diff options
Diffstat (limited to 'Utilities/cmlibrhash/librhash/sha256.c')
-rw-r--r-- | Utilities/cmlibrhash/librhash/sha256.c | 241 |
1 files changed, 241 insertions, 0 deletions
diff --git a/Utilities/cmlibrhash/librhash/sha256.c b/Utilities/cmlibrhash/librhash/sha256.c new file mode 100644 index 0000000..064dfe2 --- /dev/null +++ b/Utilities/cmlibrhash/librhash/sha256.c @@ -0,0 +1,241 @@ +/* sha256.c - an implementation of SHA-256/224 hash functions + * based on FIPS 180-3 (Federal Information Processing Standart). + * + * Copyright: 2010-2012 Aleksey Kravchenko <rhash.admin@gmail.com> + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + * or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk! + */ + +#include <string.h> +#include "byte_order.h" +#include "sha256.h" + +/* SHA-224 and SHA-256 constants for 64 rounds. These words represent + * the first 32 bits of the fractional parts of the cube + * roots of the first 64 prime numbers. */ +static const unsigned rhash_k256[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, + 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, + 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, + 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, + 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, + 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 +}; + +/* The SHA256/224 functions defined by FIPS 180-3, 4.1.2 */ +/* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */ +#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +/* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */ +#define Maj(x,y,z) (((x) & (y)) ^ ((z) & ((x) ^ (y)))) + +#define Sigma0(x) (ROTR32((x), 2) ^ ROTR32((x), 13) ^ ROTR32((x), 22)) +#define Sigma1(x) (ROTR32((x), 6) ^ ROTR32((x), 11) ^ ROTR32((x), 25)) +#define sigma0(x) (ROTR32((x), 7) ^ ROTR32((x), 18) ^ ((x) >> 3)) +#define sigma1(x) (ROTR32((x),17) ^ ROTR32((x), 19) ^ ((x) >> 10)) + +/* Recalculate element n-th of circular buffer W using formula + * W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */ +#define RECALCULATE_W(W,n) (W[n] += \ + (sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15]))) + +#define ROUND(a,b,c,d,e,f,g,h,k,data) { \ + unsigned T1 = h + Sigma1(e) + Ch(e,f,g) + k + (data); \ + d += T1, h = T1 + Sigma0(a) + Maj(a,b,c); } +#define ROUND_1_16(a,b,c,d,e,f,g,h,n) \ + ROUND(a,b,c,d,e,f,g,h, rhash_k256[n], W[n] = be2me_32(block[n])) +#define ROUND_17_64(a,b,c,d,e,f,g,h,n) \ + ROUND(a,b,c,d,e,f,g,h, k[n], RECALCULATE_W(W, n)) + +/** + * Initialize context before calculaing hash. + * + * @param ctx context to initialize + */ +void rhash_sha256_init(sha256_ctx *ctx) +{ + /* Initial values. These words were obtained by taking the first 32 + * bits of the fractional parts of the square roots of the first + * eight prime numbers. */ + static const unsigned SHA256_H0[8] = { + 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, + 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 + }; + + ctx->length = 0; + ctx->digest_length = sha256_hash_size; + + /* initialize algorithm state */ + memcpy(ctx->hash, SHA256_H0, sizeof(ctx->hash)); +} + +/** + * Initialize context before calculaing hash. + * + * @param ctx context to initialize + */ +void rhash_sha224_init(struct sha256_ctx *ctx) +{ + /* Initial values from FIPS 180-3. These words were obtained by taking + * bits from 33th to 64th of the fractional parts of the square + * roots of ninth through sixteenth prime numbers. */ + static const unsigned SHA224_H0[8] = { + 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, + 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4 + }; + + ctx->length = 0; + ctx->digest_length = sha224_hash_size; + + memcpy(ctx->hash, SHA224_H0, sizeof(ctx->hash)); +} + +/** + * The core transformation. Process a 512-bit block. + * + * @param hash algorithm state + * @param block the message block to process + */ +static void rhash_sha256_process_block(unsigned hash[8], unsigned block[16]) +{ + unsigned A, B, C, D, E, F, G, H; + unsigned W[16]; + const unsigned *k; + int i; + + A = hash[0], B = hash[1], C = hash[2], D = hash[3]; + E = hash[4], F = hash[5], G = hash[6], H = hash[7]; + + /* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */ + ROUND_1_16(A, B, C, D, E, F, G, H, 0); + ROUND_1_16(H, A, B, C, D, E, F, G, 1); + ROUND_1_16(G, H, A, B, C, D, E, F, 2); + ROUND_1_16(F, G, H, A, B, C, D, E, 3); + ROUND_1_16(E, F, G, H, A, B, C, D, 4); + ROUND_1_16(D, E, F, G, H, A, B, C, 5); + ROUND_1_16(C, D, E, F, G, H, A, B, 6); + ROUND_1_16(B, C, D, E, F, G, H, A, 7); + ROUND_1_16(A, B, C, D, E, F, G, H, 8); + ROUND_1_16(H, A, B, C, D, E, F, G, 9); + ROUND_1_16(G, H, A, B, C, D, E, F, 10); + ROUND_1_16(F, G, H, A, B, C, D, E, 11); + ROUND_1_16(E, F, G, H, A, B, C, D, 12); + ROUND_1_16(D, E, F, G, H, A, B, C, 13); + ROUND_1_16(C, D, E, F, G, H, A, B, 14); + ROUND_1_16(B, C, D, E, F, G, H, A, 15); + + for (i = 16, k = &rhash_k256[16]; i < 64; i += 16, k += 16) { + ROUND_17_64(A, B, C, D, E, F, G, H, 0); + ROUND_17_64(H, A, B, C, D, E, F, G, 1); + ROUND_17_64(G, H, A, B, C, D, E, F, 2); + ROUND_17_64(F, G, H, A, B, C, D, E, 3); + ROUND_17_64(E, F, G, H, A, B, C, D, 4); + ROUND_17_64(D, E, F, G, H, A, B, C, 5); + ROUND_17_64(C, D, E, F, G, H, A, B, 6); + ROUND_17_64(B, C, D, E, F, G, H, A, 7); + ROUND_17_64(A, B, C, D, E, F, G, H, 8); + ROUND_17_64(H, A, B, C, D, E, F, G, 9); + ROUND_17_64(G, H, A, B, C, D, E, F, 10); + ROUND_17_64(F, G, H, A, B, C, D, E, 11); + ROUND_17_64(E, F, G, H, A, B, C, D, 12); + ROUND_17_64(D, E, F, G, H, A, B, C, 13); + ROUND_17_64(C, D, E, F, G, H, A, B, 14); + ROUND_17_64(B, C, D, E, F, G, H, A, 15); + } + + hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D; + hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H; +} + +/** + * Calculate message hash. + * Can be called repeatedly with chunks of the message to be hashed. + * + * @param ctx the algorithm context containing current hashing state + * @param msg message chunk + * @param size length of the message chunk + */ +void rhash_sha256_update(sha256_ctx *ctx, const unsigned char *msg, size_t size) +{ + size_t index = (size_t)ctx->length & 63; + ctx->length += size; + + /* fill partial block */ + if (index) { + size_t left = sha256_block_size - index; + memcpy((char*)ctx->message + index, msg, (size < left ? size : left)); + if (size < left) return; + + /* process partial block */ + rhash_sha256_process_block(ctx->hash, (unsigned*)ctx->message); + msg += left; + size -= left; + } + while (size >= sha256_block_size) { + unsigned* aligned_message_block; + if (IS_ALIGNED_32(msg)) { + /* the most common case is processing of an already aligned message + without copying it */ + aligned_message_block = (unsigned*)msg; + } else { + memcpy(ctx->message, msg, sha256_block_size); + aligned_message_block = (unsigned*)ctx->message; + } + + rhash_sha256_process_block(ctx->hash, aligned_message_block); + msg += sha256_block_size; + size -= sha256_block_size; + } + if (size) { + memcpy(ctx->message, msg, size); /* save leftovers */ + } +} + +/** + * Store calculated hash into the given array. + * + * @param ctx the algorithm context containing current hashing state + * @param result calculated hash in binary form + */ +void rhash_sha256_final(sha256_ctx *ctx, unsigned char* result) +{ + size_t index = ((unsigned)ctx->length & 63) >> 2; + unsigned shift = ((unsigned)ctx->length & 3) * 8; + + /* pad message and run for last block */ + + /* append the byte 0x80 to the message */ + ctx->message[index] &= le2me_32(~(0xFFFFFFFF << shift)); + ctx->message[index++] ^= le2me_32(0x80 << shift); + + /* if no room left in the message to store 64-bit message length */ + if (index > 14) { + /* then fill the rest with zeros and process it */ + while (index < 16) { + ctx->message[index++] = 0; + } + rhash_sha256_process_block(ctx->hash, ctx->message); + index = 0; + } + while (index < 14) { + ctx->message[index++] = 0; + } + ctx->message[14] = be2me_32( (unsigned)(ctx->length >> 29) ); + ctx->message[15] = be2me_32( (unsigned)(ctx->length << 3) ); + rhash_sha256_process_block(ctx->hash, ctx->message); + + if (result) be32_copy(result, 0, ctx->hash, ctx->digest_length); +} |