diff options
Diffstat (limited to 'Source')
-rw-r--r-- | Source/.gitattributes | 2 | ||||
-rw-r--r-- | Source/CMakeLists.txt | 4 | ||||
-rw-r--r-- | Source/cmCryptoHash.cxx | 130 | ||||
-rw-r--r-- | Source/cmCryptoHash.h | 65 | ||||
-rw-r--r-- | Source/cmFileCommand.cxx | 46 | ||||
-rw-r--r-- | Source/cmFileCommand.h | 4 | ||||
-rw-r--r-- | Source/cmStringCommand.cxx | 39 | ||||
-rw-r--r-- | Source/cmStringCommand.h | 5 | ||||
-rw-r--r-- | Source/cmSystemTools.cxx | 57 | ||||
-rw-r--r-- | Source/cm_sha2.c | 1610 | ||||
-rw-r--r-- | Source/cm_sha2.h | 140 | ||||
-rw-r--r-- | Source/cm_sha2_mangle.h | 51 |
12 files changed, 2103 insertions, 50 deletions
diff --git a/Source/.gitattributes b/Source/.gitattributes new file mode 100644 index 0000000..cf4dabd --- /dev/null +++ b/Source/.gitattributes @@ -0,0 +1,2 @@ +# Preserve upstream indentation style. +cm_sha2.* whitespace=indent-with-non-tab diff --git a/Source/CMakeLists.txt b/Source/CMakeLists.txt index ba41d98..5205738 100644 --- a/Source/CMakeLists.txt +++ b/Source/CMakeLists.txt @@ -129,6 +129,8 @@ SET(SRCS cmComputeLinkInformation.h cmComputeTargetDepends.h cmComputeTargetDepends.cxx + cmCryptoHash.cxx + cmCryptoHash.h cmCustomCommand.cxx cmCustomCommand.h cmCustomCommandGenerator.cxx @@ -259,6 +261,8 @@ SET(SRCS cmakewizard.cxx cmakewizard.h + cm_sha2.h + cm_sha2.c cm_utf8.h cm_utf8.c ) diff --git a/Source/cmCryptoHash.cxx b/Source/cmCryptoHash.cxx new file mode 100644 index 0000000..a1505bd --- /dev/null +++ b/Source/cmCryptoHash.cxx @@ -0,0 +1,130 @@ +/*============================================================================ + CMake - Cross Platform Makefile Generator + Copyright 2000-2009 Kitware, Inc., Insight Software Consortium + + Distributed under the OSI-approved BSD License (the "License"); + see accompanying file Copyright.txt for details. + + This software is distributed WITHOUT ANY WARRANTY; without even the + implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the License for more information. +============================================================================*/ +#include "cmCryptoHash.h" + +#include <cmsys/MD5.h> +#include "cm_sha2.h" + +//---------------------------------------------------------------------------- +cmsys::auto_ptr<cmCryptoHash> cmCryptoHash::New(const char* algo) +{ + if(strcmp(algo,"MD5") == 0) + { return cmsys::auto_ptr<cmCryptoHash>(new cmCryptoHashMD5); } + else if(strcmp(algo,"SHA1") == 0) + { return cmsys::auto_ptr<cmCryptoHash>(new cmCryptoHashSHA1); } + else if(strcmp(algo,"SHA224") == 0) + { return cmsys::auto_ptr<cmCryptoHash>(new cmCryptoHashSHA224); } + else if(strcmp(algo,"SHA256") == 0) + { return cmsys::auto_ptr<cmCryptoHash>(new cmCryptoHashSHA256); } + else if(strcmp(algo,"SHA384") == 0) + { return cmsys::auto_ptr<cmCryptoHash>(new cmCryptoHashSHA384); } + else if(strcmp(algo,"SHA512") == 0) + { return cmsys::auto_ptr<cmCryptoHash>(new cmCryptoHashSHA512); } + else + { return cmsys::auto_ptr<cmCryptoHash>(0); } +} + +//---------------------------------------------------------------------------- +std::string cmCryptoHash::HashString(const char* input) +{ + this->Initialize(); + this->Append(reinterpret_cast<unsigned char const*>(input), + static_cast<int>(strlen(input))); + return this->Finalize(); +} + +//---------------------------------------------------------------------------- +std::string cmCryptoHash::HashFile(const char* file) +{ + std::ifstream fin(file, std::ios::in | cmsys_ios_binary); + if(!fin) + { + return ""; + } + + this->Initialize(); + + // Should be efficient enough on most system: + const int bufferSize = 4096; + char buffer[bufferSize]; + unsigned char const* buffer_uc = + reinterpret_cast<unsigned char const*>(buffer); + // This copy loop is very sensitive on certain platforms with + // slightly broken stream libraries (like HPUX). Normally, it is + // incorrect to not check the error condition on the fin.read() + // before using the data, but the fin.gcount() will be zero if an + // error occurred. Therefore, the loop should be safe everywhere. + while(fin) + { + fin.read(buffer, bufferSize); + if(int gcount = static_cast<int>(fin.gcount())) + { + this->Append(buffer_uc, gcount); + } + } + if(fin.eof()) + { + return this->Finalize(); + } + return ""; +} + +//---------------------------------------------------------------------------- +cmCryptoHashMD5::cmCryptoHashMD5(): MD5(cmsysMD5_New()) +{ +} + +//---------------------------------------------------------------------------- +cmCryptoHashMD5::~cmCryptoHashMD5() +{ + cmsysMD5_Delete(this->MD5); +} + +//---------------------------------------------------------------------------- +void cmCryptoHashMD5::Initialize() +{ + cmsysMD5_Initialize(this->MD5); +} + +//---------------------------------------------------------------------------- +void cmCryptoHashMD5::Append(unsigned char const* buf, int sz) +{ + cmsysMD5_Append(this->MD5, buf, sz); +} + +//---------------------------------------------------------------------------- +std::string cmCryptoHashMD5::Finalize() +{ + char md5out[32]; + cmsysMD5_FinalizeHex(this->MD5, md5out); + return std::string(md5out, 32); +} + + +#define cmCryptoHash_SHA_CLASS_IMPL(SHA) \ +cmCryptoHash##SHA::cmCryptoHash##SHA(): SHA(new SHA_CTX) {} \ +cmCryptoHash##SHA::~cmCryptoHash##SHA() { delete this->SHA; } \ +void cmCryptoHash##SHA::Initialize() { SHA##_Init(this->SHA); } \ +void cmCryptoHash##SHA::Append(unsigned char const* buf, int sz) \ +{ SHA##_Update(this->SHA, buf, sz); } \ +std::string cmCryptoHash##SHA::Finalize() \ +{ \ + char out[SHA##_DIGEST_STRING_LENGTH]; \ + SHA##_End(this->SHA, out); \ + return std::string(out, SHA##_DIGEST_STRING_LENGTH-1); \ +} + +cmCryptoHash_SHA_CLASS_IMPL(SHA1) +cmCryptoHash_SHA_CLASS_IMPL(SHA224) +cmCryptoHash_SHA_CLASS_IMPL(SHA256) +cmCryptoHash_SHA_CLASS_IMPL(SHA384) +cmCryptoHash_SHA_CLASS_IMPL(SHA512) diff --git a/Source/cmCryptoHash.h b/Source/cmCryptoHash.h new file mode 100644 index 0000000..1bea9ab --- /dev/null +++ b/Source/cmCryptoHash.h @@ -0,0 +1,65 @@ +/*============================================================================ + CMake - Cross Platform Makefile Generator + Copyright 2000-2009 Kitware, Inc., Insight Software Consortium + + Distributed under the OSI-approved BSD License (the "License"); + see accompanying file Copyright.txt for details. + + This software is distributed WITHOUT ANY WARRANTY; without even the + implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the License for more information. +============================================================================*/ +#ifndef cmCryptoHash_h +#define cmCryptoHash_h + +#include "cmStandardIncludes.h" + +#include <cmsys/auto_ptr.hxx> + +class cmCryptoHash +{ +public: + virtual ~cmCryptoHash() {} + static cmsys::auto_ptr<cmCryptoHash> New(const char* algo); + std::string HashString(const char* input); + std::string HashFile(const char* file); +protected: + virtual void Initialize()=0; + virtual void Append(unsigned char const*, int)=0; + virtual std::string Finalize()=0; +}; + +class cmCryptoHashMD5: public cmCryptoHash +{ + struct cmsysMD5_s* MD5; +public: + cmCryptoHashMD5(); + ~cmCryptoHashMD5(); +protected: + virtual void Initialize(); + virtual void Append(unsigned char const* buf, int sz); + virtual std::string Finalize(); +}; + +#define cmCryptoHash_SHA_CLASS_DECL(SHA) \ + class cmCryptoHash##SHA: public cmCryptoHash \ + { \ + union _SHA_CTX* SHA; \ + public: \ + cmCryptoHash##SHA(); \ + ~cmCryptoHash##SHA(); \ + protected: \ + virtual void Initialize(); \ + virtual void Append(unsigned char const* buf, int sz); \ + virtual std::string Finalize(); \ + } + +cmCryptoHash_SHA_CLASS_DECL(SHA1); +cmCryptoHash_SHA_CLASS_DECL(SHA224); +cmCryptoHash_SHA_CLASS_DECL(SHA256); +cmCryptoHash_SHA_CLASS_DECL(SHA384); +cmCryptoHash_SHA_CLASS_DECL(SHA512); + +#undef cmCryptoHash_SHA_CLASS_DECL + +#endif diff --git a/Source/cmFileCommand.cxx b/Source/cmFileCommand.cxx index f933666..6df5ab3 100644 --- a/Source/cmFileCommand.cxx +++ b/Source/cmFileCommand.cxx @@ -13,6 +13,7 @@ #include "cmake.h" #include "cmHexFileConverter.h" #include "cmFileTimeComparison.h" +#include "cmCryptoHash.h" #if defined(CMAKE_BUILD_WITH_CMAKE) #include "cm_curl.h" @@ -22,6 +23,7 @@ #include <sys/types.h> #include <sys/stat.h> +#include <cmsys/auto_ptr.hxx> #include <cmsys/Directory.hxx> #include <cmsys/Glob.hxx> #include <cmsys/RegularExpression.hxx> @@ -83,6 +85,15 @@ bool cmFileCommand { return this->HandleReadCommand(args); } + else if ( subCommand == "MD5" || + subCommand == "SHA1" || + subCommand == "SHA224" || + subCommand == "SHA256" || + subCommand == "SHA384" || + subCommand == "SHA512" ) + { + return this->HandleHashCommand(args); + } else if ( subCommand == "STRINGS" ) { return this->HandleStringsCommand(args); @@ -339,6 +350,41 @@ bool cmFileCommand::HandleReadCommand(std::vector<std::string> const& args) } //---------------------------------------------------------------------------- +bool cmFileCommand::HandleHashCommand(std::vector<std::string> const& args) +{ +#if defined(CMAKE_BUILD_WITH_CMAKE) + if(args.size() != 3) + { + cmOStringStream e; + e << args[0] << " requires a file name and output variable"; + this->SetError(e.str().c_str()); + return false; + } + + cmsys::auto_ptr<cmCryptoHash> hash(cmCryptoHash::New(args[0].c_str())); + if(hash.get()) + { + std::string out = hash->HashFile(args[1].c_str()); + if(!out.empty()) + { + this->Makefile->AddDefinition(args[2].c_str(), out.c_str()); + return true; + } + cmOStringStream e; + e << args[0] << " failed to read file \"" << args[1] << "\": " + << cmSystemTools::GetLastSystemError(); + this->SetError(e.str().c_str()); + } + return false; +#else + cmOStringStream e; + e << args[0] << " not available during bootstrap"; + this->SetError(e.str().c_str()); + return false; +#endif +} + +//---------------------------------------------------------------------------- bool cmFileCommand::HandleStringsCommand(std::vector<std::string> const& args) { if(args.size() < 3) diff --git a/Source/cmFileCommand.h b/Source/cmFileCommand.h index 162890a..9e2ed0f 100644 --- a/Source/cmFileCommand.h +++ b/Source/cmFileCommand.h @@ -65,6 +65,7 @@ public: " file(WRITE filename \"message to write\"... )\n" " file(APPEND filename \"message to write\"... )\n" " file(READ filename variable [LIMIT numBytes] [OFFSET offset] [HEX])\n" + " file(<MD5|SHA1|SHA224|SHA256|SHA384|SHA512> filename variable)\n" " file(STRINGS filename variable [LIMIT_COUNT num]\n" " [LIMIT_INPUT numBytes] [LIMIT_OUTPUT numBytes]\n" " [LENGTH_MINIMUM numBytes] [LENGTH_MAXIMUM numBytes]\n" @@ -94,6 +95,8 @@ public: "variable. It will start at the given offset and read up to numBytes. " "If the argument HEX is given, the binary data will be converted to " "hexadecimal representation and this will be stored in the variable.\n" + "MD5, SHA1, SHA224, SHA256, SHA384, and SHA512 " + "will compute a cryptographic hash of the content of a file.\n" "STRINGS will parse a list of ASCII strings from a file and " "store it in a variable. Binary data in the file are ignored. Carriage " "return (CR) characters are ignored. It works also for Intel Hex and " @@ -227,6 +230,7 @@ protected: bool HandleRemove(std::vector<std::string> const& args, bool recurse); bool HandleWriteCommand(std::vector<std::string> const& args, bool append); bool HandleReadCommand(std::vector<std::string> const& args); + bool HandleHashCommand(std::vector<std::string> const& args); bool HandleStringsCommand(std::vector<std::string> const& args); bool HandleGlobCommand(std::vector<std::string> const& args, bool recurse); bool HandleMakeDirectoryCommand(std::vector<std::string> const& args); diff --git a/Source/cmStringCommand.cxx b/Source/cmStringCommand.cxx index d239c06..ec10d57 100644 --- a/Source/cmStringCommand.cxx +++ b/Source/cmStringCommand.cxx @@ -10,6 +10,8 @@ See the License for more information. ============================================================================*/ #include "cmStringCommand.h" +#include "cmCryptoHash.h" + #include <cmsys/RegularExpression.hxx> #include <cmsys/SystemTools.hxx> @@ -36,6 +38,15 @@ bool cmStringCommand { return this->HandleReplaceCommand(args); } + else if ( subCommand == "MD5" || + subCommand == "SHA1" || + subCommand == "SHA224" || + subCommand == "SHA256" || + subCommand == "SHA384" || + subCommand == "SHA512" ) + { + return this->HandleHashCommand(args); + } else if(subCommand == "TOLOWER") { return this->HandleToUpperLowerCommand(args, false); @@ -83,6 +94,34 @@ bool cmStringCommand } //---------------------------------------------------------------------------- +bool cmStringCommand::HandleHashCommand(std::vector<std::string> const& args) +{ +#if defined(CMAKE_BUILD_WITH_CMAKE) + if(args.size() != 3) + { + cmOStringStream e; + e << args[0] << " requires an output variable and an input string"; + this->SetError(e.str().c_str()); + return false; + } + + cmsys::auto_ptr<cmCryptoHash> hash(cmCryptoHash::New(args[0].c_str())); + if(hash.get()) + { + std::string out = hash->HashString(args[2].c_str()); + this->Makefile->AddDefinition(args[1].c_str(), out.c_str()); + return true; + } + return false; +#else + cmOStringStream e; + e << args[0] << " not available during bootstrap"; + this->SetError(e.str().c_str()); + return false; +#endif +} + +//---------------------------------------------------------------------------- bool cmStringCommand::HandleToUpperLowerCommand( std::vector<std::string> const& args, bool toUpper) { diff --git a/Source/cmStringCommand.h b/Source/cmStringCommand.h index 52b83d9..452f4a1 100644 --- a/Source/cmStringCommand.h +++ b/Source/cmStringCommand.h @@ -76,6 +76,8 @@ public: " string(REPLACE <match_string>\n" " <replace_string> <output variable>\n" " <input> [<input>...])\n" + " string(<MD5|SHA1|SHA224|SHA256|SHA384|SHA512>\n" + " <output variable> <input>)\n" " string(COMPARE EQUAL <string1> <string2> <output variable>)\n" " string(COMPARE NOTEQUAL <string1> <string2> <output variable>)\n" " string(COMPARE LESS <string1> <string2> <output variable>)\n" @@ -103,6 +105,8 @@ public: "backslash through argument parsing.\n" "REPLACE will replace all occurrences of match_string in the input with " "replace_string and store the result in the output.\n" + "MD5, SHA1, SHA224, SHA256, SHA384, and SHA512 " + "will compute a cryptographic hash of the input string.\n" "COMPARE EQUAL/NOTEQUAL/LESS/GREATER will compare the strings and " "store true or false in the output variable.\n" "ASCII will convert all numbers into corresponding ASCII characters.\n" @@ -150,6 +154,7 @@ protected: bool RegexMatch(std::vector<std::string> const& args); bool RegexMatchAll(std::vector<std::string> const& args); bool RegexReplace(std::vector<std::string> const& args); + bool HandleHashCommand(std::vector<std::string> const& args); bool HandleToUpperLowerCommand(std::vector<std::string> const& args, bool toUpper); bool HandleCompareCommand(std::vector<std::string> const& args); diff --git a/Source/cmSystemTools.cxx b/Source/cmSystemTools.cxx index 03364bd..8eec1e2 100644 --- a/Source/cmSystemTools.cxx +++ b/Source/cmSystemTools.cxx @@ -54,7 +54,7 @@ #if defined(CMAKE_BUILD_WITH_CMAKE) # include <memory> // auto_ptr # include <fcntl.h> -# include <cmsys/MD5.h> +# include "cmCryptoHash.h" #endif #if defined(CMAKE_USE_ELF_PARSER) @@ -1197,48 +1197,10 @@ bool cmSystemTools::RenameFile(const char* oldname, const char* newname) bool cmSystemTools::ComputeFileMD5(const char* source, char* md5out) { #if defined(CMAKE_BUILD_WITH_CMAKE) - if(!cmSystemTools::FileExists(source)) - { - return false; - } - - // Open files -#if defined(_WIN32) || defined(__CYGWIN__) - cmsys_ios::ifstream fin(source, cmsys_ios::ios::binary | cmsys_ios::ios::in); -#else - cmsys_ios::ifstream fin(source); -#endif - if(!fin) - { - return false; - } - - cmsysMD5* md5 = cmsysMD5_New(); - cmsysMD5_Initialize(md5); - - // Should be efficient enough on most system: - const int bufferSize = 4096; - char buffer[bufferSize]; - unsigned char const* buffer_uc = - reinterpret_cast<unsigned char const*>(buffer); - // This copy loop is very sensitive on certain platforms with - // slightly broken stream libraries (like HPUX). Normally, it is - // incorrect to not check the error condition on the fin.read() - // before using the data, but the fin.gcount() will be zero if an - // error occurred. Therefore, the loop should be safe everywhere. - while(fin) - { - fin.read(buffer, bufferSize); - if(int gcount = static_cast<int>(fin.gcount())) - { - cmsysMD5_Append(md5, buffer_uc, gcount); - } - } - cmsysMD5_FinalizeHex(md5, md5out); - cmsysMD5_Delete(md5); - - fin.close(); - return true; + cmCryptoHashMD5 md5; + std::string str = md5.HashFile(source); + strncpy(md5out, str.c_str(), 32); + return !str.empty(); #else (void)source; (void)md5out; @@ -1250,13 +1212,8 @@ bool cmSystemTools::ComputeFileMD5(const char* source, char* md5out) std::string cmSystemTools::ComputeStringMD5(const char* input) { #if defined(CMAKE_BUILD_WITH_CMAKE) - char md5out[32]; - cmsysMD5* md5 = cmsysMD5_New(); - cmsysMD5_Initialize(md5); - cmsysMD5_Append(md5, reinterpret_cast<unsigned char const*>(input), -1); - cmsysMD5_FinalizeHex(md5, md5out); - cmsysMD5_Delete(md5); - return std::string(md5out, 32); + cmCryptoHashMD5 md5; + return md5.HashString(input); #else (void)input; cmSystemTools::Message("md5sum not supported in bootstrapping mode","Error"); diff --git a/Source/cm_sha2.c b/Source/cm_sha2.c new file mode 100644 index 0000000..b89f8fe --- /dev/null +++ b/Source/cm_sha2.c @@ -0,0 +1,1610 @@ +/* + * FILE: sha2.c + * AUTHOR: Aaron D. Gifford + * http://www.aarongifford.com/computers/sha.html + * + * Copyright (c) 2000-2003, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $ + */ + +#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ +#include <assert.h> /* assert() */ +#include "cm_sha2.h" /* "sha2.h" -> "cm_sha2.h" renamed for CMake */ + +/* + * ASSERT NOTE: + * Some sanity checking code is included using assert(). On my FreeBSD + * system, this additional code can be removed by compiling with NDEBUG + * defined. Check your own systems manpage on assert() to see how to + * compile WITHOUT the sanity checking code on your system. + * + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ + + +/*** SHA-224/256/384/512 Machine Architecture Definitions *************/ +/* + * BYTE_ORDER NOTE: + * + * Please make sure that your system defines BYTE_ORDER. If your + * architecture is little-endian, make sure it also defines + * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are + * equivilent. + * + * If your system does not define the above, then you can do so by + * hand like this: + * + * #define LITTLE_ENDIAN 1234 + * #define BIG_ENDIAN 4321 + * + * And for little-endian machines, add: + * + * #define BYTE_ORDER LITTLE_ENDIAN + * + * Or for big-endian machines: + * + * #define BYTE_ORDER BIG_ENDIAN + * + * The FreeBSD machine this was written on defines BYTE_ORDER + * appropriately by including <sys/types.h> (which in turn includes + * <machine/endian.h> where the appropriate definitions are actually + * made). + */ +#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) +/* CMake modification: use byte order from cmIML. */ +# include "cmIML/ABI.h" +# undef BYTE_ORDER +# undef BIG_ENDIAN +# undef LITTLE_ENDIAN +# define BYTE_ORDER cmIML_ABI_ENDIAN_ID +# define BIG_ENDIAN cmIML_ABI_ENDIAN_ID_BIG +# define LITTLE_ENDIAN cmIML_ABI_ENDIAN_ID_LITTLE +#endif + +/* CMake modification: use types computed in header. */ +typedef cm_sha2_uint8_t sha_byte; /* Exactly 1 byte */ +typedef cm_sha2_uint32_t sha_word32; /* Exactly 4 bytes */ +typedef cm_sha2_uint64_t sha_word64; /* Exactly 8 bytes */ +#define SHA_UINT32_C(x) cmIML_INT_UINT32_C(x) +#define SHA_UINT64_C(x) cmIML_INT_UINT64_C(x) +#if defined(__BORLANDC__) +# pragma warn -8004 /* variable assigned value that is never used */ +#endif + +/*** ENDIAN REVERSAL MACROS *******************************************/ +#if BYTE_ORDER == LITTLE_ENDIAN +#define REVERSE32(w,x) { \ + sha_word32 tmp = (w); \ + tmp = (tmp >> 16) | (tmp << 16); \ + (x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \ + ((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \ +} +#define REVERSE64(w,x) { \ + sha_word64 tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \ + ((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \ + (x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \ + ((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \ +} +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) { \ + (w)[0] += (sha_word64)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} + +/* + * Macros for copying blocks of memory and for zeroing out ranges + * of memory. Using these macros makes it easy to switch from + * using memset()/memcpy() and using bzero()/bcopy(). + * + * Please define either SHA2_USE_MEMSET_MEMCPY or define + * SHA2_USE_BZERO_BCOPY depending on which function set you + * choose to use: + */ +#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) +/* Default to memset()/memcpy() if no option is specified */ +#define SHA2_USE_MEMSET_MEMCPY 1 +#endif +#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) +/* Abort with an error if BOTH options are defined */ +#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! +#endif + +#ifdef SHA2_USE_MEMSET_MEMCPY +#define MEMSET_BZERO(p,l) memset((p), 0, (l)) +#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) +#endif +#ifdef SHA2_USE_BZERO_BCOPY +#define MEMSET_BZERO(p,l) bzero((p), (l)) +#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) +#endif + + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: In the original SHA-256/384/512 document, the shift-right + * function was named R and the rotate-right function was called S. + * (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the + * web.) + * + * The newer NIST FIPS 180-2 document uses a much clearer naming + * scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for + * rotate-left. (See: + * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf + * on the web.) + * + * WARNING: These macros must be used cautiously, since they reference + * supplied parameters sometimes more than once, and thus could have + * unexpected side-effects if used without taking this into account. + */ +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define SHR(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) +/* 32-bit Rotate-left (used in SHA-1): */ +#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b)))) + +/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Function used in SHA-1: */ +#define Parity(x,y,z) ((x) ^ (y) ^ (z)) + +/* Four logical functions used in SHA-256: */ +#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x))) +#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x))) +#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR( 3 , (x))) +#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR( 10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x))) +#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x))) +#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x))) +#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x))) + +/*** INTERNAL FUNCTION PROTOTYPES *************************************/ + +/* SHA-224 and SHA-256: */ +void SHA256_Internal_Init(SHA_CTX*, const sha_word32*); +void SHA256_Internal_Last(SHA_CTX*); +void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*); + +/* SHA-384 and SHA-512: */ +void SHA512_Internal_Init(SHA_CTX*, const sha_word64*); +void SHA512_Internal_Last(SHA_CTX*); +void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*); + + +/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/ + +/* Hash constant words K for SHA-1: */ +#define K1_0_TO_19 SHA_UINT32_C(0x5a827999) +#define K1_20_TO_39 SHA_UINT32_C(0x6ed9eba1) +#define K1_40_TO_59 SHA_UINT32_C(0x8f1bbcdc) +#define K1_60_TO_79 SHA_UINT32_C(0xca62c1d6) + +/* Initial hash value H for SHA-1: */ +static const sha_word32 sha1_initial_hash_value[5] = { + SHA_UINT32_C(0x67452301), + SHA_UINT32_C(0xefcdab89), + SHA_UINT32_C(0x98badcfe), + SHA_UINT32_C(0x10325476), + SHA_UINT32_C(0xc3d2e1f0) +}; + +/* Hash constant words K for SHA-224 and SHA-256: */ +static const sha_word32 K256[64] = { + SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491), + SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5), + SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1), + SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5), + SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01), + SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3), + SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe), + SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174), + SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786), + SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc), + SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa), + SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da), + SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d), + SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7), + SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147), + SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967), + SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138), + SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13), + SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb), + SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85), + SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b), + SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3), + SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624), + SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070), + SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08), + SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5), + SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a), + SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3), + SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f), + SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208), + SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb), + SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2) +}; + +/* Initial hash value H for SHA-224: */ +static const sha_word32 sha224_initial_hash_value[8] = { + SHA_UINT32_C(0xc1059ed8), + SHA_UINT32_C(0x367cd507), + SHA_UINT32_C(0x3070dd17), + SHA_UINT32_C(0xf70e5939), + SHA_UINT32_C(0xffc00b31), + SHA_UINT32_C(0x68581511), + SHA_UINT32_C(0x64f98fa7), + SHA_UINT32_C(0xbefa4fa4) +}; + +/* Initial hash value H for SHA-256: */ +static const sha_word32 sha256_initial_hash_value[8] = { + SHA_UINT32_C(0x6a09e667), + SHA_UINT32_C(0xbb67ae85), + SHA_UINT32_C(0x3c6ef372), + SHA_UINT32_C(0xa54ff53a), + SHA_UINT32_C(0x510e527f), + SHA_UINT32_C(0x9b05688c), + SHA_UINT32_C(0x1f83d9ab), + SHA_UINT32_C(0x5be0cd19) +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +static const sha_word64 K512[80] = { + SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd), + SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc), + SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019), + SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118), + SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe), + SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2), + SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1), + SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694), + SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3), + SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65), + SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483), + SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5), + SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210), + SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4), + SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725), + SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70), + SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926), + SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df), + SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8), + SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b), + SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001), + SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30), + SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910), + SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8), + SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53), + SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8), + SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb), + SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3), + SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60), + SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec), + SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9), + SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b), + SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207), + SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178), + SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6), + SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b), + SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493), + SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c), + SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a), + SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817) +}; + +/* Initial hash value H for SHA-384 */ +static const sha_word64 sha384_initial_hash_value[8] = { + SHA_UINT64_C(0xcbbb9d5dc1059ed8), + SHA_UINT64_C(0x629a292a367cd507), + SHA_UINT64_C(0x9159015a3070dd17), + SHA_UINT64_C(0x152fecd8f70e5939), + SHA_UINT64_C(0x67332667ffc00b31), + SHA_UINT64_C(0x8eb44a8768581511), + SHA_UINT64_C(0xdb0c2e0d64f98fa7), + SHA_UINT64_C(0x47b5481dbefa4fa4) +}; + +/* Initial hash value H for SHA-512 */ +static const sha_word64 sha512_initial_hash_value[8] = { + SHA_UINT64_C(0x6a09e667f3bcc908), + SHA_UINT64_C(0xbb67ae8584caa73b), + SHA_UINT64_C(0x3c6ef372fe94f82b), + SHA_UINT64_C(0xa54ff53a5f1d36f1), + SHA_UINT64_C(0x510e527fade682d1), + SHA_UINT64_C(0x9b05688c2b3e6c1f), + SHA_UINT64_C(0x1f83d9abfb41bd6b), + SHA_UINT64_C(0x5be0cd19137e2179) +}; + +/* + * Constant used by SHA224/256/384/512_End() functions for converting the + * digest to a readable hexadecimal character string: + */ +static const char *sha_hex_digits = "0123456789abcdef"; + + +/*** SHA-1: ***********************************************************/ +void SHA1_Init(SHA_CTX* context) { + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5); + MEMSET_BZERO(context->s1.buffer, 64); + context->s1.bitcount = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-1 round macros: */ + +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND1_0_TO_15(a,b,c,d,e) \ + REVERSE32(*data++, W1[j]); \ + (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ + K1_0_TO_19 + W1[j]; \ + (b) = ROTL32(30, (b)); \ + j++; + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND1_0_TO_15(a,b,c,d,e) \ + (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ + K1_0_TO_19 + ( W1[j] = *data++ ); \ + (b) = ROTL32(30, (b)); \ + j++; + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND1_16_TO_19(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +#define ROUND1_20_TO_39(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +#define ROUND1_40_TO_59(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +#define ROUND1_60_TO_79(a,b,c,d,e) \ + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ + (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ + (b) = ROTL32(30, b); \ + j++; + +void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e; + sha_word32 T1, *W1; + int j; + + W1 = (sha_word32*)context->s1.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s1.state[0]; + b = context->s1.state[1]; + c = context->s1.state[2]; + d = context->s1.state[3]; + e = context->s1.state[4]; + + j = 0; + + /* Rounds 0 to 15 unrolled: */ + ROUND1_0_TO_15(a,b,c,d,e); + ROUND1_0_TO_15(e,a,b,c,d); + ROUND1_0_TO_15(d,e,a,b,c); + ROUND1_0_TO_15(c,d,e,a,b); + ROUND1_0_TO_15(b,c,d,e,a); + ROUND1_0_TO_15(a,b,c,d,e); + ROUND1_0_TO_15(e,a,b,c,d); + ROUND1_0_TO_15(d,e,a,b,c); + ROUND1_0_TO_15(c,d,e,a,b); + ROUND1_0_TO_15(b,c,d,e,a); + ROUND1_0_TO_15(a,b,c,d,e); + ROUND1_0_TO_15(e,a,b,c,d); + ROUND1_0_TO_15(d,e,a,b,c); + ROUND1_0_TO_15(c,d,e,a,b); + ROUND1_0_TO_15(b,c,d,e,a); + ROUND1_0_TO_15(a,b,c,d,e); + + /* Rounds 16 to 19 unrolled: */ + ROUND1_16_TO_19(e,a,b,c,d); + ROUND1_16_TO_19(d,e,a,b,c); + ROUND1_16_TO_19(c,d,e,a,b); + ROUND1_16_TO_19(b,c,d,e,a); + + /* Rounds 20 to 39 unrolled: */ + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + ROUND1_20_TO_39(a,b,c,d,e); + ROUND1_20_TO_39(e,a,b,c,d); + ROUND1_20_TO_39(d,e,a,b,c); + ROUND1_20_TO_39(c,d,e,a,b); + ROUND1_20_TO_39(b,c,d,e,a); + + /* Rounds 40 to 59 unrolled: */ + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + ROUND1_40_TO_59(a,b,c,d,e); + ROUND1_40_TO_59(e,a,b,c,d); + ROUND1_40_TO_59(d,e,a,b,c); + ROUND1_40_TO_59(c,d,e,a,b); + ROUND1_40_TO_59(b,c,d,e,a); + + /* Rounds 60 to 79 unrolled: */ + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + ROUND1_60_TO_79(a,b,c,d,e); + ROUND1_60_TO_79(e,a,b,c,d); + ROUND1_60_TO_79(d,e,a,b,c); + ROUND1_60_TO_79(c,d,e,a,b); + ROUND1_60_TO_79(b,c,d,e,a); + + /* Compute the current intermediate hash value */ + context->s1.state[0] += a; + context->s1.state[1] += b; + context->s1.state[2] += c; + context->s1.state[3] += d; + context->s1.state[4] += e; + + /* Clean up */ + a = b = c = d = e = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e; + sha_word32 T1, *W1; + int j; + + W1 = (sha_word32*)context->s1.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s1.state[0]; + b = context->s1.state[1]; + c = context->s1.state[2]; + d = context->s1.state[3]; + e = context->s1.state[4]; + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + T1 = data[j]; + /* Copy data while converting to host byte order */ + REVERSE32(*data++, W1[j]); + T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 16); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 20); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 40); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 60); + + do { + T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; + T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1)); + e = d; + d = c; + c = ROTL32(30, b); + b = a; + a = T1; + j++; + } while (j < 80); + + + /* Compute the current intermediate hash value */ + context->s1.state[0] += a; + context->s1.state[1] += b; + context->s1.state[2] += c; + context->s1.state[3] += d; + context->s1.state[4] += e; + + /* Clean up */ + a = b = c = d = e = T1 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + unsigned int freespace, usedspace; + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); + + usedspace = (context->s1.bitcount >> 3) % 64; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = 64 - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace); + context->s1.bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len); + context->s1.bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= 64) { + /* Process as many complete blocks as we can */ + SHA1_Internal_Transform(context, (sha_word32*)data); + context->s1.bitcount += 512; + len -= 64; + data += 64; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->s1.buffer, data, len); + context->s1.bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA1_Final(sha_byte digest[], SHA_CTX* context) { + sha_word32 *d = (sha_word32*)digest; + unsigned int usedspace; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (digest == (sha_byte*)0) { + /* + * No digest buffer, so we can do nothing + * except clean up and go home + */ + MEMSET_BZERO(context, sizeof(context)); + return; + } + + usedspace = (context->s1.bitcount >> 3) % 64; + if (usedspace == 0) { + /* Set-up for the last transform: */ + MEMSET_BZERO(context->s1.buffer, 56); + + /* Begin padding with a 1 bit: */ + *context->s1.buffer = 0x80; + } else { + /* Begin padding with a 1 bit: */ + context->s1.buffer[usedspace++] = 0x80; + + if (usedspace <= 56) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace); + } else { + if (usedspace < 64) { + MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace); + } + /* Do second-to-last transform: */ + SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->s1.buffer, 56); + } + /* Clean up: */ + usedspace = 0; + } + /* Set the bit count: */ +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->s1.bitcount,context->s1.bitcount); +#endif + *(sha_word64*)&context->s1.buffer[56] = context->s1.bitcount; + + /* Final transform: */ + SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) { + REVERSE32(context->s1.state[j],context->s1.state[j]); + *d++ = context->s1.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH); +#endif + + /* Clean up: */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA1_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA1_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA1_Final(digest, context); + + for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH); + return buffer; +} + +char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA1_Init(&context); + SHA1_Update(&context, data, len); + return SHA1_End(&context, digest); +} + + +/*** SHA-256: *********************************************************/ +void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) { + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8); + MEMSET_BZERO(context->s256.buffer, 64); + context->s256.bitcount = 0; +} + +void SHA256_Init(SHA_CTX* context) { + SHA256_Internal_Init(context, sha256_initial_hash_value); +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE32(*data++, W256[j]); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + (W256[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256(a,b,c,d,e,f,g,h) \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e, f, g, h, s0, s1; + sha_word32 T1, *W256; + int j; + + W256 = (sha_word32*)context->s256.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s256.state[0]; + b = context->s256.state[1]; + c = context->s256.state[2]; + d = context->s256.state[3]; + e = context->s256.state[4]; + f = context->s256.state[5]; + g = context->s256.state[6]; + h = context->s256.state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds to 64: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->s256.state[0] += a; + context->s256.state[1] += b; + context->s256.state[2] += c; + context->s256.state[3] += d; + context->s256.state[4] += e; + context->s256.state[5] += f; + context->s256.state[6] += g; + context->s256.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + sha_word32 a, b, c, d, e, f, g, h, s0, s1; + sha_word32 T1, T2, *W256; + int j; + + W256 = (sha_word32*)context->s256.buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->s256.state[0]; + b = context->s256.state[1]; + c = context->s256.state[2]; + d = context->s256.state[3]; + e = context->s256.state[4]; + f = context->s256.state[5]; + g = context->s256.state[6]; + h = context->s256.state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Copy data while converting to host byte order */ + REVERSE32(*data++,W256[j]); + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-256 compression function to update a..h with copy */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->s256.state[0] += a; + context->s256.state[1] += b; + context->s256.state[2] += c; + context->s256.state[3] += d; + context->s256.state[4] += e; + context->s256.state[5] += f; + context->s256.state[6] += g; + context->s256.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); + + usedspace = (context->s256.bitcount >> 3) % 64; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = 64 - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace); + context->s256.bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len); + context->s256.bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= 64) { + /* Process as many complete blocks as we can */ + SHA256_Internal_Transform(context, (sha_word32*)data); + context->s256.bitcount += 512; + len -= 64; + data += 64; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->s256.buffer, data, len); + context->s256.bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA256_Internal_Last(SHA_CTX* context) { + unsigned int usedspace; + + usedspace = (context->s256.bitcount >> 3) % 64; +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->s256.bitcount,context->s256.bitcount); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->s256.buffer[usedspace++] = 0x80; + + if (usedspace <= 56) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace); + } else { + if (usedspace < 64) { + MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace); + } + /* Do second-to-last transform: */ + SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->s256.buffer, 56); + } + /* Clean up: */ + usedspace = 0; + } else { + /* Set-up for the last transform: */ + MEMSET_BZERO(context->s256.buffer, 56); + + /* Begin padding with a 1 bit: */ + *context->s256.buffer = 0x80; + } + /* Set the bit count: */ + *(sha_word64*)&context->s256.buffer[56] = context->s256.bitcount; + + /* Final transform: */ + SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer); +} + +void SHA256_Final(sha_byte digest[], SHA_CTX* context) { + sha_word32 *d = (sha_word32*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA256_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) { + REVERSE32(context->s256.state[j],context->s256.state[j]); + *d++ = context->s256.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH); +#endif + } + + /* Clean up state data: */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA256_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA256_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA256_Final(digest, context); + + for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); + return buffer; +} + +char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA256_Init(&context); + SHA256_Update(&context, data, len); + return SHA256_End(&context, digest); +} + + +/*** SHA-224: *********************************************************/ +void SHA224_Init(SHA_CTX* context) { + SHA256_Internal_Init(context, sha224_initial_hash_value); +} + +void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) { + SHA256_Internal_Transform(context, data); +} + +void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + SHA256_Update(context, data, len); +} + +void SHA224_Final(sha_byte digest[], SHA_CTX* context) { + sha_word32 *d = (sha_word32*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA256_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) { + REVERSE32(context->s256.state[j],context->s256.state[j]); + *d++ = context->s256.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH); +#endif + } + + /* Clean up state data: */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA224_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA224_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA224_Final(digest, context); + + for (i = 0; i < SHA224_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH); + return buffer; +} + +char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA224_Init(&context); + SHA224_Update(&context, data, len); + return SHA224_End(&context, digest); +} + + +/*** SHA-512: *********************************************************/ +void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) { + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8); + MEMSET_BZERO(context->s512.buffer, 128); + context->s512.bitcount[0] = context->s512.bitcount[1] = 0; +} + +void SHA512_Init(SHA_CTX* context) { + SHA512_Internal_Init(context, sha512_initial_hash_value); +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE64(*data++, W512[j]); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + W512[j]; \ + (d) += T1, \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + (W512[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512(a,b,c,d,e,f,g,h) \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) { + sha_word64 a, b, c, d, e, f, g, h, s0, s1; + sha_word64 T1, *W512 = (sha_word64*)context->s512.buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->s512.state[0]; + b = context->s512.state[1]; + c = context->s512.state[2]; + d = context->s512.state[3]; + e = context->s512.state[4]; + f = context->s512.state[5]; + g = context->s512.state[6]; + h = context->s512.state[7]; + + j = 0; + do { + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->s512.state[0] += a; + context->s512.state[1] += b; + context->s512.state[2] += c; + context->s512.state[3] += d; + context->s512.state[4] += e; + context->s512.state[5] += f; + context->s512.state[6] += g; + context->s512.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) { + sha_word64 a, b, c, d, e, f, g, h, s0, s1; + sha_word64 T1, T2, *W512 = (sha_word64*)context->s512.buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->s512.state[0]; + b = context->s512.state[1]; + c = context->s512.state[2]; + d = context->s512.state[3]; + e = context->s512.state[4]; + f = context->s512.state[5]; + g = context->s512.state[6]; + h = context->s512.state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert TO host byte order */ + REVERSE64(*data++, W512[j]); + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-512 compression function to update a..h with copy */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->s512.state[0] += a; + context->s512.state[1] += b; + context->s512.state[2] += c; + context->s512.state[3] += d; + context->s512.state[4] += e; + context->s512.state[5] += f; + context->s512.state[6] += g; + context->s512.state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA_CTX*)0 && data != (sha_byte*)0); + + usedspace = (context->s512.bitcount[0] >> 3) % 128; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = 128 - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace); + ADDINC128(context->s512.bitcount, freespace << 3); + len -= freespace; + data += freespace; + SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len); + ADDINC128(context->s512.bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= 128) { + /* Process as many complete blocks as we can */ + SHA512_Internal_Transform(context, (sha_word64*)data); + ADDINC128(context->s512.bitcount, 1024); + len -= 128; + data += 128; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->s512.buffer, data, len); + ADDINC128(context->s512.bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA512_Internal_Last(SHA_CTX* context) { + unsigned int usedspace; + + usedspace = (context->s512.bitcount[0] >> 3) % 128; +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]); + REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->s512.buffer[usedspace++] = 0x80; + + if (usedspace <= 112) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace); + } else { + if (usedspace < 128) { + MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace); + } + /* Do second-to-last transform: */ + SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->s512.buffer, 112); + } + /* Clean up: */ + usedspace = 0; + } else { + /* Prepare for final transform: */ + MEMSET_BZERO(context->s512.buffer, 112); + + /* Begin padding with a 1 bit: */ + *context->s512.buffer = 0x80; + } + /* Store the length of input data (in bits): */ + *(sha_word64*)&context->s512.buffer[112] = context->s512.bitcount[1]; + *(sha_word64*)&context->s512.buffer[120] = context->s512.bitcount[0]; + + /* Final transform: */ + SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer); +} + +void SHA512_Final(sha_byte digest[], SHA_CTX* context) { + sha_word64 *d = (sha_word64*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA512_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) { + REVERSE64(context->s512.state[j],context->s512.state[j]); + *d++ = context->s512.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH); +#endif + } + + /* Zero out state data */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA512_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA512_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA512_Final(digest, context); + + for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); + return buffer; +} + +char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA512_Init(&context); + SHA512_Update(&context, data, len); + return SHA512_End(&context, digest); +} + + +/*** SHA-384: *********************************************************/ +void SHA384_Init(SHA_CTX* context) { + SHA512_Internal_Init(context, sha384_initial_hash_value); +} + +void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) { + SHA512_Update(context, data, len); +} + +void SHA384_Final(sha_byte digest[], SHA_CTX* context) { + sha_word64 *d = (sha_word64*)digest; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha_byte*)0) { + SHA512_Internal_Last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) { + REVERSE64(context->s512.state[j],context->s512.state[j]); + *d++ = context->s512.state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH); +#endif + } + + /* Zero out state data */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA384_End(SHA_CTX* context, char buffer[]) { + sha_byte digest[SHA384_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA_CTX*)0); + + if (buffer != (char*)0) { + SHA384_Final(digest, context); + + for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { + *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); + return buffer; +} + +char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { + SHA_CTX context; + + SHA384_Init(&context); + SHA384_Update(&context, data, len); + return SHA384_End(&context, digest); +} diff --git a/Source/cm_sha2.h b/Source/cm_sha2.h new file mode 100644 index 0000000..71395f0 --- /dev/null +++ b/Source/cm_sha2.h @@ -0,0 +1,140 @@ +/* + * FILE: sha2.h + * AUTHOR: Aaron D. Gifford + * http://www.aarongifford.com/computers/sha.html + * + * Copyright (c) 2000-2003, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $Id: sha2.h,v 1.4 2004/01/07 19:06:18 adg Exp $ + */ + +#ifndef __SHA2_H__ +#define __SHA2_H__ + +#include "cm_sha2_mangle.h" + +/* CMake modification: use integer types from cmIML. */ +#include "cmIML/INT.h" +typedef cmIML_INT_uint8_t cm_sha2_uint8_t; +typedef cmIML_INT_uint32_t cm_sha2_uint32_t; +typedef cmIML_INT_uint64_t cm_sha2_uint64_t; + +#ifdef __cplusplus +extern "C" { +#endif + + +/* + * Import u_intXX_t size_t type definitions from system headers. You + * may need to change this, or define these things yourself in this + * file. + */ +#include <sys/types.h> + +/*** SHA-224/256/384/512 Various Length Definitions *******************/ + +/* Digest lengths for SHA-1/224/256/384/512 */ +#define SHA1_DIGEST_LENGTH 20 +#define SHA1_DIGEST_STRING_LENGTH (SHA1_DIGEST_LENGTH * 2 + 1) +#define SHA224_DIGEST_LENGTH 28 +#define SHA224_DIGEST_STRING_LENGTH (SHA224_DIGEST_LENGTH * 2 + 1) +#define SHA256_DIGEST_LENGTH 32 +#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1) +#define SHA384_DIGEST_LENGTH 48 +#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1) +#define SHA512_DIGEST_LENGTH 64 +#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1) + + +/*** SHA-224/256/384/512 Context Structures ***************************/ + +typedef union _SHA_CTX { + /* SHA-1 uses this part of the union: */ + struct { + cm_sha2_uint32_t state[5]; + cm_sha2_uint64_t bitcount; + cm_sha2_uint8_t buffer[64]; + } s1; + + /* SHA-224 and SHA-256 use this part of the union: */ + struct { + cm_sha2_uint32_t state[8]; + cm_sha2_uint64_t bitcount; + cm_sha2_uint8_t buffer[64]; + } s256; + + /* SHA-384 and SHA-512 use this part of the union: */ + struct { + cm_sha2_uint64_t state[8]; + cm_sha2_uint64_t bitcount[2]; + cm_sha2_uint8_t buffer[128]; + } s512; +} SHA_CTX; + +/*** SHA-256/384/512 Function Prototypes ******************************/ + +void SHA1_Init(SHA_CTX*); +void SHA1_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t); +void SHA1_Final(cm_sha2_uint8_t[SHA1_DIGEST_LENGTH], SHA_CTX*); +char* SHA1_End(SHA_CTX*, char[SHA1_DIGEST_STRING_LENGTH]); +char* SHA1_Data(const cm_sha2_uint8_t*, size_t, + char[SHA1_DIGEST_STRING_LENGTH]); + +void SHA224_Init(SHA_CTX*); +void SHA224_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t); +void SHA224_Final(cm_sha2_uint8_t[SHA224_DIGEST_LENGTH], SHA_CTX*); +char* SHA224_End(SHA_CTX*, char[SHA224_DIGEST_STRING_LENGTH]); +char* SHA224_Data(const cm_sha2_uint8_t*, size_t, + char[SHA224_DIGEST_STRING_LENGTH]); + +void SHA256_Init(SHA_CTX*); +void SHA256_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t); +void SHA256_Final(cm_sha2_uint8_t[SHA256_DIGEST_LENGTH], SHA_CTX*); +char* SHA256_End(SHA_CTX*, char[SHA256_DIGEST_STRING_LENGTH]); +char* SHA256_Data(const cm_sha2_uint8_t*, size_t, + char[SHA256_DIGEST_STRING_LENGTH]); + +void SHA384_Init(SHA_CTX*); +void SHA384_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t); +void SHA384_Final(cm_sha2_uint8_t[SHA384_DIGEST_LENGTH], SHA_CTX*); +char* SHA384_End(SHA_CTX*, char[SHA384_DIGEST_STRING_LENGTH]); +char* SHA384_Data(const cm_sha2_uint8_t*, size_t, + char[SHA384_DIGEST_STRING_LENGTH]); + +void SHA512_Init(SHA_CTX*); +void SHA512_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t); +void SHA512_Final(cm_sha2_uint8_t[SHA512_DIGEST_LENGTH], SHA_CTX*); +char* SHA512_End(SHA_CTX*, char[SHA512_DIGEST_STRING_LENGTH]); +char* SHA512_Data(const cm_sha2_uint8_t*, size_t, + char[SHA512_DIGEST_STRING_LENGTH]); + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* __SHA2_H__ */ diff --git a/Source/cm_sha2_mangle.h b/Source/cm_sha2_mangle.h new file mode 100644 index 0000000..e73d131 --- /dev/null +++ b/Source/cm_sha2_mangle.h @@ -0,0 +1,51 @@ +/*============================================================================ + CMake - Cross Platform Makefile Generator + Copyright 2000-2011 Kitware, Inc., Insight Software Consortium + + Distributed under the OSI-approved BSD License (the "License"); + see accompanying file Copyright.txt for details. + + This software is distributed WITHOUT ANY WARRANTY; without even the + implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the License for more information. +============================================================================*/ +#ifndef cm_sha2_mangle_h +#define cm_sha2_mangle_h + +/* Mangle sha2 symbol names to avoid possible conflict with + implementations in other libraries to which CMake links. */ +#define SHA1_Data cmSHA1_Data +#define SHA1_End cmSHA1_End +#define SHA1_Final cmSHA1_Final +#define SHA1_Init cmSHA1_Init +#define SHA1_Internal_Transform cmSHA1_Internal_Transform +#define SHA1_Update cmSHA1_Update +#define SHA224_Data cmSHA224_Data +#define SHA224_End cmSHA224_End +#define SHA224_Final cmSHA224_Final +#define SHA224_Init cmSHA224_Init +#define SHA224_Internal_Transform cmSHA224_Internal_Transform +#define SHA224_Update cmSHA224_Update +#define SHA256_Data cmSHA256_Data +#define SHA256_End cmSHA256_End +#define SHA256_Final cmSHA256_Final +#define SHA256_Init cmSHA256_Init +#define SHA256_Internal_Init cmSHA256_Internal_Init +#define SHA256_Internal_Last cmSHA256_Internal_Last +#define SHA256_Internal_Transform cmSHA256_Internal_Transform +#define SHA256_Update cmSHA256_Update +#define SHA384_Data cmSHA384_Data +#define SHA384_End cmSHA384_End +#define SHA384_Final cmSHA384_Final +#define SHA384_Init cmSHA384_Init +#define SHA384_Update cmSHA384_Update +#define SHA512_Data cmSHA512_Data +#define SHA512_End cmSHA512_End +#define SHA512_Final cmSHA512_Final +#define SHA512_Init cmSHA512_Init +#define SHA512_Internal_Init cmSHA512_Internal_Init +#define SHA512_Internal_Last cmSHA512_Internal_Last +#define SHA512_Internal_Transform cmSHA512_Internal_Transform +#define SHA512_Update cmSHA512_Update + +#endif |