diff options
Diffstat (limited to 'Source/cm_sha2.c')
-rw-r--r-- | Source/cm_sha2.c | 1617 |
1 files changed, 1617 insertions, 0 deletions
diff --git a/Source/cm_sha2.c b/Source/cm_sha2.c new file mode 100644 index 0000000..24de2b2 --- /dev/null +++ b/Source/cm_sha2.c @@ -0,0 +1,1617 @@ +/* + * FILE: sha2.c + * AUTHOR: Aaron D. Gifford + * http://www.aarongifford.com/computers/sha.html + * + * Copyright (c) 2000-2003, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $ + */ + +#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ +#include <assert.h> /* assert() */ +#include "cm_sha2.h" /* "sha2.h" -> "cm_sha2.h" renamed for CMake */ + +/* + * ASSERT NOTE: + * Some sanity checking code is included using assert(). On my FreeBSD + * system, this additional code can be removed by compiling with NDEBUG + * defined. Check your own systems manpage on assert() to see how to + * compile WITHOUT the sanity checking code on your system. + * + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ + + +/*** SHA-224/256/384/512 Machine Architecture Definitions *************/ +/* + * BYTE_ORDER NOTE: + * + * Please make sure that your system defines BYTE_ORDER. If your + * architecture is little-endian, make sure it also defines + * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are + * equivilent. + * + * If your system does not define the above, then you can do so by + * hand like this: + * + * #define LITTLE_ENDIAN 1234 + * #define BIG_ENDIAN 4321 + * + * And for little-endian machines, add: + * + * #define BYTE_ORDER LITTLE_ENDIAN + * + * Or for big-endian machines: + * + * #define BYTE_ORDER BIG_ENDIAN + * + * The FreeBSD machine this was written on defines BYTE_ORDER + * appropriately by including <sys/types.h> (which in turn includes + * <machine/endian.h> where the appropriate definitions are actually + * made). + */ +#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) +/* CMake modification: use byte order from cmIML. */ +# include "cmIML/ABI.h" +# undef BYTE_ORDER +# undef BIG_ENDIAN +# undef LITTLE_ENDIAN +# define BYTE_ORDER cmIML_ABI_ENDIAN_ID +# define BIG_ENDIAN cmIML_ABI_ENDIAN_ID_BIG +# define LITTLE_ENDIAN cmIML_ABI_ENDIAN_ID_LITTLE +#endif + +/* CMake modification: use types computed in header. */ +typedef cm_sha2_uint8_t sha_byte; /* Exactly 1 byte */ +typedef cm_sha2_uint32_t sha_word32; /* Exactly 4 bytes */ +typedef cm_sha2_uint64_t sha_word64; /* Exactly 8 bytes */ +#define SHA_UINT32_C(x) cmIML_INT_UINT32_C(x) +#define SHA_UINT64_C(x) cmIML_INT_UINT64_C(x) +#if defined(__BORLANDC__) +# pragma warn -8004 /* variable assigned value that is never used */ +#endif +#if defined(__clang__) +# pragma clang diagnostic ignored "-Wcast-align" +#endif + +/*** ENDIAN REVERSAL MACROS *******************************************/ +#if BYTE_ORDER == LITTLE_ENDIAN +#define REVERSE32(w,x) { \ + sha_word32 tmp = (w); \ + tmp = (tmp >> 16) | (tmp << 16); \ + (x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \ + ((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \ +} +#define REVERSE64(w,x) { \ + sha_word64 tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \ + ((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \ + (x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \ + ((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \ +} +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) { \ + (w)[0] += (sha_word64)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} + +/* + * Macros for copying blocks of memory and for zeroing out ranges + * of memory. Using these macros makes it easy to switch from + * using memset()/memcpy() and using bzero()/bcopy(). + * + * Please define either SHA2_USE_MEMSET_MEMCPY or define + * SHA2_USE_BZERO_BCOPY depending on which function set you + * choose to use: + */ +#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) +/* Default to memset()/memcpy() if no option is specified */ +#define SHA2_USE_MEMSET_MEMCPY 1 +#endif +#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) +/* Abort with an error if BOTH options are defined */ +#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! +#endif + +#ifdef SHA2_USE_MEMSET_MEMCPY +#define MEMSET_BZERO(p,l) memset((p), 0, (l)) +#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) +#endif +#ifdef SHA2_USE_BZERO_BCOPY +#define MEMSET_BZERO(p,l) bzero((p), (l)) +#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) +#endif + + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: In the original SHA-256/384/512 document, the shift-right + * function was named R and the rotate-right function was called S. + * (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the + * web.) + * + * The newer NIST FIPS 180-2 document uses a much clearer naming + * scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for + * rotate-left. (See: + * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf + * on the web.) + * + * WARNING: These macros must be used cautiously, since they reference + * supplied parameters sometimes more than once, and thus could have + * unexpected side-effects if used without taking this into account. + */ +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define SHR(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) +/* 32-bit Rotate-left (used in SHA-1): */ +#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b)))) + +/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Function used in SHA-1: */ +#define Parity(x,y,z) ((x) ^ (y) ^ (z)) + +/* Four logical functions used in SHA-256: */ +#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x))) +#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x))) +#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR( 3 , (x))) +#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR( 10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x))) +#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x))) +#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x))) +#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x))) + +/*** INTERNAL FUNCTION PROTOTYPES *************************************/ + +/* SHA-224 and SHA-256: */ +void SHA256_Internal_Init(SHA_CTX*, const sha_word32*); +void SHA256_Internal_Last(SHA_CTX*); +void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*); + +/* SHA-384 and SHA-512: */ +void SHA512_Internal_Init(SHA_CTX*, const sha_word64*); +void SHA512_Internal_Last(SHA_CTX*); +void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*); + + +/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/ + +/* Hash constant words K for SHA-1: */ +#define K1_0_TO_19 SHA_UINT32_C(0x5a827999) +#define K1_20_TO_39 SHA_UINT32_C(0x6ed9eba1) +#define K1_40_TO_59 SHA_UINT32_C(0x8f1bbcdc) +#define K1_60_TO_79 SHA_UINT32_C(0xca62c1d6) + +/* Initial hash value H for SHA-1: */ +static const sha_word32 sha1_initial_hash_value[5] = { + SHA_UINT32_C(0x67452301), + SHA_UINT32_C(0xefcdab89), + SHA_UINT32_C(0x98badcfe), + SHA_UINT32_C(0x10325476), + SHA_UINT32_C(0xc3d2e1f0) +}; + +/* Hash constant words K for SHA-224 and SHA-256: */ +static const sha_word32 K256[64] = { + SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491), + SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5), + SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1), + SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5), + SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01), + SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3), + SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe), + SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174), + SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786), + SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc), + SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa), + SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da), + SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d), + SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7), + SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147), + SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967), + SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138), + SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13), + SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb), + SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85), + SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b), + SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3), + SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624), + SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070), + SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08), + SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5), + SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a), + SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3), + SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f), + SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208), + SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb), + SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2) +}; + +/* Initial hash value H for SHA-224: */ +static const sha_word32 sha224_initial_hash_value[8] = { + SHA_UINT32_C(0xc1059ed8), + SHA_UINT32_C(0x367cd507), + SHA_UINT32_C(0x3070dd17), + SHA_UINT32_C(0xf70e5939), + SHA_UINT32_C(0xffc00b31), + SHA_UINT32_C(0x68581511), + SHA_UINT32_C(0x64f98fa7), + SHA_UINT32_C(0xbefa4fa4) +}; + +/* Initial hash value H for SHA-256: */ +static const sha_word32 sha256_initial_hash_value[8] = { + SHA_UINT32_C(0x6a09e667), + SHA_UINT32_C(0xbb67ae85), + SHA_UINT32_C(0x3c6ef372), + SHA_UINT32_C(0xa54ff53a), + SHA_UINT32_C(0x510e527f), + SHA_UINT32_C(0x9b05688c), + SHA_UINT32_C(0x1f83d9ab), + SHA_UINT32_C(0x5be0cd19) +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +static const sha_word64 K512[80] = { + SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd), + SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc), + SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019), + SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118), + SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe), + SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2), + SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1), + SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694), + SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3), + SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65), + SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483), + SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5), + SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210), + SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4), + SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725), + SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70), + SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926), + SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df), + SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8), + SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b), + SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001), + SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30), + SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910), + SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8), + SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53), + SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8), + SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb), + SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3), + SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60), + SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec), + SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9), + SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b), + SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207), + SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178), + SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6), + SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b), + SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493), + SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c), + SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a), + SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817) +}; + +/* Initial hash value H for SHA-384 */ +static const sha_word64 sha384_initial_hash_value[8] = { + SHA_UINT64_C(0xcbbb9d5dc1059ed8), + SHA_UINT64_C(0x629a292a367cd507), + SHA_UINT64_C(0x9159015a3070dd17), + SHA_UINT64_C(0x152fecd8f70e5939), + SHA_UINT64_C(0x67332667ffc00b31), + SHA_UINT64_C(0x8eb44a8768581511), + SHA_UINT64_C(0xdb0c2e0d64f98fa7), + SHA_UINT64_C(0x47b5481dbefa4fa4) +}; + +/* Initial hash value H for SHA-512 */ +static const sha_word64 sha512_initial_hash_value[8] = { + SHA_UINT64_C(0x6a09e667f3bcc908), + SHA_UINT64_C(0xbb67ae8584caa73b), + SHA_UINT64_C(0x3c6ef372fe94f82b), + SHA_UINT64_C(0xa54ff53a5f1d36f1), + SHA_UINT64_C(0x510e527fade682d1), + SHA_UINT64_C(0x9b05688c2b3e6c1f), + SHA_UINT64_C(0x1f83d9abfb41bd6b), + SHA_UINT64_C(0x5be0cd19137e2179) +}; + +/* + * Constant used by SHA224/256/384/512_End() functions for converting the + * digest to a readable hexadecimal character string: + */ +static const char *sha_hex_digits = "0123456789abcdef"; + + +/*** SHA-1: ***********************************************************/ +void SHA1_Init(SHA_CTX* context) { + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5); + MEMSET_BZERO(context->s1.buffer, 64); + context->s1.bitcount = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-1 round macros: */ + +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND1_0_TO_15(a,b,c,d,e) \ + REVERSE32(*data++, W1[j]); \ + (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ + K1_0_TO_19 + W1[j]; \ + (b) = ROTL32(30, (b)); \ + j++; + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND1_0_TO_15(a,b,c,d,e) \ + (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ + K1_0_TO_19 + ( W1[j] = *data++ ); \ + (b) = ROTL32(30, (b)); \ + j++; + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND1_16_TO_19(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +#define ROUND1_20_TO_39(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +#define ROUND1_40_TO_59(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +#define ROUND1_60_TO_79(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e; + sha_word32 T1, *W1; + int j; + + W1 = (sha_word32*)context->s1.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s1.state[0]; + b = context->s1.state[1]; + c = context->s1.state[2]; + d = context->s1.state[3]; + e = context->s1.state[4]; + + j = 0; + + /* Rounds 0 to 15 unrolled: */ + ROUND1_0_TO_15(a,b,c,d,e); + ROUND1_0_TO_15(e,a,b,c,d); + ROUND1_0_TO_15(d,e,a,b,c); + ROUND1_0_TO_15(c,d,e,a,b); + ROUND1_0_TO_15(b,c,d,e,a); + ROUND1_0_TO_15(a,b,c,d,e); + ROUND1_0_TO_15(e,a,b,c,d); + ROUND1_0_TO_15(d,e,a,b,c); + ROUND1_0_TO_15(c,d,e,a,b); + ROUND1_0_TO_15(b,c,d,e,a); + ROUND1_0_TO_15(a,b,c,d,e); + ROUND1_0_TO_15(e,a,b,c,d); + ROUND1_0_TO_15(d,e,a,b,c); + ROUND1_0_TO_15(c,d,e,a,b); + ROUND1_0_TO_15(b,c,d,e,a); + ROUND1_0_TO_15(a,b,c,d,e); + + /* Rounds 16 to 19 unrolled: */ + ROUND1_16_TO_19(e,a,b,c,d); + ROUND1_16_TO_19(d,e,a,b,c); + ROUND1_16_TO_19(c,d,e,a,b); + ROUND1_16_TO_19(b,c,d,e,a); + + /* Rounds 20 to 39 unrolled: */ + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + + /* Rounds 40 to 59 unrolled: */ + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + + /* Rounds 60 to 79 unrolled: */ + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + + /* Compute the current intermediate hash value */ + context->s1.state[0] += a; + context->s1.state[1] += b; + context->s1.state[2] += c; + context->s1.state[3] += d; + context->s1.state[4] += e; + + /* Clean up */ + a = b = c = d = e = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e; + sha_word32 T1, *W1; + int j; + + W1 = (sha_word32*)context->s1.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s1.state[0]; + b = context->s1.state[1]; + c = context->s1.state[2]; + d = context->s1.state[3]; + e = context->s1.state[4]; + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + T1 = data[j]; + /* Copy data while converting to host byte order */ + REVERSE32(*data++, W1[j]); + T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 16); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 20); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 40); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 60); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 80); + + + /* Compute the current intermediate hash value */ + context->s1.state[0] += a; + context->s1.state[1] += b; + context->s1.state[2] += c; + context->s1.state[3] += d; + context->s1.state[4] += e; + + /* Clean up */ + a = b = c = d = e = T1 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + unsigned int freespace, usedspace; + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); + + usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64); + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = 64 - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace); + context->s1.bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len); + context->s1.bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= 64) { + /* Process as many complete blocks as we can */ + SHA1_Internal_Transform(context, (sha_word32*)data); + context->s1.bitcount += 512; + len -= 64; + data += 64; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->s1.buffer, data, len); + context->s1.bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA1_Final(sha_byte digest[], SHA_CTX* context) { + sha_word32 *d = (sha_word32*)digest; + unsigned int usedspace; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (digest == (sha_byte*)0) { + /* + * No digest buffer, so we can do nothing + * except clean up and go home + */ + MEMSET_BZERO(context, sizeof(*context)); + return; + } + + usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64); + if (usedspace == 0) { + /* Set-up for the last transform: */ + MEMSET_BZERO(context->s1.buffer, 56); + + /* Begin padding with a 1 bit: */ + *context->s1.buffer = 0x80; + } else { + /* Begin padding with a 1 bit: */ + context->s1.buffer[usedspace++] = 0x80; + + if (usedspace <= 56) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace); + } else { + if (usedspace < 64) { + MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace); + } + /* Do second-to-last transform: */ + SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->s1.buffer, 56); + } + /* Clean up: */ + usedspace = 0; + } + /* Set the bit count: */ +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->s1.bitcount,context->s1.bitcount); +#endif + MEMCPY_BCOPY(&context->s1.buffer[56], &context->s1.bitcount, + sizeof(sha_word64)); + + /* Final transform: */ + SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) { + REVERSE32(context->s1.state[j],context->s1.state[j]); + *d++ = context->s1.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH); +#endif + + /* Clean up: */ + MEMSET_BZERO(context, sizeof(*context)); +} + +char *SHA1_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA1_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA1_Final(digest, context); + + for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(*context)); + } + MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH); + return buffer; +} + +char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA1_Init(&context); + SHA1_Update(&context, data, len); + return SHA1_End(&context, digest); +} + + +/*** SHA-256: *********************************************************/ +void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) { + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8); + MEMSET_BZERO(context->s256.buffer, 64); + context->s256.bitcount = 0; +} + +void SHA256_Init(SHA_CTX* context) { + SHA256_Internal_Init(context, sha256_initial_hash_value); +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE32(*data++, W256[j]); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + (W256[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256(a,b,c,d,e,f,g,h) \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e, f, g, h, s0, s1; + sha_word32 T1, *W256; + int j; + + W256 = (sha_word32*)context->s256.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s256.state[0]; + b = context->s256.state[1]; + c = context->s256.state[2]; + d = context->s256.state[3]; + e = context->s256.state[4]; + f = context->s256.state[5]; + g = context->s256.state[6]; + h = context->s256.state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds to 64: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->s256.state[0] += a; + context->s256.state[1] += b; + context->s256.state[2] += c; + context->s256.state[3] += d; + context->s256.state[4] += e; + context->s256.state[5] += f; + context->s256.state[6] += g; + context->s256.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e, f, g, h, s0, s1; + sha_word32 T1, T2, *W256; + int j; + + W256 = (sha_word32*)context->s256.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s256.state[0]; + b = context->s256.state[1]; + c = context->s256.state[2]; + d = context->s256.state[3]; + e = context->s256.state[4]; + f = context->s256.state[5]; + g = context->s256.state[6]; + h = context->s256.state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Copy data while converting to host byte order */ + REVERSE32(*data++,W256[j]); + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-256 compression function to update a..h with copy */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->s256.state[0] += a; + context->s256.state[1] += b; + context->s256.state[2] += c; + context->s256.state[3] += d; + context->s256.state[4] += e; + context->s256.state[5] += f; + context->s256.state[6] += g; + context->s256.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); + + usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64); + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = 64 - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace); + context->s256.bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len); + context->s256.bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= 64) { + /* Process as many complete blocks as we can */ + SHA256_Internal_Transform(context, (sha_word32*)data); + context->s256.bitcount += 512; + len -= 64; + data += 64; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->s256.buffer, data, len); + context->s256.bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA256_Internal_Last(SHA_CTX* context) { + unsigned int usedspace; + + usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64); +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->s256.bitcount,context->s256.bitcount); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->s256.buffer[usedspace++] = 0x80; + + if (usedspace <= 56) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace); + } else { + if (usedspace < 64) { + MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace); + } + /* Do second-to-last transform: */ + SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->s256.buffer, 56); + } + /* Clean up: */ + usedspace = 0; + } else { + /* Set-up for the last transform: */ + MEMSET_BZERO(context->s256.buffer, 56); + + /* Begin padding with a 1 bit: */ + *context->s256.buffer = 0x80; + } + /* Set the bit count: */ + MEMCPY_BCOPY(&context->s256.buffer[56], &context->s256.bitcount, + sizeof(sha_word64)); + + /* Final transform: */ + SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer); +} + +void SHA256_Final(sha_byte digest[], SHA_CTX* context) { + sha_word32 *d = (sha_word32*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA256_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) { + REVERSE32(context->s256.state[j],context->s256.state[j]); + *d++ = context->s256.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH); +#endif + } + + /* Clean up state data: */ + MEMSET_BZERO(context, sizeof(*context)); +} + +char *SHA256_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA256_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA256_Final(digest, context); + + for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(*context)); + } + MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); + return buffer; +} + +char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA256_Init(&context); + SHA256_Update(&context, data, len); + return SHA256_End(&context, digest); +} + + +/*** SHA-224: *********************************************************/ +void SHA224_Init(SHA_CTX* context) { + SHA256_Internal_Init(context, sha224_initial_hash_value); +} + +void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + SHA256_Internal_Transform(context, data); +} + +void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + SHA256_Update(context, data, len); +} + +void SHA224_Final(sha_byte digest[], SHA_CTX* context) { + sha_word32 *d = (sha_word32*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA256_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) { + REVERSE32(context->s256.state[j],context->s256.state[j]); + *d++ = context->s256.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH); +#endif + } + + /* Clean up state data: */ + MEMSET_BZERO(context, sizeof(*context)); +} + +char *SHA224_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA224_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA224_Final(digest, context); + + for (i = 0; i < SHA224_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(*context)); + } + MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH); + return buffer; +} + +char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA224_Init(&context); + SHA224_Update(&context, data, len); + return SHA224_End(&context, digest); +} + + +/*** SHA-512: *********************************************************/ +void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) { + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8); + MEMSET_BZERO(context->s512.buffer, 128); + context->s512.bitcount[0] = context->s512.bitcount[1] = 0; +} + +void SHA512_Init(SHA_CTX* context) { + SHA512_Internal_Init(context, sha512_initial_hash_value); +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE64(*data++, W512[j]); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + W512[j]; \ + (d) += T1, \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + (W512[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512(a,b,c,d,e,f,g,h) \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) { + sha_word64 a, b, c, d, e, f, g, h, s0, s1; + sha_word64 T1, *W512 = (sha_word64*)context->s512.buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->s512.state[0]; + b = context->s512.state[1]; + c = context->s512.state[2]; + d = context->s512.state[3]; + e = context->s512.state[4]; + f = context->s512.state[5]; + g = context->s512.state[6]; + h = context->s512.state[7]; + + j = 0; + do { + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->s512.state[0] += a; + context->s512.state[1] += b; + context->s512.state[2] += c; + context->s512.state[3] += d; + context->s512.state[4] += e; + context->s512.state[5] += f; + context->s512.state[6] += g; + context->s512.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) { + sha_word64 a, b, c, d, e, f, g, h, s0, s1; + sha_word64 T1, T2, *W512 = (sha_word64*)context->s512.buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->s512.state[0]; + b = context->s512.state[1]; + c = context->s512.state[2]; + d = context->s512.state[3]; + e = context->s512.state[4]; + f = context->s512.state[5]; + g = context->s512.state[6]; + h = context->s512.state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert TO host byte order */ + REVERSE64(*data++, W512[j]); + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-512 compression function to update a..h with copy */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->s512.state[0] += a; + context->s512.state[1] += b; + context->s512.state[2] += c; + context->s512.state[3] += d; + context->s512.state[4] += e; + context->s512.state[5] += f; + context->s512.state[6] += g; + context->s512.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); + + usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128); + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = 128 - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace); + ADDINC128(context->s512.bitcount, freespace << 3); + len -= freespace; + data += freespace; + SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len); + ADDINC128(context->s512.bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= 128) { + /* Process as many complete blocks as we can */ + SHA512_Internal_Transform(context, (sha_word64*)data); + ADDINC128(context->s512.bitcount, 1024); + len -= 128; + data += 128; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->s512.buffer, data, len); + ADDINC128(context->s512.bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA512_Internal_Last(SHA_CTX* context) { + unsigned int usedspace; + + usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128); +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]); + REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->s512.buffer[usedspace++] = 0x80; + + if (usedspace <= 112) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace); + } else { + if (usedspace < 128) { + MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace); + } + /* Do second-to-last transform: */ + SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->s512.buffer, 112); + } + /* Clean up: */ + usedspace = 0; + } else { + /* Prepare for final transform: */ + MEMSET_BZERO(context->s512.buffer, 112); + + /* Begin padding with a 1 bit: */ + *context->s512.buffer = 0x80; + } + /* Store the length of input data (in bits): */ + MEMCPY_BCOPY(&context->s512.buffer[112], &context->s512.bitcount[1], + sizeof(sha_word64)); + MEMCPY_BCOPY(&context->s512.buffer[120], &context->s512.bitcount[0], + sizeof(sha_word64)); + + /* Final transform: */ + SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer); +} + +void SHA512_Final(sha_byte digest[], SHA_CTX* context) { + sha_word64 *d = (sha_word64*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA512_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) { + REVERSE64(context->s512.state[j],context->s512.state[j]); + *d++ = context->s512.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH); +#endif + } + + /* Zero out state data */ + MEMSET_BZERO(context, sizeof(*context)); +} + +char *SHA512_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA512_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA512_Final(digest, context); + + for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(*context)); + } + MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); + return buffer; +} + +char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA512_Init(&context); + SHA512_Update(&context, data, len); + return SHA512_End(&context, digest); +} + + +/*** SHA-384: *********************************************************/ +void SHA384_Init(SHA_CTX* context) { + SHA512_Internal_Init(context, sha384_initial_hash_value); +} + +void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) { + SHA512_Update(context, data, len); +} + +void SHA384_Final(sha_byte digest[], SHA_CTX* context) { + sha_word64 *d = (sha_word64*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA512_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) { + REVERSE64(context->s512.state[j],context->s512.state[j]); + *d++ = context->s512.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH); +#endif + } + + /* Zero out state data */ + MEMSET_BZERO(context, sizeof(*context)); +} + +char *SHA384_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA384_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA384_Final(digest, context); + + for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(*context)); + } + MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); + return buffer; +} + +char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA384_Init(&context); + SHA384_Update(&context, data, len); + return SHA384_End(&context, digest); +} |