summaryrefslogtreecommitdiffstats
path: root/Modules/CMakeASM-ATTInformation.cmake
Commit message (Expand)AuthorAgeFilesLines
* Convert CMake-language commands to lower caseKitware Robot2012-08-131-5/+5
* Change the default rules so they fit better to the new ASM handlingAlex Neundorf2011-02-231-0/+3
* Modules: Fix spelling 'To distributed' -> 'To distribute'Todd Gamblin2010-08-091-1/+1
* Convert CMake non-find modules to BSD LicenseBrad King2009-09-281-0/+14
* Don't pass *.S files to the assembler, they must go through gcc, because they...Alexander Neundorf2009-09-121-1/+3
* STYLE: add some comment, so it says at least a bit what it is good forAlexander Neundorf2008-11-051-0/+2
* ENH: initial support for assembler in cmake, needs testing by our usersAlexander Neundorf2007-06-281-0/+4
ef='#n107'>107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
:mod:`collections` --- Container datatypes
==========================================

.. module:: collections
    :synopsis: Container datatypes

.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>

**Source code:** :source:`Lib/collections/__init__.py`

.. testsetup:: *

    from collections import *
    import itertools
    __name__ = '<doctest>'

--------------

This module implements specialized container datatypes providing alternatives to
Python's general purpose built-in containers, :class:`dict`, :class:`list`,
:class:`set`, and :class:`tuple`.

=====================   ====================================================================
:func:`namedtuple`      factory function for creating tuple subclasses with named fields
:class:`deque`          list-like container with fast appends and pops on either end
:class:`ChainMap`       dict-like class for creating a single view of multiple mappings
:class:`Counter`        dict subclass for counting hashable objects
:class:`OrderedDict`    dict subclass that remembers the order entries were added
:class:`defaultdict`    dict subclass that calls a factory function to supply missing values
:class:`UserDict`       wrapper around dictionary objects for easier dict subclassing
:class:`UserList`       wrapper around list objects for easier list subclassing
:class:`UserString`     wrapper around string objects for easier string subclassing
=====================   ====================================================================

.. versionchanged:: 3.3
    Moved :ref:`collections-abstract-base-classes` to the :mod:`collections.abc` module.
    For backwards compatibility, they continue to be visible in this module through
    Python 3.7.  Subsequently, they will be removed entirely.


:class:`ChainMap` objects
-------------------------

.. versionadded:: 3.3

A :class:`ChainMap` class is provided for quickly linking a number of mappings
so they can be treated as a single unit.  It is often much faster than creating
a new dictionary and running multiple :meth:`~dict.update` calls.

The class can be used to simulate nested scopes and is useful in templating.

.. class:: ChainMap(*maps)

    A :class:`ChainMap` groups multiple dicts or other mappings together to
    create a single, updateable view.  If no *maps* are specified, a single empty
    dictionary is provided so that a new chain always has at least one mapping.

    The underlying mappings are stored in a list.  That list is public and can
    be accessed or updated using the *maps* attribute.  There is no other state.

    Lookups search the underlying mappings successively until a key is found.  In
    contrast, writes, updates, and deletions only operate on the first mapping.

    A :class:`ChainMap` incorporates the underlying mappings by reference.  So, if
    one of the underlying mappings gets updated, those changes will be reflected
    in :class:`ChainMap`.

    All of the usual dictionary methods are supported.  In addition, there is a
    *maps* attribute, a method for creating new subcontexts, and a property for
    accessing all but the first mapping:

    .. attribute:: maps

        A user updateable list of mappings.  The list is ordered from
        first-searched to last-searched.  It is the only stored state and can
        be modified to change which mappings are searched.  The list should
        always contain at least one mapping.

    .. method:: new_child(m=None)

        Returns a new :class:`ChainMap` containing a new map followed by
        all of the maps in the current instance.  If ``m`` is specified,
        it becomes the new map at the front of the list of mappings; if not
        specified, an empty dict is used, so that a call to ``d.new_child()``
        is equivalent to: ``ChainMap({}, *d.maps)``.  This method is used for
        creating subcontexts that can be updated without altering values in any
        of the parent mappings.

        .. versionchanged:: 3.4
           The optional ``m`` parameter was added.

    .. attribute:: parents

        Property returning a new :class:`ChainMap` containing all of the maps in
        the current instance except the first one.  This is useful for skipping
        the first map in the search.  Use cases are similar to those for the
        :keyword:`nonlocal` keyword used in :term:`nested scopes <nested
        scope>`.  The use cases also parallel those for the built-in
        :func:`super` function.  A reference to ``d.parents`` is equivalent to:
        ``ChainMap(*d.maps[1:])``.


.. seealso::

    * The `MultiContext class
      <https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py>`_
      in the Enthought `CodeTools package
      <https://github.com/enthought/codetools>`_ has options to support
      writing to any mapping in the chain.

    * Django's `Context class
      <https://github.com/django/django/blob/master/django/template/context.py>`_
      for templating is a read-only chain of mappings.  It also features
      pushing and popping of contexts similar to the
      :meth:`~collections.ChainMap.new_child` method and the
      :meth:`~collections.ChainMap.parents` property.

    * The `Nested Contexts recipe
      <https://code.activestate.com/recipes/577434/>`_ has options to control
      whether writes and other mutations apply only to the first mapping or to
      any mapping in the chain.

    * A `greatly simplified read-only version of Chainmap
      <https://code.activestate.com/recipes/305268/>`_.


:class:`ChainMap` Examples and Recipes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This section shows various approaches to working with chained maps.


Example of simulating Python's internal lookup chain::

        import builtins
        pylookup = ChainMap(locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over
environment variables which in turn take precedence over default values::

        import os, argparse

        defaults = {'color': 'red', 'user': 'guest'}

        parser = argparse.ArgumentParser()
        parser.add_argument('-u', '--user')
        parser.add_argument('-c', '--color')
        namespace = parser.parse_args()
        command_line_args = {k:v for k, v in vars(namespace).items() if v}

        combined = ChainMap(command_line_args, os.environ, defaults)
        print(combined['color'])
        print(combined['user'])

Example patterns for using the :class:`ChainMap` class to simulate nested
contexts::

        c = ChainMap()        # Create root context
        d = c.new_child()     # Create nested child context
        e = c.new_child()     # Child of c, independent from d
        e.maps[0]             # Current context dictionary -- like Python's locals()
        e.maps[-1]            # Root context -- like Python's globals()
        e.parents             # Enclosing context chain -- like Python's nonlocals

        d['x']                # Get first key in the chain of contexts
        d['x'] = 1            # Set value in current context
        del d['x']            # Delete from current context
        list(d)               # All nested values
        k in d                # Check all nested values
        len(d)                # Number of nested values
        d.items()             # All nested items
        dict(d)               # Flatten into a regular dictionary

The :class:`ChainMap` class only makes updates (writes and deletions) to the
first mapping in the chain while lookups will search the full chain.  However,
if deep writes and deletions are desired, it is easy to make a subclass that
updates keys found deeper in the chain::

    class DeepChainMap(ChainMap):
        'Variant of ChainMap that allows direct updates to inner scopes'

        def __setitem__(self, key, value):
            for mapping in self.maps:
                if key in mapping:
                    mapping[key] = value
                    return
            self.maps[0][key] = value

        def __delitem__(self, key):
            for mapping in self.maps:
                if key in mapping:
                    del mapping[key]
                    return
            raise KeyError(key)

    >>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
    >>> d['lion'] = 'orange'         # update an existing key two levels down
    >>> d['snake'] = 'red'           # new keys get added to the topmost dict
    >>> del d['elephant']            # remove an existing key one level down
    DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})


:class:`Counter` objects
------------------------

A counter tool is provided to support convenient and rapid tallies.
For example::

    >>> # Tally occurrences of words in a list
    >>> cnt = Counter()
    >>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
    ...     cnt[word] += 1
    >>> cnt
    Counter({'blue': 3, 'red': 2, 'green': 1})

    >>> # Find the ten most common words in Hamlet
    >>> import re
    >>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())
    >>> Counter(words).most_common(10)
    [('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
     ('you', 554),  ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

.. class:: Counter([iterable-or-mapping])

    A :class:`Counter` is a :class:`dict` subclass for counting hashable objects.
    It is an unordered collection where elements are stored as dictionary keys
    and their counts are stored as dictionary values.  Counts are allowed to be
    any integer value including zero or negative counts.  The :class:`Counter`
    class is similar to bags or multisets in other languages.

    Elements are counted from an *iterable* or initialized from another
    *mapping* (or counter):

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'red': 4, 'blue': 2})      # a new counter from a mapping
        >>> c = Counter(cats=4, dogs=8)             # a new counter from keyword args

    Counter objects have a dictionary interface except that they return a zero
    count for missing items instead of raising a :exc:`KeyError`:

        >>> c = Counter(['eggs', 'ham'])
        >>> c['bacon']                              # count of a missing element is zero
        0

    Setting a count to zero does not remove an element from a counter.
    Use ``del`` to remove it entirely:

        >>> c['sausage'] = 0                        # counter entry with a zero count
        >>> del c['sausage']                        # del actually removes the entry

    .. versionadded:: 3.1


    Counter objects support three methods beyond those available for all
    dictionaries:

    .. method:: elements()

        Return an iterator over elements repeating each as many times as its
        count.  Elements are returned in arbitrary order.  If an element's count
        is less than one, :meth:`elements` will ignore it.

            >>> c = Counter(a=4, b=2, c=0, d=-2)
            >>> sorted(c.elements())
            ['a', 'a', 'a', 'a', 'b', 'b']

    .. method:: most_common([n])

        Return a list of the *n* most common elements and their counts from the
        most common to the least.  If *n* is omitted or ``None``,
        :func:`most_common` returns *all* elements in the counter.
        Elements with equal counts are ordered arbitrarily:

            >>> Counter('abracadabra').most_common(3)  # doctest: +SKIP
            [('a', 5), ('r', 2), ('b', 2)]

    .. method:: subtract([iterable-or-mapping])

        Elements are subtracted from an *iterable* or from another *mapping*
        (or counter).  Like :meth:`dict.update` but subtracts counts instead
        of replacing them.  Both inputs and outputs may be zero or negative.

            >>> c = Counter(a=4, b=2, c=0, d=-2)
            >>> d = Counter(a=1, b=2, c=3, d=4)
            >>> c.subtract(d)
            >>> c
            Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

        .. versionadded:: 3.2

    The usual dictionary methods are available for :class:`Counter` objects
    except for two which work differently for counters.

    .. method:: fromkeys(iterable)

        This class method is not implemented for :class:`Counter` objects.

    .. method:: update([iterable-or-mapping])

        Elements are counted from an *iterable* or added-in from another
        *mapping* (or counter).  Like :meth:`dict.update` but adds counts
        instead of replacing them.  Also, the *iterable* is expected to be a
        sequence of elements, not a sequence of ``(key, value)`` pairs.

Common patterns for working with :class:`Counter` objects::

    sum(c.values())                 # total of all counts
    c.clear()                       # reset all counts
    list(c)                         # list unique elements
    set(c)                          # convert to a set
    dict(c)                         # convert to a regular dictionary
    c.items()                       # convert to a list of (elem, cnt) pairs
    Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs
    c.most_common()[:-n-1:-1]       # n least common elements
    +c                              # remove zero and negative counts

Several mathematical operations are provided for combining :class:`Counter`
objects to produce multisets (counters that have counts greater than zero).
Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements.  Intersection and union return the minimum and
maximum of corresponding counts.  Each operation can accept inputs with signed
counts, but the output will exclude results with counts of zero or less.

    >>> c = Counter(a=3, b=1)
    >>> d = Counter(a=1, b=2)
    >>> c + d                       # add two counters together:  c[x] + d[x]
    Counter({'a': 4, 'b': 3})
    >>> c - d                       # subtract (keeping only positive counts)
    Counter({'a': 2})
    >>> c & d                       # intersection:  min(c[x], d[x]) # doctest: +SKIP
    Counter({'a': 1, 'b': 1})
    >>> c | d                       # union:  max(c[x], d[x])
    Counter({'a': 3, 'b': 2})

Unary addition and subtraction are shortcuts for adding an empty counter
or subtracting from an empty counter.

    >>> c = Counter(a=2, b=-4)
    >>> +c
    Counter({'a': 2})
    >>> -c
    Counter({'b': 4})

.. versionadded:: 3.3
    Added support for unary plus, unary minus, and in-place multiset operations.

.. note::

    Counters were primarily designed to work with positive integers to represent
    running counts; however, care was taken to not unnecessarily preclude use
    cases needing other types or negative values.  To help with those use cases,
    this section documents the minimum range and type restrictions.

    * The :class:`Counter` class itself is a dictionary subclass with no
      restrictions on its keys and values.  The values are intended to be numbers
      representing counts, but you *could* store anything in the value field.

    * The :meth:`most_common` method requires only that the values be orderable.

    * For in-place operations such as ``c[key] += 1``, the value type need only
      support addition and subtraction.  So fractions, floats, and decimals would
      work and negative values are supported.  The same is also true for
      :meth:`update` and :meth:`subtract` which allow negative and zero values
      for both inputs and outputs.

    * The multiset methods are designed only for use cases with positive values.
      The inputs may be negative or zero, but only outputs with positive values
      are created.  There are no type restrictions, but the value type needs to
      support addition, subtraction, and comparison.

    * The :meth:`elements` method requires integer counts.  It ignores zero and
      negative counts.

.. seealso::

    * `Bag class <https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html>`_
      in Smalltalk.

    * Wikipedia entry for `Multisets <https://en.wikipedia.org/wiki/Multiset>`_.

    * `C++ multisets <http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm>`_
      tutorial with examples.

    * For mathematical operations on multisets and their use cases, see
      *Knuth, Donald. The Art of Computer Programming Volume II,
      Section 4.6.3, Exercise 19*.

    * To enumerate all distinct multisets of a given size over a given set of
      elements, see :func:`itertools.combinations_with_replacement`:

            map(Counter, combinations_with_replacement('ABC', 2)) --> AA AB AC BB BC CC


:class:`deque` objects
----------------------

.. class:: deque([iterable, [maxlen]])

    Returns a new deque object initialized left-to-right (using :meth:`append`) with
    data from *iterable*.  If *iterable* is not specified, the new deque is empty.

    Deques are a generalization of stacks and queues (the name is pronounced "deck"
    and is short for "double-ended queue").  Deques support thread-safe, memory
    efficient appends and pops from either side of the deque with approximately the
    same O(1) performance in either direction.

    Though :class:`list` objects support similar operations, they are optimized for
    fast fixed-length operations and incur O(n) memory movement costs for
    ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
    position of the underlying data representation.


    If *maxlen* is not specified or is ``None``, deques may grow to an
    arbitrary length.  Otherwise, the deque is bounded to the specified maximum
    length.  Once a bounded length deque is full, when new items are added, a
    corresponding number of items are discarded from the opposite end.  Bounded
    length deques provide functionality similar to the ``tail`` filter in
    Unix. They are also useful for tracking transactions and other pools of data
    where only the most recent activity is of interest.


    Deque objects support the following methods:

    .. method:: append(x)

        Add *x* to the right side of the deque.


    .. method:: appendleft(x)

        Add *x* to the left side of the deque.


    .. method:: clear()

        Remove all elements from the deque leaving it with length 0.


    .. method:: copy()

        Create a shallow copy of the deque.

        .. versionadded:: 3.5


    .. method:: count(x)

        Count the number of deque elements equal to *x*.

        .. versionadded:: 3.2


    .. method:: extend(iterable)

        Extend the right side of the deque by appending elements from the iterable
        argument.


    .. method:: extendleft(iterable)

        Extend the left side of the deque by appending elements from *iterable*.
        Note, the series of left appends results in reversing the order of
        elements in the iterable argument.


    .. method:: index(x[, start[, stop]])

        Return the position of *x* in the deque (at or after index *start*
        and before index *stop*).  Returns the first match or raises
        :exc:`ValueError` if not found.

        .. versionadded:: 3.5


    .. method:: insert(i, x)

        Insert *x* into the deque at position *i*.

        If the insertion would cause a bounded deque to grow beyond *maxlen*,
        an :exc:`IndexError` is raised.

        .. versionadded:: 3.5


    .. method:: pop()

        Remove and return an element from the right side of the deque. If no
        elements are present, raises an :exc:`IndexError`.


    .. method:: popleft()

        Remove and return an element from the left side of the deque. If no
        elements are present, raises an :exc:`IndexError`.


    .. method:: remove(value)

        Remove the first occurrence of *value*.  If not found, raises a
        :exc:`ValueError`.


    .. method:: reverse()

        Reverse the elements of the deque in-place and then return ``None``.

        .. versionadded:: 3.2


    .. method:: rotate(n=1)

        Rotate the deque *n* steps to the right.  If *n* is negative, rotate
        to the left.

        When the deque is empty, rotating one step to the right is equivalent
        to ``d.appendleft(d.pop())``, and rotating one step to the left is
        equivalent to ``d.append(d.popleft())``.


    Deque objects also provide one read-only attribute:

    .. attribute:: maxlen

        Maximum size of a deque or ``None`` if unbounded.

        .. versionadded:: 3.1


In addition to the above, deques support iteration, pickling, ``len(d)``,
``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
the :keyword:`in` operator, and subscript references such as ``d[-1]``.  Indexed
access is O(1) at both ends but slows to O(n) in the middle.  For fast random
access, use lists instead.

Starting in version 3.5, deques support ``__add__()``, ``__mul__()``,
and ``__imul__()``.

Example:

.. doctest::

    >>> from collections import deque
    >>> d = deque('ghi')                 # make a new deque with three items
    >>> for elem in d:                   # iterate over the deque's elements
    ...     print(elem.upper())
    G
    H
    I

    >>> d.append('j')                    # add a new entry to the right side
    >>> d.appendleft('f')                # add a new entry to the left side
    >>> d                                # show the representation of the deque
    deque(['f', 'g', 'h', 'i', 'j'])

    >>> d.pop()                          # return and remove the rightmost item
    'j'
    >>> d.popleft()                      # return and remove the leftmost item
    'f'
    >>> list(d)                          # list the contents of the deque
    ['g', 'h', 'i']
    >>> d[0]                             # peek at leftmost item
    'g'
    >>> d[-1]                            # peek at rightmost item
    'i'

    >>> list(reversed(d))                # list the contents of a deque in reverse
    ['i', 'h', 'g']
    >>> 'h' in d                         # search the deque
    True
    >>> d.extend('jkl')                  # add multiple elements at once
    >>> d
    deque(['g', 'h', 'i', 'j', 'k', 'l'])
    >>> d.rotate(1)                      # right rotation
    >>> d
    deque(['l', 'g', 'h', 'i', 'j', 'k'])
    >>> d.rotate(-1)                     # left rotation
    >>> d
    deque(['g', 'h', 'i', 'j', 'k', 'l'])

    >>> deque(reversed(d))               # make a new deque in reverse order
    deque(['l', 'k', 'j', 'i', 'h', 'g'])
    >>> d.clear()                        # empty the deque
    >>> d.pop()                          # cannot pop from an empty deque
    Traceback (most recent call last):
        File "<pyshell#6>", line 1, in -toplevel-
            d.pop()
    IndexError: pop from an empty deque

    >>> d.extendleft('abc')              # extendleft() reverses the input order
    >>> d
    deque(['c', 'b', 'a'])


:class:`deque` Recipes
^^^^^^^^^^^^^^^^^^^^^^

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the ``tail`` filter
in Unix::

    def tail(filename, n=10):
        'Return the last n lines of a file'
        with open(filename) as f:
            return deque(f, n)

Another approach to using deques is to maintain a sequence of recently
added elements by appending to the right and popping to the left::

    def moving_average(iterable, n=3):
        # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
        # http://en.wikipedia.org/wiki/Moving_average
        it = iter(iterable)
        d = deque(itertools.islice(it, n-1))
        d.appendleft(0)
        s = sum(d)
        for elem in it:
            s += elem - d.popleft()
            d.append(elem)
            yield s / n

A `round-robin scheduler
<https://en.wikipedia.org/wiki/Round-robin_scheduling>`_ can be implemented with
input iterators stored in a :class:`deque`.  Values are yielded from the active
iterator in position zero.  If that iterator is exhausted, it can be removed
with :meth:`~deque.popleft`; otherwise, it can be cycled back to the end with
the :meth:`~deque.rotate` method::

    def roundrobin(*iterables):
        "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
        iterators = deque(map(iter, iterables))
        while iterators:
            try:
                while True:
                    yield next(iterators[0])
                    iterators.rotate(-1)
            except StopIteration:
                # Remove an exhausted iterator.
                iterators.popleft()

The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
deletion.  For example, a pure Python implementation of ``del d[n]`` relies on
the :meth:`rotate` method to position elements to be popped::

    def delete_nth(d, n):
        d.rotate(-n)
        d.popleft()
        d.rotate(n)

To implement :class:`deque` slicing, use a similar approach applying
:meth:`rotate` to bring a target element to the left side of the deque. Remove
old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style
stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
``rot``, and ``roll``.


:class:`defaultdict` objects
----------------------------

.. class:: defaultdict([default_factory[, ...]])

    Returns a new dictionary-like object.  :class:`defaultdict` is a subclass of the
    built-in :class:`dict` class.  It overrides one method and adds one writable
    instance variable.  The remaining functionality is the same as for the
    :class:`dict` class and is not documented here.

    The first argument provides the initial value for the :attr:`default_factory`
    attribute; it defaults to ``None``. All remaining arguments are treated the same
    as if they were passed to the :class:`dict` constructor, including keyword
    arguments.


    :class:`defaultdict` objects support the following method in addition to the
    standard :class:`dict` operations:

    .. method:: __missing__(key)

        If the :attr:`default_factory` attribute is ``None``, this raises a
        :exc:`KeyError` exception with the *key* as argument.

        If :attr:`default_factory` is not ``None``, it is called without arguments
        to provide a default value for the given *key*, this value is inserted in
        the dictionary for the *key*, and returned.

        If calling :attr:`default_factory` raises an exception this exception is
        propagated unchanged.

        This method is called by the :meth:`__getitem__` method of the
        :class:`dict` class when the requested key is not found; whatever it
        returns or raises is then returned or raised by :meth:`__getitem__`.

        Note that :meth:`__missing__` is *not* called for any operations besides
        :meth:`__getitem__`. This means that :meth:`get` will, like normal
        dictionaries, return ``None`` as a default rather than using
        :attr:`default_factory`.


    :class:`defaultdict` objects support the following instance variable:


    .. attribute:: default_factory

        This attribute is used by the :meth:`__missing__` method; it is
        initialized from the first argument to the constructor, if present, or to
        ``None``, if absent.


:class:`defaultdict` Examples
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Using :class:`list` as the :attr:`default_factory`, it is easy to group a
sequence of key-value pairs into a dictionary of lists:

    >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
    >>> d = defaultdict(list)
    >>> for k, v in s:
    ...     d[k].append(v)
    ...
    >>> sorted(d.items())
    [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the
mapping; so an entry is automatically created using the :attr:`default_factory`
function which returns an empty :class:`list`.  The :meth:`list.append`
operation then attaches the value to the new list.  When keys are encountered
again, the look-up proceeds normally (returning the list for that key) and the
:meth:`list.append` operation adds another value to the list. This technique is
simpler and faster than an equivalent technique using :meth:`dict.setdefault`:

    >>> d = {}
    >>> for k, v in s:
    ...     d.setdefault(k, []).append(v)
    ...
    >>> sorted(d.items())
    [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the :attr:`default_factory` to :class:`int` makes the
:class:`defaultdict` useful for counting (like a bag or multiset in other
languages):

    >>> s = 'mississippi'
    >>> d = defaultdict(int)
    >>> for k in s:
    ...     d[k] += 1
    ...
    >>> sorted(d.items())
    [('i', 4), ('m', 1), ('p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the
:attr:`default_factory` function calls :func:`int` to supply a default count of
zero.  The increment operation then builds up the count for each letter.

The function :func:`int` which always returns zero is just a special case of
constant functions.  A faster and more flexible way to create constant functions
is to use a lambda function which can supply any constant value (not just
zero):

    >>> def constant_factory(value):
    ...     return lambda: value
    >>> d = defaultdict(constant_factory('<missing>'))
    >>> d.update(name='John', action='ran')
    >>> '%(name)s %(action)s to %(object)s' % d
    'John ran to <missing>'

Setting the :attr:`default_factory` to :class:`set` makes the
:class:`defaultdict` useful for building a dictionary of sets:

    >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
    >>> d = defaultdict(set)
    >>> for k, v in s:
    ...     d[k].add(v)
    ...
    >>> sorted(d.items())
    [('blue', {2, 4}), ('red', {1, 3})]


:func:`namedtuple` Factory Function for Tuples with Named Fields
----------------------------------------------------------------

Named tuples assign meaning to each position in a tuple and allow for more readable,
self-documenting code.  They can be used wherever regular tuples are used, and
they add the ability to access fields by name instead of position index.

.. function:: namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)

    Returns a new tuple subclass named *typename*.  The new subclass is used to
    create tuple-like objects that have fields accessible by attribute lookup as
    well as being indexable and iterable.  Instances of the subclass also have a
    helpful docstring (with typename and field_names) and a helpful :meth:`__repr__`
    method which lists the tuple contents in a ``name=value`` format.

    The *field_names* are a sequence of strings such as ``['x', 'y']``.
    Alternatively, *field_names* can be a single string with each fieldname
    separated by whitespace and/or commas, for example ``'x y'`` or ``'x, y'``.

    Any valid Python identifier may be used for a fieldname except for names
    starting with an underscore.  Valid identifiers consist of letters, digits,
    and underscores but do not start with a digit or underscore and cannot be
    a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*,
    or *raise*.

    If *rename* is true, invalid fieldnames are automatically replaced
    with positional names.  For example, ``['abc', 'def', 'ghi', 'abc']`` is
    converted to ``['abc', '_1', 'ghi', '_3']``, eliminating the keyword
    ``def`` and the duplicate fieldname ``abc``.

    *defaults* can be ``None`` or an :term:`iterable` of default values.
    Since fields with a default value must come after any fields without a
    default, the *defaults* are applied to the rightmost parameters.  For
    example, if the fieldnames are ``['x', 'y', 'z']`` and the defaults are
    ``(1, 2)``, then ``x`` will be a required argument, ``y`` will default to
    ``1``, and ``z`` will default to ``2``.

    If *module* is defined, the ``__module__`` attribute of the named tuple is
    set to that value.

    Named tuple instances do not have per-instance dictionaries, so they are
    lightweight and require no more memory than regular tuples.

    .. versionchanged:: 3.1
       Added support for *rename*.

    .. versionchanged:: 3.6
       The *verbose* and *rename* parameters became
       :ref:`keyword-only arguments <keyword-only_parameter>`.

    .. versionchanged:: 3.6
       Added the *module* parameter.

    .. versionchanged:: 3.7
       Remove the *verbose* parameter and the :attr:`_source` attribute.

    .. versionchanged:: 3.7
       Added the *defaults* parameter and the :attr:`_field_defaults`
       attribute.

.. doctest::
    :options: +NORMALIZE_WHITESPACE

    >>> # Basic example
    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
    >>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
    33
    >>> x, y = p                # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y               # fields also accessible by name
    33
    >>> p                       # readable __repr__ with a name=value style
    Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned
by the :mod:`csv` or :mod:`sqlite3` modules::

    EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

    import csv
    for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
        print(emp.name, emp.title)

    import sqlite3
    conn = sqlite3.connect('/companydata')
    cursor = conn.cursor()
    cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
    for emp in map(EmployeeRecord._make, cursor.fetchall()):
        print(emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support
three additional methods and two attributes.  To prevent conflicts with
field names, the method and attribute names start with an underscore.

.. classmethod:: somenamedtuple._make(iterable)

    Class method that makes a new instance from an existing sequence or iterable.

    .. doctest::

        >>> t = [11, 22]
        >>> Point._make(t)
        Point(x=11, y=22)

.. method:: somenamedtuple._asdict()

    Return a new :class:`OrderedDict` which maps field names to their corresponding
    values:

    .. doctest::

        >>> p = Point(x=11, y=22)
        >>> p._asdict()
        OrderedDict([('x', 11), ('y', 22)])

    .. versionchanged:: 3.1
        Returns an :class:`OrderedDict` instead of a regular :class:`dict`.

.. method:: somenamedtuple._replace(**kwargs)

    Return a new instance of the named tuple replacing specified fields with new
    values::

        >>> p = Point(x=11, y=22)
        >>> p._replace(x=33)
        Point(x=33, y=22)

        >>> for partnum, record in inventory.items():
        ...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

.. attribute:: somenamedtuple._fields

    Tuple of strings listing the field names.  Useful for introspection
    and for creating new named tuple types from existing named tuples.

    .. doctest::

        >>> p._fields            # view the field names
        ('x', 'y')

        >>> Color = namedtuple('Color', 'red green blue')
        >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
        >>> Pixel(11, 22, 128, 255, 0)
        Pixel(x=11, y=22, red=128, green=255, blue=0)

.. attribute:: somenamedtuple._fields_defaults

   Dictionary mapping field names to default values.

   .. doctest::

        >>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
        >>> Account._fields_defaults
        {'balance': 0}
        >>> Account('premium')
        Account(type='premium', balance=0)

To retrieve a field whose name is stored in a string, use the :func:`getattr`
function:

    >>> getattr(p, 'x')
    11

To convert a dictionary to a named tuple, use the double-star-operator
(as described in :ref:`tut-unpacking-arguments`):

    >>> d = {'x': 11, 'y': 22}
    >>> Point(**d)
    Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change
functionality with a subclass.  Here is how to add a calculated field and
a fixed-width print format:

.. doctest::

    >>> class Point(namedtuple('Point', ['x', 'y'])):
    ...     __slots__ = ()
    ...     @property
    ...     def hypot(self):
    ...         return (self.x ** 2 + self.y ** 2) ** 0.5
    ...     def __str__(self):
    ...         return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    >>> for p in Point(3, 4), Point(14, 5/7):
    ...     print(p)
    Point: x= 3.000  y= 4.000  hypot= 5.000
    Point: x=14.000  y= 0.714  hypot=14.018

The subclass shown above sets ``__slots__`` to an empty tuple.  This helps
keep memory requirements low by preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields.  Instead, simply
create a new named tuple type from the :attr:`_fields` attribute:

    >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the ``__doc__``
fields:

   >>> Book = namedtuple('Book', ['id', 'title', 'authors'])
   >>> Book.__doc__ += ': Hardcover book in active collection'
   >>> Book.id.__doc__ = '13-digit ISBN'
   >>> Book.title.__doc__ = 'Title of first printing'
   >>> Book.authors.__doc__ = 'List of authors sorted by last name'

.. versionchanged:: 3.5
   Property docstrings became writeable.

Default values can be implemented by using :meth:`_replace` to
customize a prototype instance:

    >>> Account = namedtuple('Account', 'owner balance transaction_count')
    >>> default_account = Account('<owner name>', 0.0, 0)
    >>> johns_account = default_account._replace(owner='John')
    >>> janes_account = default_account._replace(owner='Jane')


.. seealso::

    * `Recipe for named tuple abstract base class with a metaclass mix-in
      <https://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/>`_
      by Jan Kaliszewski.  Besides providing an :term:`abstract base class` for
      named tuples, it also supports an alternate :term:`metaclass`-based
      constructor that is convenient for use cases where named tuples are being
      subclassed.

    * See :meth:`types.SimpleNamespace` for a mutable namespace based on an
      underlying dictionary instead of a tuple.

    * See :meth:`typing.NamedTuple` for a way to add type hints for named tuples.


:class:`OrderedDict` objects
----------------------------

Ordered dictionaries are just like regular dictionaries but they remember the
order that items were inserted.  When iterating over an ordered dictionary,
the items are returned in the order their keys were first added.

.. class:: OrderedDict([items])

    Return an instance of a dict subclass, supporting the usual :class:`dict`
    methods.  An *OrderedDict* is a dict that remembers the order that keys
    were first inserted. If a new entry overwrites an existing entry, the
    original insertion position is left unchanged.  Deleting an entry and
    reinserting it will move it to the end.

    .. versionadded:: 3.1

    .. method:: popitem(last=True)

        The :meth:`popitem` method for ordered dictionaries returns and removes a
        (key, value) pair.  The pairs are returned in
        :abbr:`LIFO (last-in, first-out)` order if *last* is true
        or :abbr:`FIFO (first-in, first-out)` order if false.

    .. method:: move_to_end(key, last=True)

        Move an existing *key* to either end of an ordered dictionary.  The item
        is moved to the right end if *last* is true (the default) or to the
        beginning if *last* is false.  Raises :exc:`KeyError` if the *key* does
        not exist::

            >>> d = OrderedDict.fromkeys('abcde')
            >>> d.move_to_end('b')
            >>> ''.join(d.keys())
            'acdeb'
            >>> d.move_to_end('b', last=False)
            >>> ''.join(d.keys())
            'bacde'

        .. versionadded:: 3.2

In addition to the usual mapping methods, ordered dictionaries also support
reverse iteration using :func:`reversed`.

Equality tests between :class:`OrderedDict` objects are order-sensitive
and are implemented as ``list(od1.items())==list(od2.items())``.
Equality tests between :class:`OrderedDict` objects and other
:class:`~collections.abc.Mapping` objects are order-insensitive like regular
dictionaries.  This allows :class:`OrderedDict` objects to be substituted
anywhere a regular dictionary is used.

.. versionchanged:: 3.5
   The items, keys, and values :term:`views <dictionary view>`
   of :class:`OrderedDict` now support reverse iteration using :func:`reversed`.

.. versionchanged:: 3.6
   With the acceptance of :pep:`468`, order is retained for keyword arguments
   passed to the :class:`OrderedDict` constructor and its :meth:`update`
   method.

:class:`OrderedDict` Examples and Recipes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Since an ordered dictionary remembers its insertion order, it can be used
in conjunction with sorting to make a sorted dictionary::

    >>> # regular unsorted dictionary
    >>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

    >>> # dictionary sorted by key
    >>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
    OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

    >>> # dictionary sorted by value
    >>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
    OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

    >>> # dictionary sorted by length of the key string
    >>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
    OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

The new sorted dictionaries maintain their sort order when entries
are deleted.  But when new keys are added, the keys are appended
to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant
that remembers the order the keys were *last* inserted.
If a new entry overwrites an existing entry, the
original insertion position is changed and moved to the end::

    class LastUpdatedOrderedDict(OrderedDict):
        'Store items in the order the keys were last added'

        def __setitem__(self, key, value):
            if key in self:
                del self[key]
            OrderedDict.__setitem__(self, key, value)

An ordered dictionary can be combined with the :class:`Counter` class
so that the counter remembers the order elements are first encountered::

    class OrderedCounter(Counter, OrderedDict):
        'Counter that remembers the order elements are first encountered'

        def __repr__(self):
            return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))

        def __reduce__(self):
            return self.__class__, (OrderedDict(self),)


:class:`UserDict` objects
-------------------------

The class, :class:`UserDict` acts as a wrapper around dictionary objects.
The need for this class has been partially supplanted by the ability to
subclass directly from :class:`dict`; however, this class can be easier
to work with because the underlying dictionary is accessible as an
attribute.

.. class:: UserDict([initialdata])

    Class that simulates a dictionary.  The instance's contents are kept in a
    regular dictionary, which is accessible via the :attr:`data` attribute of
    :class:`UserDict` instances.  If *initialdata* is provided, :attr:`data` is
    initialized with its contents; note that a reference to *initialdata* will not
    be kept, allowing it be used for other purposes.

    In addition to supporting the methods and operations of mappings,
    :class:`UserDict` instances provide the following attribute:

    .. attribute:: data

        A real dictionary used to store the contents of the :class:`UserDict`
        class.



:class:`UserList` objects
-------------------------

This class acts as a wrapper around list objects.  It is a useful base class
for your own list-like classes which can inherit from them and override
existing methods or add new ones.  In this way, one can add new behaviors to
lists.

The need for this class has been partially supplanted by the ability to
subclass directly from :class:`list`; however, this class can be easier
to work with because the underlying list is accessible as an attribute.

.. class:: UserList([list])

    Class that simulates a list.  The instance's contents are kept in a regular
    list, which is accessible via the :attr:`data` attribute of :class:`UserList`
    instances.  The instance's contents are initially set to a copy of *list*,
    defaulting to the empty list ``[]``.  *list* can be any iterable, for
    example a real Python list or a :class:`UserList` object.

    In addition to supporting the methods and operations of mutable sequences,
    :class:`UserList` instances provide the following attribute:

    .. attribute:: data

        A real :class:`list` object used to store the contents of the
        :class:`UserList` class.

**Subclassing requirements:** Subclasses of :class:`UserList` are expected to
offer a constructor which can be called with either no arguments or one
argument.  List operations which return a new sequence attempt to create an
instance of the actual implementation class.  To do so, it assumes that the
constructor can be called with a single parameter, which is a sequence object
used as a data source.

If a derived class does not wish to comply with this requirement, all of the
special methods supported by this class will need to be overridden; please
consult the sources for information about the methods which need to be provided
in that case.

:class:`UserString` objects
---------------------------

The class, :class:`UserString` acts as a wrapper around string objects.
The need for this class has been partially supplanted by the ability to
subclass directly from :class:`str`; however, this class can be easier
to work with because the underlying string is accessible as an
attribute.

.. class:: UserString([sequence])

    Class that simulates a string or a Unicode string object.  The instance's
    content is kept in a regular string object, which is accessible via the
    :attr:`data` attribute of :class:`UserString` instances.  The instance's
    contents are initially set to a copy of *sequence*.  The *sequence* can
    be an instance of :class:`bytes`, :class:`str`, :class:`UserString` (or a
    subclass) or an arbitrary sequence which can be converted into a string using
    the built-in :func:`str` function.

    .. versionchanged:: 3.5
       New methods ``__getnewargs__``, ``__rmod__``, ``casefold``,
       ``format_map``, ``isprintable``, and ``maketrans``.