/*========================================================================= Program: BatchMake Module: $RCSfile$ Language: C++ Date: $Date$ Version: $Revision$ Copyright (c) 2005 Insight Consortium. All rights reserved. See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "kwsysPrivate.h" #include KWSYS_HEADER(FundamentalType.h) #include KWSYS_HEADER(stl/string) #include KWSYS_HEADER(stl/vector) #include KWSYS_HEADER(ios/iosfwd) #include KWSYS_HEADER(SystemInformation.hxx) #include KWSYS_HEADER(Process.h) #include KWSYS_HEADER(ios/iostream) #include KWSYS_HEADER(ios/sstream) // Work-around CMake dependency scanning limitation. This must // duplicate the above list of headers. #if 0 # include "FundamentalType.h.in" # include "SystemInformation.hxx.in" # include "Process.h.in" # include "Configure.hxx.in" # include "kwsys_stl.hxx.in" # include "kwsys_stl_vector.in" # include "kwsys_stl_iosfwd.in" # include "kwsys_ios_sstream.h.in" # include "kwsys_ios_iostream.h.in" #endif #ifndef WIN32 # include // int uname(struct utsname *buf); #endif #ifdef _WIN32 # include #endif #ifdef __linux # include # include # include # include # include // int isdigit(int c); # include // extern int errno; # include #elif __hpux # include # include #endif #include #include #include #include namespace KWSYS_NAMESPACE { // Create longlong #if KWSYS_USE_LONG_LONG typedef long long LongLong; #elif KWSYS_USE___INT64 typedef __int64 LongLong; #else # error "No Long Long" #endif // Define SystemInformationImplementation class typedef void (*DELAY_FUNC)(unsigned int uiMS); class SystemInformationImplementation { public: SystemInformationImplementation (); ~SystemInformationImplementation (); const char * GetVendorString(); const char * GetVendorID(); kwsys_stl::string GetTypeID(); kwsys_stl::string GetFamilyID(); kwsys_stl::string GetModelID(); kwsys_stl::string GetSteppingCode(); const char * GetExtendedProcessorName(); const char * GetProcessorSerialNumber(); int GetProcessorCacheSize(); int GetLogicalProcessorsPerPhysical(); float GetProcessorClockFrequency(); int GetProcessorAPICID(); int GetProcessorCacheXSize(long int); bool DoesCPUSupportFeature(long int); const char * GetOSName(); const char * GetHostname(); const char * GetOSRelease(); const char * GetOSVersion(); const char * GetOSPlatform(); bool Is64Bits(); unsigned int GetNumberOfLogicalCPU(); // per physical cpu unsigned int GetNumberOfPhysicalCPU(); bool DoesCPUSupportCPUID(); // Retrieve memory information in megabyte. unsigned long GetTotalVirtualMemory(); unsigned long GetAvailableVirtualMemory(); unsigned long GetTotalPhysicalMemory(); unsigned long GetAvailablePhysicalMemory(); /** Run the different checks */ void RunCPUCheck(); void RunOSCheck(); void RunMemoryCheck(); public: #define VENDOR_STRING_LENGTH (12 + 1) #define CHIPNAME_STRING_LENGTH (48 + 1) #define SERIALNUMBER_STRING_LENGTH (29 + 1) typedef struct tagID { int Type; int Family; int Model; int Revision; int ExtendedFamily; int ExtendedModel; char ProcessorName[CHIPNAME_STRING_LENGTH]; char Vendor[VENDOR_STRING_LENGTH]; char SerialNumber[SERIALNUMBER_STRING_LENGTH]; } ID; typedef struct tagCPUPowerManagement { bool HasVoltageID; bool HasFrequencyID; bool HasTempSenseDiode; } CPUPowerManagement; typedef struct tagCPUExtendedFeatures { bool Has3DNow; bool Has3DNowPlus; bool SupportsMP; bool HasMMXPlus; bool HasSSEMMX; bool SupportsHyperthreading; int LogicalProcessorsPerPhysical; int APIC_ID; CPUPowerManagement PowerManagement; } CPUExtendedFeatures; typedef struct CPUtagFeatures { bool HasFPU; bool HasTSC; bool HasMMX; bool HasSSE; bool HasSSEFP; bool HasSSE2; bool HasIA64; bool HasAPIC; bool HasCMOV; bool HasMTRR; bool HasACPI; bool HasSerial; bool HasThermal; int CPUSpeed; int L1CacheSize; int L2CacheSize; int L3CacheSize; CPUExtendedFeatures ExtendedFeatures; } CPUFeatures; enum Manufacturer { AMD, Intel, NSC, UMC, Cyrix, NexGen, IDT, Rise, Transmeta, Sun, UnknownManufacturer }; protected: // Functions. bool RetrieveCPUFeatures(); bool RetrieveCPUIdentity(); bool RetrieveCPUCacheDetails(); bool RetrieveClassicalCPUCacheDetails(); bool RetrieveCPUClockSpeed(); bool RetrieveClassicalCPUClockSpeed(); bool RetrieveCPUExtendedLevelSupport(int); bool RetrieveExtendedCPUFeatures(); bool RetrieveProcessorSerialNumber(); bool RetrieveCPUPowerManagement(); bool RetrieveClassicalCPUIdentity(); bool RetrieveExtendedCPUIdentity(); Manufacturer ChipManufacturer; CPUFeatures Features; ID ChipID; float CPUSpeedInMHz; unsigned int NumberOfLogicalCPU; unsigned int NumberOfPhysicalCPU; int CPUCount(); unsigned char LogicalCPUPerPhysicalCPU(); unsigned char GetAPICId(); unsigned int IsHyperThreadingSupported(); LongLong GetCyclesDifference(DELAY_FUNC, unsigned int); // For Linux int RetreiveInformationFromCpuInfoFile(); kwsys_stl::string ExtractValueFromCpuInfoFile(kwsys_stl::string buffer, const char* word, size_t init=0); static void Delay (unsigned int); static void DelayOverhead (unsigned int); void FindManufacturer(); // For Mac bool ParseSysCtl(); kwsys_stl::string ExtractValueFromSysCtl(const char* word); kwsys_stl::string SysCtlBuffer; // For Solaris bool QuerySolarisInfo(); kwsys_stl::string ParseValueFromKStat(const char* arguments); kwsys_stl::string RunProcess(kwsys_stl::vector args); // Evaluate the memory information. int QueryMemory(); unsigned long TotalVirtualMemory; unsigned long AvailableVirtualMemory; unsigned long TotalPhysicalMemory; unsigned long AvailablePhysicalMemory; size_t CurrentPositionInFile; // Operating System information bool QueryOSInformation(); kwsys_stl::string OSName; kwsys_stl::string Hostname; kwsys_stl::string OSRelease; kwsys_stl::string OSVersion; kwsys_stl::string OSPlatform; }; SystemInformation::SystemInformation() { this->Implementation = new SystemInformationImplementation; } SystemInformation::~SystemInformation () { delete this->Implementation; } const char * SystemInformation::GetVendorString() { return this->Implementation->GetVendorString(); } const char * SystemInformation::GetVendorID() { return this->Implementation->GetVendorID(); } kwsys_stl::string SystemInformation::GetTypeID() { return this->Implementation->GetTypeID(); } kwsys_stl::string SystemInformation::GetFamilyID() { return this->Implementation->GetFamilyID(); } kwsys_stl::string SystemInformation::GetModelID() { return this->Implementation->GetModelID(); } kwsys_stl::string SystemInformation::GetSteppingCode() { return this->Implementation->GetSteppingCode(); } const char * SystemInformation::GetExtendedProcessorName() { return this->Implementation->GetExtendedProcessorName(); } const char * SystemInformation::GetProcessorSerialNumber() { return this->Implementation->GetProcessorSerialNumber(); } int SystemInformation::GetProcessorCacheSize() { return this->Implementation->GetProcessorCacheSize(); } int SystemInformation::GetLogicalProcessorsPerPhysical() { return this->Implementation->GetLogicalProcessorsPerPhysical(); } float SystemInformation::GetProcessorClockFrequency() { return this->Implementation->GetProcessorClockFrequency(); } int SystemInformation::GetProcessorAPICID() { return this->Implementation->GetProcessorAPICID(); } int SystemInformation::GetProcessorCacheXSize(long int l) { return this->Implementation->GetProcessorCacheXSize(l); } bool SystemInformation::DoesCPUSupportFeature(long int i) { return this->Implementation->DoesCPUSupportFeature(i); } const char * SystemInformation::GetOSName() { return this->Implementation->GetOSName(); } const char * SystemInformation::GetHostname() { return this->Implementation->GetHostname(); } const char * SystemInformation::GetOSRelease() { return this->Implementation->GetOSRelease(); } const char * SystemInformation::GetOSVersion() { return this->Implementation->GetOSVersion(); } const char * SystemInformation::GetOSPlatform() { return this->Implementation->GetOSPlatform(); } bool SystemInformation::Is64Bits() { return this->Implementation->Is64Bits(); } unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu { return this->Implementation->GetNumberOfLogicalCPU(); } unsigned int SystemInformation::GetNumberOfPhysicalCPU() { return this->Implementation->GetNumberOfPhysicalCPU(); } bool SystemInformation::DoesCPUSupportCPUID() { return this->Implementation->DoesCPUSupportCPUID(); } // Retrieve memory information in megabyte. unsigned long SystemInformation::GetTotalVirtualMemory() { return this->Implementation->GetTotalVirtualMemory(); } unsigned long SystemInformation::GetAvailableVirtualMemory() { return this->Implementation->GetAvailableVirtualMemory(); } unsigned long SystemInformation::GetTotalPhysicalMemory() { return this->Implementation->GetTotalPhysicalMemory(); } unsigned long SystemInformation::GetAvailablePhysicalMemory() { return this->Implementation->GetAvailablePhysicalMemory(); } /** Run the different checks */ void SystemInformation::RunCPUCheck() { this->Implementation->RunCPUCheck(); } void SystemInformation::RunOSCheck() { this->Implementation->RunOSCheck(); } void SystemInformation::RunMemoryCheck() { this->Implementation->RunMemoryCheck(); } // -------------------------------------------------------------- // SystemInformationImplementation starts here #if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64) #define USE_ASM_INSTRUCTIONS 1 #else #define USE_ASM_INSTRUCTIONS 0 #endif #define STORE_TLBCACHE_INFO(x,y) x = (x < y) ? y : x #define TLBCACHE_INFO_UNITS (15) #define CLASSICAL_CPU_FREQ_LOOP 10000000 #define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31 #define CPUID_AWARE_COMPILER #ifdef CPUID_AWARE_COMPILER #define CPUID_INSTRUCTION cpuid #else #define CPUID_INSTRUCTION _asm _emit 0x0f _asm _emit 0xa2 #endif #define MMX_FEATURE 0x00000001 #define MMX_PLUS_FEATURE 0x00000002 #define SSE_FEATURE 0x00000004 #define SSE2_FEATURE 0x00000008 #define AMD_3DNOW_FEATURE 0x00000010 #define AMD_3DNOW_PLUS_FEATURE 0x00000020 #define IA64_FEATURE 0x00000040 #define MP_CAPABLE 0x00000080 #define HYPERTHREAD_FEATURE 0x00000100 #define SERIALNUMBER_FEATURE 0x00000200 #define APIC_FEATURE 0x00000400 #define SSE_FP_FEATURE 0x00000800 #define SSE_MMX_FEATURE 0x00001000 #define CMOV_FEATURE 0x00002000 #define MTRR_FEATURE 0x00004000 #define L1CACHE_FEATURE 0x00008000 #define L2CACHE_FEATURE 0x00010000 #define L3CACHE_FEATURE 0x00020000 #define ACPI_FEATURE 0x00040000 #define THERMALMONITOR_FEATURE 0x00080000 #define TEMPSENSEDIODE_FEATURE 0x00100000 #define FREQUENCYID_FEATURE 0x00200000 #define VOLTAGEID_FREQUENCY 0x00400000 // Status Flag #define HT_NOT_CAPABLE 0 #define HT_ENABLED 1 #define HT_DISABLED 2 #define HT_SUPPORTED_NOT_ENABLED 3 #define HT_CANNOT_DETECT 4 // EDX[28] Bit 28 is set if HT is supported #define HT_BIT 0x10000000 // EAX[11:8] Bit 8-11 contains family processor ID. #define FAMILY_ID 0x0F00 #define PENTIUM4_ID 0x0F00 // EAX[23:20] Bit 20-23 contains extended family processor ID #define EXT_FAMILY_ID 0x0F00000 // EBX[23:16] Bit 16-23 in ebx contains the number of logical #define NUM_LOGICAL_BITS 0x00FF0000 // processors per physical processor when execute cpuid with // eax set to 1 // EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique #define INITIAL_APIC_ID_BITS 0xFF000000 // initial APIC ID for the processor this code is running on. // Default value = 0xff if HT is not supported SystemInformationImplementation::SystemInformationImplementation() { this->TotalVirtualMemory = 0; this->AvailableVirtualMemory = 0; this->TotalPhysicalMemory = 0; this->AvailablePhysicalMemory = 0; this->CurrentPositionInFile = 0; this->ChipManufacturer = UnknownManufacturer; memset(&this->Features, 0, sizeof(CPUFeatures)); memset(&this->ChipID, 0, sizeof(ID)); this->CPUSpeedInMHz = 0; this->NumberOfLogicalCPU = 0; this->NumberOfPhysicalCPU = 0; this->OSName = ""; this->Hostname = ""; this->OSRelease = ""; this->OSVersion = ""; this->OSPlatform = ""; } SystemInformationImplementation::~SystemInformationImplementation() { } void SystemInformationImplementation::RunCPUCheck() { #ifdef WIN32 // Check to see if this processor supports CPUID. if (DoesCPUSupportCPUID()) { // Retrieve the CPU details. RetrieveCPUIdentity(); RetrieveCPUFeatures(); if (!RetrieveCPUClockSpeed()) { RetrieveClassicalCPUClockSpeed(); } // Attempt to retrieve cache information. if (!RetrieveCPUCacheDetails()) { RetrieveClassicalCPUCacheDetails(); } // Retrieve the extended CPU details. if (!RetrieveExtendedCPUIdentity()) { RetrieveClassicalCPUIdentity(); } RetrieveExtendedCPUFeatures(); // Now attempt to retrieve the serial number (if possible). RetrieveProcessorSerialNumber(); } this->CPUCount(); #elif defined(__APPLE__) this->ParseSysCtl(); #elif defined (__SVR4) && defined (__sun) this->QuerySolarisInfo(); #else this->RetreiveInformationFromCpuInfoFile(); #endif } void SystemInformationImplementation::RunOSCheck() { this->QueryOSInformation(); } void SystemInformationImplementation::RunMemoryCheck() { #if defined(__APPLE__) this->ParseSysCtl(); #elif defined (__SVR4) && defined (__sun) this->QuerySolarisInfo(); #else this->QueryMemory(); #endif } /** Get the vendor string */ const char * SystemInformationImplementation::GetVendorString() { return this->ChipID.Vendor; } /** Get the OS Name */ const char * SystemInformationImplementation::GetOSName() { return this->OSName.c_str(); } /** Get the hostname */ const char* SystemInformationImplementation::GetHostname() { return this->Hostname.c_str(); } /** Get the OS release */ const char* SystemInformationImplementation::GetOSRelease() { return this->OSRelease.c_str(); } /** Get the OS version */ const char* SystemInformationImplementation::GetOSVersion() { return this->OSVersion.c_str(); } /** Get the OS platform */ const char* SystemInformationImplementation::GetOSPlatform() { return this->OSPlatform.c_str(); } /** Get the vendor ID */ const char * SystemInformationImplementation::GetVendorID() { // Return the vendor ID. switch (this->ChipManufacturer) { case Intel: return "Intel Corporation"; case AMD: return "Advanced Micro Devices"; case NSC: return "National Semiconductor"; case Cyrix: return "Cyrix Corp., VIA Inc."; case NexGen: return "NexGen Inc., Advanced Micro Devices"; case IDT: return "IDT\\Centaur, Via Inc."; case UMC: return "United Microelectronics Corp."; case Rise: return "Rise"; case Transmeta: return "Transmeta"; case Sun: return "Sun Microelectronics"; default: return "Unknown Manufacturer"; } } /** Return the type ID of the CPU */ kwsys_stl::string SystemInformationImplementation::GetTypeID() { kwsys_ios::ostringstream str; str << this->ChipID.Type; return str.str(); } /** Return the family of the CPU present */ kwsys_stl::string SystemInformationImplementation::GetFamilyID() { kwsys_ios::ostringstream str; str << this->ChipID.Family; return str.str(); } // Return the model of CPU present */ kwsys_stl::string SystemInformationImplementation::GetModelID() { kwsys_ios::ostringstream str; str << this->ChipID.Model; return str.str(); } /** Return the stepping code of the CPU present. */ kwsys_stl::string SystemInformationImplementation::GetSteppingCode() { kwsys_ios::ostringstream str; str << this->ChipID.Revision; return str.str(); } /** Return the stepping code of the CPU present. */ const char * SystemInformationImplementation::GetExtendedProcessorName() { return this->ChipID.ProcessorName; } /** Return the serial number of the processor * in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */ const char * SystemInformationImplementation::GetProcessorSerialNumber() { return this->ChipID.SerialNumber; } /** Return the logical processors per physical */ int SystemInformationImplementation::GetLogicalProcessorsPerPhysical() { return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical; } /** Return the processor clock frequency. */ float SystemInformationImplementation::GetProcessorClockFrequency() { return this->CPUSpeedInMHz; } /** Return the APIC ID. */ int SystemInformationImplementation::GetProcessorAPICID() { return this->Features.ExtendedFeatures.APIC_ID; } /** Return the L1 cache size. */ int SystemInformationImplementation::GetProcessorCacheSize() { return this->Features.L1CacheSize; } /** Return the chosen cache size. */ int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID) { switch (dwCacheID) { case L1CACHE_FEATURE: return this->Features.L1CacheSize; case L2CACHE_FEATURE: return this->Features.L2CacheSize; case L3CACHE_FEATURE: return this->Features.L3CacheSize; } return -1; } bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature) { bool bHasFeature = false; // Check for MMX instructions. if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX) bHasFeature = true; // Check for MMX+ instructions. if (((dwFeature & MMX_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true; // Check for SSE FP instructions. if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE) bHasFeature = true; // Check for SSE FP instructions. if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP) bHasFeature = true; // Check for SSE MMX instructions. if (((dwFeature & SSE_MMX_FEATURE) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true; // Check for SSE2 instructions. if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2) bHasFeature = true; // Check for 3DNow! instructions. if (((dwFeature & AMD_3DNOW_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true; // Check for 3DNow+ instructions. if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true; // Check for IA64 instructions. if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64) bHasFeature = true; // Check for MP capable. if (((dwFeature & MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true; // Check for a serial number for the processor. if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial) bHasFeature = true; // Check for a local APIC in the processor. if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC) bHasFeature = true; // Check for CMOV instructions. if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV) bHasFeature = true; // Check for MTRR instructions. if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR) bHasFeature = true; // Check for L1 cache size. if (((dwFeature & L1CACHE_FEATURE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true; // Check for L2 cache size. if (((dwFeature & L2CACHE_FEATURE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true; // Check for L3 cache size. if (((dwFeature & L3CACHE_FEATURE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true; // Check for ACPI capability. if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI) bHasFeature = true; // Check for thermal monitor support. if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal) bHasFeature = true; // Check for temperature sensing diode support. if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true; // Check for frequency ID support. if (((dwFeature & FREQUENCYID_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true; // Check for voltage ID support. if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true; return bHasFeature; } void SystemInformationImplementation::Delay(unsigned int uiMS) { #ifdef WIN32 LARGE_INTEGER Frequency, StartCounter, EndCounter; __int64 x; // Get the frequency of the high performance counter. if (!QueryPerformanceFrequency (&Frequency)) return; x = Frequency.QuadPart / 1000 * uiMS; // Get the starting position of the counter. QueryPerformanceCounter (&StartCounter); do { // Get the ending position of the counter. QueryPerformanceCounter (&EndCounter); } while (EndCounter.QuadPart - StartCounter.QuadPart < x); #endif (void)uiMS; } bool SystemInformationImplementation::DoesCPUSupportCPUID() { #if USE_ASM_INSTRUCTIONS // Use SEH to determine CPUID presence __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> mov eax, 0 CPUID_INSTRUCTION #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { // Stop the class from trying to use CPUID again! return false; } // The cpuid instruction succeeded. return true; #else // Assume no cpuid instruction. return false; #endif } bool SystemInformationImplementation::RetrieveCPUFeatures() { #if USE_ASM_INSTRUCTIONS int localCPUFeatures = 0; int localCPUAdvanced = 0; // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision ; ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID ; edx: CPU feature flags mov eax,1 CPUID_INSTRUCTION mov localCPUFeatures, edx mov localCPUAdvanced, ebx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Retrieve the features of CPU present. this->Features.HasFPU = ((localCPUFeatures & 0x00000001) != 0); // FPU Present --> Bit 0 this->Features.HasTSC = ((localCPUFeatures & 0x00000010) != 0); // TSC Present --> Bit 4 this->Features.HasAPIC = ((localCPUFeatures & 0x00000200) != 0); // APIC Present --> Bit 9 this->Features.HasMTRR = ((localCPUFeatures & 0x00001000) != 0); // MTRR Present --> Bit 12 this->Features.HasCMOV = ((localCPUFeatures & 0x00008000) != 0); // CMOV Present --> Bit 15 this->Features.HasSerial = ((localCPUFeatures & 0x00040000) != 0); // Serial Present --> Bit 18 this->Features.HasACPI = ((localCPUFeatures & 0x00400000) != 0); // ACPI Capable --> Bit 22 this->Features.HasMMX = ((localCPUFeatures & 0x00800000) != 0); // MMX Present --> Bit 23 this->Features.HasSSE = ((localCPUFeatures & 0x02000000) != 0); // SSE Present --> Bit 25 this->Features.HasSSE2 = ((localCPUFeatures & 0x04000000) != 0); // SSE2 Present --> Bit 26 this->Features.HasThermal = ((localCPUFeatures & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29 this->Features.HasIA64 = ((localCPUFeatures & 0x40000000) != 0); // IA64 Present --> Bit 30 // Retrieve extended SSE capabilities if SSE is available. if (this->Features.HasSSE) { // Attempt to __try some SSE FP instructions. __try { // Perform: orps xmm0, xmm0 _asm { _emit 0x0f _emit 0x56 _emit 0xc0 } // SSE FP capable processor. this->Features.HasSSEFP = true; } __except(1) { // bad instruction - processor or OS cannot handle SSE FP. this->Features.HasSSEFP = false; } } else { // Set the advanced SSE capabilities to not available. this->Features.HasSSEFP = false; } // Retrieve Intel specific extended features. if (this->ChipManufacturer == Intel) { this->Features.ExtendedFeatures.SupportsHyperthreading = ((localCPUFeatures & 0x10000000) != 0); // Intel specific: Hyperthreading --> Bit 28 this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = (this->Features.ExtendedFeatures.SupportsHyperthreading) ? ((localCPUAdvanced & 0x00FF0000) >> 16) : 1; if ((this->Features.ExtendedFeatures.SupportsHyperthreading) && (this->Features.HasAPIC)) { // Retrieve APIC information if there is one present. this->Features.ExtendedFeatures.APIC_ID = ((localCPUAdvanced & 0xFF000000) >> 24); } } #endif return true; } /** Find the manufacturer given the vendor id */ void SystemInformationImplementation::FindManufacturer() { if (strcmp (this->ChipID.Vendor, "GenuineIntel") == 0) this->ChipManufacturer = Intel; // Intel Corp. else if (strcmp (this->ChipID.Vendor, "UMC UMC UMC ") == 0) this->ChipManufacturer = UMC; // United Microelectronics Corp. else if (strcmp (this->ChipID.Vendor, "AuthenticAMD") == 0) this->ChipManufacturer = AMD; // Advanced Micro Devices else if (strcmp (this->ChipID.Vendor, "AMD ISBETTER") == 0) this->ChipManufacturer = AMD; // Advanced Micro Devices (1994) else if (strcmp (this->ChipID.Vendor, "CyrixInstead") == 0) this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc. else if (strcmp (this->ChipID.Vendor, "NexGenDriven") == 0) this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD) else if (strcmp (this->ChipID.Vendor, "CentaurHauls") == 0) this->ChipManufacturer = IDT; // IDT/Centaur (now VIA) else if (strcmp (this->ChipID.Vendor, "RiseRiseRise") == 0) this->ChipManufacturer = Rise; // Rise else if (strcmp (this->ChipID.Vendor, "GenuineTMx86") == 0) this->ChipManufacturer = Transmeta; // Transmeta else if (strcmp (this->ChipID.Vendor, "TransmetaCPU") == 0) this->ChipManufacturer = Transmeta; // Transmeta else if (strcmp (this->ChipID.Vendor, "Geode By NSC") == 0) this->ChipManufacturer = NSC; // National Semiconductor else if (strcmp (this->ChipID.Vendor, "Sun") == 0) this->ChipManufacturer = Sun; // Sun Microelectronics else this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer } /** */ bool SystemInformationImplementation::RetrieveCPUIdentity() { #if USE_ASM_INSTRUCTIONS int localCPUVendor[3]; int localCPUSignature; // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0 --> eax: maximum value of CPUID instruction. ; ebx: part 1 of 3; CPU signature. ; edx: part 2 of 3; CPU signature. ; ecx: part 3 of 3; CPU signature. mov eax, 0 CPUID_INSTRUCTION mov localCPUVendor[0 * TYPE int], ebx mov localCPUVendor[1 * TYPE int], edx mov localCPUVendor[2 * TYPE int], ecx ; <> ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision ; ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID ; edx: CPU feature flags mov eax,1 CPUID_INSTRUCTION mov localCPUSignature, eax #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Process the returned information. memcpy (this->ChipID.Vendor, &(localCPUVendor[0]), sizeof (int)); memcpy (&(this->ChipID.Vendor[4]), &(localCPUVendor[1]), sizeof (int)); memcpy (&(this->ChipID.Vendor[8]), &(localCPUVendor[2]), sizeof (int)); this->ChipID.Vendor[12] = '\0'; this->FindManufacturer(); // Retrieve the family of CPU present. this->ChipID.ExtendedFamily = ((localCPUSignature & 0x0FF00000) >> 20); // Bits 27..20 Used this->ChipID.ExtendedModel = ((localCPUSignature & 0x000F0000) >> 16); // Bits 19..16 Used this->ChipID.Type = ((localCPUSignature & 0x0000F000) >> 12); // Bits 15..12 Used this->ChipID.Family = ((localCPUSignature & 0x00000F00) >> 8); // Bits 11..8 Used this->ChipID.Model = ((localCPUSignature & 0x000000F0) >> 4); // Bits 7..4 Used this->ChipID.Revision = ((localCPUSignature & 0x0000000F) >> 0); // Bits 3..0 Used #endif return true; } /** */ bool SystemInformationImplementation::RetrieveCPUCacheDetails() { #if USE_ASM_INSTRUCTIONS int L1Cache[4] = { 0, 0, 0, 0 }; int L2Cache[4] = { 0, 0, 0, 0 }; // Check to see if what we are about to do is supported... if (RetrieveCPUExtendedLevelSupport (0x80000005)) { // Use assembly to retrieve the L1 cache information ... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0x80000005 --> eax: L1 cache information - Part 1 of 4. ; ebx: L1 cache information - Part 2 of 4. ; edx: L1 cache information - Part 3 of 4. ; ecx: L1 cache information - Part 4 of 4. mov eax, 0x80000005 CPUID_INSTRUCTION mov L1Cache[0 * TYPE int], eax mov L1Cache[1 * TYPE int], ebx mov L1Cache[2 * TYPE int], ecx mov L1Cache[3 * TYPE int], edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as data cache size from edx: bits 31..24. this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24); this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24); } else { // Store -1 to indicate the cache could not be queried. this->Features.L1CacheSize = -1; } // Check to see if what we are about to do is supported... if (RetrieveCPUExtendedLevelSupport (0x80000006)) { // Use assembly to retrieve the L2 cache information ... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0x80000006 --> eax: L2 cache information - Part 1 of 4. ; ebx: L2 cache information - Part 2 of 4. ; edx: L2 cache information - Part 3 of 4. ; ecx: L2 cache information - Part 4 of 4. mov eax, 0x80000006 CPUID_INSTRUCTION mov L2Cache[0 * TYPE int], eax mov L2Cache[1 * TYPE int], ebx mov L2Cache[2 * TYPE int], ecx mov L2Cache[3 * TYPE int], edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Save the L2 unified cache size (in KB) from ecx: bits 31..16. this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16); } else { // Store -1 to indicate the cache could not be queried. this->Features.L2CacheSize = -1; } // Define L3 as being not present as we cannot test for it. this->Features.L3CacheSize = -1; #endif // Return failure if we cannot detect either cache with this method. return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true; } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails() { #if USE_ASM_INSTRUCTIONS int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1; int TLBCacheData[4] = { 0, 0, 0, 0 }; int TLBPassCounter = 0; int TLBCacheUnit = 0; do { // Use assembly to retrieve the L2 cache information ... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 2 --> eax: TLB and cache information - Part 1 of 4. ; ebx: TLB and cache information - Part 2 of 4. ; ecx: TLB and cache information - Part 3 of 4. ; edx: TLB and cache information - Part 4 of 4. mov eax, 2 CPUID_INSTRUCTION mov TLBCacheData[0 * TYPE int], eax mov TLBCacheData[1 * TYPE int], ebx mov TLBCacheData[2 * TYPE int], ecx mov TLBCacheData[3 * TYPE int], edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16); (void)bob; // Process the returned TLB and cache information. for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter ++) { // First of all - decide which unit we are dealing with. switch (nCounter) { // eax: bits 8..15 : bits 16..23 : bits 24..31 case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break; case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break; case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break; // ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break; case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break; case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break; case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break; // ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break; case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break; case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break; case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break; // edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break; case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break; case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break; case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break; // Default case - an error has occured. default: return false; } // Now process the resulting unit to see what it means.... switch (TLBCacheUnit) { case 0x00: break; case 0x01: STORE_TLBCACHE_INFO (TLBCode, 4); break; case 0x02: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x03: STORE_TLBCACHE_INFO (TLBData, 4); break; case 0x04: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x06: STORE_TLBCACHE_INFO (L1Code, 8); break; case 0x08: STORE_TLBCACHE_INFO (L1Code, 16); break; case 0x0a: STORE_TLBCACHE_INFO (L1Data, 8); break; case 0x0c: STORE_TLBCACHE_INFO (L1Data, 16); break; case 0x10: STORE_TLBCACHE_INFO (L1Data, 16); break; // <-- FIXME: IA-64 Only case 0x15: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only case 0x1a: STORE_TLBCACHE_INFO (L2Unified, 96); break; // <-- FIXME: IA-64 Only case 0x22: STORE_TLBCACHE_INFO (L3Unified, 512); break; case 0x23: STORE_TLBCACHE_INFO (L3Unified, 1024); break; case 0x25: STORE_TLBCACHE_INFO (L3Unified, 2048); break; case 0x29: STORE_TLBCACHE_INFO (L3Unified, 4096); break; case 0x39: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x3c: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x40: STORE_TLBCACHE_INFO (L2Unified, 0); break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 core). case 0x41: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x42: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x43: STORE_TLBCACHE_INFO (L2Unified, 512); break; case 0x44: STORE_TLBCACHE_INFO (L2Unified, 1024); break; case 0x45: STORE_TLBCACHE_INFO (L2Unified, 2048); break; case 0x50: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x51: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x52: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x5b: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x5c: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x5d: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x66: STORE_TLBCACHE_INFO (L1Data, 8); break; case 0x67: STORE_TLBCACHE_INFO (L1Data, 16); break; case 0x68: STORE_TLBCACHE_INFO (L1Data, 32); break; case 0x70: STORE_TLBCACHE_INFO (L1Trace, 12); break; case 0x71: STORE_TLBCACHE_INFO (L1Trace, 16); break; case 0x72: STORE_TLBCACHE_INFO (L1Trace, 32); break; case 0x77: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only case 0x79: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x7a: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x7b: STORE_TLBCACHE_INFO (L2Unified, 512); break; case 0x7c: STORE_TLBCACHE_INFO (L2Unified, 1024); break; case 0x7e: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x81: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x82: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x83: STORE_TLBCACHE_INFO (L2Unified, 512); break; case 0x84: STORE_TLBCACHE_INFO (L2Unified, 1024); break; case 0x85: STORE_TLBCACHE_INFO (L2Unified, 2048); break; case 0x88: STORE_TLBCACHE_INFO (L3Unified, 2048); break; // <-- FIXME: IA-64 Only case 0x89: STORE_TLBCACHE_INFO (L3Unified, 4096); break; // <-- FIXME: IA-64 Only case 0x8a: STORE_TLBCACHE_INFO (L3Unified, 8192); break; // <-- FIXME: IA-64 Only case 0x8d: STORE_TLBCACHE_INFO (L3Unified, 3096); break; // <-- FIXME: IA-64 Only case 0x90: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only case 0x96: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only case 0x9b: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only // Default case - an error has occured. default: return false; } } // Increment the TLB pass counter. TLBPassCounter ++; } while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter); // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1)) { this->Features.L1CacheSize = -1; } else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1)) { this->Features.L1CacheSize = L1Trace; } else if ((L1Code != -1) && (L1Data == -1)) { this->Features.L1CacheSize = L1Code; } else if ((L1Code == -1) && (L1Data != -1)) { this->Features.L1CacheSize = L1Data; } else if ((L1Code != -1) && (L1Data != -1)) { this->Features.L1CacheSize = L1Code + L1Data; } else { this->Features.L1CacheSize = -1; } // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if (L2Unified == -1) { this->Features.L2CacheSize = -1; } else { this->Features.L2CacheSize = L2Unified; } // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if (L3Unified == -1) { this->Features.L3CacheSize = -1; } else { this->Features.L3CacheSize = L3Unified; } #endif return true; } /** */ bool SystemInformationImplementation::RetrieveCPUClockSpeed() { #if _WIN32 // First of all we check to see if the RDTSC (0x0F, 0x31) instruction is supported. if (!this->Features.HasTSC) { return false; } unsigned int uiRepetitions = 1; unsigned int uiMSecPerRepetition = 50; __int64 i64Total = 0; __int64 i64Overhead = 0; for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter ++) { i64Total += GetCyclesDifference (SystemInformationImplementation::Delay, uiMSecPerRepetition); i64Overhead += GetCyclesDifference (SystemInformationImplementation::DelayOverhead, uiMSecPerRepetition); } // Calculate the MHz speed. i64Total -= i64Overhead; i64Total /= uiRepetitions; i64Total /= uiMSecPerRepetition; i64Total /= 1000; // Save the CPU speed. this->CPUSpeedInMHz = (float) i64Total; return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed() { #if USE_ASM_INSTRUCTIONS LARGE_INTEGER liStart, liEnd, liCountsPerSecond; double dFrequency, dDifference; // Attempt to get a starting tick count. QueryPerformanceCounter (&liStart); __try { _asm { mov eax, 0x80000000 mov ebx, CLASSICAL_CPU_FREQ_LOOP Timer_Loop: bsf ecx,eax dec ebx jnz Timer_Loop } } __except(1) { return false; } // Attempt to get a starting tick count. QueryPerformanceCounter (&liEnd); // Get the difference... NB: This is in seconds.... QueryPerformanceFrequency (&liCountsPerSecond); dDifference = (((double) liEnd.QuadPart - (double) liStart.QuadPart) / (double) liCountsPerSecond.QuadPart); // Calculate the clock speed. if (this->ChipID.Family == 3) { // 80386 processors.... Loop time is 115 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1048576); } else if (this->ChipID.Family == 4) { // 80486 processors.... Loop time is 47 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1048576); } else if (this->ChipID.Family == 5) { // Pentium processors.... Loop time is 43 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1048576); } // Save the clock speed. this->Features.CPUSpeed = (int) dFrequency; #else return true; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(int CPULevelToCheck) { int MaxCPUExtendedLevel = 0; // The extended CPUID is supported by various vendors starting with the following CPU models: // // Manufacturer & Chip Name | Family Model Revision // // AMD K6, K6-2 | 5 6 x // Cyrix GXm, Cyrix III "Joshua" | 5 4 x // IDT C6-2 | 5 8 x // VIA Cyrix III | 6 5 x // Transmeta Crusoe | 5 x x // Intel Pentium 4 | f x x // // We check to see if a supported processor is present... if (this->ChipManufacturer == AMD) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false; } else if (this->ChipManufacturer == Cyrix) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false; if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false; } else if (this->ChipManufacturer == IDT) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false; } else if (this->ChipManufacturer == Transmeta) { if (this->ChipID.Family < 5) return false; } else if (this->ChipManufacturer == Intel) { if (this->ChipID.Family < 0xf) { return false; } } #if USE_ASM_INSTRUCTIONS // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0x80000000 --> eax: maximum supported extended level mov eax,0x80000000 CPUID_INSTRUCTION mov MaxCPUExtendedLevel, eax #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } #endif // Now we have to check the level wanted vs level returned... int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF); int nLevelReturn = (MaxCPUExtendedLevel & 0x7FFFFFFF); // Check to see if the level provided is supported... if (nLevelWanted > nLevelReturn) { return false; } return true; } /** */ bool SystemInformationImplementation::RetrieveExtendedCPUFeatures() { // Check that we are not using an Intel processor as it does not support this. if (this->ChipManufacturer == Intel) { return false; } // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport (0x80000001)) { return false; } #if USE_ASM_INSTRUCTIONS int localCPUExtendedFeatures = 0; // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0x80000001 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision ; ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID ; edx: CPU feature flags mov eax,0x80000001 CPUID_INSTRUCTION mov localCPUExtendedFeatures, edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Retrieve the extended features of CPU present. this->Features.ExtendedFeatures.Has3DNow = ((localCPUExtendedFeatures & 0x80000000) != 0); // 3DNow Present --> Bit 31. this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures & 0x40000000) != 0); // 3DNow+ Present -- > Bit 30. this->Features.ExtendedFeatures.HasSSEMMX = ((localCPUExtendedFeatures & 0x00400000) != 0); // SSE MMX Present --> Bit 22. this->Features.ExtendedFeatures.SupportsMP = ((localCPUExtendedFeatures & 0x00080000) != 0); // MP Capable -- > Bit 19. // Retrieve AMD specific extended features. if (this->ChipManufacturer == AMD) { this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures & 0x00400000) != 0); // AMD specific: MMX-SSE --> Bit 22 } // Retrieve Cyrix specific extended features. if (this->ChipManufacturer == Cyrix) { this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures & 0x01000000) != 0); // Cyrix specific: Extended MMX --> Bit 24 } #endif return true; } /** */ bool SystemInformationImplementation::RetrieveProcessorSerialNumber() { // Check to see if the processor supports the processor serial number. if (!this->Features.HasSerial) { return false; } #if USE_ASM_INSTRUCTIONS int SerialNumber[3]; // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: Transmeta only ?!? ; ecx: middle 32 bits are the processor signature bits ; edx: bottom 32 bits are the processor signature bits mov eax, 3 CPUID_INSTRUCTION mov SerialNumber[0 * TYPE int], ebx mov SerialNumber[1 * TYPE int], ecx mov SerialNumber[2 * TYPE int], edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Process the returned information. sprintf (this->ChipID.SerialNumber, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x", ((SerialNumber[0] & 0xff000000) >> 24), ((SerialNumber[0] & 0x00ff0000) >> 16), ((SerialNumber[0] & 0x0000ff00) >> 8), ((SerialNumber[0] & 0x000000ff) >> 0), ((SerialNumber[1] & 0xff000000) >> 24), ((SerialNumber[1] & 0x00ff0000) >> 16), ((SerialNumber[1] & 0x0000ff00) >> 8), ((SerialNumber[1] & 0x000000ff) >> 0), ((SerialNumber[2] & 0xff000000) >> 24), ((SerialNumber[2] & 0x00ff0000) >> 16), ((SerialNumber[2] & 0x0000ff00) >> 8), ((SerialNumber[2] & 0x000000ff) >> 0)); #endif return true; } /** */ bool SystemInformationImplementation::RetrieveCPUPowerManagement() { // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport (0x80000007)) { this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false; this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false; this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false; return false; } #if USE_ASM_INSTRUCTIONS int localCPUPowerManagement = 0; // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0x80000007 --> edx: get processor power management mov eax,0x80000007 CPUID_INSTRUCTION mov localCPUPowerManagement, edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Check for the power management capabilities of the CPU. this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = ((localCPUPowerManagement & 0x00000001) != 0); this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = ((localCPUPowerManagement & 0x00000002) != 0); this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = ((localCPUPowerManagement & 0x00000004) != 0); #endif return true; } /** */ bool SystemInformationImplementation::RetrieveExtendedCPUIdentity() { // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(0x80000002)) return false; if (!RetrieveCPUExtendedLevelSupport(0x80000003)) return false; if (!RetrieveCPUExtendedLevelSupport(0x80000004)) return false; #if USE_ASM_INSTRUCTIONS int ProcessorNameStartPos = 0; int CPUExtendedIdentity[12]; // Use assembly to detect CPUID information... __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser doesn't know about <>, and so doesn't expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> ; eax = 0x80000002 --> eax, ebx, ecx, edx: get processor name string (part 1) mov eax,0x80000002 CPUID_INSTRUCTION mov CPUExtendedIdentity[0 * TYPE int], eax mov CPUExtendedIdentity[1 * TYPE int], ebx mov CPUExtendedIdentity[2 * TYPE int], ecx mov CPUExtendedIdentity[3 * TYPE int], edx ; <> ; eax = 0x80000003 --> eax, ebx, ecx, edx: get processor name string (part 2) mov eax,0x80000003 CPUID_INSTRUCTION mov CPUExtendedIdentity[4 * TYPE int], eax mov CPUExtendedIdentity[5 * TYPE int], ebx mov CPUExtendedIdentity[6 * TYPE int], ecx mov CPUExtendedIdentity[7 * TYPE int], edx ; <> ; eax = 0x80000004 --> eax, ebx, ecx, edx: get processor name string (part 3) mov eax,0x80000004 CPUID_INSTRUCTION mov CPUExtendedIdentity[8 * TYPE int], eax mov CPUExtendedIdentity[9 * TYPE int], ebx mov CPUExtendedIdentity[10 * TYPE int], ecx mov CPUExtendedIdentity[11 * TYPE int], edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } // Process the returned information. memcpy (this->ChipID.ProcessorName, &(CPUExtendedIdentity[0]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[4]), &(CPUExtendedIdentity[1]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[8]), &(CPUExtendedIdentity[2]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[12]), &(CPUExtendedIdentity[3]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[16]), &(CPUExtendedIdentity[4]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[20]), &(CPUExtendedIdentity[5]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[24]), &(CPUExtendedIdentity[6]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[28]), &(CPUExtendedIdentity[7]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[32]), &(CPUExtendedIdentity[8]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[36]), &(CPUExtendedIdentity[9]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[40]), &(CPUExtendedIdentity[10]), sizeof (int)); memcpy (&(this->ChipID.ProcessorName[44]), &(CPUExtendedIdentity[11]), sizeof (int)); this->ChipID.ProcessorName[48] = '\0'; // Because some manufacturers have leading white space - we have to post-process the name. if (this->ChipManufacturer == Intel) { for (int nCounter = 0; nCounter < CHIPNAME_STRING_LENGTH; nCounter ++) { // There will either be NULL (\0) or spaces ( ) as the leading characters. if ((this->ChipID.ProcessorName[nCounter] != '\0') && (this->ChipID.ProcessorName[nCounter] != ' ')) { // We have found the starting position of the name. ProcessorNameStartPos = nCounter; // Terminate the loop. break; } } // Check to see if there is any white space at the start. if (ProcessorNameStartPos == 0) { return true; } // Now move the name forward so that there is no white space. memmove(this->ChipID.ProcessorName, &(this->ChipID.ProcessorName[ProcessorNameStartPos]), (CHIPNAME_STRING_LENGTH - ProcessorNameStartPos)); } #endif return true; } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUIdentity() { // Start by decided which manufacturer we are using.... switch (this->ChipManufacturer) { case Intel: // Check the family / model / revision to determine the CPU ID. switch (this->ChipID.Family) { case 3: sprintf (this->ChipID.ProcessorName, "Newer i80386 family"); break; case 4: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"i80486DX-25/33"); break; case 1: sprintf (this->ChipID.ProcessorName,"i80486DX-50"); break; case 2: sprintf (this->ChipID.ProcessorName,"i80486SX"); break; case 3: sprintf (this->ChipID.ProcessorName,"i80486DX2"); break; case 4: sprintf (this->ChipID.ProcessorName,"i80486SL"); break; case 5: sprintf (this->ChipID.ProcessorName,"i80486SX2"); break; case 7: sprintf (this->ChipID.ProcessorName,"i80486DX2 WriteBack"); break; case 8: sprintf (this->ChipID.ProcessorName,"i80486DX4"); break; case 9: sprintf (this->ChipID.ProcessorName,"i80486DX4 WriteBack"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown 80486 family"); return false; } break; case 5: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"P5 A-Step"); break; case 1: sprintf (this->ChipID.ProcessorName,"P5"); break; case 2: sprintf (this->ChipID.ProcessorName,"P54C"); break; case 3: sprintf (this->ChipID.ProcessorName,"P24T OverDrive"); break; case 4: sprintf (this->ChipID.ProcessorName,"P55C"); break; case 7: sprintf (this->ChipID.ProcessorName,"P54C"); break; case 8: sprintf (this->ChipID.ProcessorName,"P55C (0.25micron)"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown Pentium family"); return false; } break; case 6: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"P6 A-Step"); break; case 1: sprintf (this->ChipID.ProcessorName,"P6"); break; case 3: sprintf (this->ChipID.ProcessorName,"Pentium II (0.28 micron)"); break; case 5: sprintf (this->ChipID.ProcessorName,"Pentium II (0.25 micron)"); break; case 6: sprintf (this->ChipID.ProcessorName,"Pentium II With On-Die L2 Cache"); break; case 7: sprintf (this->ChipID.ProcessorName,"Pentium III (0.25 micron)"); break; case 8: sprintf (this->ChipID.ProcessorName,"Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "); break; case 0xa: sprintf (this->ChipID.ProcessorName,"Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "); break; case 0xb: sprintf (this->ChipID.ProcessorName,"Pentium III (0.13 micron) With 256 Or 512 KB On-Die L2 Cache "); break; default: sprintf (this->ChipID.ProcessorName,"Unknown P6 family"); return false; } break; case 7: sprintf (this->ChipID.ProcessorName,"Intel Merced (IA-64)"); break; case 0xf: // Check the extended family bits... switch (this->ChipID.ExtendedFamily) { case 0: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"Pentium IV (0.18 micron)"); break; case 1: sprintf (this->ChipID.ProcessorName,"Pentium IV (0.18 micron)"); break; case 2: sprintf (this->ChipID.ProcessorName,"Pentium IV (0.13 micron)"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown Pentium 4 family"); return false; } break; case 1: sprintf (this->ChipID.ProcessorName,"Intel McKinley (IA-64)"); break; default: sprintf (this->ChipID.ProcessorName,"Pentium"); } break; default: sprintf (this->ChipID.ProcessorName,"Unknown Intel family"); return false; } break; case AMD: // Check the family / model / revision to determine the CPU ID. switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 3: sprintf (this->ChipID.ProcessorName,"80486DX2"); break; case 7: sprintf (this->ChipID.ProcessorName,"80486DX2 WriteBack"); break; case 8: sprintf (this->ChipID.ProcessorName,"80486DX4"); break; case 9: sprintf (this->ChipID.ProcessorName,"80486DX4 WriteBack"); break; case 0xe: sprintf (this->ChipID.ProcessorName,"5x86"); break; case 0xf: sprintf (this->ChipID.ProcessorName,"5x86WB"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown 80486 family"); return false; } break; case 5: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"SSA5 (PR75, PR90, PR100)"); break; case 1: sprintf (this->ChipID.ProcessorName,"5k86 (PR120, PR133)"); break; case 2: sprintf (this->ChipID.ProcessorName,"5k86 (PR166)"); break; case 3: sprintf (this->ChipID.ProcessorName,"5k86 (PR200)"); break; case 6: sprintf (this->ChipID.ProcessorName,"K6 (0.30 micron)"); break; case 7: sprintf (this->ChipID.ProcessorName,"K6 (0.25 micron)"); break; case 8: sprintf (this->ChipID.ProcessorName,"K6-2"); break; case 9: sprintf (this->ChipID.ProcessorName,"K6-III"); break; case 0xd: sprintf (this->ChipID.ProcessorName,"K6-2+ or K6-III+ (0.18 micron)"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown 80586 family"); return false; } break; case 6: switch (this->ChipID.Model) { case 1: sprintf (this->ChipID.ProcessorName,"Athlon- (0.25 micron)"); break; case 2: sprintf (this->ChipID.ProcessorName,"Athlon- (0.18 micron)"); break; case 3: sprintf (this->ChipID.ProcessorName,"Duron- (SF core)"); break; case 4: sprintf (this->ChipID.ProcessorName,"Athlon- (Thunderbird core)"); break; case 6: sprintf (this->ChipID.ProcessorName,"Athlon- (Palomino core)"); break; case 7: sprintf (this->ChipID.ProcessorName,"Duron- (Morgan core)"); break; case 8: if (this->Features.ExtendedFeatures.SupportsMP) sprintf (this->ChipID.ProcessorName,"Athlon - MP (Thoroughbred core)"); else sprintf (this->ChipID.ProcessorName,"Athlon - XP (Thoroughbred core)"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown K7 family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown AMD family"); return false; } break; case Transmeta: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 4: sprintf (this->ChipID.ProcessorName,"Crusoe TM3x00 and TM5x00"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown Crusoe family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown Transmeta family"); return false; } break; case Rise: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"mP6 (0.25 micron)"); break; case 2: sprintf (this->ChipID.ProcessorName,"mP6 (0.18 micron)"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown Rise family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown Rise family"); return false; } break; case UMC: switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 1: sprintf (this->ChipID.ProcessorName,"U5D"); break; case 2: sprintf (this->ChipID.ProcessorName,"U5S"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown UMC family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown UMC family"); return false; } break; case IDT: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 4: sprintf (this->ChipID.ProcessorName,"C6"); break; case 8: sprintf (this->ChipID.ProcessorName,"C2"); break; case 9: sprintf (this->ChipID.ProcessorName,"C3"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown IDT\\Centaur family"); return false; } break; case 6: switch (this->ChipID.Model) { case 6: sprintf (this->ChipID.ProcessorName,"VIA Cyrix III - Samuel"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown IDT\\Centaur family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown IDT\\Centaur family"); return false; } break; case Cyrix: switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 4: sprintf (this->ChipID.ProcessorName,"MediaGX GX, GXm"); break; case 9: sprintf (this->ChipID.ProcessorName,"5x86"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown Cx5x86 family"); return false; } break; case 5: switch (this->ChipID.Model) { case 2: sprintf (this->ChipID.ProcessorName,"Cx6x86"); break; case 4: sprintf (this->ChipID.ProcessorName,"MediaGX GXm"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown Cx6x86 family"); return false; } break; case 6: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"6x86MX"); break; case 5: sprintf (this->ChipID.ProcessorName,"Cyrix M2 Core"); break; case 6: sprintf (this->ChipID.ProcessorName,"WinChip C5A Core"); break; case 7: sprintf (this->ChipID.ProcessorName,"WinChip C5B\\C5C Core"); break; case 8: sprintf (this->ChipID.ProcessorName,"WinChip C5C-T Core"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown 6x86MX\\Cyrix III family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown Cyrix family"); return false; } break; case NexGen: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 0: sprintf (this->ChipID.ProcessorName,"Nx586 or Nx586FPU"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown NexGen family"); return false; } break; default: sprintf (this->ChipID.ProcessorName,"Unknown NexGen family"); return false; } break; case NSC: sprintf (this->ChipID.ProcessorName,"Cx486SLC \\ DLC \\ Cx486S A-Step"); break; default: sprintf (this->ChipID.ProcessorName,"Unknown family"); // We cannot identify the processor. return false; } return true; } /** Extract a value from the CPUInfo file */ kwsys_stl::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,const char* word,size_t init) { size_t pos = buffer.find(word,init); if(pos != buffer.npos) { this->CurrentPositionInFile = pos; pos = buffer.find(":",pos); size_t pos2 = buffer.find("\n",pos); if(pos!=buffer.npos && pos2!=buffer.npos) { return buffer.substr(pos+2,pos2-pos-2); } } this->CurrentPositionInFile = buffer.npos; return ""; } /** Query for the cpu status */ int SystemInformationImplementation::RetreiveInformationFromCpuInfoFile() { this->NumberOfLogicalCPU = 0; this->NumberOfPhysicalCPU = 0; kwsys_stl::string buffer; FILE *fd = fopen("/proc/cpuinfo", "r" ); if ( !fd ) { kwsys_ios::cout << "Problem opening /proc/cpuinfo" << kwsys_stl::endl; return 0; } size_t fileSize = 0; while(!feof(fd)) { buffer += fgetc(fd); fileSize++; } fclose( fd ); buffer.resize(fileSize-2); // Number of CPUs size_t pos = buffer.find("processor\t"); while(pos != buffer.npos) { this->NumberOfLogicalCPU++; this->NumberOfPhysicalCPU++; pos = buffer.find("processor\t",pos+1); } // Count the number of physical ids that are the same int currentId = -1; kwsys_stl::string idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id"); while(this->CurrentPositionInFile != buffer.npos) { int id = atoi(idc.c_str()); if(id == currentId) { this->NumberOfPhysicalCPU--; } currentId = id; idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id",this->CurrentPositionInFile+1); } if(this->NumberOfPhysicalCPU>0) { this->NumberOfLogicalCPU /= this->NumberOfPhysicalCPU; } // CPU speed (checking only the first proc kwsys_stl::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"cpu MHz"); this->CPUSpeedInMHz = (float)atof(CPUSpeed.c_str()); // Chip family this->ChipID.Family = atoi(this->ExtractValueFromCpuInfoFile(buffer,"cpu family").c_str()); // Chip Vendor strcpy(this->ChipID.Vendor,this->ExtractValueFromCpuInfoFile(buffer,"vendor_id").c_str()); this->FindManufacturer(); // Chip Model this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer,"model").c_str()); this->RetrieveClassicalCPUIdentity(); // L1 Cache size kwsys_stl::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer,"cache size"); pos = cacheSize.find(" KB"); if(pos!=cacheSize.npos) { cacheSize = cacheSize.substr(0,pos); } this->Features.L1CacheSize = atoi(cacheSize.c_str()); return 1; } /** Query for the memory status */ int SystemInformationImplementation::QueryMemory() { this->TotalVirtualMemory = 0; this->TotalPhysicalMemory = 0; this->AvailableVirtualMemory = 0; this->AvailablePhysicalMemory = 0; #ifdef __CYGWIN__ return 0; #elif _WIN32 #if _MSC_VER < 1300 MEMORYSTATUS ms; GlobalMemoryStatus(&ms); #define MEM_VAL(value) dw##value #else MEMORYSTATUSEX ms; GlobalMemoryStatusEx(&ms); #define MEM_VAL(value) ull##value #endif unsigned long tv = ms.MEM_VAL(TotalVirtual); unsigned long tp = ms.MEM_VAL(TotalPhys); unsigned long av = ms.MEM_VAL(AvailVirtual); unsigned long ap = ms.MEM_VAL(AvailPhys); this->TotalVirtualMemory = tv>>10>>10; this->TotalPhysicalMemory = tp>>10>>10; this->AvailableVirtualMemory = av>>10>>10; this->AvailablePhysicalMemory = ap>>10>>10; return 1; #elif __linux unsigned long tv=0; unsigned long tp=0; unsigned long av=0; unsigned long ap=0; char buffer[1024]; // for skipping unused lines int linuxMajor = 0; int linuxMinor = 0; // Find the Linux kernel version first struct utsname unameInfo; int errorFlag = uname(&unameInfo); if( errorFlag!=0 ) { kwsys_ios::cout << "Problem calling uname(): " << strerror(errno) << kwsys_stl::endl; return 0; } if( unameInfo.release!=0 && strlen(unameInfo.release)>=3 ) { // release looks like "2.6.3-15mdk-i686-up-4GB" char majorChar=unameInfo.release[0]; char minorChar=unameInfo.release[2]; if( isdigit(majorChar) ) { linuxMajor=majorChar-'0'; } if( isdigit(minorChar) ) { linuxMinor=minorChar-'0'; } } FILE *fd = fopen("/proc/meminfo", "r" ); if ( !fd ) { kwsys_ios::cout << "Problem opening /proc/meminfo" << kwsys_stl::endl; return 0; } if( linuxMajor>=3 || ( (linuxMajor>=2) && (linuxMinor>=6) ) ) { // new /proc/meminfo format since kernel 2.6.x // Rigorously, this test should check from the developping version 2.5.x // that introduced the new format... long freeMem; long buffersMem; long cachedMem; fscanf(fd,"MemTotal:%ld kB\n", &this->TotalPhysicalMemory); fscanf(fd,"MemFree:%ld kB\n", &freeMem); fscanf(fd,"Buffers:%ld kB\n", &buffersMem); fscanf(fd,"Cached:%ld kB\n", &cachedMem); this->TotalPhysicalMemory /= 1024; this->AvailablePhysicalMemory = freeMem+cachedMem+buffersMem; this->AvailablePhysicalMemory /= 1024; // Skip SwapCached, Active, Inactive, HighTotal, HighFree, LowTotal // and LowFree. int i=0; while(i<7) { fgets(buffer, sizeof(buffer), fd); // skip a line ++i; } fscanf(fd,"SwapTotal:%ld kB\n", &this->TotalVirtualMemory); fscanf(fd,"SwapFree:%ld kB\n", &this->AvailableVirtualMemory); this->TotalVirtualMemory /= 1024; this->AvailableVirtualMemory /= 1024; } else { // /proc/meminfo format for kernel older than 2.6.x unsigned long temp; unsigned long cachedMem; unsigned long buffersMem; fgets(buffer, sizeof(buffer), fd); // Skip "total: used:..." fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n", &tp, &temp, &ap, &temp, &buffersMem, &cachedMem); fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av); this->TotalVirtualMemory = tv>>10>>10; this->TotalPhysicalMemory = tp>>10>>10; this->AvailableVirtualMemory = av>>10>>10; this->AvailablePhysicalMemory = (ap+buffersMem+cachedMem)>>10>>10; } fclose( fd ); return 1; #elif __hpux unsigned long tv=0; unsigned long tp=0; unsigned long av=0; unsigned long ap=0; struct pst_static pst; struct pst_dynamic pdy; unsigned long ps = 0; if (pstat_getstatic(&pst, sizeof(pst), (size_t) 1, 0) != -1) { ps = pst.page_size; tp = pst.physical_memory *ps; tv = (pst.physical_memory + pst.pst_maxmem) * ps; if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t) 1, 0) != -1) { ap = tp - pdy.psd_rm * ps; av = tv - pdy.psd_vm; this->TotalVirtualMemory = tv>>10>>10; this->TotalPhysicalMemory = tp>>10>>10; this->AvailableVirtualMemory = av>>10>>10; this->AvailablePhysicalMemory = ap>>10>>10; return 1; } } return 0; #else return 0; #endif } /** */ unsigned long SystemInformationImplementation::GetTotalVirtualMemory() { return this->TotalVirtualMemory; } /** */ unsigned long SystemInformationImplementation::GetAvailableVirtualMemory() { return this->AvailableVirtualMemory; } unsigned long SystemInformationImplementation::GetTotalPhysicalMemory() { return this->TotalPhysicalMemory; } /** */ unsigned long SystemInformationImplementation::GetAvailablePhysicalMemory() { return this->AvailablePhysicalMemory; } /** Get Cycle differences */ LongLong SystemInformationImplementation::GetCyclesDifference (DELAY_FUNC DelayFunction, unsigned int uiParameter) { #if USE_ASM_INSTRUCTIONS unsigned int edx1, eax1; unsigned int edx2, eax2; // Calculate the frequency of the CPU instructions. __try { _asm { push uiParameter ; push parameter param mov ebx, DelayFunction ; store func in ebx RDTSC_INSTRUCTION mov esi, eax ; esi = eax mov edi, edx ; edi = edx call ebx ; call the delay functions RDTSC_INSTRUCTION pop ebx mov edx2, edx ; edx2 = edx mov eax2, eax ; eax2 = eax mov edx1, edi ; edx2 = edi mov eax1, esi ; eax2 = esi } } __except(1) { return -1; } return ((((__int64) edx2 << 32) + eax2) - (((__int64) edx1 << 32) + eax1)); #else (void)DelayFunction; (void)uiParameter; return -1; #endif } /** Compute the delay overhead */ void SystemInformationImplementation::DelayOverhead(unsigned int uiMS) { #if _WIN32 LARGE_INTEGER Frequency, StartCounter, EndCounter; __int64 x; // Get the frequency of the high performance counter. if(!QueryPerformanceFrequency (&Frequency)) { return; } x = Frequency.QuadPart / 1000 * uiMS; // Get the starting position of the counter. QueryPerformanceCounter (&StartCounter); do { // Get the ending position of the counter. QueryPerformanceCounter (&EndCounter); } while (EndCounter.QuadPart - StartCounter.QuadPart == x); #endif (void)uiMS; } /** Return the number of logical CPU per physical CPUs Works only for windows */ unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void) { unsigned int Regebx = 0; #if USE_ASM_INSTRUCTIONS if (!this->IsHyperThreadingSupported()) { return (unsigned char) 1; // HT not supported } __asm { mov eax, 1 cpuid mov Regebx, ebx } #endif return (unsigned char) ((Regebx & NUM_LOGICAL_BITS) >> 16); } /** Works only for windows */ unsigned int SystemInformationImplementation::IsHyperThreadingSupported() { #if USE_ASM_INSTRUCTIONS unsigned int Regedx = 0, Regeax = 0, VendorId[3] = {0, 0, 0}; __try // Verify cpuid instruction is supported { __asm { xor eax, eax // call cpuid with eax = 0 cpuid // Get vendor id string mov VendorId, ebx mov VendorId + 4, edx mov VendorId + 8, ecx mov eax, 1 // call cpuid with eax = 1 cpuid mov Regeax, eax // eax contains family processor type mov Regedx, edx // edx has info about the availability of hyper-Threading } } __except (EXCEPTION_EXECUTE_HANDLER) { return(0); // cpuid is unavailable } if (((Regeax & FAMILY_ID) == PENTIUM4_ID) || (Regeax & EXT_FAMILY_ID)) { if (VendorId[0] == 'uneG') { if (VendorId[1] == 'Ieni') { if (VendorId[2] == 'letn') { return(Regedx & HT_BIT); // Genuine Intel with hyper-Threading technology } } } } #endif return 0; // Not genuine Intel processor } /** Return the APIC Id. Works only for windows. */ unsigned char SystemInformationImplementation::GetAPICId() { unsigned int Regebx = 0; #if USE_ASM_INSTRUCTIONS if (!this->IsHyperThreadingSupported()) { return (unsigned char) -1; // HT not supported } // Logical processor = 1 __asm { mov eax, 1 cpuid mov Regebx, ebx } #endif return (unsigned char) ((Regebx & INITIAL_APIC_ID_BITS) >> 24); } /** Count the number of CPUs. Works only on windows. */ int SystemInformationImplementation::CPUCount() { #if _WIN32 unsigned char StatusFlag = 0; SYSTEM_INFO info; this->NumberOfPhysicalCPU = 0; this->NumberOfLogicalCPU = 0; info.dwNumberOfProcessors = 0; GetSystemInfo (&info); // Number of physical processors in a non-Intel system // or in a 32-bit Intel system with Hyper-Threading technology disabled this->NumberOfPhysicalCPU = (unsigned char) info.dwNumberOfProcessors; if (this->IsHyperThreadingSupported()) { unsigned char HT_Enabled = 0; this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU(); if (this->NumberOfLogicalCPU >= 1) // >1 Doesn't mean HT is enabled in the BIOS { HANDLE hCurrentProcessHandle; #ifndef _WIN64 # define DWORD_PTR DWORD #endif DWORD_PTR dwProcessAffinity; DWORD_PTR dwSystemAffinity; DWORD dwAffinityMask; // Calculate the appropriate shifts and mask based on the // number of logical processors. unsigned int i = 1; unsigned char PHY_ID_MASK = 0xFF; //unsigned char PHY_ID_SHIFT = 0; while (i < this->NumberOfLogicalCPU) { i *= 2; PHY_ID_MASK <<= 1; // PHY_ID_SHIFT++; } hCurrentProcessHandle = GetCurrentProcess(); GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity, &dwSystemAffinity); // Check if available process affinity mask is equal to the // available system affinity mask if (dwProcessAffinity != dwSystemAffinity) { StatusFlag = HT_CANNOT_DETECT; this->NumberOfPhysicalCPU = (unsigned char)-1; return StatusFlag; } dwAffinityMask = 1; while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity) { // Check if this CPU is available if (dwAffinityMask & dwProcessAffinity) { if (SetProcessAffinityMask(hCurrentProcessHandle, dwAffinityMask)) { unsigned char APIC_ID, LOG_ID; Sleep(0); // Give OS time to switch CPU APIC_ID = GetAPICId(); LOG_ID = APIC_ID & ~PHY_ID_MASK; if (LOG_ID != 0) { HT_Enabled = 1; } } } dwAffinityMask = dwAffinityMask << 1; } // Reset the processor affinity SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity); if (this->NumberOfLogicalCPU == 1) // Normal P4 : HT is disabled in hardware { StatusFlag = HT_DISABLED; } else { if (HT_Enabled) { // Total physical processors in a Hyper-Threading enabled system. this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU); StatusFlag = HT_ENABLED; } else { StatusFlag = HT_SUPPORTED_NOT_ENABLED; } } } } else { // Processors do not have Hyper-Threading technology StatusFlag = HT_NOT_CAPABLE; this->NumberOfLogicalCPU = 1; } return StatusFlag; #else return 0; #endif } /** Return the number of logical CPUs on the system */ unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU() { return this->NumberOfLogicalCPU; } /** Return the number of physical CPUs on the system */ unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU() { return this->NumberOfPhysicalCPU; } /** For Mac we Parse the sysctl -a output */ bool SystemInformationImplementation::ParseSysCtl() { // Extract the arguments from the command line kwsys_stl::vector args; args.push_back("sysctl"); args.push_back("-a"); args.push_back(0); this->SysCtlBuffer = this->RunProcess(args); // Parse values for Mac this->TotalPhysicalMemory = atoi(this->ExtractValueFromSysCtl("hw.memsize:").c_str())/(1024*1024); this->TotalVirtualMemory = 0; this->AvailablePhysicalMemory = 0; this->AvailableVirtualMemory = 0; this->NumberOfPhysicalCPU = atoi(this->ExtractValueFromSysCtl("hw.physicalcpu:").c_str()); this->NumberOfLogicalCPU = atoi(this->ExtractValueFromSysCtl("hw.logicalcpu:").c_str()); if(this->NumberOfPhysicalCPU!=0) { this->NumberOfLogicalCPU /= this->NumberOfPhysicalCPU; } this->CPUSpeedInMHz = atoi(this->ExtractValueFromSysCtl("hw.cpufrequency:").c_str()); this->CPUSpeedInMHz /= 1000000; // Chip family this->ChipID.Family = atoi(this->ExtractValueFromSysCtl("machdep.cpu.family:").c_str()); // Chip Vendor strcpy(this->ChipID.Vendor,this->ExtractValueFromSysCtl("machdep.cpu.vendor:").c_str()); this->FindManufacturer(); // Chip Model this->ChipID.Model = atoi(this->ExtractValueFromSysCtl("machdep.cpu.model:").c_str()); this->RetrieveClassicalCPUIdentity(); // Cache size this->Features.L1CacheSize = atoi(this->ExtractValueFromSysCtl("hw.l1icachesize:").c_str()); this->Features.L2CacheSize = atoi(this->ExtractValueFromSysCtl("hw.l2cachesize:").c_str()); return true; } /** Extract a value from sysctl command */ kwsys_stl::string SystemInformationImplementation::ExtractValueFromSysCtl(const char* word) { size_t pos = this->SysCtlBuffer.find(word); if(pos != this->SysCtlBuffer.npos) { pos = this->SysCtlBuffer.find(": ",pos); size_t pos2 = this->SysCtlBuffer.find("\n",pos); if(pos!=this->SysCtlBuffer.npos && pos2!=this->SysCtlBuffer.npos) { return this->SysCtlBuffer.substr(pos+2,pos2-pos-2); } } return ""; } /** Run a given process */ kwsys_stl::string SystemInformationImplementation::RunProcess(kwsys_stl::vector args) { kwsys_stl::string buffer = ""; // Run the application kwsysProcess* gp = kwsysProcess_New(); kwsysProcess_SetCommand(gp, &*args.begin()); kwsysProcess_SetOption(gp,kwsysProcess_Option_HideWindow,1); kwsysProcess_Execute(gp); char* data = NULL; int length; double timeout = 255; while(kwsysProcess_WaitForData(gp,&data,&length,&timeout)) // wait for 1s { for(int i=0;i args; args.clear(); args.push_back("kstat"); args.push_back("-p"); kwsys_stl::string command = arguments; size_t start = command.npos; size_t pos = command.find(' ',0); while(pos!=command.npos) { bool inQuotes = false; // Check if we are between quotes size_t b0 = command.find('"',0); size_t b1 = command.find('"',b0+1); while(b0 != command.npos && b1 != command.npos && b1>b0) { if(pos>b0 && posRunProcess(args); kwsys_stl::string value = ""; for(size_t i=buffer.size()-1;i>0;i--) { if(buffer[i] == ' ' || buffer[i] == '\t') { break; } if(buffer[i] != '\n' && buffer[i] != '\r') { kwsys_stl::string val = value; value = buffer[i]; value += val; } } return value; } /** Querying for system information from Solaris */ bool SystemInformationImplementation::QuerySolarisInfo() { // Parse values this->NumberOfPhysicalCPU = atoi(this->ParseValueFromKStat("-n systethis->misc -s ncpus").c_str()); this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; if(this->NumberOfPhysicalCPU!=0) { this->NumberOfLogicalCPU /= this->NumberOfPhysicalCPU; } this->CPUSpeedInMHz = atoi(this->ParseValueFromKStat("-s clock_MHz").c_str()); // Chip family this->ChipID.Family = 0; // Chip Vendor strcpy(this->ChipID.Vendor,"Sun"); this->FindManufacturer(); // Chip Model sprintf(this->ChipID.ProcessorName,"%s",this->ParseValueFromKStat("-s cpu_type").c_str()); this->ChipID.Model = 0; // Cache size this->Features.L1CacheSize = 0; this->Features.L2CacheSize = 0; char* tail; unsigned long totalMemory = strtoul(this->ParseValueFromKStat("-s physmem").c_str(),&tail,0); this->TotalPhysicalMemory = totalMemory/1024; this->TotalPhysicalMemory *= 8192; this->TotalPhysicalMemory /= 1024; // Undefined values (for now at least) this->TotalVirtualMemory = 0; this->AvailablePhysicalMemory = 0; this->AvailableVirtualMemory = 0; return true; } /** Query the operating system information */ bool SystemInformationImplementation::QueryOSInformation() { #if _WIN32 this->OSName = "Windows"; OSVERSIONINFOEX osvi; BOOL bIsWindows64Bit; BOOL bOsVersionInfoEx; char operatingSystem[256]; // Try calling GetVersionEx using the OSVERSIONINFOEX structure. ZeroMemory (&osvi, sizeof (OSVERSIONINFOEX)); osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOEX); bOsVersionInfoEx = GetVersionEx ((OSVERSIONINFO *) &osvi); if (!bOsVersionInfoEx) { osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO); if (!GetVersionEx ((OSVERSIONINFO *) &osvi)) { return false; } } switch (osvi.dwPlatformId) { case VER_PLATFORM_WIN32_NT: // Test for the product. if (osvi.dwMajorVersion <= 4) { this->OSRelease = "NT"; } if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0) { this->OSRelease = "2000"; } if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease = "XP"; } #ifdef VER_NT_WORKSTATION // Test for product type. if (bOsVersionInfoEx) { if (osvi.wProductType == VER_NT_WORKSTATION) { // VER_SUITE_PERSONAL may not be defined #ifdef VER_SUITE_PERSONAL if (osvi.wSuiteMask & VER_SUITE_PERSONAL) { this->OSRelease += " Personal"; } else { this->OSRelease += " Professional"; } #endif } else if (osvi.wProductType == VER_NT_SERVER) { // Check for .NET Server instead of Windows XP. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease = ".NET"; } // Continue with the type detection. if (osvi.wSuiteMask & VER_SUITE_DATACENTER) { this->OSRelease += " DataCenter Server"; } else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE) { this->OSRelease += " Advanced Server"; } else { this->OSRelease += " Server"; } } sprintf (operatingSystem, "%s(Build %d)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } else #endif // VER_NT_WORKSTATION { HKEY hKey; char szProductType[80]; DWORD dwBufLen; // Query the registry to retrieve information. RegOpenKeyEx (HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey); RegQueryValueEx (hKey, "ProductType", NULL, NULL, (LPBYTE) szProductType, &dwBufLen); RegCloseKey (hKey); if (lstrcmpi ("WINNT", szProductType) == 0) { this->OSRelease += " Professional"; } if (lstrcmpi ("LANMANNT", szProductType) == 0) { // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease += " Standard Server"; } else { this->OSRelease += " Server"; } } if (lstrcmpi ("SERVERNT", szProductType) == 0) { // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease += " Enterprise Server"; } else { this->OSRelease += " Advanced Server"; } } } // Display version, service pack (if any), and build number. if (osvi.dwMajorVersion <= 4) { // NB: NT 4.0 and earlier. sprintf (operatingSystem, "version %d.%d %s (Build %d)", osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { // Windows XP and .NET server. typedef BOOL (CALLBACK* LPFNPROC) (HANDLE, BOOL *); HINSTANCE hKernelDLL; LPFNPROC DLLProc; // Load the Kernel32 DLL. hKernelDLL = LoadLibrary ("kernel32"); if (hKernelDLL != NULL) { // Only XP and .NET Server support IsWOW64Process so... Load dynamically! DLLProc = (LPFNPROC) GetProcAddress (hKernelDLL, "IsWow64Process"); // If the function address is valid, call the function. if (DLLProc != NULL) (DLLProc) (GetCurrentProcess (), &bIsWindows64Bit); else bIsWindows64Bit = false; // Free the DLL module. FreeLibrary (hKernelDLL); } } else { // Windows 2000 and everything else. sprintf (operatingSystem,"%s(Build %d)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } break; case VER_PLATFORM_WIN32_WINDOWS: // Test for the product. if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0) { this->OSRelease = "95"; if(osvi.szCSDVersion[1] == 'C') { this->OSRelease += "OSR 2.5"; } else if(osvi.szCSDVersion[1] == 'B') { this->OSRelease += "OSR 2"; } } if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10) { this->OSRelease = "98"; if (osvi.szCSDVersion[1] == 'A' ) { this->OSRelease += "SE"; } } if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90) { this->OSRelease = "Me"; } break; case VER_PLATFORM_WIN32s: this->OSRelease = "Win32s"; break; default: this->OSRelease = "Unknown"; break; } // Get the hostname WORD wVersionRequested; WSADATA wsaData; char name[255]; wVersionRequested = MAKEWORD(2,0); if ( WSAStartup( wVersionRequested, &wsaData ) == 0 ) { gethostname(name,sizeof(name)); WSACleanup( ); } this->Hostname = name; #else struct utsname unameInfo; int errorFlag = uname(&unameInfo); if(errorFlag == 0) { this->OSName = unameInfo.sysname; this->Hostname = unameInfo.nodename; this->OSRelease = unameInfo.release; this->OSVersion = unameInfo.version; this->OSPlatform = unameInfo.machine; } #endif return true; } /** Return true if the machine is 64 bits */ bool SystemInformationImplementation::Is64Bits() { return (sizeof(void*) == 8); } } // namespace @KWSYS_NAMESPACE@