diff options
author | Bill Hoffman <bill.hoffman@kitware.com> | 2009-10-30 17:10:56 (GMT) |
---|---|---|
committer | Bill Hoffman <bill.hoffman@kitware.com> | 2009-10-30 17:10:56 (GMT) |
commit | fb51d98562a26b6dcde7d3597938a0b707b6b881 (patch) | |
tree | b42fbfb6b27b7a9e2d5068601f61d80e7033dc79 /Utilities/cmbzip2/blocksort.c | |
parent | 0615218bdf3e240e44e539f9eed6c1cf9fbff2d4 (diff) | |
download | CMake-fb51d98562a26b6dcde7d3597938a0b707b6b881.zip CMake-fb51d98562a26b6dcde7d3597938a0b707b6b881.tar.gz CMake-fb51d98562a26b6dcde7d3597938a0b707b6b881.tar.bz2 |
Switch to using libarchive from libtar for cpack and cmake -E tar
This allows for a built in bzip and zip capability, so external tools
will not be needed for these packagers. The cmake -E tar xf should be
able to handle all compression types now as well.
Diffstat (limited to 'Utilities/cmbzip2/blocksort.c')
-rw-r--r-- | Utilities/cmbzip2/blocksort.c | 1094 |
1 files changed, 1094 insertions, 0 deletions
diff --git a/Utilities/cmbzip2/blocksort.c b/Utilities/cmbzip2/blocksort.c new file mode 100644 index 0000000..95adb5e --- /dev/null +++ b/Utilities/cmbzip2/blocksort.c @@ -0,0 +1,1094 @@ + +/*-------------------------------------------------------------*/ +/*--- Block sorting machinery ---*/ +/*--- blocksort.c ---*/ +/*-------------------------------------------------------------*/ + +/* ------------------------------------------------------------------ + This file is part of bzip2/libbzip2, a program and library for + lossless, block-sorting data compression. + + bzip2/libbzip2 version 1.0.5 of 10 December 2007 + Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org> + + Please read the WARNING, DISCLAIMER and PATENTS sections in the + README file. + + This program is released under the terms of the license contained + in the file LICENSE. + ------------------------------------------------------------------ */ + + +#include "bzlib_private.h" + +/*---------------------------------------------*/ +/*--- Fallback O(N log(N)^2) sorting ---*/ +/*--- algorithm, for repetitive blocks ---*/ +/*---------------------------------------------*/ + +/*---------------------------------------------*/ +static +__inline__ +void fallbackSimpleSort ( UInt32* fmap, + UInt32* eclass, + Int32 lo, + Int32 hi ) +{ + Int32 i, j, tmp; + UInt32 ec_tmp; + + if (lo == hi) return; + + if (hi - lo > 3) { + for ( i = hi-4; i >= lo; i-- ) { + tmp = fmap[i]; + ec_tmp = eclass[tmp]; + for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) + fmap[j-4] = fmap[j]; + fmap[j-4] = tmp; + } + } + + for ( i = hi-1; i >= lo; i-- ) { + tmp = fmap[i]; + ec_tmp = eclass[tmp]; + for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) + fmap[j-1] = fmap[j]; + fmap[j-1] = tmp; + } +} + + +/*---------------------------------------------*/ +#define fswap(zz1, zz2) \ + { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } + +#define fvswap(zzp1, zzp2, zzn) \ +{ \ + Int32 yyp1 = (zzp1); \ + Int32 yyp2 = (zzp2); \ + Int32 yyn = (zzn); \ + while (yyn > 0) { \ + fswap(fmap[yyp1], fmap[yyp2]); \ + yyp1++; yyp2++; yyn--; \ + } \ +} + + +#define fmin(a,b) ((a) < (b)) ? (a) : (b) + +#define fpush(lz,hz) { stackLo[sp] = lz; \ + stackHi[sp] = hz; \ + sp++; } + +#define fpop(lz,hz) { sp--; \ + lz = stackLo[sp]; \ + hz = stackHi[sp]; } + +#define FALLBACK_QSORT_SMALL_THRESH 10 +#define FALLBACK_QSORT_STACK_SIZE 100 + + +static +void fallbackQSort3 ( UInt32* fmap, + UInt32* eclass, + Int32 loSt, + Int32 hiSt ) +{ + Int32 unLo, unHi, ltLo, gtHi, n, m; + Int32 sp, lo, hi; + UInt32 med, r, r3; + Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; + Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; + + r = 0; + + sp = 0; + fpush ( loSt, hiSt ); + + while (sp > 0) { + + AssertH ( sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004 ); + + fpop ( lo, hi ); + if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { + fallbackSimpleSort ( fmap, eclass, lo, hi ); + continue; + } + + /* Random partitioning. Median of 3 sometimes fails to + avoid bad cases. Median of 9 seems to help but + looks rather expensive. This too seems to work but + is cheaper. Guidance for the magic constants + 7621 and 32768 is taken from Sedgewick's algorithms + book, chapter 35. + */ + r = ((r * 7621) + 1) % 32768; + r3 = r % 3; + if (r3 == 0) med = eclass[fmap[lo]]; else + if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else + med = eclass[fmap[hi]]; + + unLo = ltLo = lo; + unHi = gtHi = hi; + + while (1) { + while (1) { + if (unLo > unHi) break; + n = (Int32)eclass[fmap[unLo]] - (Int32)med; + if (n == 0) { + fswap(fmap[unLo], fmap[ltLo]); + ltLo++; unLo++; + continue; + }; + if (n > 0) break; + unLo++; + } + while (1) { + if (unLo > unHi) break; + n = (Int32)eclass[fmap[unHi]] - (Int32)med; + if (n == 0) { + fswap(fmap[unHi], fmap[gtHi]); + gtHi--; unHi--; + continue; + }; + if (n < 0) break; + unHi--; + } + if (unLo > unHi) break; + fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; + } + + AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); + + if (gtHi < ltLo) continue; + + n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); + m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); + + n = lo + unLo - ltLo - 1; + m = hi - (gtHi - unHi) + 1; + + if (n - lo > hi - m) { + fpush ( lo, n ); + fpush ( m, hi ); + } else { + fpush ( m, hi ); + fpush ( lo, n ); + } + } +} + +#undef fmin +#undef fpush +#undef fpop +#undef fswap +#undef fvswap +#undef FALLBACK_QSORT_SMALL_THRESH +#undef FALLBACK_QSORT_STACK_SIZE + + +/*---------------------------------------------*/ +/* Pre: + nblock > 0 + eclass exists for [0 .. nblock-1] + ((UChar*)eclass) [0 .. nblock-1] holds block + ptr exists for [0 .. nblock-1] + + Post: + ((UChar*)eclass) [0 .. nblock-1] holds block + All other areas of eclass destroyed + fmap [0 .. nblock-1] holds sorted order + bhtab [ 0 .. 2+(nblock/32) ] destroyed +*/ + +#define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) +#define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) +#define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) +#define WORD_BH(zz) bhtab[(zz) >> 5] +#define UNALIGNED_BH(zz) ((zz) & 0x01f) + +static +void fallbackSort ( UInt32* fmap, + UInt32* eclass, + UInt32* bhtab, + Int32 nblock, + Int32 verb ) +{ + Int32 ftab[257]; + Int32 ftabCopy[256]; + Int32 H, i, j, k, l, r, cc, cc1; + Int32 nNotDone; + Int32 nBhtab; + UChar* eclass8 = (UChar*)eclass; + + /*-- + Initial 1-char radix sort to generate + initial fmap and initial BH bits. + --*/ + if (verb >= 4) + VPrintf0 ( " bucket sorting ...\n" ); + for (i = 0; i < 257; i++) ftab[i] = 0; + for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; + for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; + for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; + + for (i = 0; i < nblock; i++) { + j = eclass8[i]; + k = ftab[j] - 1; + ftab[j] = k; + fmap[k] = i; + } + + nBhtab = 2 + (nblock / 32); + for (i = 0; i < nBhtab; i++) bhtab[i] = 0; + for (i = 0; i < 256; i++) SET_BH(ftab[i]); + + /*-- + Inductively refine the buckets. Kind-of an + "exponential radix sort" (!), inspired by the + Manber-Myers suffix array construction algorithm. + --*/ + + /*-- set sentinel bits for block-end detection --*/ + for (i = 0; i < 32; i++) { + SET_BH(nblock + 2*i); + CLEAR_BH(nblock + 2*i + 1); + } + + /*-- the log(N) loop --*/ + H = 1; + while (1) { + + if (verb >= 4) + VPrintf1 ( " depth %6d has ", H ); + + j = 0; + for (i = 0; i < nblock; i++) { + if (ISSET_BH(i)) j = i; + k = fmap[i] - H; if (k < 0) k += nblock; + eclass[k] = j; + } + + nNotDone = 0; + r = -1; + while (1) { + + /*-- find the next non-singleton bucket --*/ + k = r + 1; + while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; + if (ISSET_BH(k)) { + while (WORD_BH(k) == 0xffffffff) k += 32; + while (ISSET_BH(k)) k++; + } + l = k - 1; + if (l >= nblock) break; + while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; + if (!ISSET_BH(k)) { + while (WORD_BH(k) == 0x00000000) k += 32; + while (!ISSET_BH(k)) k++; + } + r = k - 1; + if (r >= nblock) break; + + /*-- now [l, r] bracket current bucket --*/ + if (r > l) { + nNotDone += (r - l + 1); + fallbackQSort3 ( fmap, eclass, l, r ); + + /*-- scan bucket and generate header bits-- */ + cc = -1; + for (i = l; i <= r; i++) { + cc1 = eclass[fmap[i]]; + if (cc != cc1) { SET_BH(i); cc = cc1; }; + } + } + } + + if (verb >= 4) + VPrintf1 ( "%6d unresolved strings\n", nNotDone ); + + H *= 2; + if (H > nblock || nNotDone == 0) break; + } + + /*-- + Reconstruct the original block in + eclass8 [0 .. nblock-1], since the + previous phase destroyed it. + --*/ + if (verb >= 4) + VPrintf0 ( " reconstructing block ...\n" ); + j = 0; + for (i = 0; i < nblock; i++) { + while (ftabCopy[j] == 0) j++; + ftabCopy[j]--; + eclass8[fmap[i]] = (UChar)j; + } + AssertH ( j < 256, 1005 ); +} + +#undef SET_BH +#undef CLEAR_BH +#undef ISSET_BH +#undef WORD_BH +#undef UNALIGNED_BH + + +/*---------------------------------------------*/ +/*--- The main, O(N^2 log(N)) sorting ---*/ +/*--- algorithm. Faster for "normal" ---*/ +/*--- non-repetitive blocks. ---*/ +/*---------------------------------------------*/ + +/*---------------------------------------------*/ +static +__inline__ +Bool mainGtU ( UInt32 i1, + UInt32 i2, + UChar* block, + UInt16* quadrant, + UInt32 nblock, + Int32* budget ) +{ + Int32 k; + UChar c1, c2; + UInt16 s1, s2; + + AssertD ( i1 != i2, "mainGtU" ); + /* 1 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 2 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 3 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 4 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 5 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 6 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 7 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 8 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 9 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 10 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 11 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + /* 12 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + i1++; i2++; + + k = nblock + 8; + + do { + /* 1 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 2 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 3 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 4 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 5 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 6 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 7 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + /* 8 */ + c1 = block[i1]; c2 = block[i2]; + if (c1 != c2) return (c1 > c2); + s1 = quadrant[i1]; s2 = quadrant[i2]; + if (s1 != s2) return (s1 > s2); + i1++; i2++; + + if (i1 >= nblock) i1 -= nblock; + if (i2 >= nblock) i2 -= nblock; + + k -= 8; + (*budget)--; + } + while (k >= 0); + + return False; +} + + +/*---------------------------------------------*/ +/*-- + Knuth's increments seem to work better + than Incerpi-Sedgewick here. Possibly + because the number of elems to sort is + usually small, typically <= 20. +--*/ +static +Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, + 9841, 29524, 88573, 265720, + 797161, 2391484 }; + +static +void mainSimpleSort ( UInt32* ptr, + UChar* block, + UInt16* quadrant, + Int32 nblock, + Int32 lo, + Int32 hi, + Int32 d, + Int32* budget ) +{ + Int32 i, j, h, bigN, hp; + UInt32 v; + + bigN = hi - lo + 1; + if (bigN < 2) return; + + hp = 0; + while (incs[hp] < bigN) hp++; + hp--; + + for (; hp >= 0; hp--) { + h = incs[hp]; + + i = lo + h; + while (True) { + + /*-- copy 1 --*/ + if (i > hi) break; + v = ptr[i]; + j = i; + while ( mainGtU ( + ptr[j-h]+d, v+d, block, quadrant, nblock, budget + ) ) { + ptr[j] = ptr[j-h]; + j = j - h; + if (j <= (lo + h - 1)) break; + } + ptr[j] = v; + i++; + + /*-- copy 2 --*/ + if (i > hi) break; + v = ptr[i]; + j = i; + while ( mainGtU ( + ptr[j-h]+d, v+d, block, quadrant, nblock, budget + ) ) { + ptr[j] = ptr[j-h]; + j = j - h; + if (j <= (lo + h - 1)) break; + } + ptr[j] = v; + i++; + + /*-- copy 3 --*/ + if (i > hi) break; + v = ptr[i]; + j = i; + while ( mainGtU ( + ptr[j-h]+d, v+d, block, quadrant, nblock, budget + ) ) { + ptr[j] = ptr[j-h]; + j = j - h; + if (j <= (lo + h - 1)) break; + } + ptr[j] = v; + i++; + + if (*budget < 0) return; + } + } +} + + +/*---------------------------------------------*/ +/*-- + The following is an implementation of + an elegant 3-way quicksort for strings, + described in a paper "Fast Algorithms for + Sorting and Searching Strings", by Robert + Sedgewick and Jon L. Bentley. +--*/ + +#define mswap(zz1, zz2) \ + { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } + +#define mvswap(zzp1, zzp2, zzn) \ +{ \ + Int32 yyp1 = (zzp1); \ + Int32 yyp2 = (zzp2); \ + Int32 yyn = (zzn); \ + while (yyn > 0) { \ + mswap(ptr[yyp1], ptr[yyp2]); \ + yyp1++; yyp2++; yyn--; \ + } \ +} + +static +__inline__ +UChar mmed3 ( UChar a, UChar b, UChar c ) +{ + UChar t; + if (a > b) { t = a; a = b; b = t; }; + if (b > c) { + b = c; + if (a > b) b = a; + } + return b; +} + +#define mmin(a,b) ((a) < (b)) ? (a) : (b) + +#define mpush(lz,hz,dz) { stackLo[sp] = lz; \ + stackHi[sp] = hz; \ + stackD [sp] = dz; \ + sp++; } + +#define mpop(lz,hz,dz) { sp--; \ + lz = stackLo[sp]; \ + hz = stackHi[sp]; \ + dz = stackD [sp]; } + + +#define mnextsize(az) (nextHi[az]-nextLo[az]) + +#define mnextswap(az,bz) \ + { Int32 tz; \ + tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ + tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ + tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } + + +#define MAIN_QSORT_SMALL_THRESH 20 +#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) +#define MAIN_QSORT_STACK_SIZE 100 + +static +void mainQSort3 ( UInt32* ptr, + UChar* block, + UInt16* quadrant, + Int32 nblock, + Int32 loSt, + Int32 hiSt, + Int32 dSt, + Int32* budget ) +{ + Int32 unLo, unHi, ltLo, gtHi, n, m, med; + Int32 sp, lo, hi, d; + + Int32 stackLo[MAIN_QSORT_STACK_SIZE]; + Int32 stackHi[MAIN_QSORT_STACK_SIZE]; + Int32 stackD [MAIN_QSORT_STACK_SIZE]; + + Int32 nextLo[3]; + Int32 nextHi[3]; + Int32 nextD [3]; + + sp = 0; + mpush ( loSt, hiSt, dSt ); + + while (sp > 0) { + + AssertH ( sp < MAIN_QSORT_STACK_SIZE - 2, 1001 ); + + mpop ( lo, hi, d ); + if (hi - lo < MAIN_QSORT_SMALL_THRESH || + d > MAIN_QSORT_DEPTH_THRESH) { + mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); + if (*budget < 0) return; + continue; + } + + med = (Int32) + mmed3 ( block[ptr[ lo ]+d], + block[ptr[ hi ]+d], + block[ptr[ (lo+hi)>>1 ]+d] ); + + unLo = ltLo = lo; + unHi = gtHi = hi; + + while (True) { + while (True) { + if (unLo > unHi) break; + n = ((Int32)block[ptr[unLo]+d]) - med; + if (n == 0) { + mswap(ptr[unLo], ptr[ltLo]); + ltLo++; unLo++; continue; + }; + if (n > 0) break; + unLo++; + } + while (True) { + if (unLo > unHi) break; + n = ((Int32)block[ptr[unHi]+d]) - med; + if (n == 0) { + mswap(ptr[unHi], ptr[gtHi]); + gtHi--; unHi--; continue; + }; + if (n < 0) break; + unHi--; + } + if (unLo > unHi) break; + mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; + } + + AssertD ( unHi == unLo-1, "mainQSort3(2)" ); + + if (gtHi < ltLo) { + mpush(lo, hi, d+1 ); + continue; + } + + n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); + m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); + + n = lo + unLo - ltLo - 1; + m = hi - (gtHi - unHi) + 1; + + nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; + nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; + nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; + + if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); + if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); + if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); + + AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); + AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); + + mpush (nextLo[0], nextHi[0], nextD[0]); + mpush (nextLo[1], nextHi[1], nextD[1]); + mpush (nextLo[2], nextHi[2], nextD[2]); + } +} + +#undef mswap +#undef mvswap +#undef mpush +#undef mpop +#undef mmin +#undef mnextsize +#undef mnextswap +#undef MAIN_QSORT_SMALL_THRESH +#undef MAIN_QSORT_DEPTH_THRESH +#undef MAIN_QSORT_STACK_SIZE + + +/*---------------------------------------------*/ +/* Pre: + nblock > N_OVERSHOOT + block32 exists for [0 .. nblock-1 +N_OVERSHOOT] + ((UChar*)block32) [0 .. nblock-1] holds block + ptr exists for [0 .. nblock-1] + + Post: + ((UChar*)block32) [0 .. nblock-1] holds block + All other areas of block32 destroyed + ftab [0 .. 65536 ] destroyed + ptr [0 .. nblock-1] holds sorted order + if (*budget < 0), sorting was abandoned +*/ + +#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) +#define SETMASK (1 << 21) +#define CLEARMASK (~(SETMASK)) + +static +void mainSort ( UInt32* ptr, + UChar* block, + UInt16* quadrant, + UInt32* ftab, + Int32 nblock, + Int32 verb, + Int32* budget ) +{ + Int32 i, j, k, ss, sb; + Int32 runningOrder[256]; + Bool bigDone[256]; + Int32 copyStart[256]; + Int32 copyEnd [256]; + UChar c1; + Int32 numQSorted; + UInt16 s; + if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); + + /*-- set up the 2-byte frequency table --*/ + for (i = 65536; i >= 0; i--) ftab[i] = 0; + + j = block[0] << 8; + i = nblock-1; + for (; i >= 3; i -= 4) { + quadrant[i] = 0; + j = (j >> 8) | ( ((UInt16)block[i]) << 8); + ftab[j]++; + quadrant[i-1] = 0; + j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); + ftab[j]++; + quadrant[i-2] = 0; + j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); + ftab[j]++; + quadrant[i-3] = 0; + j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); + ftab[j]++; + } + for (; i >= 0; i--) { + quadrant[i] = 0; + j = (j >> 8) | ( ((UInt16)block[i]) << 8); + ftab[j]++; + } + + /*-- (emphasises close relationship of block & quadrant) --*/ + for (i = 0; i < BZ_N_OVERSHOOT; i++) { + block [nblock+i] = block[i]; + quadrant[nblock+i] = 0; + } + + if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); + + /*-- Complete the initial radix sort --*/ + for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; + + s = block[0] << 8; + i = nblock-1; + for (; i >= 3; i -= 4) { + s = (s >> 8) | (block[i] << 8); + j = ftab[s] -1; + ftab[s] = j; + ptr[j] = i; + s = (s >> 8) | (block[i-1] << 8); + j = ftab[s] -1; + ftab[s] = j; + ptr[j] = i-1; + s = (s >> 8) | (block[i-2] << 8); + j = ftab[s] -1; + ftab[s] = j; + ptr[j] = i-2; + s = (s >> 8) | (block[i-3] << 8); + j = ftab[s] -1; + ftab[s] = j; + ptr[j] = i-3; + } + for (; i >= 0; i--) { + s = (s >> 8) | (block[i] << 8); + j = ftab[s] -1; + ftab[s] = j; + ptr[j] = i; + } + + /*-- + Now ftab contains the first loc of every small bucket. + Calculate the running order, from smallest to largest + big bucket. + --*/ + for (i = 0; i <= 255; i++) { + bigDone [i] = False; + runningOrder[i] = i; + } + + { + Int32 vv; + Int32 h = 1; + do h = 3 * h + 1; while (h <= 256); + do { + h = h / 3; + for (i = h; i <= 255; i++) { + vv = runningOrder[i]; + j = i; + while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { + runningOrder[j] = runningOrder[j-h]; + j = j - h; + if (j <= (h - 1)) goto zero; + } + zero: + runningOrder[j] = vv; + } + } while (h != 1); + } + + /*-- + The main sorting loop. + --*/ + + numQSorted = 0; + + for (i = 0; i <= 255; i++) { + + /*-- + Process big buckets, starting with the least full. + Basically this is a 3-step process in which we call + mainQSort3 to sort the small buckets [ss, j], but + also make a big effort to avoid the calls if we can. + --*/ + ss = runningOrder[i]; + + /*-- + Step 1: + Complete the big bucket [ss] by quicksorting + any unsorted small buckets [ss, j], for j != ss. + Hopefully previous pointer-scanning phases have already + completed many of the small buckets [ss, j], so + we don't have to sort them at all. + --*/ + for (j = 0; j <= 255; j++) { + if (j != ss) { + sb = (ss << 8) + j; + if ( ! (ftab[sb] & SETMASK) ) { + Int32 lo = ftab[sb] & CLEARMASK; + Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; + if (hi > lo) { + if (verb >= 4) + VPrintf4 ( " qsort [0x%x, 0x%x] " + "done %d this %d\n", + ss, j, numQSorted, hi - lo + 1 ); + mainQSort3 ( + ptr, block, quadrant, nblock, + lo, hi, BZ_N_RADIX, budget + ); + numQSorted += (hi - lo + 1); + if (*budget < 0) return; + } + } + ftab[sb] |= SETMASK; + } + } + + AssertH ( !bigDone[ss], 1006 ); + + /*-- + Step 2: + Now scan this big bucket [ss] so as to synthesise the + sorted order for small buckets [t, ss] for all t, + including, magically, the bucket [ss,ss] too. + This will avoid doing Real Work in subsequent Step 1's. + --*/ + { + for (j = 0; j <= 255; j++) { + copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; + copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; + } + for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { + k = ptr[j]-1; if (k < 0) k += nblock; + c1 = block[k]; + if (!bigDone[c1]) + ptr[ copyStart[c1]++ ] = k; + } + for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { + k = ptr[j]-1; if (k < 0) k += nblock; + c1 = block[k]; + if (!bigDone[c1]) + ptr[ copyEnd[c1]-- ] = k; + } + } + + AssertH ( (copyStart[ss]-1 == copyEnd[ss]) + || + /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. + Necessity for this case is demonstrated by compressing + a sequence of approximately 48.5 million of character + 251; 1.0.0/1.0.1 will then die here. */ + (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), + 1007 ) + + for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; + + /*-- + Step 3: + The [ss] big bucket is now done. Record this fact, + and update the quadrant descriptors. Remember to + update quadrants in the overshoot area too, if + necessary. The "if (i < 255)" test merely skips + this updating for the last bucket processed, since + updating for the last bucket is pointless. + + The quadrant array provides a way to incrementally + cache sort orderings, as they appear, so as to + make subsequent comparisons in fullGtU() complete + faster. For repetitive blocks this makes a big + difference (but not big enough to be able to avoid + the fallback sorting mechanism, exponential radix sort). + + The precise meaning is: at all times: + + for 0 <= i < nblock and 0 <= j <= nblock + + if block[i] != block[j], + + then the relative values of quadrant[i] and + quadrant[j] are meaningless. + + else { + if quadrant[i] < quadrant[j] + then the string starting at i lexicographically + precedes the string starting at j + + else if quadrant[i] > quadrant[j] + then the string starting at j lexicographically + precedes the string starting at i + + else + the relative ordering of the strings starting + at i and j has not yet been determined. + } + --*/ + bigDone[ss] = True; + + if (i < 255) { + Int32 bbStart = ftab[ss << 8] & CLEARMASK; + Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; + Int32 shifts = 0; + + while ((bbSize >> shifts) > 65534) shifts++; + + for (j = bbSize-1; j >= 0; j--) { + Int32 a2update = ptr[bbStart + j]; + UInt16 qVal = (UInt16)(j >> shifts); + quadrant[a2update] = qVal; + if (a2update < BZ_N_OVERSHOOT) + quadrant[a2update + nblock] = qVal; + } + AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); + } + + } + + if (verb >= 4) + VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", + nblock, numQSorted, nblock - numQSorted ); +} + +#undef BIGFREQ +#undef SETMASK +#undef CLEARMASK + + +/*---------------------------------------------*/ +/* Pre: + nblock > 0 + arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] + ((UChar*)arr2) [0 .. nblock-1] holds block + arr1 exists for [0 .. nblock-1] + + Post: + ((UChar*)arr2) [0 .. nblock-1] holds block + All other areas of block destroyed + ftab [ 0 .. 65536 ] destroyed + arr1 [0 .. nblock-1] holds sorted order +*/ +void BZ2_blockSort ( EState* s ) +{ + UInt32* ptr = s->ptr; + UChar* block = s->block; + UInt32* ftab = s->ftab; + Int32 nblock = s->nblock; + Int32 verb = s->verbosity; + Int32 wfact = s->workFactor; + UInt16* quadrant; + Int32 budget; + Int32 budgetInit; + Int32 i; + + if (nblock < 10000) { + fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); + } else { + /* Calculate the location for quadrant, remembering to get + the alignment right. Assumes that &(block[0]) is at least + 2-byte aligned -- this should be ok since block is really + the first section of arr2. + */ + i = nblock+BZ_N_OVERSHOOT; + if (i & 1) i++; + quadrant = (UInt16*)(&(block[i])); + + /* (wfact-1) / 3 puts the default-factor-30 + transition point at very roughly the same place as + with v0.1 and v0.9.0. + Not that it particularly matters any more, since the + resulting compressed stream is now the same regardless + of whether or not we use the main sort or fallback sort. + */ + if (wfact < 1 ) wfact = 1; + if (wfact > 100) wfact = 100; + budgetInit = nblock * ((wfact-1) / 3); + budget = budgetInit; + + mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); + if (verb >= 3) + VPrintf3 ( " %d work, %d block, ratio %5.2f\n", + budgetInit - budget, + nblock, + (float)(budgetInit - budget) / + (float)(nblock==0 ? 1 : nblock) ); + if (budget < 0) { + if (verb >= 2) + VPrintf0 ( " too repetitive; using fallback" + " sorting algorithm\n" ); + fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); + } + } + + s->origPtr = -1; + for (i = 0; i < s->nblock; i++) + if (ptr[i] == 0) + { s->origPtr = i; break; }; + + AssertH( s->origPtr != -1, 1003 ); +} + + +/*-------------------------------------------------------------*/ +/*--- end blocksort.c ---*/ +/*-------------------------------------------------------------*/ |