diff options
Diffstat (limited to 'Source/cm_sha2.c')
-rw-r--r-- | Source/cm_sha2.c | 1613 |
1 files changed, 0 insertions, 1613 deletions
diff --git a/Source/cm_sha2.c b/Source/cm_sha2.c deleted file mode 100644 index 649c39a..0000000 --- a/Source/cm_sha2.c +++ /dev/null @@ -1,1613 +0,0 @@ -/* - * FILE: sha2.c - * AUTHOR: Aaron D. Gifford - * http://www.aarongifford.com/computers/sha.html - * - * Copyright (c) 2000-2003, Aaron D. Gifford - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the copyright holder nor the names of contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $ - */ - -#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ -#include <assert.h> /* assert() */ -#include "cm_sha2.h" /* "sha2.h" -> "cm_sha2.h" renamed for CMake */ - -/* - * ASSERT NOTE: - * Some sanity checking code is included using assert(). On my FreeBSD - * system, this additional code can be removed by compiling with NDEBUG - * defined. Check your own systems manpage on assert() to see how to - * compile WITHOUT the sanity checking code on your system. - * - * UNROLLED TRANSFORM LOOP NOTE: - * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform - * loop version for the hash transform rounds (defined using macros - * later in this file). Either define on the command line, for example: - * - * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c - * - * or define below: - * - * #define SHA2_UNROLL_TRANSFORM - * - */ - - -/*** SHA-224/256/384/512 Machine Architecture Definitions *************/ -/* - * BYTE_ORDER NOTE: - * - * Please make sure that your system defines BYTE_ORDER. If your - * architecture is little-endian, make sure it also defines - * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are - * equivilent. - * - * If your system does not define the above, then you can do so by - * hand like this: - * - * #define LITTLE_ENDIAN 1234 - * #define BIG_ENDIAN 4321 - * - * And for little-endian machines, add: - * - * #define BYTE_ORDER LITTLE_ENDIAN - * - * Or for big-endian machines: - * - * #define BYTE_ORDER BIG_ENDIAN - * - * The FreeBSD machine this was written on defines BYTE_ORDER - * appropriately by including <sys/types.h> (which in turn includes - * <machine/endian.h> where the appropriate definitions are actually - * made). - */ -#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) -/* CMake modification: use byte order from KWIML. */ -# undef BYTE_ORDER -# undef BIG_ENDIAN -# undef LITTLE_ENDIAN -# define BYTE_ORDER KWIML_ABI_ENDIAN_ID -# define BIG_ENDIAN KWIML_ABI_ENDIAN_ID_BIG -# define LITTLE_ENDIAN KWIML_ABI_ENDIAN_ID_LITTLE -#endif - -/* CMake modification: use types computed in header. */ -typedef cm_sha2_uint8_t sha_byte; /* Exactly 1 byte */ -typedef cm_sha2_uint32_t sha_word32; /* Exactly 4 bytes */ -typedef cm_sha2_uint64_t sha_word64; /* Exactly 8 bytes */ -#define SHA_UINT32_C(x) KWIML_INT_UINT32_C(x) -#define SHA_UINT64_C(x) KWIML_INT_UINT64_C(x) -#if defined(__clang__) -# pragma clang diagnostic ignored "-Wcast-align" -#endif - -/*** ENDIAN REVERSAL MACROS *******************************************/ -#if BYTE_ORDER == LITTLE_ENDIAN -#define REVERSE32(w,x) { \ - sha_word32 tmp = (w); \ - tmp = (tmp >> 16) | (tmp << 16); \ - (x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \ - ((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \ -} -#define REVERSE64(w,x) { \ - sha_word64 tmp = (w); \ - tmp = (tmp >> 32) | (tmp << 32); \ - tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \ - ((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \ - (x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \ - ((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \ -} -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -/* - * Macro for incrementally adding the unsigned 64-bit integer n to the - * unsigned 128-bit integer (represented using a two-element array of - * 64-bit words): - */ -#define ADDINC128(w,n) { \ - (w)[0] += (sha_word64)(n); \ - if ((w)[0] < (n)) { \ - (w)[1]++; \ - } \ -} - -/* - * Macros for copying blocks of memory and for zeroing out ranges - * of memory. Using these macros makes it easy to switch from - * using memset()/memcpy() and using bzero()/bcopy(). - * - * Please define either SHA2_USE_MEMSET_MEMCPY or define - * SHA2_USE_BZERO_BCOPY depending on which function set you - * choose to use: - */ -#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) -/* Default to memset()/memcpy() if no option is specified */ -#define SHA2_USE_MEMSET_MEMCPY 1 -#endif -#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) -/* Abort with an error if BOTH options are defined */ -#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! -#endif - -#ifdef SHA2_USE_MEMSET_MEMCPY -#define MEMSET_BZERO(p,l) memset((p), 0, (l)) -#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) -#endif -#ifdef SHA2_USE_BZERO_BCOPY -#define MEMSET_BZERO(p,l) bzero((p), (l)) -#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) -#endif - - -/*** THE SIX LOGICAL FUNCTIONS ****************************************/ -/* - * Bit shifting and rotation (used by the six SHA-XYZ logical functions: - * - * NOTE: In the original SHA-256/384/512 document, the shift-right - * function was named R and the rotate-right function was called S. - * (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the - * web.) - * - * The newer NIST FIPS 180-2 document uses a much clearer naming - * scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for - * rotate-left. (See: - * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf - * on the web.) - * - * WARNING: These macros must be used cautiously, since they reference - * supplied parameters sometimes more than once, and thus could have - * unexpected side-effects if used without taking this into account. - */ -/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ -#define SHR(b,x) ((x) >> (b)) -/* 32-bit Rotate-right (used in SHA-256): */ -#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) -/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ -#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) -/* 32-bit Rotate-left (used in SHA-1): */ -#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b)))) - -/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */ -#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) -#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) - -/* Function used in SHA-1: */ -#define Parity(x,y,z) ((x) ^ (y) ^ (z)) - -/* Four logical functions used in SHA-256: */ -#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x))) -#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x))) -#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR( 3 , (x))) -#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR( 10, (x))) - -/* Four of six logical functions used in SHA-384 and SHA-512: */ -#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x))) -#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x))) -#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x))) -#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x))) - -/*** INTERNAL FUNCTION PROTOTYPES *************************************/ - -/* SHA-224 and SHA-256: */ -void SHA256_Internal_Init(SHA_CTX*, const sha_word32*); -void SHA256_Internal_Last(SHA_CTX*); -void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*); - -/* SHA-384 and SHA-512: */ -void SHA512_Internal_Init(SHA_CTX*, const sha_word64*); -void SHA512_Internal_Last(SHA_CTX*); -void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*); - - -/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/ - -/* Hash constant words K for SHA-1: */ -#define K1_0_TO_19 SHA_UINT32_C(0x5a827999) -#define K1_20_TO_39 SHA_UINT32_C(0x6ed9eba1) -#define K1_40_TO_59 SHA_UINT32_C(0x8f1bbcdc) -#define K1_60_TO_79 SHA_UINT32_C(0xca62c1d6) - -/* Initial hash value H for SHA-1: */ -static const sha_word32 sha1_initial_hash_value[5] = { - SHA_UINT32_C(0x67452301), - SHA_UINT32_C(0xefcdab89), - SHA_UINT32_C(0x98badcfe), - SHA_UINT32_C(0x10325476), - SHA_UINT32_C(0xc3d2e1f0) -}; - -/* Hash constant words K for SHA-224 and SHA-256: */ -static const sha_word32 K256[64] = { - SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491), - SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5), - SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1), - SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5), - SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01), - SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3), - SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe), - SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174), - SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786), - SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc), - SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa), - SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da), - SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d), - SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7), - SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147), - SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967), - SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138), - SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13), - SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb), - SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85), - SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b), - SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3), - SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624), - SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070), - SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08), - SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5), - SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a), - SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3), - SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f), - SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208), - SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb), - SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2) -}; - -/* Initial hash value H for SHA-224: */ -static const sha_word32 sha224_initial_hash_value[8] = { - SHA_UINT32_C(0xc1059ed8), - SHA_UINT32_C(0x367cd507), - SHA_UINT32_C(0x3070dd17), - SHA_UINT32_C(0xf70e5939), - SHA_UINT32_C(0xffc00b31), - SHA_UINT32_C(0x68581511), - SHA_UINT32_C(0x64f98fa7), - SHA_UINT32_C(0xbefa4fa4) -}; - -/* Initial hash value H for SHA-256: */ -static const sha_word32 sha256_initial_hash_value[8] = { - SHA_UINT32_C(0x6a09e667), - SHA_UINT32_C(0xbb67ae85), - SHA_UINT32_C(0x3c6ef372), - SHA_UINT32_C(0xa54ff53a), - SHA_UINT32_C(0x510e527f), - SHA_UINT32_C(0x9b05688c), - SHA_UINT32_C(0x1f83d9ab), - SHA_UINT32_C(0x5be0cd19) -}; - -/* Hash constant words K for SHA-384 and SHA-512: */ -static const sha_word64 K512[80] = { - SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd), - SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc), - SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019), - SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118), - SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe), - SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2), - SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1), - SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694), - SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3), - SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65), - SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483), - SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5), - SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210), - SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4), - SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725), - SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70), - SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926), - SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df), - SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8), - SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b), - SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001), - SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30), - SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910), - SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8), - SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53), - SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8), - SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb), - SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3), - SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60), - SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec), - SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9), - SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b), - SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207), - SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178), - SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6), - SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b), - SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493), - SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c), - SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a), - SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817) -}; - -/* Initial hash value H for SHA-384 */ -static const sha_word64 sha384_initial_hash_value[8] = { - SHA_UINT64_C(0xcbbb9d5dc1059ed8), - SHA_UINT64_C(0x629a292a367cd507), - SHA_UINT64_C(0x9159015a3070dd17), - SHA_UINT64_C(0x152fecd8f70e5939), - SHA_UINT64_C(0x67332667ffc00b31), - SHA_UINT64_C(0x8eb44a8768581511), - SHA_UINT64_C(0xdb0c2e0d64f98fa7), - SHA_UINT64_C(0x47b5481dbefa4fa4) -}; - -/* Initial hash value H for SHA-512 */ -static const sha_word64 sha512_initial_hash_value[8] = { - SHA_UINT64_C(0x6a09e667f3bcc908), - SHA_UINT64_C(0xbb67ae8584caa73b), - SHA_UINT64_C(0x3c6ef372fe94f82b), - SHA_UINT64_C(0xa54ff53a5f1d36f1), - SHA_UINT64_C(0x510e527fade682d1), - SHA_UINT64_C(0x9b05688c2b3e6c1f), - SHA_UINT64_C(0x1f83d9abfb41bd6b), - SHA_UINT64_C(0x5be0cd19137e2179) -}; - -/* - * Constant used by SHA224/256/384/512_End() functions for converting the - * digest to a readable hexadecimal character string: - */ -static const char *sha_hex_digits = "0123456789abcdef"; - - -/*** SHA-1: ***********************************************************/ -void SHA1_Init(SHA_CTX* context) { - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5); - MEMSET_BZERO(context->s1.buffer, 64); - context->s1.bitcount = 0; -} - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-1 round macros: */ - -#if BYTE_ORDER == LITTLE_ENDIAN - -#define ROUND1_0_TO_15(a,b,c,d,e) \ - REVERSE32(*data++, W1[j]); \ - (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ - K1_0_TO_19 + W1[j]; \ - (b) = ROTL32(30, (b)); \ - j++; - -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND1_0_TO_15(a,b,c,d,e) \ - (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ - K1_0_TO_19 + ( W1[j] = *data++ ); \ - (b) = ROTL32(30, (b)); \ - j++; - -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND1_16_TO_19(a,b,c,d,e) \ - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ - (e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ - (b) = ROTL32(30, b); \ - j++; - -#define ROUND1_20_TO_39(a,b,c,d,e) \ - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ - (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ - (b) = ROTL32(30, b); \ - j++; - -#define ROUND1_40_TO_59(a,b,c,d,e) \ - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ - (e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ - (b) = ROTL32(30, b); \ - j++; - -#define ROUND1_60_TO_79(a,b,c,d,e) \ - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ - (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ - (b) = ROTL32(30, b); \ - j++; - -void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) { - sha_word32 a, b, c, d, e; - sha_word32 T1, *W1; - int j; - - W1 = (sha_word32*)context->s1.buffer; - - /* Initialize registers with the prev. intermediate value */ - a = context->s1.state[0]; - b = context->s1.state[1]; - c = context->s1.state[2]; - d = context->s1.state[3]; - e = context->s1.state[4]; - - j = 0; - - /* Rounds 0 to 15 unrolled: */ - ROUND1_0_TO_15(a,b,c,d,e); - ROUND1_0_TO_15(e,a,b,c,d); - ROUND1_0_TO_15(d,e,a,b,c); - ROUND1_0_TO_15(c,d,e,a,b); - ROUND1_0_TO_15(b,c,d,e,a); - ROUND1_0_TO_15(a,b,c,d,e); - ROUND1_0_TO_15(e,a,b,c,d); - ROUND1_0_TO_15(d,e,a,b,c); - ROUND1_0_TO_15(c,d,e,a,b); - ROUND1_0_TO_15(b,c,d,e,a); - ROUND1_0_TO_15(a,b,c,d,e); - ROUND1_0_TO_15(e,a,b,c,d); - ROUND1_0_TO_15(d,e,a,b,c); - ROUND1_0_TO_15(c,d,e,a,b); - ROUND1_0_TO_15(b,c,d,e,a); - ROUND1_0_TO_15(a,b,c,d,e); - - /* Rounds 16 to 19 unrolled: */ - ROUND1_16_TO_19(e,a,b,c,d); - ROUND1_16_TO_19(d,e,a,b,c); - ROUND1_16_TO_19(c,d,e,a,b); - ROUND1_16_TO_19(b,c,d,e,a); - - /* Rounds 20 to 39 unrolled: */ - ROUND1_20_TO_39(a,b,c,d,e); - ROUND1_20_TO_39(e,a,b,c,d); - ROUND1_20_TO_39(d,e,a,b,c); - ROUND1_20_TO_39(c,d,e,a,b); - ROUND1_20_TO_39(b,c,d,e,a); - ROUND1_20_TO_39(a,b,c,d,e); - ROUND1_20_TO_39(e,a,b,c,d); - ROUND1_20_TO_39(d,e,a,b,c); - ROUND1_20_TO_39(c,d,e,a,b); - ROUND1_20_TO_39(b,c,d,e,a); - ROUND1_20_TO_39(a,b,c,d,e); - ROUND1_20_TO_39(e,a,b,c,d); - ROUND1_20_TO_39(d,e,a,b,c); - ROUND1_20_TO_39(c,d,e,a,b); - ROUND1_20_TO_39(b,c,d,e,a); - ROUND1_20_TO_39(a,b,c,d,e); - ROUND1_20_TO_39(e,a,b,c,d); - ROUND1_20_TO_39(d,e,a,b,c); - ROUND1_20_TO_39(c,d,e,a,b); - ROUND1_20_TO_39(b,c,d,e,a); - - /* Rounds 40 to 59 unrolled: */ - ROUND1_40_TO_59(a,b,c,d,e); - ROUND1_40_TO_59(e,a,b,c,d); - ROUND1_40_TO_59(d,e,a,b,c); - ROUND1_40_TO_59(c,d,e,a,b); - ROUND1_40_TO_59(b,c,d,e,a); - ROUND1_40_TO_59(a,b,c,d,e); - ROUND1_40_TO_59(e,a,b,c,d); - ROUND1_40_TO_59(d,e,a,b,c); - ROUND1_40_TO_59(c,d,e,a,b); - ROUND1_40_TO_59(b,c,d,e,a); - ROUND1_40_TO_59(a,b,c,d,e); - ROUND1_40_TO_59(e,a,b,c,d); - ROUND1_40_TO_59(d,e,a,b,c); - ROUND1_40_TO_59(c,d,e,a,b); - ROUND1_40_TO_59(b,c,d,e,a); - ROUND1_40_TO_59(a,b,c,d,e); - ROUND1_40_TO_59(e,a,b,c,d); - ROUND1_40_TO_59(d,e,a,b,c); - ROUND1_40_TO_59(c,d,e,a,b); - ROUND1_40_TO_59(b,c,d,e,a); - - /* Rounds 60 to 79 unrolled: */ - ROUND1_60_TO_79(a,b,c,d,e); - ROUND1_60_TO_79(e,a,b,c,d); - ROUND1_60_TO_79(d,e,a,b,c); - ROUND1_60_TO_79(c,d,e,a,b); - ROUND1_60_TO_79(b,c,d,e,a); - ROUND1_60_TO_79(a,b,c,d,e); - ROUND1_60_TO_79(e,a,b,c,d); - ROUND1_60_TO_79(d,e,a,b,c); - ROUND1_60_TO_79(c,d,e,a,b); - ROUND1_60_TO_79(b,c,d,e,a); - ROUND1_60_TO_79(a,b,c,d,e); - ROUND1_60_TO_79(e,a,b,c,d); - ROUND1_60_TO_79(d,e,a,b,c); - ROUND1_60_TO_79(c,d,e,a,b); - ROUND1_60_TO_79(b,c,d,e,a); - ROUND1_60_TO_79(a,b,c,d,e); - ROUND1_60_TO_79(e,a,b,c,d); - ROUND1_60_TO_79(d,e,a,b,c); - ROUND1_60_TO_79(c,d,e,a,b); - ROUND1_60_TO_79(b,c,d,e,a); - - /* Compute the current intermediate hash value */ - context->s1.state[0] += a; - context->s1.state[1] += b; - context->s1.state[2] += c; - context->s1.state[3] += d; - context->s1.state[4] += e; - - /* Clean up */ - a = b = c = d = e = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) { - sha_word32 a, b, c, d, e; - sha_word32 T1, *W1; - int j; - - W1 = (sha_word32*)context->s1.buffer; - - /* Initialize registers with the prev. intermediate value */ - a = context->s1.state[0]; - b = context->s1.state[1]; - c = context->s1.state[2]; - d = context->s1.state[3]; - e = context->s1.state[4]; - j = 0; - do { -#if BYTE_ORDER == LITTLE_ENDIAN - T1 = data[j]; - /* Copy data while converting to host byte order */ - REVERSE32(*data++, W1[j]); - T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j]; -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++); -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - e = d; - d = c; - c = ROTL32(30, b); - b = a; - a = T1; - j++; - } while (j < 16); - - do { - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; - T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1)); - e = d; - d = c; - c = ROTL32(30, b); - b = a; - a = T1; - j++; - } while (j < 20); - - do { - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; - T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1)); - e = d; - d = c; - c = ROTL32(30, b); - b = a; - a = T1; - j++; - } while (j < 40); - - do { - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; - T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1)); - e = d; - d = c; - c = ROTL32(30, b); - b = a; - a = T1; - j++; - } while (j < 60); - - do { - T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; - T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1)); - e = d; - d = c; - c = ROTL32(30, b); - b = a; - a = T1; - j++; - } while (j < 80); - - - /* Compute the current intermediate hash value */ - context->s1.state[0] += a; - context->s1.state[1] += b; - context->s1.state[2] += c; - context->s1.state[3] += d; - context->s1.state[4] += e; - - /* Clean up */ - a = b = c = d = e = T1 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) { - unsigned int freespace, usedspace; - if (len == 0) { - /* Calling with no data is valid - we do nothing */ - return; - } - - /* Sanity check: */ - assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); - - usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64); - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = 64 - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace); - context->s1.bitcount += freespace << 3; - len -= freespace; - data += freespace; - SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer); - } else { - /* The buffer is not yet full */ - MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len); - context->s1.bitcount += len << 3; - /* Clean up: */ - usedspace = freespace = 0; - return; - } - } - while (len >= 64) { - /* Process as many complete blocks as we can */ - SHA1_Internal_Transform(context, (const sha_word32*)data); - context->s1.bitcount += 512; - len -= 64; - data += 64; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - MEMCPY_BCOPY(context->s1.buffer, data, len); - context->s1.bitcount += len << 3; - } - /* Clean up: */ - usedspace = freespace = 0; -} - -void SHA1_Final(sha_byte digest[], SHA_CTX* context) { - sha_word32 *d = (sha_word32*)digest; - unsigned int usedspace; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - if (digest == (sha_byte*)0) { - /* - * No digest buffer, so we can do nothing - * except clean up and go home - */ - MEMSET_BZERO(context, sizeof(*context)); - return; - } - - usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64); - if (usedspace == 0) { - /* Set-up for the last transform: */ - MEMSET_BZERO(context->s1.buffer, 56); - - /* Begin padding with a 1 bit: */ - *context->s1.buffer = 0x80; - } else { - /* Begin padding with a 1 bit: */ - context->s1.buffer[usedspace++] = 0x80; - - if (usedspace <= 56) { - /* Set-up for the last transform: */ - MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace); - } else { - if (usedspace < 64) { - MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace); - } - /* Do second-to-last transform: */ - SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer); - - /* And set-up for the last transform: */ - MEMSET_BZERO(context->s1.buffer, 56); - } - /* Clean up: */ - usedspace = 0; - } - /* Set the bit count: */ -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert FROM host byte order */ - REVERSE64(context->s1.bitcount,context->s1.bitcount); -#endif - MEMCPY_BCOPY(&context->s1.buffer[56], &context->s1.bitcount, - sizeof(sha_word64)); - - /* Final transform: */ - SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer); - - /* Save the hash data for output: */ -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - int j; - for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) { - REVERSE32(context->s1.state[j],context->s1.state[j]); - *d++ = context->s1.state[j]; - } - } -#else - MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH); -#endif - - /* Clean up: */ - MEMSET_BZERO(context, sizeof(*context)); -} - -char *SHA1_End(SHA_CTX* context, char buffer[]) { - sha_byte digest[SHA1_DIGEST_LENGTH], *d = digest; - int i; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - if (buffer != (char*)0) { - SHA1_Final(digest, context); - - for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { - *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; - *buffer++ = sha_hex_digits[*d & 0x0f]; - d++; - } - *buffer = (char)0; - } else { - MEMSET_BZERO(context, sizeof(*context)); - } - MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH); - return buffer; -} - -char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) { - SHA_CTX context; - - SHA1_Init(&context); - SHA1_Update(&context, data, len); - return SHA1_End(&context, digest); -} - - -/*** SHA-256: *********************************************************/ -void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) { - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8); - MEMSET_BZERO(context->s256.buffer, 64); - context->s256.bitcount = 0; -} - -void SHA256_Init(SHA_CTX* context) { - SHA256_Internal_Init(context, sha256_initial_hash_value); -} - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-256 round macros: */ - -#if BYTE_ORDER == LITTLE_ENDIAN - -#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ - REVERSE32(*data++, W256[j]); \ - T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ - K256[j] + W256[j]; \ - (d) += T1; \ - (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ - j++ - - -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ - T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ - K256[j] + (W256[j] = *data++); \ - (d) += T1; \ - (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ - j++ - -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND256(a,b,c,d,e,f,g,h) \ - s0 = W256[(j+1)&0x0f]; \ - s0 = sigma0_256(s0); \ - s1 = W256[(j+14)&0x0f]; \ - s1 = sigma1_256(s1); \ - T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ - (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ - (d) += T1; \ - (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ - j++ - -void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) { - sha_word32 a, b, c, d, e, f, g, h, s0, s1; - sha_word32 T1, *W256; - int j; - - W256 = (sha_word32*)context->s256.buffer; - - /* Initialize registers with the prev. intermediate value */ - a = context->s256.state[0]; - b = context->s256.state[1]; - c = context->s256.state[2]; - d = context->s256.state[3]; - e = context->s256.state[4]; - f = context->s256.state[5]; - g = context->s256.state[6]; - h = context->s256.state[7]; - - j = 0; - do { - /* Rounds 0 to 15 (unrolled): */ - ROUND256_0_TO_15(a,b,c,d,e,f,g,h); - ROUND256_0_TO_15(h,a,b,c,d,e,f,g); - ROUND256_0_TO_15(g,h,a,b,c,d,e,f); - ROUND256_0_TO_15(f,g,h,a,b,c,d,e); - ROUND256_0_TO_15(e,f,g,h,a,b,c,d); - ROUND256_0_TO_15(d,e,f,g,h,a,b,c); - ROUND256_0_TO_15(c,d,e,f,g,h,a,b); - ROUND256_0_TO_15(b,c,d,e,f,g,h,a); - } while (j < 16); - - /* Now for the remaining rounds to 64: */ - do { - ROUND256(a,b,c,d,e,f,g,h); - ROUND256(h,a,b,c,d,e,f,g); - ROUND256(g,h,a,b,c,d,e,f); - ROUND256(f,g,h,a,b,c,d,e); - ROUND256(e,f,g,h,a,b,c,d); - ROUND256(d,e,f,g,h,a,b,c); - ROUND256(c,d,e,f,g,h,a,b); - ROUND256(b,c,d,e,f,g,h,a); - } while (j < 64); - - /* Compute the current intermediate hash value */ - context->s256.state[0] += a; - context->s256.state[1] += b; - context->s256.state[2] += c; - context->s256.state[3] += d; - context->s256.state[4] += e; - context->s256.state[5] += f; - context->s256.state[6] += g; - context->s256.state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) { - sha_word32 a, b, c, d, e, f, g, h, s0, s1; - sha_word32 T1, T2, *W256; - int j; - - W256 = (sha_word32*)context->s256.buffer; - - /* Initialize registers with the prev. intermediate value */ - a = context->s256.state[0]; - b = context->s256.state[1]; - c = context->s256.state[2]; - d = context->s256.state[3]; - e = context->s256.state[4]; - f = context->s256.state[5]; - g = context->s256.state[6]; - h = context->s256.state[7]; - - j = 0; - do { -#if BYTE_ORDER == LITTLE_ENDIAN - /* Copy data while converting to host byte order */ - REVERSE32(*data++,W256[j]); - /* Apply the SHA-256 compression function to update a..h */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - /* Apply the SHA-256 compression function to update a..h with copy */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - T2 = Sigma0_256(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 16); - - do { - /* Part of the message block expansion: */ - s0 = W256[(j+1)&0x0f]; - s0 = sigma0_256(s0); - s1 = W256[(j+14)&0x0f]; - s1 = sigma1_256(s1); - - /* Apply the SHA-256 compression function to update a..h */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + - (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); - T2 = Sigma0_256(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 64); - - /* Compute the current intermediate hash value */ - context->s256.state[0] += a; - context->s256.state[1] += b; - context->s256.state[2] += c; - context->s256.state[3] += d; - context->s256.state[4] += e; - context->s256.state[5] += f; - context->s256.state[6] += g; - context->s256.state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = T2 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) { - unsigned int freespace, usedspace; - - if (len == 0) { - /* Calling with no data is valid - we do nothing */ - return; - } - - /* Sanity check: */ - assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); - - usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64); - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = 64 - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace); - context->s256.bitcount += freespace << 3; - len -= freespace; - data += freespace; - SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer); - } else { - /* The buffer is not yet full */ - MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len); - context->s256.bitcount += len << 3; - /* Clean up: */ - usedspace = freespace = 0; - return; - } - } - while (len >= 64) { - /* Process as many complete blocks as we can */ - SHA256_Internal_Transform(context, (const sha_word32*)data); - context->s256.bitcount += 512; - len -= 64; - data += 64; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - MEMCPY_BCOPY(context->s256.buffer, data, len); - context->s256.bitcount += len << 3; - } - /* Clean up: */ - usedspace = freespace = 0; -} - -void SHA256_Internal_Last(SHA_CTX* context) { - unsigned int usedspace; - - usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64); -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert FROM host byte order */ - REVERSE64(context->s256.bitcount,context->s256.bitcount); -#endif - if (usedspace > 0) { - /* Begin padding with a 1 bit: */ - context->s256.buffer[usedspace++] = 0x80; - - if (usedspace <= 56) { - /* Set-up for the last transform: */ - MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace); - } else { - if (usedspace < 64) { - MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace); - } - /* Do second-to-last transform: */ - SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer); - - /* And set-up for the last transform: */ - MEMSET_BZERO(context->s256.buffer, 56); - } - /* Clean up: */ - usedspace = 0; - } else { - /* Set-up for the last transform: */ - MEMSET_BZERO(context->s256.buffer, 56); - - /* Begin padding with a 1 bit: */ - *context->s256.buffer = 0x80; - } - /* Set the bit count: */ - MEMCPY_BCOPY(&context->s256.buffer[56], &context->s256.bitcount, - sizeof(sha_word64)); - - /* Final transform: */ - SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer); -} - -void SHA256_Final(sha_byte digest[], SHA_CTX* context) { - sha_word32 *d = (sha_word32*)digest; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != (sha_byte*)0) { - SHA256_Internal_Last(context); - - /* Save the hash data for output: */ -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - int j; - for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) { - REVERSE32(context->s256.state[j],context->s256.state[j]); - *d++ = context->s256.state[j]; - } - } -#else - MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH); -#endif - } - - /* Clean up state data: */ - MEMSET_BZERO(context, sizeof(*context)); -} - -char *SHA256_End(SHA_CTX* context, char buffer[]) { - sha_byte digest[SHA256_DIGEST_LENGTH], *d = digest; - int i; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - if (buffer != (char*)0) { - SHA256_Final(digest, context); - - for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { - *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; - *buffer++ = sha_hex_digits[*d & 0x0f]; - d++; - } - *buffer = (char)0; - } else { - MEMSET_BZERO(context, sizeof(*context)); - } - MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); - return buffer; -} - -char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { - SHA_CTX context; - - SHA256_Init(&context); - SHA256_Update(&context, data, len); - return SHA256_End(&context, digest); -} - - -/*** SHA-224: *********************************************************/ -void SHA224_Init(SHA_CTX* context) { - SHA256_Internal_Init(context, sha224_initial_hash_value); -} - -void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) { - SHA256_Internal_Transform(context, data); -} - -void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) { - SHA256_Update(context, data, len); -} - -void SHA224_Final(sha_byte digest[], SHA_CTX* context) { - sha_word32 *d = (sha_word32*)digest; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != (sha_byte*)0) { - SHA256_Internal_Last(context); - - /* Save the hash data for output: */ -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - int j; - for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) { - REVERSE32(context->s256.state[j],context->s256.state[j]); - *d++ = context->s256.state[j]; - } - } -#else - MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH); -#endif - } - - /* Clean up state data: */ - MEMSET_BZERO(context, sizeof(*context)); -} - -char *SHA224_End(SHA_CTX* context, char buffer[]) { - sha_byte digest[SHA224_DIGEST_LENGTH], *d = digest; - int i; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - if (buffer != (char*)0) { - SHA224_Final(digest, context); - - for (i = 0; i < SHA224_DIGEST_LENGTH; i++) { - *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; - *buffer++ = sha_hex_digits[*d & 0x0f]; - d++; - } - *buffer = (char)0; - } else { - MEMSET_BZERO(context, sizeof(*context)); - } - MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH); - return buffer; -} - -char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) { - SHA_CTX context; - - SHA224_Init(&context); - SHA224_Update(&context, data, len); - return SHA224_End(&context, digest); -} - - -/*** SHA-512: *********************************************************/ -void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) { - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8); - MEMSET_BZERO(context->s512.buffer, 128); - context->s512.bitcount[0] = context->s512.bitcount[1] = 0; -} - -void SHA512_Init(SHA_CTX* context) { - SHA512_Internal_Init(context, sha512_initial_hash_value); -} - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-512 round macros: */ -#if BYTE_ORDER == LITTLE_ENDIAN - -#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ - REVERSE64(*data++, W512[j]); \ - T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ - K512[j] + W512[j]; \ - (d) += T1, \ - (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ - j++ - - -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ - T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ - K512[j] + (W512[j] = *data++); \ - (d) += T1; \ - (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ - j++ - -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND512(a,b,c,d,e,f,g,h) \ - s0 = W512[(j+1)&0x0f]; \ - s0 = sigma0_512(s0); \ - s1 = W512[(j+14)&0x0f]; \ - s1 = sigma1_512(s1); \ - T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ - (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ - (d) += T1; \ - (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ - j++ - -void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) { - sha_word64 a, b, c, d, e, f, g, h, s0, s1; - sha_word64 T1, *W512 = (sha_word64*)context->s512.buffer; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = context->s512.state[0]; - b = context->s512.state[1]; - c = context->s512.state[2]; - d = context->s512.state[3]; - e = context->s512.state[4]; - f = context->s512.state[5]; - g = context->s512.state[6]; - h = context->s512.state[7]; - - j = 0; - do { - ROUND512_0_TO_15(a,b,c,d,e,f,g,h); - ROUND512_0_TO_15(h,a,b,c,d,e,f,g); - ROUND512_0_TO_15(g,h,a,b,c,d,e,f); - ROUND512_0_TO_15(f,g,h,a,b,c,d,e); - ROUND512_0_TO_15(e,f,g,h,a,b,c,d); - ROUND512_0_TO_15(d,e,f,g,h,a,b,c); - ROUND512_0_TO_15(c,d,e,f,g,h,a,b); - ROUND512_0_TO_15(b,c,d,e,f,g,h,a); - } while (j < 16); - - /* Now for the remaining rounds up to 79: */ - do { - ROUND512(a,b,c,d,e,f,g,h); - ROUND512(h,a,b,c,d,e,f,g); - ROUND512(g,h,a,b,c,d,e,f); - ROUND512(f,g,h,a,b,c,d,e); - ROUND512(e,f,g,h,a,b,c,d); - ROUND512(d,e,f,g,h,a,b,c); - ROUND512(c,d,e,f,g,h,a,b); - ROUND512(b,c,d,e,f,g,h,a); - } while (j < 80); - - /* Compute the current intermediate hash value */ - context->s512.state[0] += a; - context->s512.state[1] += b; - context->s512.state[2] += c; - context->s512.state[3] += d; - context->s512.state[4] += e; - context->s512.state[5] += f; - context->s512.state[6] += g; - context->s512.state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) { - sha_word64 a, b, c, d, e, f, g, h, s0, s1; - sha_word64 T1, T2, *W512 = (sha_word64*)context->s512.buffer; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = context->s512.state[0]; - b = context->s512.state[1]; - c = context->s512.state[2]; - d = context->s512.state[3]; - e = context->s512.state[4]; - f = context->s512.state[5]; - g = context->s512.state[6]; - h = context->s512.state[7]; - - j = 0; - do { -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert TO host byte order */ - REVERSE64(*data++, W512[j]); - /* Apply the SHA-512 compression function to update a..h */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - /* Apply the SHA-512 compression function to update a..h with copy */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - T2 = Sigma0_512(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 16); - - do { - /* Part of the message block expansion: */ - s0 = W512[(j+1)&0x0f]; - s0 = sigma0_512(s0); - s1 = W512[(j+14)&0x0f]; - s1 = sigma1_512(s1); - - /* Apply the SHA-512 compression function to update a..h */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + - (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); - T2 = Sigma0_512(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 80); - - /* Compute the current intermediate hash value */ - context->s512.state[0] += a; - context->s512.state[1] += b; - context->s512.state[2] += c; - context->s512.state[3] += d; - context->s512.state[4] += e; - context->s512.state[5] += f; - context->s512.state[6] += g; - context->s512.state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = T2 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) { - unsigned int freespace, usedspace; - - if (len == 0) { - /* Calling with no data is valid - we do nothing */ - return; - } - - /* Sanity check: */ - assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); - - usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128); - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = 128 - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace); - ADDINC128(context->s512.bitcount, freespace << 3); - len -= freespace; - data += freespace; - SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer); - } else { - /* The buffer is not yet full */ - MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len); - ADDINC128(context->s512.bitcount, len << 3); - /* Clean up: */ - usedspace = freespace = 0; - return; - } - } - while (len >= 128) { - /* Process as many complete blocks as we can */ - SHA512_Internal_Transform(context, (const sha_word64*)data); - ADDINC128(context->s512.bitcount, 1024); - len -= 128; - data += 128; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - MEMCPY_BCOPY(context->s512.buffer, data, len); - ADDINC128(context->s512.bitcount, len << 3); - } - /* Clean up: */ - usedspace = freespace = 0; -} - -void SHA512_Internal_Last(SHA_CTX* context) { - unsigned int usedspace; - - usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128); -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert FROM host byte order */ - REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]); - REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]); -#endif - if (usedspace > 0) { - /* Begin padding with a 1 bit: */ - context->s512.buffer[usedspace++] = 0x80; - - if (usedspace <= 112) { - /* Set-up for the last transform: */ - MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace); - } else { - if (usedspace < 128) { - MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace); - } - /* Do second-to-last transform: */ - SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer); - - /* And set-up for the last transform: */ - MEMSET_BZERO(context->s512.buffer, 112); - } - /* Clean up: */ - usedspace = 0; - } else { - /* Prepare for final transform: */ - MEMSET_BZERO(context->s512.buffer, 112); - - /* Begin padding with a 1 bit: */ - *context->s512.buffer = 0x80; - } - /* Store the length of input data (in bits): */ - MEMCPY_BCOPY(&context->s512.buffer[112], &context->s512.bitcount[1], - sizeof(sha_word64)); - MEMCPY_BCOPY(&context->s512.buffer[120], &context->s512.bitcount[0], - sizeof(sha_word64)); - - /* Final transform: */ - SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer); -} - -void SHA512_Final(sha_byte digest[], SHA_CTX* context) { - sha_word64 *d = (sha_word64*)digest; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != (sha_byte*)0) { - SHA512_Internal_Last(context); - - /* Save the hash data for output: */ -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - int j; - for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) { - REVERSE64(context->s512.state[j],context->s512.state[j]); - *d++ = context->s512.state[j]; - } - } -#else - MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH); -#endif - } - - /* Zero out state data */ - MEMSET_BZERO(context, sizeof(*context)); -} - -char *SHA512_End(SHA_CTX* context, char buffer[]) { - sha_byte digest[SHA512_DIGEST_LENGTH], *d = digest; - int i; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - if (buffer != (char*)0) { - SHA512_Final(digest, context); - - for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { - *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; - *buffer++ = sha_hex_digits[*d & 0x0f]; - d++; - } - *buffer = (char)0; - } else { - MEMSET_BZERO(context, sizeof(*context)); - } - MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); - return buffer; -} - -char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { - SHA_CTX context; - - SHA512_Init(&context); - SHA512_Update(&context, data, len); - return SHA512_End(&context, digest); -} - - -/*** SHA-384: *********************************************************/ -void SHA384_Init(SHA_CTX* context) { - SHA512_Internal_Init(context, sha384_initial_hash_value); -} - -void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) { - SHA512_Update(context, data, len); -} - -void SHA384_Final(sha_byte digest[], SHA_CTX* context) { - sha_word64 *d = (sha_word64*)digest; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != (sha_byte*)0) { - SHA512_Internal_Last(context); - - /* Save the hash data for output: */ -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - int j; - for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) { - REVERSE64(context->s512.state[j],context->s512.state[j]); - *d++ = context->s512.state[j]; - } - } -#else - MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH); -#endif - } - - /* Zero out state data */ - MEMSET_BZERO(context, sizeof(*context)); -} - -char *SHA384_End(SHA_CTX* context, char buffer[]) { - sha_byte digest[SHA384_DIGEST_LENGTH], *d = digest; - int i; - - /* Sanity check: */ - assert(context != (SHA_CTX*)0); - - if (buffer != (char*)0) { - SHA384_Final(digest, context); - - for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { - *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; - *buffer++ = sha_hex_digits[*d & 0x0f]; - d++; - } - *buffer = (char)0; - } else { - MEMSET_BZERO(context, sizeof(*context)); - } - MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); - return buffer; -} - -char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { - SHA_CTX context; - - SHA384_Init(&context); - SHA384_Update(&context, data, len); - return SHA384_End(&context, digest); -} |