| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
Xcode honors this environment variable if the project file does not set
it. Hide it from Xcode while building the compiler id project.
|
|
|
|
|
|
|
|
|
|
|
| |
Use the registry entries that vsvars32.bat uses to detect the location of
MSBuild.exe in the framework directory. Invoke MSBuild with the option
/p:VisualStudioVersion=$version
so it knows from which VS version to load the system build rules. Teach
cmGlobalVisualStudio11Generator to set its ExpressEdition member using the
registry.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At the top of a build tree we configure inside the CMakeFiles directory
files such as "CMakeSystem.cmake" and "CMake<lang>Compiler.cmake" to
save information detected about the system and compilers in use. The
method of detection and the exact results store varies across CMake
versions as things improve. This leads to problems when loading files
configured by a different version of CMake. Previously we ignored such
existing files only if the major.minor part of the CMake version
component changed, and depended on the CMakeCache.txt to tell us the
last version of CMake that wrote the files. This led to problems if the
user deletes the CMakeCache.txt or we add required information to the
files in a patch-level release of CMake (still a "feature point" release
by modern CMake versioning convention).
Ensure that we always have version-consistent platform information files
by storing them in a subdirectory named with the CMake version. Every
version of CMake will do its own system and compiler identification
checks even when a build tree has already been configured by another
version of CMake. Stored results will not clobber those from other
versions of CMake which may be run again on the same tree in the future.
Loaded results will match what the system and language modules expect.
Rename the undocumented variable CMAKE_PLATFORM_ROOT_BIN to
CMAKE_PLATFORM_INFO_DIR to clarify its purpose. The new variable points
at the version-specific directory while the old variable did not.
|
|
|
|
|
|
|
| |
Configure a hand-generated Visual Studio project to build the compiler id
source file since we cannot run the compiler command-line tool directly.
Add a post-build command to print out the full path to the compiler tool.
Parse the full path to the compiler tool from the build output.
|
|
|
|
|
|
|
|
| |
Configure a hand-generated Xcode project to build the compiler id source
file since we cannot run the compiler command-line tool directly. Add a
post-build shell script phase to print out the compiler toolset build
setting. Run xcodebuild to compile the identification binary. Parse
the full path to the compiler tool from the xcodebuild output.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Teach CMAKE_DETERMINE_COMPILER_ID to check for variable
CMAKE_${lang}_COMPILER_ID_TOOL after CMAKE_DETERMINE_COMPILER_ID_BUILD
to use as CMAKE_${lang}_COMPILER since it will not be known until after
the IDE runs.
In CMAKE_DETERMINE_COMPILER_ID_BUILD prepare a cascading "if" so we can
use a generator-specific method to compile the identification source
file. Leave "if(0)" as a placeholder for now and put the direct
compiler invocation in "else()". After running the compiler to build
the compiler identification source we file(GLOB) the list of output
files as candidates for extracting the compiler information. An IDE may
create directories, so exclude exclude directories from this list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the
block. This is no longer the preferred style.
Run the following shell code:
for c in else endif endforeach endfunction endmacro endwhile; do
echo 's/\b'"$c"'\(\s*\)(.\+)/'"$c"'\1()/'
done >convert.sed &&
git ls-files -z -- bootstrap '*.cmake' '*.cmake.in' '*CMakeLists.txt' |
egrep -z -v '^(Utilities/cm|Source/kwsys/)' |
egrep -z -v 'Tests/CMakeTests/While-Endwhile-' |
xargs -0 sed -i -f convert.sed &&
rm convert.sed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ancient CMake versions required upper-case commands. Later command
names became case-insensitive. Now the preferred style is lower-case.
Run the following shell code:
cmake --help-command-list |
grep -v "cmake version" |
while read c; do
echo 's/\b'"$(echo $c | tr '[:lower:]' '[:upper:]')"'\(\s*\)(/'"$c"'\1(/g'
done >convert.sed &&
git ls-files -z -- bootstrap '*.cmake' '*.cmake.in' '*CMakeLists.txt' |
egrep -z -v '^(Utilities/cm|Source/kwsys/)' |
xargs -0 sed -i -f convert.sed &&
rm convert.sed
|
|
|
|
|
|
| |
This must have been left in accidentially.
Alex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Teach CMakePlatformId.h to construct an "INFO:compiler_version[]" string
literal from macros COMPILER_VERSION_(MAJOR|MINOR|PATCH|TWEAK) to be
defined in CMake(C|CXX)CompilerId.(c|cpp) for each compiler. Provide
conversion macros DEC() and HEX() to decode decimal or hex digits from
integer values. Parse the version out of the compiler id binary along
with the other INFO values already present.
Store the result in variable CMAKE_<LANG>_COMPILER_VERSION in the format
"major[.minor[.patch[.tweak]]]". Save the value persistently in
CMake(C|CXX)Compiler.cmake in the build tree. Document the variable for
internal use since we do not set it everywhere yet.
Report the compiler version on the compiler id result line e.g.
The C compiler identification is GNU 4.5.2
Report CMAKE_(C|CXX)_COMPILER_(ID|VERSION) in SystemInformation test.
|
|
|
|
| |
Alex
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
In CMAKE_DETERMINE_COMPILER_ID_VENDOR() the compiler is called with various
arguments. In some cases, this can make the compiler hang and wait
forever for input (e.g. "as -v"). That's why add an timeout
so it terminates finally. 10 seconds should be more than enough,
this is the time it takes to startup the compiler, which is
usually quite fast.
Alex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For assembler, the "compiler ID" cannot be detected by "compiling" a
source file, since there is not source file all assemblers understand.
Instead the function CMAKE_DETERMINE_COMPILER_ID_VENDOR() is used to
run the assembler and check its output.
For this the CMAKE_DETERMINE_COMPILER_ID_VENDOR() function had to be
extended so that it creates the run directory if it doesn't exist yet.
In CMakeASMInformation.cmake now also CMAKE_ASM_COMPILER_ID is used
(but there are no such files yet, will come with the support for the
IAR toolchain).
Alex
|
|
|
|
| |
Alex
|
| |
|
|
|
|
|
|
|
|
|
| |
Teach compiler identification to support values such as
export CC='gcc -g -O2'
by separating the arguments on spaces. We already do this for the
values of CFLAGS, CXXFLAGS, and FFLAGS.
|
|
|
|
|
|
|
| |
At least one Fortran compiler does not provide a preprocessor symbol to
identify itself. Instead we try running unknown compilers with version
query flags known for each vendor and look for known output. Future
commits will add vendor-specific flags/output table entries.
|
|
|
|
| |
builds. Use the platform ID preprocessor approach.
|
|
|
|
|
|
|
| |
This adds copyright/license notification blocks CMake's non-find
modules. Most of the modules had no notices at all. Some had notices
referring to the BSD license already. This commit normalizes existing
notices and adds missing notices.
|
|
|
|
|
|
|
|
|
|
| |
mail sent to Brad for the remaining issue
don't match
INFO:compiler[" COMPILER_ID "]
which appears in the assembler file generated from the C file by sdcc, but
make sure the first character after the [ is no double quote
Alex
|
|
|
|
|
|
|
|
| |
- Write a single source file into the compiler id directory
- This avoid requiring the compiler to behave correctly with
respect to include rules and the current working directory
- Helps to identify cross-compiling toolchains with unusual
default behavior
|
|
|
|
| |
non-advanced options in cache.
|
|
|
|
| |
Alex
|
|
|
|
| |
source more than once with different extra flags added to the compiler. Use the support to correctly identify the Intel Fortran compiler on windows which does not preprocess by default without special flags.
|
|
|
|
|
|
|
|
|
|
| |
file format. Tested for ELF on x86 Linux, COFF and Mach-O prepared but
commented out since I don't have such systems available. Please have a look
a CMakeDetermineCompilerId.cmake and enable the test for them too.
Only add the option for using chrpath if the executable format is ELF
Alex
|
|
|
|
| |
This fixes bug#6141.
|
|
|
|
| |
Alex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cmMakefile.cxx, but now in the platform files and are now valid for the
target platform, not the host platform.
New variables CMAKE_HOST_WIN32, CMAKE_HOST_UNIX, CMAKE_HOST_APPLE and
CMAKE_HOST_CYGWIN have been added in cmMakefile.cxx (...and have now to be
used in all cmake files which are executed before
CMakeSystemSpecificInformation.cmake is loaded). For compatibility the old
set is set to the new one in CMakeDetermineSystem.cmake and reset before the
system platform files are loaded, so custom language or compiler modules
which use these should still work.
Alex
|
|
|
|
|
|
|
| |
able to compile e.g. the C++ source file (e.g. the ADSP compiler needs -c++
for compiling C++ files)
Alex
|
|
|
|
| |
Alex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
conversion of hex and srec files to binary.
Without this automatic conversion, everywhere where a compiled file is parsed for strings the
a file(HEX2BIN somefile binfile) command has to be added otherwise it will
not work for these compilers. I tried this with DetermineCompiler and
CheckTypeSize and nobody will do this except the users who work with such
compilers. For them it will break if they don't add this conversion command
in all these places.
If FILE(STRINGS) is used with a text file, it
will in most cases still work as expected, since it will only convert hex
and srec files. If a user actually wants to get text out of hex files, he
knows what he's doing and will see the hint in the documentation.
Anyway, it should work without having to create a temporary file, will work
on this later.
Alex
|
|
|
|
|
|
|
| |
the compiler is completely unknown and even if it produces intel hex or
motorola s-record files, with test
Alex
|
|
|
|
| |
failure. It is only expected to work for Fortran90 compilers.
|
| |
|
|
|
|
| |
main tree. Changes between CMake-Modules-CompilerId-mp1 and CMake-Modules-CompilerId-mp2 are included.
|
|
|
|
| |
Alex
|
|
to the main tree. Changes between CMake-Modules-CompilerId-bp and CMake-Modules-CompilerId-mp1 are included.
|