summaryrefslogtreecommitdiffstats
path: root/Utilities/cmlibrhash/librhash/sha256.c
diff options
context:
space:
mode:
Diffstat (limited to 'Utilities/cmlibrhash/librhash/sha256.c')
-rw-r--r--Utilities/cmlibrhash/librhash/sha256.c241
1 files changed, 241 insertions, 0 deletions
diff --git a/Utilities/cmlibrhash/librhash/sha256.c b/Utilities/cmlibrhash/librhash/sha256.c
new file mode 100644
index 0000000..064dfe2
--- /dev/null
+++ b/Utilities/cmlibrhash/librhash/sha256.c
@@ -0,0 +1,241 @@
+/* sha256.c - an implementation of SHA-256/224 hash functions
+ * based on FIPS 180-3 (Federal Information Processing Standart).
+ *
+ * Copyright: 2010-2012 Aleksey Kravchenko <rhash.admin@gmail.com>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk!
+ */
+
+#include <string.h>
+#include "byte_order.h"
+#include "sha256.h"
+
+/* SHA-224 and SHA-256 constants for 64 rounds. These words represent
+ * the first 32 bits of the fractional parts of the cube
+ * roots of the first 64 prime numbers. */
+static const unsigned rhash_k256[64] = {
+ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
+ 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
+ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
+ 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
+ 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
+ 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
+ 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
+ 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
+ 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
+ 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
+ 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+};
+
+/* The SHA256/224 functions defined by FIPS 180-3, 4.1.2 */
+/* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */
+#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
+/* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */
+#define Maj(x,y,z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
+
+#define Sigma0(x) (ROTR32((x), 2) ^ ROTR32((x), 13) ^ ROTR32((x), 22))
+#define Sigma1(x) (ROTR32((x), 6) ^ ROTR32((x), 11) ^ ROTR32((x), 25))
+#define sigma0(x) (ROTR32((x), 7) ^ ROTR32((x), 18) ^ ((x) >> 3))
+#define sigma1(x) (ROTR32((x),17) ^ ROTR32((x), 19) ^ ((x) >> 10))
+
+/* Recalculate element n-th of circular buffer W using formula
+ * W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */
+#define RECALCULATE_W(W,n) (W[n] += \
+ (sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15])))
+
+#define ROUND(a,b,c,d,e,f,g,h,k,data) { \
+ unsigned T1 = h + Sigma1(e) + Ch(e,f,g) + k + (data); \
+ d += T1, h = T1 + Sigma0(a) + Maj(a,b,c); }
+#define ROUND_1_16(a,b,c,d,e,f,g,h,n) \
+ ROUND(a,b,c,d,e,f,g,h, rhash_k256[n], W[n] = be2me_32(block[n]))
+#define ROUND_17_64(a,b,c,d,e,f,g,h,n) \
+ ROUND(a,b,c,d,e,f,g,h, k[n], RECALCULATE_W(W, n))
+
+/**
+ * Initialize context before calculaing hash.
+ *
+ * @param ctx context to initialize
+ */
+void rhash_sha256_init(sha256_ctx *ctx)
+{
+ /* Initial values. These words were obtained by taking the first 32
+ * bits of the fractional parts of the square roots of the first
+ * eight prime numbers. */
+ static const unsigned SHA256_H0[8] = {
+ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
+ 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
+ };
+
+ ctx->length = 0;
+ ctx->digest_length = sha256_hash_size;
+
+ /* initialize algorithm state */
+ memcpy(ctx->hash, SHA256_H0, sizeof(ctx->hash));
+}
+
+/**
+ * Initialize context before calculaing hash.
+ *
+ * @param ctx context to initialize
+ */
+void rhash_sha224_init(struct sha256_ctx *ctx)
+{
+ /* Initial values from FIPS 180-3. These words were obtained by taking
+ * bits from 33th to 64th of the fractional parts of the square
+ * roots of ninth through sixteenth prime numbers. */
+ static const unsigned SHA224_H0[8] = {
+ 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
+ 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
+ };
+
+ ctx->length = 0;
+ ctx->digest_length = sha224_hash_size;
+
+ memcpy(ctx->hash, SHA224_H0, sizeof(ctx->hash));
+}
+
+/**
+ * The core transformation. Process a 512-bit block.
+ *
+ * @param hash algorithm state
+ * @param block the message block to process
+ */
+static void rhash_sha256_process_block(unsigned hash[8], unsigned block[16])
+{
+ unsigned A, B, C, D, E, F, G, H;
+ unsigned W[16];
+ const unsigned *k;
+ int i;
+
+ A = hash[0], B = hash[1], C = hash[2], D = hash[3];
+ E = hash[4], F = hash[5], G = hash[6], H = hash[7];
+
+ /* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */
+ ROUND_1_16(A, B, C, D, E, F, G, H, 0);
+ ROUND_1_16(H, A, B, C, D, E, F, G, 1);
+ ROUND_1_16(G, H, A, B, C, D, E, F, 2);
+ ROUND_1_16(F, G, H, A, B, C, D, E, 3);
+ ROUND_1_16(E, F, G, H, A, B, C, D, 4);
+ ROUND_1_16(D, E, F, G, H, A, B, C, 5);
+ ROUND_1_16(C, D, E, F, G, H, A, B, 6);
+ ROUND_1_16(B, C, D, E, F, G, H, A, 7);
+ ROUND_1_16(A, B, C, D, E, F, G, H, 8);
+ ROUND_1_16(H, A, B, C, D, E, F, G, 9);
+ ROUND_1_16(G, H, A, B, C, D, E, F, 10);
+ ROUND_1_16(F, G, H, A, B, C, D, E, 11);
+ ROUND_1_16(E, F, G, H, A, B, C, D, 12);
+ ROUND_1_16(D, E, F, G, H, A, B, C, 13);
+ ROUND_1_16(C, D, E, F, G, H, A, B, 14);
+ ROUND_1_16(B, C, D, E, F, G, H, A, 15);
+
+ for (i = 16, k = &rhash_k256[16]; i < 64; i += 16, k += 16) {
+ ROUND_17_64(A, B, C, D, E, F, G, H, 0);
+ ROUND_17_64(H, A, B, C, D, E, F, G, 1);
+ ROUND_17_64(G, H, A, B, C, D, E, F, 2);
+ ROUND_17_64(F, G, H, A, B, C, D, E, 3);
+ ROUND_17_64(E, F, G, H, A, B, C, D, 4);
+ ROUND_17_64(D, E, F, G, H, A, B, C, 5);
+ ROUND_17_64(C, D, E, F, G, H, A, B, 6);
+ ROUND_17_64(B, C, D, E, F, G, H, A, 7);
+ ROUND_17_64(A, B, C, D, E, F, G, H, 8);
+ ROUND_17_64(H, A, B, C, D, E, F, G, 9);
+ ROUND_17_64(G, H, A, B, C, D, E, F, 10);
+ ROUND_17_64(F, G, H, A, B, C, D, E, 11);
+ ROUND_17_64(E, F, G, H, A, B, C, D, 12);
+ ROUND_17_64(D, E, F, G, H, A, B, C, 13);
+ ROUND_17_64(C, D, E, F, G, H, A, B, 14);
+ ROUND_17_64(B, C, D, E, F, G, H, A, 15);
+ }
+
+ hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D;
+ hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H;
+}
+
+/**
+ * Calculate message hash.
+ * Can be called repeatedly with chunks of the message to be hashed.
+ *
+ * @param ctx the algorithm context containing current hashing state
+ * @param msg message chunk
+ * @param size length of the message chunk
+ */
+void rhash_sha256_update(sha256_ctx *ctx, const unsigned char *msg, size_t size)
+{
+ size_t index = (size_t)ctx->length & 63;
+ ctx->length += size;
+
+ /* fill partial block */
+ if (index) {
+ size_t left = sha256_block_size - index;
+ memcpy((char*)ctx->message + index, msg, (size < left ? size : left));
+ if (size < left) return;
+
+ /* process partial block */
+ rhash_sha256_process_block(ctx->hash, (unsigned*)ctx->message);
+ msg += left;
+ size -= left;
+ }
+ while (size >= sha256_block_size) {
+ unsigned* aligned_message_block;
+ if (IS_ALIGNED_32(msg)) {
+ /* the most common case is processing of an already aligned message
+ without copying it */
+ aligned_message_block = (unsigned*)msg;
+ } else {
+ memcpy(ctx->message, msg, sha256_block_size);
+ aligned_message_block = (unsigned*)ctx->message;
+ }
+
+ rhash_sha256_process_block(ctx->hash, aligned_message_block);
+ msg += sha256_block_size;
+ size -= sha256_block_size;
+ }
+ if (size) {
+ memcpy(ctx->message, msg, size); /* save leftovers */
+ }
+}
+
+/**
+ * Store calculated hash into the given array.
+ *
+ * @param ctx the algorithm context containing current hashing state
+ * @param result calculated hash in binary form
+ */
+void rhash_sha256_final(sha256_ctx *ctx, unsigned char* result)
+{
+ size_t index = ((unsigned)ctx->length & 63) >> 2;
+ unsigned shift = ((unsigned)ctx->length & 3) * 8;
+
+ /* pad message and run for last block */
+
+ /* append the byte 0x80 to the message */
+ ctx->message[index] &= le2me_32(~(0xFFFFFFFF << shift));
+ ctx->message[index++] ^= le2me_32(0x80 << shift);
+
+ /* if no room left in the message to store 64-bit message length */
+ if (index > 14) {
+ /* then fill the rest with zeros and process it */
+ while (index < 16) {
+ ctx->message[index++] = 0;
+ }
+ rhash_sha256_process_block(ctx->hash, ctx->message);
+ index = 0;
+ }
+ while (index < 14) {
+ ctx->message[index++] = 0;
+ }
+ ctx->message[14] = be2me_32( (unsigned)(ctx->length >> 29) );
+ ctx->message[15] = be2me_32( (unsigned)(ctx->length << 3) );
+ rhash_sha256_process_block(ctx->hash, ctx->message);
+
+ if (result) be32_copy(result, 0, ctx->hash, ctx->digest_length);
+}