:mod:`itertools` --- Functions creating iterators for efficient looping
=======================================================================

.. module:: itertools
   :synopsis: Functions creating iterators for efficient looping.
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>


.. testsetup::

   from itertools import *


This module implements a number of :term:`iterator` building blocks inspired
by constructs from APL, Haskell, and SML.  Each has been recast in a form
suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination.  Together, they form an "iterator
algebra" making it possible to construct specialized tools succinctly and
efficiently in pure Python.

For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``.  But, this effect can be achieved in Python
by combining :func:`map` and :func:`count` to form ``map(f, count())``.

These tools and their built-in counterparts also work well with the high-speed
functions in the :mod:`operator` module.  For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
``sum(map(operator.mul, vector1, vector2))``.


**Infinite Iterators:**

==================  =================       =================================================               =========================================
Iterator            Arguments               Results                                                         Example
==================  =================       =================================================               =========================================
:func:`count`       start, [step]           start, start+step, start+2*step, ...                            ``count(10) --> 10 11 12 13 14 ...``
:func:`cycle`       p                       p0, p1, ... plast, p0, p1, ...                                  ``cycle('ABCD') --> A B C D A B C D ...``
:func:`repeat`      elem [,n]               elem, elem, elem, ... endlessly or up to n times                ``repeat(10, 3) --> 10 10 10``
==================  =================       =================================================               =========================================

**Iterators terminating on the shortest input sequence:**

====================    ============================    =================================================   =============================================================
Iterator                Arguments                       Results                                             Example
====================    ============================    =================================================   =============================================================
:func:`chain`           p, q, ...                       p0, p1, ... plast, q0, q1, ...                      ``chain('ABC', 'DEF') --> A B C D E F``
:func:`compress`        data, selectors                 (d[0] if s[0]), (d[1] if s[1]), ...                 ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F``
:func:`dropwhile`       pred, seq                       seq[n], seq[n+1], starting when pred fails          ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1``
:func:`filterfalse`     pred, seq                       elements of seq where pred(elem) is False           ``filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8``
:func:`groupby`         iterable[, keyfunc]             sub-iterators grouped by value of keyfunc(v)
:func:`islice`          seq, [start,] stop [, step]     elements from seq[start:stop:step]                  ``islice('ABCDEFG', 2, None) --> C D E F G``
:func:`starmap`         func, seq                       func(\*seq[0]), func(\*seq[1]), ...                 ``starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000``
:func:`takewhile`       pred, seq                       seq[0], seq[1], until pred fails                    ``takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4``
:func:`tee`             it, n                           it1, it2 , ... itn  splits one iterator into n
:func:`zip_longest`     p, q, ...                       (p[0], q[0]), (p[1], q[1]), ...                     ``zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-``
====================    ============================    =================================================   =============================================================

**Combinatoric generators:**

==============================================   ====================       =============================================================
Iterator                                         Arguments                  Results
==============================================   ====================       =============================================================
:func:`product`                                  p, q, ... [repeat=1]       cartesian product, equivalent to a nested for-loop
:func:`permutations`                             p[, r]                     r-length tuples, all possible orderings, no repeated elements
:func:`combinations`                             p[, r]                     r-length tuples, in sorted order, no repeated elements
:func:`combinations_with_replacement`            p[, r]                     r-length tuples, in sorted order, with repeated elements
|
``product('ABCD', repeat=2)``                                               ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD``
``permutations('ABCD', 2)``                                                 ``AB AC AD BA BC BD CA CB CD DA DB DC``
``combinations('ABCD', 2)``                                                 ``AB AC AD BC BD CD``
``combinations_with_replacement('ABCD', 2)``                                ``AA AB AC AD BB BC BD CC CD DD``
==============================================   ====================       =============================================================


.. _itertools-functions:

Itertool functions
------------------

The following module functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.


.. function:: chain(*iterables)

   Make an iterator that returns elements from the first iterable until it is
   exhausted, then proceeds to the next iterable, until all of the iterables are
   exhausted.  Used for treating consecutive sequences as a single sequence.
   Equivalent to::

      def chain(*iterables):
          # chain('ABC', 'DEF') --> A B C D E F
          for it in iterables:
              for element in it:
                  yield element


.. function:: itertools.chain.from_iterable(iterable)

   Alternate constructor for :func:`chain`.  Gets chained inputs from a
   single iterable argument that is evaluated lazily.  Equivalent to::

      @classmethod
      def from_iterable(iterables):
          # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
          for it in iterables:
              for element in it:
                  yield element


.. function:: combinations(iterable, r)

   Return *r* length subsequences of elements from the input *iterable*.

   Combinations are emitted in lexicographic sort order.  So, if the
   input *iterable* is sorted, the combination tuples will be produced
   in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  So if the input elements are unique, there will be no repeat
   values in each combination.

   Equivalent to::

        def combinations(iterable, r):
            # combinations('ABCD', 2) --> AB AC AD BC BD CD
            # combinations(range(4), 3) --> 012 013 023 123
            pool = tuple(iterable)
            n = len(pool)
            if r > n:
                return
            indices = list(range(r))
            yield tuple(pool[i] for i in indices)
            while True:
                for i in reversed(range(r)):
                    if indices[i] != i + n - r:
                        break
                else:
                    return
                indices[i] += 1
                for j in range(i+1, r):
                    indices[j] = indices[j-1] + 1
                yield tuple(pool[i] for i in indices)

   The code for :func:`combinations` can be also expressed as a subsequence
   of :func:`permutations` after filtering entries where the elements are not
   in sorted order (according to their position in the input pool)::

        def combinations(iterable, r):
            pool = tuple(iterable)
            n = len(pool)
            for indices in permutations(range(n), r):
                if sorted(indices) == list(indices):
                    yield tuple(pool[i] for i in indices)

   The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
   or zero when ``r > n``.

.. function:: combinations_with_replacement(iterable, r)

   Return *r* length subsequences of elements from the input *iterable*
   allowing individual elements to be repeated more than once.

   Combinations are emitted in lexicographic sort order.  So, if the
   input *iterable* is sorted, the combination tuples will be produced
   in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  So if the input elements are unique, the generated combinations
   will also be unique.

   Equivalent to::

        def combinations_with_replacement(iterable, r):
            # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
            pool = tuple(iterable)
            n = len(pool)
            if not n and r:
                return
            indices = [0] * r
            yield tuple(pool[i] for i in indices)
            while True:
                for i in reversed(range(r)):
                    if indices[i] != n - 1:
                        break
                else:
                    return
                indices[i:] = [indices[i] + 1] * (r - i)
                yield tuple(pool[i] for i in indices)

   The code for :func:`combinations_with_replacement` can be also expressed as
   a subsequence of :func:`product` after filtering entries where the elements
   are not in sorted order (according to their position in the input pool)::

        def combinations_with_replacement(iterable, r):
            pool = tuple(iterable)
            n = len(pool)
            for indices in product(range(n), repeat=r):
                if sorted(indices) == list(indices):
                    yield tuple(pool[i] for i in indices)

   The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.

   .. versionadded:: 3.1

.. function:: compress(data, selectors)

   Make an iterator that filters elements from *data* returning only those that
   have a corresponding element in *selectors* that evaluates to ``True``.
   Stops when either the *data* or *selectors* iterables has been exhausted.
   Equivalent to::

       def compress(data, selectors):
           # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
           return (d for d, s in zip(data, selectors) if s)

   .. versionadded:: 3.1


.. function:: count(start=0, step=1)

   Make an iterator that returns evenly spaced values starting with *n*. Often
   used as an argument to :func:`map` to generate consecutive data points.
   Also, used with :func:`zip` to add sequence numbers.  Equivalent to::

      def count(start=0, step=1):
          # count(10) --> 10 11 12 13 14 ...
          # count(2.5, 0.5) -> 3.5 3.0 4.5 ...
          n = start
          while True:
              yield n
              n += step

   When counting with floating point numbers, better accuracy can sometimes be
   achieved by substituting multiplicative code such as: ``(start + step * i
   for i in count())``.

   .. versionchanged:: 3.1
      added *step* argument and allowed non-integer arguments.

.. function:: cycle(iterable)

   Make an iterator returning elements from the iterable and saving a copy of each.
   When the iterable is exhausted, return elements from the saved copy.  Repeats
   indefinitely.  Equivalent to::

      def cycle(iterable):
          # cycle('ABCD') --> A B C D A B C D A B C D ...
          saved = []
          for element in iterable:
              yield element
              saved.append(element)
          while saved:
              for element in saved:
                    yield element

   Note, this member of the toolkit may require significant auxiliary storage
   (depending on the length of the iterable).


.. function:: dropwhile(predicate, iterable)

   Make an iterator that drops elements from the iterable as long as the predicate
   is true; afterwards, returns every element.  Note, the iterator does not produce
   *any* output until the predicate first becomes false, so it may have a lengthy
   start-up time.  Equivalent to::

      def dropwhile(predicate, iterable):
          # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
          iterable = iter(iterable)
          for x in iterable:
              if not predicate(x):
                  yield x
                  break
          for x in iterable:
              yield x

.. function:: filterfalse(predicate, iterable)

   Make an iterator that filters elements from iterable returning only those for
   which the predicate is ``False``. If *predicate* is ``None``, return the items
   that are false. Equivalent to::

      def filterfalse(predicate, iterable):
          # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
          if predicate is None:
              predicate = bool
          for x in iterable:
              if not predicate(x):
                  yield x


.. function:: groupby(iterable, key=None)

   Make an iterator that returns consecutive keys and groups from the *iterable*.
   The *key* is a function computing a key value for each element.  If not
   specified or is ``None``, *key* defaults to an identity function and returns
   the element unchanged.  Generally, the iterable needs to already be sorted on
   the same key function.

   The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix.  It
   generates a break or new group every time the value of the key function changes
   (which is why it is usually necessary to have sorted the data using the same key
   function).  That behavior differs from SQL's GROUP BY which aggregates common
   elements regardless of their input order.

   The returned group is itself an iterator that shares the underlying iterable
   with :func:`groupby`.  Because the source is shared, when the :func:`groupby`
   object is advanced, the previous group is no longer visible.  So, if that data
   is needed later, it should be stored as a list::

      groups = []
      uniquekeys = []
      data = sorted(data, key=keyfunc)
      for k, g in groupby(data, keyfunc):
          groups.append(list(g))      # Store group iterator as a list
          uniquekeys.append(k)

   :func:`groupby` is equivalent to::

      class groupby(object):
          # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
          # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
          def __init__(self, iterable, key=None):
              if key is None:
                  key = lambda x: x
              self.keyfunc = key
              self.it = iter(iterable)
              self.tgtkey = self.currkey = self.currvalue = object()
          def __iter__(self):
              return self
          def __next__(self):
              while self.currkey == self.tgtkey:
                  self.currvalue = next(self.it)    # Exit on StopIteration
                  self.currkey = self.keyfunc(self.currvalue)
              self.tgtkey = self.currkey
              return (self.currkey, self._grouper(self.tgtkey))
          def _grouper(self, tgtkey):
              while self.currkey == tgtkey:
                  yield self.currvalue
                  self.currvalue = next(self.it)    # Exit on StopIteration
                  self.currkey = self.keyfunc(self.currvalue)


.. function:: islice(iterable, [start,] stop [, step])

   Make an iterator that returns selected elements from the iterable. If *start* is
   non-zero, then elements from the iterable are skipped until start is reached.
   Afterward, elements are returned consecutively unless *step* is set higher than
   one which results in items being skipped.  If *stop* is ``None``, then iteration
   continues until the iterator is exhausted, if at all; otherwise, it stops at the
   specified position.  Unlike regular slicing, :func:`islice` does not support
   negative values for *start*, *stop*, or *step*.  Can be used to extract related
   fields from data where the internal structure has been flattened (for example, a
   multi-line report may list a name field on every third line).  Equivalent to::

      def islice(iterable, *args):
          # islice('ABCDEFG', 2) --> A B
          # islice('ABCDEFG', 2, 4) --> C D
          # islice('ABCDEFG', 2, None) --> C D E F G
          # islice('ABCDEFG', 0, None, 2) --> A C E G
          s = slice(*args)
          it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
          nexti = next(it)
          for i, element in enumerate(iterable):
              if i == nexti:
                  yield element
                  nexti = next(it)

   If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
   then the step defaults to one.


.. function:: permutations(iterable, r=None)

   Return successive *r* length permutations of elements in the *iterable*.

   If *r* is not specified or is ``None``, then *r* defaults to the length
   of the *iterable* and all possible full-length permutations
   are generated.

   Permutations are emitted in lexicographic sort order.  So, if the
   input *iterable* is sorted, the permutation tuples will be produced
   in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  So if the input elements are unique, there will be no repeat
   values in each permutation.

   Equivalent to::

        def permutations(iterable, r=None):
            # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
            # permutations(range(3)) --> 012 021 102 120 201 210
            pool = tuple(iterable)
            n = len(pool)
            r = n if r is None else r
            if r > n:
                return
            indices = list(range(n))
            cycles = range(n, n-r, -1)
            yield tuple(pool[i] for i in indices[:r])
            while n:
                for i in reversed(range(r)):
                    cycles[i] -= 1
                    if cycles[i] == 0:
                        indices[i:] = indices[i+1:] + indices[i:i+1]
                        cycles[i] = n - i
                    else:
                        j = cycles[i]
                        indices[i], indices[-j] = indices[-j], indices[i]
                        yield tuple(pool[i] for i in indices[:r])
                        break
                else:
                    return

   The code for :func:`permutations` can be also expressed as a subsequence of
   :func:`product`, filtered to exclude entries with repeated elements (those
   from the same position in the input pool)::

        def permutations(iterable, r=None):
            pool = tuple(iterable)
            n = len(pool)
            r = n if r is None else r
            for indices in product(range(n), repeat=r):
                if len(set(indices)) == r:
                    yield tuple(pool[i] for i in indices)

   The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
   or zero when ``r > n``.

.. function:: product(*iterables, repeat=1)

   Cartesian product of input iterables.

   Equivalent to nested for-loops in a generator expression. For example,
   ``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.

   The nested loops cycle like an odometer with the rightmost element advancing
   on every iteration.  This pattern creates a lexicographic ordering so that if
   the input's iterables are sorted, the product tuples are emitted in sorted
   order.

   To compute the product of an iterable with itself, specify the number of
   repetitions with the optional *repeat* keyword argument.  For example,
   ``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.

   This function is equivalent to the following code, except that the
   actual implementation does not build up intermediate results in memory::

       def product(*args, repeat=1):
           # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
           # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
           pools = map(tuple, args) * repeat
           result = [[]]
           for pool in pools:
               result = [x+[y] for x in result for y in pool]
           for prod in result:
               yield tuple(prod)


.. function:: repeat(object[, times])

   Make an iterator that returns *object* over and over again. Runs indefinitely
   unless the *times* argument is specified. Used as argument to :func:`map` for
   invariant parameters to the called function.  Also used with :func:`zip` to
   create an invariant part of a tuple record.  Equivalent to::

      def repeat(object, times=None):
          # repeat(10, 3) --> 10 10 10
          if times is None:
              while True:
                  yield object
          else:
              for i in range(times):
                  yield object


.. function:: starmap(function, iterable)

   Make an iterator that computes the function using arguments obtained from
   the iterable.  Used instead of :func:`map` when argument parameters are already
   grouped in tuples from a single iterable (the data has been "pre-zipped").  The
   difference between :func:`map` and :func:`starmap` parallels the distinction
   between ``function(a,b)`` and ``function(*c)``. Equivalent to::

      def starmap(function, iterable):
          # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
          for args in iterable:
              yield function(*args)


.. function:: takewhile(predicate, iterable)

   Make an iterator that returns elements from the iterable as long as the
   predicate is true.  Equivalent to::

      def takewhile(predicate, iterable):
          # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
          for x in iterable:
              if predicate(x):
                  yield x
              else:
                  break


.. function:: tee(iterable, n=2)

   Return *n* independent iterators from a single iterable.  Equivalent to::

        def tee(iterable, n=2):
            it = iter(iterable)
            deques = [collections.deque() for i in range(n)]
            def gen(mydeque):
                while True:
                    if not mydeque:             # when the local deque is empty
                        newval = next(it)       # fetch a new value and
                        for d in deques:        # load it to all the deques
                            d.append(newval)
                    yield mydeque.popleft()
            return tuple(gen(d) for d in deques)

   Once :func:`tee` has made a split, the original *iterable* should not be
   used anywhere else; otherwise, the *iterable* could get advanced without
   the tee objects being informed.

   This itertool may require significant auxiliary storage (depending on how
   much temporary data needs to be stored). In general, if one iterator uses
   most or all of the data before another iterator starts, it is faster to use
   :func:`list` instead of :func:`tee`.


.. function:: zip_longest(*iterables, fillvalue=None)

   Make an iterator that aggregates elements from each of the iterables. If the
   iterables are of uneven length, missing values are filled-in with *fillvalue*.
   Iteration continues until the longest iterable is exhausted.  Equivalent to::

      def zip_longest(*args, fillvalue=None):
          # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
          def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
              yield counter()         # yields the fillvalue, or raises IndexError
          fillers = repeat(fillvalue)
          iters = [chain(it, sentinel(), fillers) for it in args]
          try:
              for tup in zip(*iters):
                  yield tup
          except IndexError:
              pass

   If one of the iterables is potentially infinite, then the :func:`zip_longest`
   function should be wrapped with something that limits the number of calls
   (for example :func:`islice` or :func:`takewhile`).  If not specified,
   *fillvalue* defaults to ``None``.


.. _itertools-recipes:

Recipes
-------

This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset.
The superior memory performance is kept by processing elements one at a time
rather than bringing the whole iterable into memory all at once. Code volume is
kept small by linking the tools together in a functional style which helps
eliminate temporary variables.  High speed is retained by preferring
"vectorized" building blocks over the use of for-loops and :term:`generator`\s
which incur interpreter overhead.

.. testcode::

   def take(n, iterable):
       "Return first n items of the iterable as a list"
       return list(islice(iterable, n))

   def enumerate(iterable, start=0):
       return zip(count(start), iterable)

   def tabulate(function, start=0):
       "Return function(0), function(1), ..."
       return map(function, count(start))

   def consume(iterator, n):
       "Advance the iterator n-steps ahead. If n is none, consume entirely."
       collections.deque(islice(iterator, n), maxlen=0)

   def nth(iterable, n, default=None):
       "Returns the nth item or a default value"
       return next(islice(iterable, n, None), default)

   def quantify(iterable, pred=bool):
       "Count how many times the predicate is true"
       return sum(map(pred, iterable))

   def padnone(iterable):
       """Returns the sequence elements and then returns None indefinitely.

       Useful for emulating the behavior of the built-in map() function.
       """
       return chain(iterable, repeat(None))

   def ncycles(iterable, n):
       "Returns the sequence elements n times"
       return chain.from_iterable(repeat(iterable, n))

   def dotproduct(vec1, vec2):
       return sum(map(operator.mul, vec1, vec2))

   def flatten(listOfLists):
       return list(chain.from_iterable(listOfLists))

   def repeatfunc(func, times=None, *args):
       """Repeat calls to func with specified arguments.

       Example:  repeatfunc(random.random)
       """
       if times is None:
           return starmap(func, repeat(args))
       return starmap(func, repeat(args, times))

   def pairwise(iterable):
       "s -> (s0,s1), (s1,s2), (s2, s3), ..."
       a, b = tee(iterable)
       next(b, None)
       return zip(a, b)

   def grouper(n, iterable, fillvalue=None):
       "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
       args = [iter(iterable)] * n
       return zip_longest(*args, fillvalue=fillvalue)

   def roundrobin(*iterables):
       "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
       # Recipe credited to George Sakkis
       pending = len(iterables)
       nexts = cycle(iter(it).__next__ for it in iterables)
       while pending:
           try:
               for next in nexts:
                   yield next()
           except StopIteration:
               pending -= 1
               nexts = cycle(islice(nexts, pending))

   def powerset(iterable):
       "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
       s = list(iterable)
       return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

   def unique_everseen(iterable, key=None):
       "List unique elements, preserving order. Remember all elements ever seen."
       # unique_everseen('AAAABBBCCDAABBB') --> A B C D
       # unique_everseen('ABBCcAD', str.lower) --> A B C D
       seen = set()
       seen_add = seen.add
       if key is None:
           for element in iterable:
               if element not in seen:
                   seen_add(element)
                   yield element
       else:
           for element in iterable:
               k = key(element)
               if k not in seen:
                   seen_add(k)
                   yield element

   def unique_justseen(iterable, key=None):
       "List unique elements, preserving order. Remember only the element just seen."
       # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
       # unique_justseen('ABBCcAD', str.lower) --> A B C A D
       return map(next, map(itemgetter(1), groupby(iterable, key)))