summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Modules/Platform/FreeBSD.cmake1
-rw-r--r--Modules/Platform/HP-UX.cmake1
-rw-r--r--Modules/Platform/IRIX.cmake1
-rw-r--r--Modules/Platform/IRIX64.cmake1
-rw-r--r--Modules/Platform/NetBSD.cmake1
-rw-r--r--Modules/Platform/OSF1.cmake1
-rw-r--r--Modules/Platform/SCO_SV.cmake1
-rw-r--r--Modules/Platform/SINIX.cmake2
-rw-r--r--Modules/Platform/Tru64.cmake1
-rw-r--r--Modules/Platform/ULTRIX.cmake1
-rw-r--r--Modules/Platform/UNIX_SV.cmake1
-rw-r--r--Modules/Platform/UnixPaths.cmake7
-rw-r--r--Modules/Platform/UnixWare.cmake1
-rw-r--r--Modules/Platform/Xenix.cmake1
-rw-r--r--Modules/Platform/kFreeBSD.cmake2
15 files changed, 19 insertions, 4 deletions
diff --git a/Modules/Platform/FreeBSD.cmake b/Modules/Platform/FreeBSD.cmake
index 91fcbe1..15bd2b2 100644
--- a/Modules/Platform/FreeBSD.cmake
+++ b/Modules/Platform/FreeBSD.cmake
@@ -9,3 +9,4 @@ IF(EXISTS /usr/include/dlfcn.h)
SET(CMAKE_SHARED_LIBRARY_SONAME_CXX_FLAG "-Wl,-soname,")
ENDIF(EXISTS /usr/include/dlfcn.h)
# include the gcc flags
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/HP-UX.cmake b/Modules/Platform/HP-UX.cmake
index 6b31509..bc48657 100644
--- a/Modules/Platform/HP-UX.cmake
+++ b/Modules/Platform/HP-UX.cmake
@@ -70,3 +70,4 @@ ELSE(CMAKE_COMPILER_IS_GNUCXX)
SET (CMAKE_C_FLAGS_INIT "")
ENDIF(CMAKE_COMPILER_IS_GNUCXX)
# set flags for gcc support
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/IRIX.cmake b/Modules/Platform/IRIX.cmake
index 861f016..776bb4a 100644
--- a/Modules/Platform/IRIX.cmake
+++ b/Modules/Platform/IRIX.cmake
@@ -14,3 +14,4 @@ IF(NOT CMAKE_COMPILER_IS_GNUCXX)
SET (CMAKE_C_FLAGS_INIT "")
ENDIF(NOT CMAKE_COMPILER_IS_GNUCXX)
# set flags for gcc support
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/IRIX64.cmake b/Modules/Platform/IRIX64.cmake
index 555c0fb..fbd35a6 100644
--- a/Modules/Platform/IRIX64.cmake
+++ b/Modules/Platform/IRIX64.cmake
@@ -43,3 +43,4 @@ IF(NOT CMAKE_COMPILER_IS_GNUCC)
SET (CMAKE_CXX_FLAGS_RELEASE_INIT "-O2 -DNDEBUG")
SET (CMAKE_CXX_FLAGS_RELWITHDEBINFO_INIT "-O2")
ENDIF(NOT CMAKE_COMPILER_IS_GNUCC)
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/NetBSD.cmake b/Modules/Platform/NetBSD.cmake
index c67e5d4..0562e4d 100644
--- a/Modules/Platform/NetBSD.cmake
+++ b/Modules/Platform/NetBSD.cmake
@@ -6,3 +6,4 @@ IF(EXISTS /usr/include/dlfcn.h)
SET(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG "-Wl,-rpath,") # -rpath
SET(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG_SEP ":") # : or empty
ENDIF(EXISTS /usr/include/dlfcn.h)
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/OSF1.cmake b/Modules/Platform/OSF1.cmake
index 37559bf..27af3b1 100644
--- a/Modules/Platform/OSF1.cmake
+++ b/Modules/Platform/OSF1.cmake
@@ -42,3 +42,4 @@ ELSE (CMAKE_COMPILER_IS_GNUCXX)
SET (CMAKE_CXX_FLAGS_RELEASE_INIT "-O2 -DNDEBUG")
SET (CMAKE_CXX_FLAGS_RELWITHDEBINFO_INIT "-O2")
ENDIF(CMAKE_COMPILER_IS_GNUCXX)
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/SCO_SV.cmake b/Modules/Platform/SCO_SV.cmake
index 89dcd56..efb7aa0 100644
--- a/Modules/Platform/SCO_SV.cmake
+++ b/Modules/Platform/SCO_SV.cmake
@@ -2,3 +2,4 @@ SET(CMAKE_SHARED_LIBRARY_C_FLAGS "-Kpic -belf")
SET(CMAKE_SHARED_LIBRARY_CXX_FLAGS "-Kpic -belf")
SET(CMAKE_DL_LIBS "")
SET(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-belf -Wl,-Bexport")
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/SINIX.cmake b/Modules/Platform/SINIX.cmake
index 1acacbb..4592fdd 100644
--- a/Modules/Platform/SINIX.cmake
+++ b/Modules/Platform/SINIX.cmake
@@ -1,2 +1,2 @@
SET(CMAKE_SHARED_LIBRARY_C_FLAGS "-K PIC")
-
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/Tru64.cmake b/Modules/Platform/Tru64.cmake
index 8b13789..cf9d17b 100644
--- a/Modules/Platform/Tru64.cmake
+++ b/Modules/Platform/Tru64.cmake
@@ -1 +1,2 @@
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/ULTRIX.cmake b/Modules/Platform/ULTRIX.cmake
index 024fa1a..4d0cf75 100644
--- a/Modules/Platform/ULTRIX.cmake
+++ b/Modules/Platform/ULTRIX.cmake
@@ -2,3 +2,4 @@ SET(CMAKE_SHARED_LIBRARY_C_FLAGS "-G 0")
SET(CMAKE_SHARED_LIBRARY_SUFFIX "..o")
SET(CMAKE_DL_LIBS "")
SET(CMAKE_SHARED_LIBRARY_LINK_C_FLAGS "-Wl,-D,08000000")
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/UNIX_SV.cmake b/Modules/Platform/UNIX_SV.cmake
index d9be199..3b50e0a 100644
--- a/Modules/Platform/UNIX_SV.cmake
+++ b/Modules/Platform/UNIX_SV.cmake
@@ -1,2 +1,3 @@
SET(CMAKE_SHARED_LIBRARY_C_FLAGS "-K PIC")
SET(CMAKE_SHARED_LIBRARY_LINK_C_FLAGS "-Wl,-Bexport")
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/UnixPaths.cmake b/Modules/Platform/UnixPaths.cmake
index 20b002a..43076e7 100644
--- a/Modules/Platform/UnixPaths.cmake
+++ b/Modules/Platform/UnixPaths.cmake
@@ -1,5 +1,6 @@
SET(CMAKE_SYSTEM_INCLUDE_PATH ${CMAKE_SYSTEM_INCLUDE_PATH} /usr/include
- /usr/local/include /usr/local /usr/X11R6/include /usr/include/X11)
+ /usr/local/include /usr/local /usr/X11R6/include /usr/include/X11 /usr/pkg/include)
SET(CMAKE_SYSTEM_LIBRARY_PATH ${CMAKE_SYSTEM_LIBRARY_PATH} /lib /usr/lib /usr/local/lib
- /usr/lib/w32api /usr/X11R6/lib /opt/local/lib /opt/csw/lib /opt/lib )
-SET(CMAKE_SYSTEM_PROGRAM_PATH ${CMAKE_SYSTEM_PROGRAM_PATH} /bin /usr/bin /usr/local/bin /sbin)
+ /usr/lib/w32api /usr/X11R6/lib /opt/local/lib /opt/csw/lib /opt/lib /usr/pkg/lib)
+SET(CMAKE_SYSTEM_PROGRAM_PATH ${CMAKE_SYSTEM_PROGRAM_PATH} /bin /usr/bin /usr/local/bin
+ /usr/pkg/bin /sbin)
diff --git a/Modules/Platform/UnixWare.cmake b/Modules/Platform/UnixWare.cmake
index 80acb87..c324bc8 100644
--- a/Modules/Platform/UnixWare.cmake
+++ b/Modules/Platform/UnixWare.cmake
@@ -1,2 +1,3 @@
SET(CMAKE_SHARED_LIBRARY_C_FLAGS "-K PIC")
SET(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-Wl,-Bexport")
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/Xenix.cmake b/Modules/Platform/Xenix.cmake
index 8b13789..cf9d17b 100644
--- a/Modules/Platform/Xenix.cmake
+++ b/Modules/Platform/Xenix.cmake
@@ -1 +1,2 @@
+INCLUDE(Platform/UnixPaths)
diff --git a/Modules/Platform/kFreeBSD.cmake b/Modules/Platform/kFreeBSD.cmake
index 79a0fe9..862d274 100644
--- a/Modules/Platform/kFreeBSD.cmake
+++ b/Modules/Platform/kFreeBSD.cmake
@@ -7,3 +7,5 @@ SET(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG "-Wl,-rpath,")
SET(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG_SEP ":")
SET(CMAKE_SHARED_LIBRARY_SONAME_C_FLAG "-Wl,-soname,")
SET(CMAKE_SHARED_LIBRARY_SONAME_CXX_FLAG "-Wl,-soname,")
+
+INCLUDE(Platform/UnixPaths)
id='n617' href='#n617'>617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 * FILE:	sha2.c
 * AUTHOR:	Aaron D. Gifford
 *		http://www.aarongifford.com/computers/sha.html
 *
 * Copyright (c) 2000-2003, Aaron D. Gifford
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holder nor the names of contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $
 */

#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h>	/* assert() */
#include "cm_sha2.h"	/* "sha2.h" -> "cm_sha2.h" renamed for CMake */

/*
 * ASSERT NOTE:
 * Some sanity checking code is included using assert().  On my FreeBSD
 * system, this additional code can be removed by compiling with NDEBUG
 * defined.  Check your own systems manpage on assert() to see how to
 * compile WITHOUT the sanity checking code on your system.
 *
 * UNROLLED TRANSFORM LOOP NOTE:
 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
 * loop version for the hash transform rounds (defined using macros
 * later in this file).  Either define on the command line, for example:
 *
 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
 *
 * or define below:
 *
 *   #define SHA2_UNROLL_TRANSFORM
 *
 */


/*** SHA-224/256/384/512 Machine Architecture Definitions *************/
/*
 * BYTE_ORDER NOTE:
 *
 * Please make sure that your system defines BYTE_ORDER.  If your
 * architecture is little-endian, make sure it also defines
 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
 * equivilent.
 *
 * If your system does not define the above, then you can do so by
 * hand like this:
 *
 *   #define LITTLE_ENDIAN 1234
 *   #define BIG_ENDIAN    4321
 *
 * And for little-endian machines, add:
 *
 *   #define BYTE_ORDER LITTLE_ENDIAN
 *
 * Or for big-endian machines:
 *
 *   #define BYTE_ORDER BIG_ENDIAN
 *
 * The FreeBSD machine this was written on defines BYTE_ORDER
 * appropriately by including <sys/types.h> (which in turn includes
 * <machine/endian.h> where the appropriate definitions are actually
 * made).
 */
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
/* CMake modification: use byte order from cmIML.  */
# include "cmIML/ABI.h"
# undef BYTE_ORDER
# undef BIG_ENDIAN
# undef LITTLE_ENDIAN
# define BYTE_ORDER    cmIML_ABI_ENDIAN_ID
# define BIG_ENDIAN    cmIML_ABI_ENDIAN_ID_BIG
# define LITTLE_ENDIAN cmIML_ABI_ENDIAN_ID_LITTLE
#endif

/* CMake modification: use types computed in header.  */
typedef cm_sha2_uint8_t  sha_byte;	/* Exactly 1 byte */
typedef cm_sha2_uint32_t sha_word32;	/* Exactly 4 bytes */
typedef cm_sha2_uint64_t sha_word64;	/* Exactly 8 bytes */
#define SHA_UINT32_C(x) cmIML_INT_UINT32_C(x)
#define SHA_UINT64_C(x) cmIML_INT_UINT64_C(x)
#if defined(__clang__)
# pragma clang diagnostic ignored "-Wcast-align"
#endif

/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x)	{ \
	sha_word32 tmp = (w); \
	tmp = (tmp >> 16) | (tmp << 16); \
	(x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \
	      ((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \
}
#define REVERSE64(w,x)	{ \
	sha_word64 tmp = (w); \
	tmp = (tmp >> 32) | (tmp << 32); \
	tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
	      ((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
	(x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \
	      ((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */

/*
 * Macro for incrementally adding the unsigned 64-bit integer n to the
 * unsigned 128-bit integer (represented using a two-element array of
 * 64-bit words):
 */
#define ADDINC128(w,n)	{ \
	(w)[0] += (sha_word64)(n); \
	if ((w)[0] < (n)) { \
		(w)[1]++; \
	} \
}

/*
 * Macros for copying blocks of memory and for zeroing out ranges
 * of memory.  Using these macros makes it easy to switch from
 * using memset()/memcpy() and using bzero()/bcopy().
 *
 * Please define either SHA2_USE_MEMSET_MEMCPY or define
 * SHA2_USE_BZERO_BCOPY depending on which function set you
 * choose to use:
 */
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define	SHA2_USE_MEMSET_MEMCPY	1
#endif
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif

#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p,l)	bzero((p), (l))
#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
#endif


/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
 *
 *   NOTE:  In the original SHA-256/384/512 document, the shift-right
 *   function was named R and the rotate-right function was called S.
 *   (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
 *   web.)
 *
 *   The newer NIST FIPS 180-2 document uses a much clearer naming
 *   scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
 *   rotate-left.  (See:
 *   http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
 *   on the web.)
 *
 *   WARNING: These macros must be used cautiously, since they reference
 *   supplied parameters sometimes more than once, and thus could have
 *   unexpected side-effects if used without taking this into account.
 */
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define SHR(b,x) 		((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define ROTR32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define ROTR64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
/* 32-bit Rotate-left (used in SHA-1): */
#define ROTL32(b,x)	(((x) << (b)) | ((x) >> (32 - (b))))

/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

/* Function used in SHA-1: */
#define Parity(x,y,z)	((x) ^ (y) ^ (z))

/* Four logical functions used in SHA-256: */
#define Sigma0_256(x)	(ROTR32(2,  (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
#define Sigma1_256(x)	(ROTR32(6,  (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
#define sigma0_256(x)	(ROTR32(7,  (x)) ^ ROTR32(18, (x)) ^ SHR(   3 , (x)))
#define sigma1_256(x)	(ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR(   10, (x)))

/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x)	(ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
#define Sigma1_512(x)	(ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
#define sigma0_512(x)	(ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR(    7, (x)))
#define sigma1_512(x)	(ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR(    6, (x)))

/*** INTERNAL FUNCTION PROTOTYPES *************************************/

/* SHA-224 and SHA-256: */
void SHA256_Internal_Init(SHA_CTX*, const sha_word32*);
void SHA256_Internal_Last(SHA_CTX*);
void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*);

/* SHA-384 and SHA-512: */
void SHA512_Internal_Init(SHA_CTX*, const sha_word64*);
void SHA512_Internal_Last(SHA_CTX*);
void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*);


/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/

/* Hash constant words K for SHA-1: */
#define K1_0_TO_19	SHA_UINT32_C(0x5a827999)
#define K1_20_TO_39	SHA_UINT32_C(0x6ed9eba1)
#define K1_40_TO_59	SHA_UINT32_C(0x8f1bbcdc)
#define K1_60_TO_79	SHA_UINT32_C(0xca62c1d6)

/* Initial hash value H for SHA-1: */
static const sha_word32 sha1_initial_hash_value[5] = {
	SHA_UINT32_C(0x67452301),
	SHA_UINT32_C(0xefcdab89),
	SHA_UINT32_C(0x98badcfe),
	SHA_UINT32_C(0x10325476),
	SHA_UINT32_C(0xc3d2e1f0)
};

/* Hash constant words K for SHA-224 and SHA-256: */
static const sha_word32 K256[64] = {
	SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491),
	SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5),
	SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1),
	SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5),
	SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01),
	SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3),
	SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe),
	SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174),
	SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786),
	SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc),
	SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa),
	SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da),
	SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d),
	SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7),
	SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147),
	SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967),
	SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138),
	SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13),
	SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb),
	SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85),
	SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b),
	SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3),
	SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624),
	SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070),
	SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08),
	SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5),
	SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a),
	SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3),
	SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f),
	SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208),
	SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb),
	SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2)
};

/* Initial hash value H for SHA-224: */
static const sha_word32 sha224_initial_hash_value[8] = {
	SHA_UINT32_C(0xc1059ed8),
	SHA_UINT32_C(0x367cd507),
	SHA_UINT32_C(0x3070dd17),
	SHA_UINT32_C(0xf70e5939),
	SHA_UINT32_C(0xffc00b31),
	SHA_UINT32_C(0x68581511),
	SHA_UINT32_C(0x64f98fa7),
	SHA_UINT32_C(0xbefa4fa4)
};

/* Initial hash value H for SHA-256: */
static const sha_word32 sha256_initial_hash_value[8] = {
	SHA_UINT32_C(0x6a09e667),
	SHA_UINT32_C(0xbb67ae85),
	SHA_UINT32_C(0x3c6ef372),
	SHA_UINT32_C(0xa54ff53a),
	SHA_UINT32_C(0x510e527f),
	SHA_UINT32_C(0x9b05688c),
	SHA_UINT32_C(0x1f83d9ab),
	SHA_UINT32_C(0x5be0cd19)
};

/* Hash constant words K for SHA-384 and SHA-512: */
static const sha_word64 K512[80] = {
	SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd),
	SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc),
	SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019),
	SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118),
	SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe),
	SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2),
	SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1),
	SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694),
	SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3),
	SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65),
	SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483),
	SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5),
	SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210),
	SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4),
	SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725),
	SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70),
	SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926),
	SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df),
	SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8),
	SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b),
	SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001),
	SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30),
	SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910),
	SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8),
	SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53),
	SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8),
	SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb),
	SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3),
	SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60),
	SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec),
	SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9),
	SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b),
	SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207),
	SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178),
	SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6),
	SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b),
	SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493),
	SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c),
	SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a),
	SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817)
};

/* Initial hash value H for SHA-384 */
static const sha_word64 sha384_initial_hash_value[8] = {
	SHA_UINT64_C(0xcbbb9d5dc1059ed8),
	SHA_UINT64_C(0x629a292a367cd507),
	SHA_UINT64_C(0x9159015a3070dd17),
	SHA_UINT64_C(0x152fecd8f70e5939),
	SHA_UINT64_C(0x67332667ffc00b31),
	SHA_UINT64_C(0x8eb44a8768581511),
	SHA_UINT64_C(0xdb0c2e0d64f98fa7),
	SHA_UINT64_C(0x47b5481dbefa4fa4)
};

/* Initial hash value H for SHA-512 */
static const sha_word64 sha512_initial_hash_value[8] = {
	SHA_UINT64_C(0x6a09e667f3bcc908),
	SHA_UINT64_C(0xbb67ae8584caa73b),
	SHA_UINT64_C(0x3c6ef372fe94f82b),
	SHA_UINT64_C(0xa54ff53a5f1d36f1),
	SHA_UINT64_C(0x510e527fade682d1),
	SHA_UINT64_C(0x9b05688c2b3e6c1f),
	SHA_UINT64_C(0x1f83d9abfb41bd6b),
	SHA_UINT64_C(0x5be0cd19137e2179)
};

/*
 * Constant used by SHA224/256/384/512_End() functions for converting the
 * digest to a readable hexadecimal character string:
 */
static const char *sha_hex_digits = "0123456789abcdef";


/*** SHA-1: ***********************************************************/
void SHA1_Init(SHA_CTX* context) {
	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5);
	MEMSET_BZERO(context->s1.buffer, 64);
	context->s1.bitcount = 0;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-1 round macros: */

#if BYTE_ORDER == LITTLE_ENDIAN

#define ROUND1_0_TO_15(a,b,c,d,e)				\
	REVERSE32(*data++, W1[j]);				\
	(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) +	\
	     K1_0_TO_19 + W1[j];	\
	(b) = ROTL32(30, (b));		\
	j++;

#else /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND1_0_TO_15(a,b,c,d,e)				\
	(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) +	\
	     K1_0_TO_19 + ( W1[j] = *data++ );		\
	(b) = ROTL32(30, (b));	\
	j++;

#endif /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND1_16_TO_19(a,b,c,d,e)	\
	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
	(e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
	(b) = ROTL32(30, b);	\
	j++;

#define ROUND1_20_TO_39(a,b,c,d,e)	\
	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
	(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
	(b) = ROTL32(30, b);	\
	j++;

#define ROUND1_40_TO_59(a,b,c,d,e)	\
	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
	(e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
	(b) = ROTL32(30, b);	\
	j++;

#define ROUND1_60_TO_79(a,b,c,d,e)	\
	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
	(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
	(b) = ROTL32(30, b);	\
	j++;

void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
	sha_word32	a, b, c, d, e;
	sha_word32	T1, *W1;
	int		j;

	W1 = (sha_word32*)context->s1.buffer;

	/* Initialize registers with the prev. intermediate value */
	a = context->s1.state[0];
	b = context->s1.state[1];
	c = context->s1.state[2];
	d = context->s1.state[3];
	e = context->s1.state[4];

	j = 0;

	/* Rounds 0 to 15 unrolled: */
	ROUND1_0_TO_15(a,b,c,d,e);
	ROUND1_0_TO_15(e,a,b,c,d);
	ROUND1_0_TO_15(d,e,a,b,c);
	ROUND1_0_TO_15(c,d,e,a,b);
	ROUND1_0_TO_15(b,c,d,e,a);
	ROUND1_0_TO_15(a,b,c,d,e);
	ROUND1_0_TO_15(e,a,b,c,d);
	ROUND1_0_TO_15(d,e,a,b,c);
	ROUND1_0_TO_15(c,d,e,a,b);
	ROUND1_0_TO_15(b,c,d,e,a);
	ROUND1_0_TO_15(a,b,c,d,e);
	ROUND1_0_TO_15(e,a,b,c,d);
	ROUND1_0_TO_15(d,e,a,b,c);
	ROUND1_0_TO_15(c,d,e,a,b);
	ROUND1_0_TO_15(b,c,d,e,a);
	ROUND1_0_TO_15(a,b,c,d,e);

	/* Rounds 16 to 19 unrolled: */
	ROUND1_16_TO_19(e,a,b,c,d);
	ROUND1_16_TO_19(d,e,a,b,c);
	ROUND1_16_TO_19(c,d,e,a,b);
	ROUND1_16_TO_19(b,c,d,e,a);

	/* Rounds 20 to 39 unrolled: */
	ROUND1_20_TO_39(a,b,c,d,e);
	ROUND1_20_TO_39(e,a,b,c,d);
	ROUND1_20_TO_39(d,e,a,b,c);
	ROUND1_20_TO_39(c,d,e,a,b);
	ROUND1_20_TO_39(b,c,d,e,a);
	ROUND1_20_TO_39(a,b,c,d,e);
	ROUND1_20_TO_39(e,a,b,c,d);
	ROUND1_20_TO_39(d,e,a,b,c);
	ROUND1_20_TO_39(c,d,e,a,b);
	ROUND1_20_TO_39(b,c,d,e,a);
	ROUND1_20_TO_39(a,b,c,d,e);
	ROUND1_20_TO_39(e,a,b,c,d);
	ROUND1_20_TO_39(d,e,a,b,c);
	ROUND1_20_TO_39(c,d,e,a,b);
	ROUND1_20_TO_39(b,c,d,e,a);
	ROUND1_20_TO_39(a,b,c,d,e);
	ROUND1_20_TO_39(e,a,b,c,d);
	ROUND1_20_TO_39(d,e,a,b,c);
	ROUND1_20_TO_39(c,d,e,a,b);
	ROUND1_20_TO_39(b,c,d,e,a);

	/* Rounds 40 to 59 unrolled: */
	ROUND1_40_TO_59(a,b,c,d,e);
	ROUND1_40_TO_59(e,a,b,c,d);
	ROUND1_40_TO_59(d,e,a,b,c);
	ROUND1_40_TO_59(c,d,e,a,b);
	ROUND1_40_TO_59(b,c,d,e,a);
	ROUND1_40_TO_59(a,b,c,d,e);
	ROUND1_40_TO_59(e,a,b,c,d);
	ROUND1_40_TO_59(d,e,a,b,c);
	ROUND1_40_TO_59(c,d,e,a,b);
	ROUND1_40_TO_59(b,c,d,e,a);
	ROUND1_40_TO_59(a,b,c,d,e);
	ROUND1_40_TO_59(e,a,b,c,d);
	ROUND1_40_TO_59(d,e,a,b,c);
	ROUND1_40_TO_59(c,d,e,a,b);
	ROUND1_40_TO_59(b,c,d,e,a);
	ROUND1_40_TO_59(a,b,c,d,e);
	ROUND1_40_TO_59(e,a,b,c,d);
	ROUND1_40_TO_59(d,e,a,b,c);
	ROUND1_40_TO_59(c,d,e,a,b);
	ROUND1_40_TO_59(b,c,d,e,a);

	/* Rounds 60 to 79 unrolled: */
	ROUND1_60_TO_79(a,b,c,d,e);
	ROUND1_60_TO_79(e,a,b,c,d);
	ROUND1_60_TO_79(d,e,a,b,c);
	ROUND1_60_TO_79(c,d,e,a,b);
	ROUND1_60_TO_79(b,c,d,e,a);
	ROUND1_60_TO_79(a,b,c,d,e);
	ROUND1_60_TO_79(e,a,b,c,d);
	ROUND1_60_TO_79(d,e,a,b,c);
	ROUND1_60_TO_79(c,d,e,a,b);
	ROUND1_60_TO_79(b,c,d,e,a);
	ROUND1_60_TO_79(a,b,c,d,e);
	ROUND1_60_TO_79(e,a,b,c,d);
	ROUND1_60_TO_79(d,e,a,b,c);
	ROUND1_60_TO_79(c,d,e,a,b);
	ROUND1_60_TO_79(b,c,d,e,a);
	ROUND1_60_TO_79(a,b,c,d,e);
	ROUND1_60_TO_79(e,a,b,c,d);
	ROUND1_60_TO_79(d,e,a,b,c);
	ROUND1_60_TO_79(c,d,e,a,b);
	ROUND1_60_TO_79(b,c,d,e,a);

	/* Compute the current intermediate hash value */
	context->s1.state[0] += a;
	context->s1.state[1] += b;
	context->s1.state[2] += c;
	context->s1.state[3] += d;
	context->s1.state[4] += e;

	/* Clean up */
	a = b = c = d = e = T1 = 0;
}

#else  /* SHA2_UNROLL_TRANSFORM */

void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
	sha_word32	a, b, c, d, e;
	sha_word32	T1, *W1;
	int		j;

	W1 = (sha_word32*)context->s1.buffer;

	/* Initialize registers with the prev. intermediate value */
	a = context->s1.state[0];
	b = context->s1.state[1];
	c = context->s1.state[2];
	d = context->s1.state[3];
	e = context->s1.state[4];
	j = 0;
	do {
#if BYTE_ORDER == LITTLE_ENDIAN
		T1 = data[j];
		/* Copy data while converting to host byte order */
		REVERSE32(*data++, W1[j]);
		T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
		T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
		e = d;
		d = c;
		c = ROTL32(30, b);
		b = a;
		a = T1;
		j++;
	} while (j < 16);

	do {
		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
		T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
		e = d;
		d = c;
		c = ROTL32(30, b);
		b = a;
		a = T1;
		j++;
	} while (j < 20);

	do {
		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
		T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
		e = d;
		d = c;
		c = ROTL32(30, b);
		b = a;
		a = T1;
		j++;
	} while (j < 40);

	do {
		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
		T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
		e = d;
		d = c;
		c = ROTL32(30, b);
		b = a;
		a = T1;
		j++;
	} while (j < 60);

	do {
		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
		T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
		e = d;
		d = c;
		c = ROTL32(30, b);
		b = a;
		a = T1;
		j++;
	} while (j < 80);


	/* Compute the current intermediate hash value */
	context->s1.state[0] += a;
	context->s1.state[1] += b;
	context->s1.state[2] += c;
	context->s1.state[3] += d;
	context->s1.state[4] += e;

	/* Clean up */
	a = b = c = d = e = T1 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
	unsigned int	freespace, usedspace;
	if (len == 0) {
		/* Calling with no data is valid - we do nothing */
		return;
	}

	/* Sanity check: */
	assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);

	usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
	if (usedspace > 0) {
		/* Calculate how much free space is available in the buffer */
		freespace = 64 - usedspace;

		if (len >= freespace) {
			/* Fill the buffer completely and process it */
			MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace);
			context->s1.bitcount += freespace << 3;
			len -= freespace;
			data += freespace;
			SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer);
		} else {
			/* The buffer is not yet full */
			MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len);
			context->s1.bitcount += len << 3;
			/* Clean up: */
			usedspace = freespace = 0;
			return;
		}
	}
	while (len >= 64) {
		/* Process as many complete blocks as we can */
		SHA1_Internal_Transform(context, (const sha_word32*)data);
		context->s1.bitcount += 512;
		len -= 64;
		data += 64;
	}
	if (len > 0) {
		/* There's left-overs, so save 'em */
		MEMCPY_BCOPY(context->s1.buffer, data, len);
		context->s1.bitcount += len << 3;
	}
	/* Clean up: */
	usedspace = freespace = 0;
}

void SHA1_Final(sha_byte digest[], SHA_CTX* context) {
	sha_word32	*d = (sha_word32*)digest;
	unsigned int	usedspace;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	if (digest == (sha_byte*)0) {
		/*
		 * No digest buffer, so we can do nothing
		 * except clean up and go home
		 */
		MEMSET_BZERO(context, sizeof(*context));
		return;
	}

	usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
	if (usedspace == 0) {
		/* Set-up for the last transform: */
		MEMSET_BZERO(context->s1.buffer, 56);

		/* Begin padding with a 1 bit: */
		*context->s1.buffer = 0x80;
	} else {
		/* Begin padding with a 1 bit: */
		context->s1.buffer[usedspace++] = 0x80;

		if (usedspace <= 56) {
			/* Set-up for the last transform: */
			MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace);
		} else {
			if (usedspace < 64) {
				MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace);
			}
			/* Do second-to-last transform: */
			SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer);

			/* And set-up for the last transform: */
			MEMSET_BZERO(context->s1.buffer, 56);
		}
		/* Clean up: */
		usedspace = 0;
	}
	/* Set the bit count: */
#if BYTE_ORDER == LITTLE_ENDIAN
	/* Convert FROM host byte order */
	REVERSE64(context->s1.bitcount,context->s1.bitcount);
#endif
	MEMCPY_BCOPY(&context->s1.buffer[56], &context->s1.bitcount,
		     sizeof(sha_word64));

	/* Final transform: */
	SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer);

	/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
	{
		/* Convert TO host byte order */
		int	j;
		for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) {
			REVERSE32(context->s1.state[j],context->s1.state[j]);
			*d++ = context->s1.state[j];
		}
	}
#else
	MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH);
#endif

	/* Clean up: */
	MEMSET_BZERO(context, sizeof(*context));
}

char *SHA1_End(SHA_CTX* context, char buffer[]) {
	sha_byte	digest[SHA1_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	if (buffer != (char*)0) {
		SHA1_Final(digest, context);

		for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(*context));
	}
	MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH);
	return buffer;
}

char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
	SHA_CTX	context;

	SHA1_Init(&context);
	SHA1_Update(&context, data, len);
	return SHA1_End(&context, digest);
}


/*** SHA-256: *********************************************************/
void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) {
	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8);
	MEMSET_BZERO(context->s256.buffer, 64);
	context->s256.bitcount = 0;
}

void SHA256_Init(SHA_CTX* context) {
	SHA256_Internal_Init(context, sha256_initial_hash_value);
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-256 round macros: */

#if BYTE_ORDER == LITTLE_ENDIAN

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
	REVERSE32(*data++, W256[j]); \
	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
	     K256[j] + W256[j]; \
	(d) += T1; \
	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
	j++


#else /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
	     K256[j] + (W256[j] = *data++); \
	(d) += T1; \
	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
	j++

#endif /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND256(a,b,c,d,e,f,g,h)	\
	s0 = W256[(j+1)&0x0f]; \
	s0 = sigma0_256(s0); \
	s1 = W256[(j+14)&0x0f]; \
	s1 = sigma1_256(s1); \
	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
	(d) += T1; \
	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
	j++

void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
	sha_word32	a, b, c, d, e, f, g, h, s0, s1;
	sha_word32	T1, *W256;
	int		j;

	W256 = (sha_word32*)context->s256.buffer;

	/* Initialize registers with the prev. intermediate value */
	a = context->s256.state[0];
	b = context->s256.state[1];
	c = context->s256.state[2];
	d = context->s256.state[3];
	e = context->s256.state[4];
	f = context->s256.state[5];
	g = context->s256.state[6];
	h = context->s256.state[7];

	j = 0;
	do {
		/* Rounds 0 to 15 (unrolled): */
		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
	} while (j < 16);

	/* Now for the remaining rounds to 64: */
	do {
		ROUND256(a,b,c,d,e,f,g,h);
		ROUND256(h,a,b,c,d,e,f,g);
		ROUND256(g,h,a,b,c,d,e,f);
		ROUND256(f,g,h,a,b,c,d,e);
		ROUND256(e,f,g,h,a,b,c,d);
		ROUND256(d,e,f,g,h,a,b,c);
		ROUND256(c,d,e,f,g,h,a,b);
		ROUND256(b,c,d,e,f,g,h,a);
	} while (j < 64);

	/* Compute the current intermediate hash value */
	context->s256.state[0] += a;
	context->s256.state[1] += b;
	context->s256.state[2] += c;
	context->s256.state[3] += d;
	context->s256.state[4] += e;
	context->s256.state[5] += f;
	context->s256.state[6] += g;
	context->s256.state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
	sha_word32	a, b, c, d, e, f, g, h, s0, s1;
	sha_word32	T1, T2, *W256;
	int		j;

	W256 = (sha_word32*)context->s256.buffer;

	/* Initialize registers with the prev. intermediate value */
	a = context->s256.state[0];
	b = context->s256.state[1];
	c = context->s256.state[2];
	d = context->s256.state[3];
	e = context->s256.state[4];
	f = context->s256.state[5];
	g = context->s256.state[6];
	h = context->s256.state[7];

	j = 0;
	do {
#if BYTE_ORDER == LITTLE_ENDIAN
		/* Copy data while converting to host byte order */
		REVERSE32(*data++,W256[j]);
		/* Apply the SHA-256 compression function to update a..h */
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
		/* Apply the SHA-256 compression function to update a..h with copy */
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
		T2 = Sigma0_256(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 16);

	do {
		/* Part of the message block expansion: */
		s0 = W256[(j+1)&0x0f];
		s0 = sigma0_256(s0);
		s1 = W256[(j+14)&0x0f];
		s1 = sigma1_256(s1);

		/* Apply the SHA-256 compression function to update a..h */
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
		T2 = Sigma0_256(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 64);

	/* Compute the current intermediate hash value */
	context->s256.state[0] += a;
	context->s256.state[1] += b;
	context->s256.state[2] += c;
	context->s256.state[3] += d;
	context->s256.state[4] += e;
	context->s256.state[5] += f;
	context->s256.state[6] += g;
	context->s256.state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
	unsigned int	freespace, usedspace;

	if (len == 0) {
		/* Calling with no data is valid - we do nothing */
		return;
	}

	/* Sanity check: */
	assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);

	usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
	if (usedspace > 0) {
		/* Calculate how much free space is available in the buffer */
		freespace = 64 - usedspace;

		if (len >= freespace) {
			/* Fill the buffer completely and process it */
			MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace);
			context->s256.bitcount += freespace << 3;
			len -= freespace;
			data += freespace;
			SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer);
		} else {
			/* The buffer is not yet full */
			MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len);
			context->s256.bitcount += len << 3;
			/* Clean up: */
			usedspace = freespace = 0;
			return;
		}
	}
	while (len >= 64) {
		/* Process as many complete blocks as we can */
		SHA256_Internal_Transform(context, (const sha_word32*)data);
		context->s256.bitcount += 512;
		len -= 64;
		data += 64;
	}
	if (len > 0) {
		/* There's left-overs, so save 'em */
		MEMCPY_BCOPY(context->s256.buffer, data, len);
		context->s256.bitcount += len << 3;
	}
	/* Clean up: */
	usedspace = freespace = 0;
}

void SHA256_Internal_Last(SHA_CTX* context) {
	unsigned int	usedspace;

	usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
#if BYTE_ORDER == LITTLE_ENDIAN
	/* Convert FROM host byte order */
	REVERSE64(context->s256.bitcount,context->s256.bitcount);
#endif
	if (usedspace > 0) {
		/* Begin padding with a 1 bit: */
		context->s256.buffer[usedspace++] = 0x80;

		if (usedspace <= 56) {
			/* Set-up for the last transform: */
			MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace);
		} else {
			if (usedspace < 64) {
				MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace);
			}
			/* Do second-to-last transform: */
			SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer);

			/* And set-up for the last transform: */
			MEMSET_BZERO(context->s256.buffer, 56);
		}
		/* Clean up: */
		usedspace = 0;
	} else {
		/* Set-up for the last transform: */
		MEMSET_BZERO(context->s256.buffer, 56);

		/* Begin padding with a 1 bit: */
		*context->s256.buffer = 0x80;
	}
	/* Set the bit count: */
	MEMCPY_BCOPY(&context->s256.buffer[56], &context->s256.bitcount,
		     sizeof(sha_word64));

	/* Final transform: */
	SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer);
}

void SHA256_Final(sha_byte digest[], SHA_CTX* context) {
	sha_word32	*d = (sha_word32*)digest;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha_byte*)0) {
		SHA256_Internal_Last(context);

		/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) {
				REVERSE32(context->s256.state[j],context->s256.state[j]);
				*d++ = context->s256.state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH);
#endif
	}

	/* Clean up state data: */
	MEMSET_BZERO(context, sizeof(*context));
}

char *SHA256_End(SHA_CTX* context, char buffer[]) {
	sha_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	if (buffer != (char*)0) {
		SHA256_Final(digest, context);

		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(*context));
	}
	MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
	return buffer;
}

char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
	SHA_CTX	context;

	SHA256_Init(&context);
	SHA256_Update(&context, data, len);
	return SHA256_End(&context, digest);
}


/*** SHA-224: *********************************************************/
void SHA224_Init(SHA_CTX* context) {
	SHA256_Internal_Init(context, sha224_initial_hash_value);
}

void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
	SHA256_Internal_Transform(context, data);
}

void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
	SHA256_Update(context, data, len);
}

void SHA224_Final(sha_byte digest[], SHA_CTX* context) {
	sha_word32	*d = (sha_word32*)digest;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha_byte*)0) {
		SHA256_Internal_Last(context);

		/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) {
				REVERSE32(context->s256.state[j],context->s256.state[j]);
				*d++ = context->s256.state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH);
#endif
	}

	/* Clean up state data: */
	MEMSET_BZERO(context, sizeof(*context));
}

char *SHA224_End(SHA_CTX* context, char buffer[]) {
	sha_byte	digest[SHA224_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	if (buffer != (char*)0) {
		SHA224_Final(digest, context);

		for (i = 0; i < SHA224_DIGEST_LENGTH; i++) {
			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(*context));
	}
	MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH);
	return buffer;
}

char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) {
	SHA_CTX	context;

	SHA224_Init(&context);
	SHA224_Update(&context, data, len);
	return SHA224_End(&context, digest);
}


/*** SHA-512: *********************************************************/
void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) {
	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8);
	MEMSET_BZERO(context->s512.buffer, 128);
	context->s512.bitcount[0] = context->s512.bitcount[1] =  0;
}

void SHA512_Init(SHA_CTX* context) {
	SHA512_Internal_Init(context, sha512_initial_hash_value);
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-512 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN

#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
	REVERSE64(*data++, W512[j]); \
	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
	     K512[j] + W512[j]; \
	(d) += T1, \
	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
	j++


#else /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
	     K512[j] + (W512[j] = *data++); \
	(d) += T1; \
	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
	j++

#endif /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND512(a,b,c,d,e,f,g,h)	\
	s0 = W512[(j+1)&0x0f]; \
	s0 = sigma0_512(s0); \
	s1 = W512[(j+14)&0x0f]; \
	s1 = sigma1_512(s1); \
	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
	     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
	(d) += T1; \
	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
	j++

void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
	sha_word64	a, b, c, d, e, f, g, h, s0, s1;
	sha_word64	T1, *W512 = (sha_word64*)context->s512.buffer;
	int		j;

	/* Initialize registers with the prev. intermediate value */
	a = context->s512.state[0];
	b = context->s512.state[1];
	c = context->s512.state[2];
	d = context->s512.state[3];
	e = context->s512.state[4];
	f = context->s512.state[5];
	g = context->s512.state[6];
	h = context->s512.state[7];

	j = 0;
	do {
		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
	} while (j < 16);

	/* Now for the remaining rounds up to 79: */
	do {
		ROUND512(a,b,c,d,e,f,g,h);
		ROUND512(h,a,b,c,d,e,f,g);
		ROUND512(g,h,a,b,c,d,e,f);
		ROUND512(f,g,h,a,b,c,d,e);
		ROUND512(e,f,g,h,a,b,c,d);
		ROUND512(d,e,f,g,h,a,b,c);
		ROUND512(c,d,e,f,g,h,a,b);
		ROUND512(b,c,d,e,f,g,h,a);
	} while (j < 80);

	/* Compute the current intermediate hash value */
	context->s512.state[0] += a;
	context->s512.state[1] += b;
	context->s512.state[2] += c;
	context->s512.state[3] += d;
	context->s512.state[4] += e;
	context->s512.state[5] += f;
	context->s512.state[6] += g;
	context->s512.state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
	sha_word64	a, b, c, d, e, f, g, h, s0, s1;
	sha_word64	T1, T2, *W512 = (sha_word64*)context->s512.buffer;
	int		j;

	/* Initialize registers with the prev. intermediate value */
	a = context->s512.state[0];
	b = context->s512.state[1];
	c = context->s512.state[2];
	d = context->s512.state[3];
	e = context->s512.state[4];
	f = context->s512.state[5];
	g = context->s512.state[6];
	h = context->s512.state[7];

	j = 0;
	do {
#if BYTE_ORDER == LITTLE_ENDIAN
		/* Convert TO host byte order */
		REVERSE64(*data++, W512[j]);
		/* Apply the SHA-512 compression function to update a..h */
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
		/* Apply the SHA-512 compression function to update a..h with copy */
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
		T2 = Sigma0_512(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 16);

	do {
		/* Part of the message block expansion: */
		s0 = W512[(j+1)&0x0f];
		s0 = sigma0_512(s0);
		s1 = W512[(j+14)&0x0f];
		s1 =  sigma1_512(s1);

		/* Apply the SHA-512 compression function to update a..h */
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
		T2 = Sigma0_512(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 80);

	/* Compute the current intermediate hash value */
	context->s512.state[0] += a;
	context->s512.state[1] += b;
	context->s512.state[2] += c;
	context->s512.state[3] += d;
	context->s512.state[4] += e;
	context->s512.state[5] += f;
	context->s512.state[6] += g;
	context->s512.state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
	unsigned int	freespace, usedspace;

	if (len == 0) {
		/* Calling with no data is valid - we do nothing */
		return;
	}

	/* Sanity check: */
	assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);

	usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
	if (usedspace > 0) {
		/* Calculate how much free space is available in the buffer */
		freespace = 128 - usedspace;

		if (len >= freespace) {
			/* Fill the buffer completely and process it */
			MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace);
			ADDINC128(context->s512.bitcount, freespace << 3);
			len -= freespace;
			data += freespace;
			SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer);
		} else {
			/* The buffer is not yet full */
			MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len);
			ADDINC128(context->s512.bitcount, len << 3);
			/* Clean up: */
			usedspace = freespace = 0;
			return;
		}
	}
	while (len >= 128) {
		/* Process as many complete blocks as we can */
		SHA512_Internal_Transform(context, (const sha_word64*)data);
		ADDINC128(context->s512.bitcount, 1024);
		len -= 128;
		data += 128;
	}
	if (len > 0) {
		/* There's left-overs, so save 'em */
		MEMCPY_BCOPY(context->s512.buffer, data, len);
		ADDINC128(context->s512.bitcount, len << 3);
	}
	/* Clean up: */
	usedspace = freespace = 0;
}

void SHA512_Internal_Last(SHA_CTX* context) {
	unsigned int	usedspace;

	usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
#if BYTE_ORDER == LITTLE_ENDIAN
	/* Convert FROM host byte order */
	REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]);
	REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]);
#endif
	if (usedspace > 0) {
		/* Begin padding with a 1 bit: */
		context->s512.buffer[usedspace++] = 0x80;

		if (usedspace <= 112) {
			/* Set-up for the last transform: */
			MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace);
		} else {
			if (usedspace < 128) {
				MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace);
			}
			/* Do second-to-last transform: */
			SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer);

			/* And set-up for the last transform: */
			MEMSET_BZERO(context->s512.buffer, 112);
		}
		/* Clean up: */
		usedspace = 0;
	} else {
		/* Prepare for final transform: */
		MEMSET_BZERO(context->s512.buffer, 112);

		/* Begin padding with a 1 bit: */
		*context->s512.buffer = 0x80;
	}
	/* Store the length of input data (in bits): */
	MEMCPY_BCOPY(&context->s512.buffer[112], &context->s512.bitcount[1],
		     sizeof(sha_word64));
	MEMCPY_BCOPY(&context->s512.buffer[120], &context->s512.bitcount[0],
		     sizeof(sha_word64));

	/* Final transform: */
	SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer);
}

void SHA512_Final(sha_byte digest[], SHA_CTX* context) {
	sha_word64	*d = (sha_word64*)digest;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha_byte*)0) {
		SHA512_Internal_Last(context);

		/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) {
				REVERSE64(context->s512.state[j],context->s512.state[j]);
				*d++ = context->s512.state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH);
#endif
	}

	/* Zero out state data */
	MEMSET_BZERO(context, sizeof(*context));
}

char *SHA512_End(SHA_CTX* context, char buffer[]) {
	sha_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	if (buffer != (char*)0) {
		SHA512_Final(digest, context);

		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(*context));
	}
	MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
	return buffer;
}

char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
	SHA_CTX	context;

	SHA512_Init(&context);
	SHA512_Update(&context, data, len);
	return SHA512_End(&context, digest);
}


/*** SHA-384: *********************************************************/
void SHA384_Init(SHA_CTX* context) {
	SHA512_Internal_Init(context, sha384_initial_hash_value);
}

void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) {
	SHA512_Update(context, data, len);
}

void SHA384_Final(sha_byte digest[], SHA_CTX* context) {
	sha_word64	*d = (sha_word64*)digest;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha_byte*)0) {
		SHA512_Internal_Last(context);

		/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) {
				REVERSE64(context->s512.state[j],context->s512.state[j]);
				*d++ = context->s512.state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH);
#endif
	}

	/* Zero out state data */
	MEMSET_BZERO(context, sizeof(*context));
}

char *SHA384_End(SHA_CTX* context, char buffer[]) {
	sha_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA_CTX*)0);

	if (buffer != (char*)0) {
		SHA384_Final(digest, context);

		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(*context));
	}
	MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
	return buffer;
}

char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
	SHA_CTX	context;

	SHA384_Init(&context);
	SHA384_Update(&context, data, len);
	return SHA384_End(&context, digest);
}