/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying file Copyright.txt or https://cmake.org/licensing for details. */ #ifndef cmGlobalNinjaGenerator_h #define cmGlobalNinjaGenerator_h #include "cmConfigure.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include "cmGlobalCommonGenerator.h" #include "cmGlobalGenerator.h" #include "cmGlobalGeneratorFactory.h" #include "cmNinjaTypes.h" #include "cmPolicies.h" #include "cm_codecvt.hxx" class cmCustomCommand; class cmGeneratedFileStream; class cmGeneratorTarget; class cmLinkLineComputer; class cmLocalGenerator; class cmMakefile; class cmOutputConverter; class cmStateDirectory; class cmake; struct cmDocumentationEntry; /** * \class cmGlobalNinjaGenerator * \brief Write a build.ninja file. * * The main differences between this generator and the UnixMakefile * generator family are: * - We don't care about VERBOSE variable or RULE_MESSAGES property since * it is handle by Ninja's -v option. * - We don't care about computing any progress status since Ninja manages * it itself. * - We don't care about generating a clean target since Ninja already have * a clean tool. * - We generate one build.ninja and one rules.ninja per project. * - We try to minimize the number of generated rules: one per target and * language. * - We use Ninja special variable $in and $out to produce nice output. * - We extensively use Ninja variable overloading system to minimize the * number of generated rules. */ class cmGlobalNinjaGenerator : public cmGlobalCommonGenerator { public: /// The default name of Ninja's build file. Typically: build.ninja. static const char* NINJA_BUILD_FILE; /// The default name of Ninja's rules file. Typically: rules.ninja. /// It is included in the main build.ninja file. static const char* NINJA_RULES_FILE; /// The indentation string used when generating Ninja's build file. static const char* INDENT; /// The shell command used for a no-op. static std::string const SHELL_NOOP; /// Write @a count times INDENT level to output stream @a os. static void Indent(std::ostream& os, int count); /// Write a divider in the given output stream @a os. static void WriteDivider(std::ostream& os); static std::string EncodeRuleName(std::string const& name); static std::string EncodeLiteral(const std::string& lit); std::string EncodePath(const std::string& path); cmLinkLineComputer* CreateLinkLineComputer( cmOutputConverter* outputConverter, cmStateDirectory const& stateDir) const override; /** * Write the given @a comment to the output stream @a os. It * handles new line character properly. */ static void WriteComment(std::ostream& os, const std::string& comment); /** * Utilized by the generator factory to determine if this generator * supports toolsets. */ static bool SupportsToolset() { return false; } /** * Utilized by the generator factory to determine if this generator * supports platforms. */ static bool SupportsPlatform() { return false; } bool IsIPOSupported() const override { return true; } /** * Write a build statement to @a os with the @a comment using * the @a rule the list of @a outputs files and inputs. * It also writes the variables bound to this build statement. * @warning no escaping of any kind is done here. */ void WriteBuild(std::ostream& os, const std::string& comment, const std::string& rule, const cmNinjaDeps& outputs, const cmNinjaDeps& implicitOuts, const cmNinjaDeps& explicitDeps, const cmNinjaDeps& implicitDeps, const cmNinjaDeps& orderOnlyDeps, const cmNinjaVars& variables, const std::string& rspfile = std::string(), int cmdLineLimit = 0, bool* usedResponseFile = nullptr); /** * Helper to write a build statement with the special 'phony' rule. */ void WritePhonyBuild(std::ostream& os, const std::string& comment, const cmNinjaDeps& outputs, const cmNinjaDeps& explicitDeps, const cmNinjaDeps& implicitDeps = cmNinjaDeps(), const cmNinjaDeps& orderOnlyDeps = cmNinjaDeps(), const cmNinjaVars& variables = cmNinjaVars()); void WriteCustomCommandBuild(const std::string& command, const std::string& description, const std::string& comment, const std::string& depfile, bool uses_terminal, bool restat, const cmNinjaDeps& outputs, const cmNinjaDeps& deps = cmNinjaDeps(), const cmNinjaDeps& orderOnly = cmNinjaDeps()); void WriteMacOSXContentBuild(const std::string& input, const std::string& output); /** * Write a rule statement named @a name to @a os with the @a comment, * the mandatory @a command, the @a depfile and the @a description. * It also writes the variables bound to this rule statement. * @warning no escaping of any kind is done here. */ static void WriteRule(std::ostream& os, const std::string& name, const std::string& command, const std::string& description, const std::string& comment, const std::string& depfile, const std::string& deptype, const std::string& rspfile, const std::string& rspcontent, const std::string& restat, bool generator); /** * Write a variable named @a name to @a os with value @a value and an * optional @a comment. An @a indent level can be specified. * @warning no escaping of any kind is done here. */ static void WriteVariable(std::ostream& os, const std::string& name, const std::string& value, const std::string& comment = "", int indent = 0); /** * Write an include statement including @a filename with an optional * @a comment to the @a os stream. */ static void WriteInclude(std::ostream& os, const std::string& filename, const std::string& comment = ""); /** * Write a default target statement specifying @a targets as * the default targets. */ static void WriteDefault(std::ostream& os, const cmNinjaDeps& targets, const std::string& comment = ""); bool IsGCCOnWindows() const { return UsingGCCOnWindows; } public: cmGlobalNinjaGenerator(cmake* cm); static cmGlobalGeneratorFactory* NewFactory() { return new cmGlobalGeneratorSimpleFactory(); } cmLocalGenerator* CreateLocalGenerator(cmMakefile* mf) override; std::string GetName() const override { return cmGlobalNinjaGenerator::GetActualName(); } static std::string GetActualName() { return "Ninja"; } /** Get encoding used by generator for ninja files */ codecvt::Encoding GetMakefileEncoding() const override; static void GetDocumentation(cmDocumentationEntry& entry); void EnableLanguage(std::vector const& languages, cmMakefile* mf, bool optional) override; std::vector GenerateBuildCommand( const std::string& makeProgram, const std::string& projectName, const std::string& projectDir, std::vector const& targetNames, const std::string& config, bool fast, int jobs, bool verbose, std::vector const& makeOptions = std::vector()) override; // Setup target names const char* GetAllTargetName() const override { return "all"; } const char* GetInstallTargetName() const override { return "install"; } const char* GetInstallLocalTargetName() const override { return "install/local"; } const char* GetInstallStripTargetName() const override { return "install/strip"; } const char* GetTestTargetName() const override { return "test"; } const char* GetPackageTargetName() const override { return "package"; } const char* GetPackageSourceTargetName() const override { return "package_source"; } const char* GetEditCacheTargetName() const override { return "edit_cache"; } const char* GetRebuildCacheTargetName() const override { return "rebuild_cache"; } const char* GetCleanTargetName() const override { return "clean"; } cmGeneratedFileStream* GetBuildFileStream() const { return this->BuildFileStream; } cmGeneratedFileStream* GetRulesFileStream() const { return this->RulesFileStream; } std::string const& ConvertToNinjaPath(const std::string& path) const; struct MapToNinjaPathImpl { cmGlobalNinjaGenerator* GG; MapToNinjaPathImpl(cmGlobalNinjaGenerator* gg) : GG(gg) { } std::string operator()(std::string const& path) { return this->GG->ConvertToNinjaPath(path); } }; MapToNinjaPathImpl MapToNinjaPath() { return MapToNinjaPathImpl(this); } void AddCXXCompileCommand(const std::string& commandLine, const std::string& sourceFile); /** * Add a rule to the generated build system. * Call WriteRule() behind the scene but perform some check before like: * - Do not add twice the same rule. */ void AddRule(const std::string& name, const std::string& command, const std::string& description, const std::string& comment, const std::string& depfile, const std::string& deptype, const std::string& rspfile, const std::string& rspcontent, const std::string& restat, bool generator); bool HasRule(const std::string& name); void AddCustomCommandRule(); void AddMacOSXContentRule(); bool HasCustomCommandOutput(const std::string& output) { return this->CustomCommandOutputs.find(output) != this->CustomCommandOutputs.end(); } /// Called when we have seen the given custom command. Returns true /// if we has seen it before. bool SeenCustomCommand(cmCustomCommand const* cc) { return !this->CustomCommands.insert(cc).second; } /// Called when we have seen the given custom command output. void SeenCustomCommandOutput(const std::string& output) { this->CustomCommandOutputs.insert(output); // We don't need the assumed dependencies anymore, because we have // an output. this->AssumedSourceDependencies.erase(output); } void AddAssumedSourceDependencies(const std::string& source, const cmNinjaDeps& deps) { std::set& ASD = this->AssumedSourceDependencies[source]; // Because we may see the same source file multiple times (same source // specified in multiple targets), compute the union of any assumed // dependencies. ASD.insert(deps.begin(), deps.end()); } void AppendTargetOutputs( cmGeneratorTarget const* target, cmNinjaDeps& outputs, cmNinjaTargetDepends depends = DependOnTargetArtifact); void AppendTargetDepends( cmGeneratorTarget const* target, cmNinjaDeps& outputs, cmNinjaTargetDepends depends = DependOnTargetArtifact); void AppendTargetDependsClosure(cmGeneratorTarget const* target, cmNinjaDeps& outputs); void AppendTargetDependsClosure(cmGeneratorTarget const* target, cmNinjaOuts& outputs, bool omit_self); void AddDependencyToAll(cmGeneratorTarget* target); void AddDependencyToAll(const std::string& input); const std::vector& GetLocalGenerators() const { return LocalGenerators; } bool IsExcluded(cmGeneratorTarget* target) { return cmGlobalGenerator::IsExcluded(target); } int GetRuleCmdLength(const std::string& name) { return RuleCmdLength[name]; } void AddTargetAlias(const std::string& alias, cmGeneratorTarget* target); void ComputeTargetObjectDirectory(cmGeneratorTarget* gt) const override; // Ninja generator uses 'deps' and 'msvc_deps_prefix' introduced in 1.3 static std::string RequiredNinjaVersion() { return "1.3"; } static std::string RequiredNinjaVersionForConsolePool() { return "1.5"; } static std::string RequiredNinjaVersionForImplicitOuts() { return "1.7"; } static std::string RequiredNinjaVersionForManifestRestat() { return "1.8"; } static std::string RequiredNinjaVersionForMultilineDepfile() { return "1.9"; } bool SupportsConsolePool() const; bool SupportsImplicitOuts() const; bool SupportsManifestRestat() const; bool SupportsMultilineDepfile() const; std::string NinjaOutputPath(std::string const& path) const; bool HasOutputPathPrefix() const { return !this->OutputPathPrefix.empty(); } void StripNinjaOutputPathPrefixAsSuffix(std::string& path); bool WriteDyndepFile(std::string const& dir_top_src, std::string const& dir_top_bld, std::string const& dir_cur_src, std::string const& dir_cur_bld, std::string const& arg_dd, std::vector const& arg_ddis, std::string const& module_dir, std::vector const& linked_target_dirs, std::string const& arg_lang); protected: void Generate() override; bool CheckALLOW_DUPLICATE_CUSTOM_TARGETS() const override { return true; } private: std::string GetEditCacheCommand() const override; bool FindMakeProgram(cmMakefile* mf) override; void CheckNinjaFeatures(); bool CheckLanguages(std::vector const& languages, cmMakefile* mf) const override; bool CheckFortran(cmMakefile* mf) const; void OpenBuildFileStream(); void CloseBuildFileStream(); void CloseCompileCommandsStream(); void OpenRulesFileStream(); void CloseRulesFileStream(); /// Write the common disclaimer text at the top of each build file. void WriteDisclaimer(std::ostream& os); void WriteAssumedSourceDependencies(); void WriteTargetAliases(std::ostream& os); void WriteFolderTargets(std::ostream& os); void WriteUnknownExplicitDependencies(std::ostream& os); void WriteBuiltinTargets(std::ostream& os); void WriteTargetAll(std::ostream& os); void WriteTargetRebuildManifest(std::ostream& os); void WriteTargetClean(std::ostream& os); void WriteTargetHelp(std::ostream& os); void ComputeTargetDependsClosure( cmGeneratorTarget const* target, std::set& depends); std::string ninjaCmd() const; /// The file containing the build statement. (the relationship of the /// compilation DAG). cmGeneratedFileStream* BuildFileStream; /// The file containing the rule statements. (The action attached to each /// edge of the compilation DAG). cmGeneratedFileStream* RulesFileStream; cmGeneratedFileStream* CompileCommandsStream; /// The type used to store the set of rules added to the generated build /// system. typedef std::set RulesSetType; /// The set of rules added to the generated build system. RulesSetType Rules; /// Length of rule command, used by rsp file evaluation std::map RuleCmdLength; /// The set of dependencies to add to the "all" target. cmNinjaDeps AllDependencies; bool UsingGCCOnWindows; /// The set of custom commands we have seen. std::set CustomCommands; /// The set of custom command outputs we have seen. std::set CustomCommandOutputs; /// Whether we are collecting known build outputs and needed /// dependencies to determine unknown dependencies. bool ComputingUnknownDependencies; cmPolicies::PolicyStatus PolicyCMP0058; /// The combined explicit dependencies of custom build commands std::set CombinedCustomCommandExplicitDependencies; /// When combined with CombinedCustomCommandExplicitDependencies it allows /// us to detect the set of explicit dependencies that have std::set CombinedBuildOutputs; /// The mapping from source file to assumed dependencies. std::map> AssumedSourceDependencies; typedef std::map TargetAliasMap; TargetAliasMap TargetAliases; std::map TargetDependsClosures; /// the local cache for calls to ConvertToNinjaPath mutable std::unordered_map ConvertToNinjaPathCache; std::string NinjaCommand; std::string NinjaVersion; bool NinjaSupportsConsolePool; bool NinjaSupportsImplicitOuts; bool NinjaSupportsManifestRestat; bool NinjaSupportsMultilineDepfile; unsigned long NinjaSupportsDyndeps; private: void InitOutputPathPrefix(); std::string OutputPathPrefix; std::string TargetAll; std::string CMakeCacheFile; }; #endif // ! cmGlobalNinjaGenerator_h lass="hl opt">[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> data.sort() >>> print data == sorted True >>> \end{verbatim} \subsection{Theory} (This explanation is due to François Pinard. The Python code for this module was contributed by Kevin O'Connor.) Heaps are arrays for which \code{a[\var{k}] <= a[2*\var{k}+1]} and \code{a[\var{k}] <= a[2*\var{k}+2]} for all \var{k}, counting elements from 0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is that \code{a[0]} is always its smallest element. The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below are \var{k}, not \code{a[\var{k}]}: \begin{verbatim} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 \end{verbatim} In the tree above, each cell \var{k} is topping \code{2*\var{k}+1} and \code{2*\var{k}+2}. In an usual binary tournament we see in sports, each cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had. However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule becomes that a cell and the two cells it tops contain three different items, but the top cell "wins" over the two topped cells. If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to remove it and find the "next" winner is to move some loser (let's say cell 30 in the diagram above) into the 0 position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort. A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the inserted items are not "better" than the last 0'th element you extracted. This is especially useful in simulation contexts, where the tree holds all incoming events, and the "win" condition means the smallest scheduled time. When an event schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-). Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case. However, there are other representations which are more efficient overall, yet the worst cases might be terrible. Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs" (which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging passes for these runs, which merging is often very cleverly organised\footnote{The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at "progressing" the merge). Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all times, sorting has always been a Great Art! :-)}. It is very important that the initial sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament, you replace and percolate items that happen to fit the current run, you'll produce runs which are twice the size of the memory for random input, and much better for input fuzzily ordered. Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because the value "wins" over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and quite effective! In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep a `heap' module around. :-)