/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying file Copyright.txt or https://cmake.org/licensing for details. */ #include "cmDependsFortran.h" #include "cmsys/FStream.hxx" #include #include #include #include #include #include #include "cmFortranParser.h" /* Interface to parser object. */ #include "cmGeneratedFileStream.h" #include "cmLocalGenerator.h" #include "cmMakefile.h" #include "cmOutputConverter.h" #include "cmStateDirectory.h" #include "cmStateSnapshot.h" #include "cmSystemTools.h" // TODO: Test compiler for the case of the mod file. Some always // use lower case and some always use upper case. I do not know if any // use the case from the source code. class cmDependsFortranInternals { public: // The set of modules provided by this target. std::set TargetProvides; // Map modules required by this target to locations. typedef std::map TargetRequiresMap; TargetRequiresMap TargetRequires; // Information about each object file. typedef std::map ObjectInfoMap; ObjectInfoMap ObjectInfo; cmFortranSourceInfo& CreateObjectInfo(const char* obj, const char* src) { std::map::iterator i = this->ObjectInfo.find(obj); if (i == this->ObjectInfo.end()) { std::map::value_type entry( obj, cmFortranSourceInfo()); i = this->ObjectInfo.insert(entry).first; i->second.Source = src; } return i->second; } }; cmDependsFortran::cmDependsFortran() : Internal(nullptr) { } cmDependsFortran::cmDependsFortran(cmLocalGenerator* lg) : cmDepends(lg) , Internal(new cmDependsFortranInternals) { // Configure the include file search path. this->SetIncludePathFromLanguage("Fortran"); // Get the list of definitions. std::vector definitions; cmMakefile* mf = this->LocalGenerator->GetMakefile(); if (const char* c_defines = mf->GetDefinition("CMAKE_TARGET_DEFINITIONS_Fortran")) { cmSystemTools::ExpandListArgument(c_defines, definitions); } // translate i.e. FOO=BAR to FOO and add it to the list of defined // preprocessor symbols for (std::string def : definitions) { std::string::size_type assignment = def.find('='); if (assignment != std::string::npos) { def = def.substr(0, assignment); } this->PPDefinitions.insert(def); } } cmDependsFortran::~cmDependsFortran() { delete this->Internal; } bool cmDependsFortran::WriteDependencies(const std::set& sources, const std::string& obj, std::ostream& /*makeDepends*/, std::ostream& /*internalDepends*/) { // Make sure this is a scanning instance. if (sources.empty() || sources.begin()->empty()) { cmSystemTools::Error("Cannot scan dependencies without a source file."); return false; } if (obj.empty()) { cmSystemTools::Error("Cannot scan dependencies without an object file."); return false; } bool okay = true; for (std::string const& src : sources) { // Get the information object for this source. cmFortranSourceInfo& info = this->Internal->CreateObjectInfo(obj.c_str(), src.c_str()); // Create the parser object. The constructor takes info by reference, // so we may look into the resulting objects later. cmFortranParser parser(this->IncludePath, this->PPDefinitions, info); // Push on the starting file. cmFortranParser_FilePush(&parser, src.c_str()); // Parse the translation unit. if (cmFortran_yyparse(parser.Scanner) != 0) { // Failed to parse the file. Report failure to write dependencies. okay = false; /* clang-format off */ std::cerr << "warning: failed to parse dependencies from Fortran source " "'" << src << "': " << parser.Error << std::endl ; /* clang-format on */ } } return okay; } bool cmDependsFortran::Finalize(std::ostream& makeDepends, std::ostream& internalDepends) { // Prepare the module search process. this->LocateModules(); // Get the directory in which stamp files will be stored. const char* stamp_dir = this->TargetDirectory.c_str(); // Get the directory in which module files will be created. cmMakefile* mf = this->LocalGenerator->GetMakefile(); std::string mod_dir = mf->GetSafeDefinition("CMAKE_Fortran_TARGET_MODULE_DIR"); if (mod_dir.empty()) { mod_dir = this->LocalGenerator->GetCurrentBinaryDirectory(); } // Actually write dependencies to the streams. typedef cmDependsFortranInternals::ObjectInfoMap ObjectInfoMap; ObjectInfoMap const& objInfo = this->Internal->ObjectInfo; for (auto const& i : objInfo) { if (!this->WriteDependenciesReal(i.first.c_str(), i.second, mod_dir, stamp_dir, makeDepends, internalDepends)) { return false; } } // Store the list of modules provided by this target. std::string fiName = this->TargetDirectory; fiName += "/fortran.internal"; cmGeneratedFileStream fiStream(fiName.c_str()); fiStream << "# The fortran modules provided by this target.\n"; fiStream << "provides\n"; std::set const& provides = this->Internal->TargetProvides; for (std::string const& i : provides) { fiStream << " " << i << "\n"; } // Create a script to clean the modules. if (!provides.empty()) { std::string fcName = this->TargetDirectory; fcName += "/cmake_clean_Fortran.cmake"; cmGeneratedFileStream fcStream(fcName.c_str()); fcStream << "# Remove fortran modules provided by this target.\n"; fcStream << "FILE(REMOVE"; std::string currentBinDir = this->LocalGenerator->GetCurrentBinaryDirectory(); for (std::string const& i : provides) { std::string mod_upper = mod_dir; mod_upper += "/"; mod_upper += cmSystemTools::UpperCase(i); mod_upper += ".mod"; std::string mod_lower = mod_dir; mod_lower += "/"; mod_lower += i; mod_lower += ".mod"; std::string stamp = stamp_dir; stamp += "/"; stamp += i; stamp += ".mod.stamp"; fcStream << "\n"; fcStream << " \"" << this->MaybeConvertToRelativePath(currentBinDir, mod_lower) << "\"\n"; fcStream << " \"" << this->MaybeConvertToRelativePath(currentBinDir, mod_upper) << "\"\n"; fcStream << " \"" << this->MaybeConvertToRelativePath(currentBinDir, stamp) << "\"\n"; } fcStream << " )\n"; } return true; } void cmDependsFortran::LocateModules() { // Collect the set of modules provided and required by all sources. typedef cmDependsFortranInternals::ObjectInfoMap ObjectInfoMap; ObjectInfoMap const& objInfo = this->Internal->ObjectInfo; for (auto const& infoI : objInfo) { cmFortranSourceInfo const& info = infoI.second; // Include this module in the set provided by this target. this->Internal->TargetProvides.insert(info.Provides.begin(), info.Provides.end()); for (std::string const& r : info.Requires) { this->Internal->TargetRequires[r].clear(); } } // Short-circuit for simple targets. if (this->Internal->TargetRequires.empty()) { return; } // Match modules provided by this target to those it requires. this->MatchLocalModules(); // Load information about other targets. cmMakefile* mf = this->LocalGenerator->GetMakefile(); std::vector infoFiles; if (const char* infoFilesValue = mf->GetDefinition("CMAKE_TARGET_LINKED_INFO_FILES")) { cmSystemTools::ExpandListArgument(infoFilesValue, infoFiles); } for (std::string const& i : infoFiles) { std::string targetDir = cmSystemTools::GetFilenamePath(i); std::string fname = targetDir + "/fortran.internal"; cmsys::ifstream fin(fname.c_str()); if (fin) { this->MatchRemoteModules(fin, targetDir.c_str()); } } } void cmDependsFortran::MatchLocalModules() { const char* stampDir = this->TargetDirectory.c_str(); std::set const& provides = this->Internal->TargetProvides; for (std::string const& i : provides) { this->ConsiderModule(i.c_str(), stampDir); } } void cmDependsFortran::MatchRemoteModules(std::istream& fin, const char* stampDir) { std::string line; bool doing_provides = false; while (cmSystemTools::GetLineFromStream(fin, line)) { // Ignore comments and empty lines. if (line.empty() || line[0] == '#' || line[0] == '\r') { continue; } if (line[0] == ' ') { if (doing_provides) { this->ConsiderModule(line.c_str() + 1, stampDir); } } else if (line == "provides") { doing_provides = true; } else { doing_provides = false; } } } void cmDependsFortran::ConsiderModule(const char* name, const char* stampDir) { // Locate each required module. typedef cmDependsFortranInternals::TargetRequiresMap TargetRequiresMap; TargetRequiresMap::iterator required = this->Internal->TargetRequires.find(name); if (required != this->Internal->TargetRequires.end() && required->second.empty()) { // The module is provided by a CMake target. It will have a stamp file. std::string stampFile = stampDir; stampFile += "/"; stampFile += name; stampFile += ".mod.stamp"; required->second = stampFile; } } bool cmDependsFortran::WriteDependenciesReal(const char* obj, cmFortranSourceInfo const& info, std::string const& mod_dir, const char* stamp_dir, std::ostream& makeDepends, std::ostream& internalDepends) { typedef cmDependsFortranInternals::TargetRequiresMap TargetRequiresMap; // Get the source file for this object. const char* src = info.Source.c_str(); // Write the include dependencies to the output stream. std::string binDir = this->LocalGenerator->GetBinaryDirectory(); std::string obj_i = this->MaybeConvertToRelativePath(binDir, obj); std::string obj_m = cmSystemTools::ConvertToOutputPath(obj_i.c_str()); internalDepends << obj_i << std::endl; internalDepends << " " << src << std::endl; for (std::string const& i : info.Includes) { makeDepends << obj_m << ": " << cmSystemTools::ConvertToOutputPath( this->MaybeConvertToRelativePath(binDir, i).c_str()) << std::endl; internalDepends << " " << i << std::endl; } makeDepends << std::endl; // Write module requirements to the output stream. for (std::string const& i : info.Requires) { // Require only modules not provided in the same source. if (info.Provides.find(i) != info.Provides.cend()) { continue; } // The object file should depend on timestamped files for the // modules it uses. TargetRequiresMap::const_iterator required = this->Internal->TargetRequires.find(i); if (required == this->Internal->TargetRequires.end()) { abort(); } if (!required->second.empty()) { // This module is known. Depend on its timestamp file. std::string stampFile = cmSystemTools::ConvertToOutputPath( this->MaybeConvertToRelativePath(binDir, required->second).c_str()); makeDepends << obj_m << ": " << stampFile << "\n"; } else { // This module is not known to CMake. Try to locate it where // the compiler will and depend on that. std::string module; if (this->FindModule(i, module)) { module = cmSystemTools::ConvertToOutputPath( this->MaybeConvertToRelativePath(binDir, module).c_str()); makeDepends << obj_m << ": " << module << "\n"; } } } // If any modules are provided then they must be converted to stamp files. if (!info.Provides.empty()) { // Create a target to copy the module after the object file // changes. for (std::string const& i : info.Provides) { // Include this module in the set provided by this target. this->Internal->TargetProvides.insert(i); // Always use lower case for the mod stamp file name. The // cmake_copy_f90_mod will call back to this class, which will // try various cases for the real mod file name. std::string m = cmSystemTools::LowerCase(i); std::string modFile = mod_dir; modFile += "/"; modFile += i; modFile = this->LocalGenerator->ConvertToOutputFormat( this->MaybeConvertToRelativePath(binDir, modFile), cmOutputConverter::SHELL); std::string stampFile = stamp_dir; stampFile += "/"; stampFile += m; stampFile += ".mod.stamp"; stampFile = this->MaybeConvertToRelativePath(binDir, stampFile); std::string const stampFileForShell = this->LocalGenerator->ConvertToOutputFormat(stampFile, cmOutputConverter::SHELL); std::string const stampFileForMake = cmSystemTools::ConvertToOutputPath(stampFile.c_str()); makeDepends << obj_m << ".provides.build" << ": " << stampFileForMake << "\n"; // Note that when cmake_copy_f90_mod finds that a module file // and the corresponding stamp file have no differences, the stamp // file is not updated. In such case the stamp file will be always // older than its prerequisite and trigger cmake_copy_f90_mod // on each new build. This is expected behavior for incremental // builds and can not be changed without preforming recursive make // calls that would considerably slow down the building process. makeDepends << stampFileForMake << ": " << obj_m << "\n"; makeDepends << "\t$(CMAKE_COMMAND) -E cmake_copy_f90_mod " << modFile << " " << stampFileForShell; cmMakefile* mf = this->LocalGenerator->GetMakefile(); const char* cid = mf->GetDefinition("CMAKE_Fortran_COMPILER_ID"); if (cid && *cid) { makeDepends << " " << cid; } makeDepends << "\n"; } makeDepends << obj_m << ".provides.build:\n"; // After copying the modules update the timestamp file. makeDepends << "\t$(CMAKE_COMMAND) -E touch " << obj_m << ".provides.build\n"; // Make sure the module timestamp rule is evaluated by the time // the target finishes building. std::string driver = this->TargetDirectory; driver += "/build"; driver = cmSystemTools::ConvertToOutputPath( this->MaybeConvertToRelativePath(binDir, driver).c_str()); makeDepends << driver << ": " << obj_m << ".provides.build\n"; } return true; } bool cmDependsFortran::FindModule(std::string const& name, std::string& module) { // Construct possible names for the module file. std::string mod_upper = cmSystemTools::UpperCase(name); std::string mod_lower = name; mod_upper += ".mod"; mod_lower += ".mod"; // Search the include path for the module. std::string fullName; for (std::string const& ip : this->IncludePath) { // Try the lower-case name. fullName = ip; fullName += "/"; fullName += mod_lower; if (cmSystemTools::FileExists(fullName.c_str(), true)) { module = fullName; return true; } // Try the upper-case name. fullName = ip; fullName += "/"; fullName += mod_upper; if (cmSystemTools::FileExists(fullName.c_str(), true)) { module = fullName; return true; } } return false; } bool cmDependsFortran::CopyModule(const std::vector& args) { // Implements // // $(CMAKE_COMMAND) -E cmake_copy_f90_mod input.mod output.mod.stamp // [compiler-id] // // Note that the case of the .mod file depends on the compiler. In // the future this copy could also account for the fact that some // compilers include a timestamp in the .mod file so it changes even // when the interface described in the module does not. std::string mod = args[2]; std::string stamp = args[3]; std::string compilerId; if (args.size() >= 5) { compilerId = args[4]; } std::string mod_dir = cmSystemTools::GetFilenamePath(mod); if (!mod_dir.empty()) { mod_dir += "/"; } std::string mod_upper = mod_dir; mod_upper += cmSystemTools::UpperCase(cmSystemTools::GetFilenameName(mod)); std::string mod_lower = mod_dir; mod_lower += cmSystemTools::LowerCase(cmSystemTools::GetFilenameName(mod)); mod += ".mod"; mod_upper += ".mod"; mod_lower += ".mod"; if (cmSystemTools::FileExists(mod_upper.c_str(), true)) { if (cmDependsFortran::ModulesDiffer(mod_upper.c_str(), stamp.c_str(), compilerId.c_str())) { if (!cmSystemTools::CopyFileAlways(mod_upper, stamp)) { std::cerr << "Error copying Fortran module from \"" << mod_upper << "\" to \"" << stamp << "\".\n"; return false; } } return true; } if (cmSystemTools::FileExists(mod_lower.c_str(), true)) { if (cmDependsFortran::ModulesDiffer(mod_lower.c_str(), stamp.c_str(), compilerId.c_str())) { if (!cmSystemTools::CopyFileAlways(mod_lower, stamp)) { std::cerr << "Error copying Fortran module from \"" << mod_lower << "\" to \"" << stamp << "\".\n"; return false; } } return true; } std::cerr << "Error copying Fortran module \"" << args[2] << "\". Tried \"" << mod_upper << "\" and \"" << mod_lower << "\".\n"; return false; } // Helper function to look for a short sequence in a stream. If this // is later used for longer sequences it should be re-written using an // efficient string search algorithm such as Boyer-Moore. static bool cmFortranStreamContainsSequence(std::istream& ifs, const char* seq, int len) { assert(len > 0); int cur = 0; while (cur < len) { // Get the next character. int token = ifs.get(); if (!ifs) { return false; } // Check the character. if (token == static_cast(seq[cur])) { ++cur; } else { // Assume the sequence has no repeating subsequence. cur = 0; } } // The entire sequence was matched. return true; } // Helper function to compare the remaining content in two streams. static bool cmFortranStreamsDiffer(std::istream& ifs1, std::istream& ifs2) { // Compare the remaining content. for (;;) { int ifs1_c = ifs1.get(); int ifs2_c = ifs2.get(); if (!ifs1 && !ifs2) { // We have reached the end of both streams simultaneously. // The streams are identical. return false; } if (!ifs1 || !ifs2 || ifs1_c != ifs2_c) { // We have reached the end of one stream before the other or // found differing content. The streams are different. break; } } return true; } bool cmDependsFortran::ModulesDiffer(const char* modFile, const char* stampFile, const char* compilerId) { /* gnu >= 4.9: A mod file is an ascii file compressed with gzip. Compiling twice produces identical modules. gnu < 4.9: A mod file is an ascii file. FORTRAN module created from /path/to/foo.f90 on Sun Dec 30 22:47:58 2007 If you edit this, you'll get what you deserve. ... As you can see the first line contains the date. intel: A mod file is a binary file. However, looking into both generated bar.mod files with a hex editor shows that they differ only before a sequence linefeed-zero (0x0A 0x00) which is located some bytes in front of the absoulte path to the source file. sun: A mod file is a binary file. Compiling twice produces identical modules. others: TODO ... */ /* Compilers which do _not_ produce different mod content when the same * source is compiled twice * -SunPro */ if (strcmp(compilerId, "SunPro") == 0) { return cmSystemTools::FilesDiffer(modFile, stampFile); } #if defined(_WIN32) || defined(__CYGWIN__) cmsys::ifstream finModFile(modFile, std::ios::in | std::ios::binary); cmsys::ifstream finStampFile(stampFile, std::ios::in | std::ios::binary); #else cmsys::ifstream finModFile(modFile); cmsys::ifstream finStampFile(stampFile); #endif if (!finModFile || !finStampFile) { // At least one of the files does not exist. The modules differ. return true; } /* Compilers which _do_ produce different mod content when the same * source is compiled twice * -GNU * -Intel * * Eat the stream content until all recompile only related changes * are left behind. */ if (strcmp(compilerId, "GNU") == 0) { // GNU Fortran 4.9 and later compress .mod files with gzip // but also do not include a date so we can fall through to // compare them without skipping any prefix. unsigned char hdr[2]; bool okay = !finModFile.read(reinterpret_cast(hdr), 2).fail(); finModFile.seekg(0); if (!okay || hdr[0] != 0x1f || hdr[1] != 0x8b) { const char seq[1] = { '\n' }; const int seqlen = 1; if (!cmFortranStreamContainsSequence(finModFile, seq, seqlen)) { // The module is of unexpected format. Assume it is different. std::cerr << compilerId << " fortran module " << modFile << " has unexpected format." << std::endl; return true; } if (!cmFortranStreamContainsSequence(finStampFile, seq, seqlen)) { // The stamp must differ if the sequence is not contained. return true; } } } else if (strcmp(compilerId, "Intel") == 0) { const char seq[2] = { '\n', '\0' }; const int seqlen = 2; // Skip the leading byte which appears to be a version number. // We do not need to check for an error because the sequence search // below will fail in that case. finModFile.get(); finStampFile.get(); if (!cmFortranStreamContainsSequence(finModFile, seq, seqlen)) { // The module is of unexpected format. Assume it is different. std::cerr << compilerId << " fortran module " << modFile << " has unexpected format." << std::endl; return true; } if (!cmFortranStreamContainsSequence(finStampFile, seq, seqlen)) { // The stamp must differ if the sequence is not contained. return true; } } // Compare the remaining content. If no compiler id matched above, // including the case none was given, this will compare the whole // content. return cmFortranStreamsDiffer(finModFile, finStampFile); } std::string cmDependsFortran::MaybeConvertToRelativePath( std::string const& base, std::string const& path) { if (!cmOutputConverter::ContainedInDirectory( base, path, this->LocalGenerator->GetStateSnapshot().GetDirectory())) { return path; } return cmOutputConverter::ForceToRelativePath(base, path); }