/*- * Copyright (c) 2003-2010 Tim Kientzle * Copyright (c) 2012 Michihiro NAKAJIMA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "archive_platform.h" __FBSDID("$FreeBSD$"); #if !defined(_WIN32) || defined(__CYGWIN__) #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_ACL_H #include #endif #ifdef HAVE_SYS_EXTATTR_H #include #endif #if defined(HAVE_SYS_XATTR_H) #include #elif defined(HAVE_ATTR_XATTR_H) #include #endif #ifdef HAVE_SYS_EA_H #include #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #ifdef HAVE_SYS_STAT_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_UTIME_H #include #endif #ifdef HAVE_COPYFILE_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_GRP_H #include #endif #ifdef HAVE_LANGINFO_H #include #endif #ifdef HAVE_LINUX_FS_H #include /* for Linux file flags */ #endif /* * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h. * As the include guards don't agree, the order of include is important. */ #ifdef HAVE_LINUX_EXT2_FS_H #include /* for Linux file flags */ #endif #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__) #include /* Linux file flags, broken on Cygwin */ #endif #ifdef HAVE_LIMITS_H #include #endif #ifdef HAVE_PWD_H #include #endif #include #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_UTIME_H #include #endif #ifdef F_GETTIMES /* Tru64 specific */ #include #endif /* * Macro to cast st_mtime and time_t to an int64 so that 2 numbers can reliably be compared. * * It assumes that the input is an integer type of no more than 64 bits. * If the number is less than zero, t must be a signed type, so it fits in * int64_t. Otherwise, it's a nonnegative value so we can cast it to uint64_t * without loss. But it could be a large unsigned value, so we have to clip it * to INT64_MAX.* */ #define to_int64_time(t) \ ((t) < 0 ? (int64_t)(t) : (uint64_t)(t) > (uint64_t)INT64_MAX ? INT64_MAX : (int64_t)(t)) #if __APPLE__ #include #if TARGET_OS_MAC && !TARGET_OS_EMBEDDED && HAVE_QUARANTINE_H #include #define HAVE_QUARANTINE 1 #endif #endif #ifdef HAVE_ZLIB_H #include #endif /* TODO: Support Mac OS 'quarantine' feature. This is really just a * standard tag to mark files that have been downloaded as "tainted". * On Mac OS, we should mark the extracted files as tainted if the * archive being read was tainted. Windows has a similar feature; we * should investigate ways to support this generically. */ #include "archive.h" #include "archive_acl_private.h" #include "archive_string.h" #include "archive_endian.h" #include "archive_entry.h" #include "archive_private.h" #include "archive_write_disk_private.h" #ifndef O_BINARY #define O_BINARY 0 #endif #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif /* Ignore non-int O_NOFOLLOW constant. */ /* gnulib's fcntl.h does this on AIX, but it seems practical everywhere */ #if defined O_NOFOLLOW && !(INT_MIN <= O_NOFOLLOW && O_NOFOLLOW <= INT_MAX) #undef O_NOFOLLOW #endif #ifndef O_NOFOLLOW #define O_NOFOLLOW 0 #endif struct fixup_entry { struct fixup_entry *next; struct archive_acl acl; mode_t mode; int64_t atime; int64_t birthtime; int64_t mtime; int64_t ctime; unsigned long atime_nanos; unsigned long birthtime_nanos; unsigned long mtime_nanos; unsigned long ctime_nanos; unsigned long fflags_set; size_t mac_metadata_size; void *mac_metadata; int fixup; /* bitmask of what needs fixing */ char *name; }; /* * We use a bitmask to track which operations remain to be done for * this file. In particular, this helps us avoid unnecessary * operations when it's possible to take care of one step as a * side-effect of another. For example, mkdir() can specify the mode * for the newly-created object but symlink() cannot. This means we * can skip chmod() if mkdir() succeeded, but we must explicitly * chmod() if we're trying to create a directory that already exists * (mkdir() failed) or if we're restoring a symlink. Similarly, we * need to verify UID/GID before trying to restore SUID/SGID bits; * that verification can occur explicitly through a stat() call or * implicitly because of a successful chown() call. */ #define TODO_MODE_FORCE 0x40000000 #define TODO_MODE_BASE 0x20000000 #define TODO_SUID 0x10000000 #define TODO_SUID_CHECK 0x08000000 #define TODO_SGID 0x04000000 #define TODO_SGID_CHECK 0x02000000 #define TODO_APPLEDOUBLE 0x01000000 #define TODO_MODE (TODO_MODE_BASE|TODO_SUID|TODO_SGID) #define TODO_TIMES ARCHIVE_EXTRACT_TIME #define TODO_OWNER ARCHIVE_EXTRACT_OWNER #define TODO_FFLAGS ARCHIVE_EXTRACT_FFLAGS #define TODO_ACLS ARCHIVE_EXTRACT_ACL #define TODO_XATTR ARCHIVE_EXTRACT_XATTR #define TODO_MAC_METADATA ARCHIVE_EXTRACT_MAC_METADATA #define TODO_HFS_COMPRESSION ARCHIVE_EXTRACT_HFS_COMPRESSION_FORCED struct archive_write_disk { struct archive archive; mode_t user_umask; struct fixup_entry *fixup_list; struct fixup_entry *current_fixup; int64_t user_uid; int skip_file_set; int64_t skip_file_dev; int64_t skip_file_ino; time_t start_time; int64_t (*lookup_gid)(void *private, const char *gname, int64_t gid); void (*cleanup_gid)(void *private); void *lookup_gid_data; int64_t (*lookup_uid)(void *private, const char *uname, int64_t uid); void (*cleanup_uid)(void *private); void *lookup_uid_data; /* * Full path of last file to satisfy symlink checks. */ struct archive_string path_safe; /* * Cached stat data from disk for the current entry. * If this is valid, pst points to st. Otherwise, * pst is null. */ struct stat st; struct stat *pst; /* Information about the object being restored right now. */ struct archive_entry *entry; /* Entry being extracted. */ char *name; /* Name of entry, possibly edited. */ struct archive_string _name_data; /* backing store for 'name' */ /* Tasks remaining for this object. */ int todo; /* Tasks deferred until end-of-archive. */ int deferred; /* Options requested by the client. */ int flags; /* Handle for the file we're restoring. */ int fd; /* Current offset for writing data to the file. */ int64_t offset; /* Last offset actually written to disk. */ int64_t fd_offset; /* Total bytes actually written to files. */ int64_t total_bytes_written; /* Maximum size of file, -1 if unknown. */ int64_t filesize; /* Dir we were in before this restore; only for deep paths. */ int restore_pwd; /* Mode we should use for this entry; affected by _PERM and umask. */ mode_t mode; /* UID/GID to use in restoring this entry. */ int64_t uid; int64_t gid; /* * HFS+ Compression. */ /* Xattr "com.apple.decmpfs". */ uint32_t decmpfs_attr_size; unsigned char *decmpfs_header_p; /* ResourceFork set options used for fsetxattr. */ int rsrc_xattr_options; /* Xattr "com.apple.ResourceFork". */ unsigned char *resource_fork; size_t resource_fork_allocated_size; unsigned int decmpfs_block_count; uint32_t *decmpfs_block_info; /* Buffer for compressed data. */ unsigned char *compressed_buffer; size_t compressed_buffer_size; size_t compressed_buffer_remaining; /* The offset of the ResourceFork where compressed data will * be placed. */ uint32_t compressed_rsrc_position; uint32_t compressed_rsrc_position_v; /* Buffer for uncompressed data. */ char *uncompressed_buffer; size_t block_remaining_bytes; size_t file_remaining_bytes; #ifdef HAVE_ZLIB_H z_stream stream; int stream_valid; int decmpfs_compression_level; #endif }; /* * Default mode for dirs created automatically (will be modified by umask). * Note that POSIX specifies 0777 for implicitly-created dirs, "modified * by the process' file creation mask." */ #define DEFAULT_DIR_MODE 0777 /* * Dir modes are restored in two steps: During the extraction, the permissions * in the archive are modified to match the following limits. During * the post-extract fixup pass, the permissions from the archive are * applied. */ #define MINIMUM_DIR_MODE 0700 #define MAXIMUM_DIR_MODE 0775 /* * Maximum uncompressed size of a decmpfs block. */ #define MAX_DECMPFS_BLOCK_SIZE (64 * 1024) /* * HFS+ compression type. */ #define CMP_XATTR 3/* Compressed data in xattr. */ #define CMP_RESOURCE_FORK 4/* Compressed data in resource fork. */ /* * HFS+ compression resource fork. */ #define RSRC_H_SIZE 260 /* Base size of Resource fork header. */ #define RSRC_F_SIZE 50 /* Size of Resource fork footer. */ /* Size to write compressed data to resource fork. */ #define COMPRESSED_W_SIZE (64 * 1024) /* decmpfs definitions. */ #define MAX_DECMPFS_XATTR_SIZE 3802 #ifndef DECMPFS_XATTR_NAME #define DECMPFS_XATTR_NAME "com.apple.decmpfs" #endif #define DECMPFS_MAGIC 0x636d7066 #define DECMPFS_COMPRESSION_MAGIC 0 #define DECMPFS_COMPRESSION_TYPE 4 #define DECMPFS_UNCOMPRESSED_SIZE 8 #define DECMPFS_HEADER_SIZE 16 #define HFS_BLOCKS(s) ((s) >> 12) static void fsobj_error(int *, struct archive_string *, int, const char *, const char *); static int check_symlinks_fsobj(char *, int *, struct archive_string *, int); static int check_symlinks(struct archive_write_disk *); static int create_filesystem_object(struct archive_write_disk *); static struct fixup_entry *current_fixup(struct archive_write_disk *, const char *pathname); #if defined(HAVE_FCHDIR) && defined(PATH_MAX) static void edit_deep_directories(struct archive_write_disk *ad); #endif static int cleanup_pathname_fsobj(char *, int *, struct archive_string *, int); static int cleanup_pathname(struct archive_write_disk *); static int create_dir(struct archive_write_disk *, char *); static int create_parent_dir(struct archive_write_disk *, char *); static ssize_t hfs_write_data_block(struct archive_write_disk *, const char *, size_t); static int fixup_appledouble(struct archive_write_disk *, const char *); static int older(struct stat *, struct archive_entry *); static int restore_entry(struct archive_write_disk *); static int set_mac_metadata(struct archive_write_disk *, const char *, const void *, size_t); static int set_xattrs(struct archive_write_disk *); static int clear_nochange_fflags(struct archive_write_disk *); static int set_fflags(struct archive_write_disk *); static int set_fflags_platform(struct archive_write_disk *, int fd, const char *name, mode_t mode, unsigned long fflags_set, unsigned long fflags_clear); static int set_ownership(struct archive_write_disk *); static int set_mode(struct archive_write_disk *, int mode); static int set_time(int, int, const char *, time_t, long, time_t, long); static int set_times(struct archive_write_disk *, int, int, const char *, time_t, long, time_t, long, time_t, long, time_t, long); static int set_times_from_entry(struct archive_write_disk *); static struct fixup_entry *sort_dir_list(struct fixup_entry *p); static ssize_t write_data_block(struct archive_write_disk *, const char *, size_t); static struct archive_vtable *archive_write_disk_vtable(void); static int _archive_write_disk_close(struct archive *); static int _archive_write_disk_free(struct archive *); static int _archive_write_disk_header(struct archive *, struct archive_entry *); static int64_t _archive_write_disk_filter_bytes(struct archive *, int); static int _archive_write_disk_finish_entry(struct archive *); static ssize_t _archive_write_disk_data(struct archive *, const void *, size_t); static ssize_t _archive_write_disk_data_block(struct archive *, const void *, size_t, int64_t); static int lazy_stat(struct archive_write_disk *a) { if (a->pst != NULL) { /* Already have stat() data available. */ return (ARCHIVE_OK); } #ifdef HAVE_FSTAT if (a->fd >= 0 && fstat(a->fd, &a->st) == 0) { a->pst = &a->st; return (ARCHIVE_OK); } #endif /* * XXX At this point, symlinks should not be hit, otherwise * XXX a race occurred. Do we want to check explicitly for that? */ if (lstat(a->name, &a->st) == 0) { a->pst = &a->st; return (ARCHIVE_OK); } archive_set_error(&a->archive, errno, "Couldn't stat file"); return (ARCHIVE_WARN); } static struct archive_vtable * archive_write_disk_vtable(void) { static struct archive_vtable av; static int inited = 0; if (!inited) { av.archive_close = _archive_write_disk_close; av.archive_filter_bytes = _archive_write_disk_filter_bytes; av.archive_free = _archive_write_disk_free; av.archive_write_header = _archive_write_disk_header; av.archive_write_finish_entry = _archive_write_disk_finish_entry; av.archive_write_data = _archive_write_disk_data; av.archive_write_data_block = _archive_write_disk_data_block; inited = 1; } return (&av); } static int64_t _archive_write_disk_filter_bytes(struct archive *_a, int n) { struct archive_write_disk *a = (struct archive_write_disk *)_a; (void)n; /* UNUSED */ if (n == -1 || n == 0) return (a->total_bytes_written); return (-1); } int archive_write_disk_set_options(struct archive *_a, int flags) { struct archive_write_disk *a = (struct archive_write_disk *)_a; a->flags = flags; return (ARCHIVE_OK); } /* * Extract this entry to disk. * * TODO: Validate hardlinks. According to the standards, we're * supposed to check each extracted hardlink and squawk if it refers * to a file that we didn't restore. I'm not entirely convinced this * is a good idea, but more importantly: Is there any way to validate * hardlinks without keeping a complete list of filenames from the * entire archive?? Ugh. * */ static int _archive_write_disk_header(struct archive *_a, struct archive_entry *entry) { struct archive_write_disk *a = (struct archive_write_disk *)_a; struct fixup_entry *fe; int ret, r; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_write_disk_header"); archive_clear_error(&a->archive); if (a->archive.state & ARCHIVE_STATE_DATA) { r = _archive_write_disk_finish_entry(&a->archive); if (r == ARCHIVE_FATAL) return (r); } /* Set up for this particular entry. */ a->pst = NULL; a->current_fixup = NULL; a->deferred = 0; if (a->entry) { archive_entry_free(a->entry); a->entry = NULL; } a->entry = archive_entry_clone(entry); a->fd = -1; a->fd_offset = 0; a->offset = 0; a->restore_pwd = -1; a->uid = a->user_uid; a->mode = archive_entry_mode(a->entry); if (archive_entry_size_is_set(a->entry)) a->filesize = archive_entry_size(a->entry); else a->filesize = -1; archive_strcpy(&(a->_name_data), archive_entry_pathname(a->entry)); a->name = a->_name_data.s; archive_clear_error(&a->archive); /* * Clean up the requested path. This is necessary for correct * dir restores; the dir restore logic otherwise gets messed * up by nonsense like "dir/.". */ ret = cleanup_pathname(a); if (ret != ARCHIVE_OK) return (ret); /* * Query the umask so we get predictable mode settings. * This gets done on every call to _write_header in case the * user edits their umask during the extraction for some * reason. */ umask(a->user_umask = umask(0)); /* Figure out what we need to do for this entry. */ a->todo = TODO_MODE_BASE; if (a->flags & ARCHIVE_EXTRACT_PERM) { a->todo |= TODO_MODE_FORCE; /* Be pushy about permissions. */ /* * SGID requires an extra "check" step because we * cannot easily predict the GID that the system will * assign. (Different systems assign GIDs to files * based on a variety of criteria, including process * credentials and the gid of the enclosing * directory.) We can only restore the SGID bit if * the file has the right GID, and we only know the * GID if we either set it (see set_ownership) or if * we've actually called stat() on the file after it * was restored. Since there are several places at * which we might verify the GID, we need a TODO bit * to keep track. */ if (a->mode & S_ISGID) a->todo |= TODO_SGID | TODO_SGID_CHECK; /* * Verifying the SUID is simpler, but can still be * done in multiple ways, hence the separate "check" bit. */ if (a->mode & S_ISUID) a->todo |= TODO_SUID | TODO_SUID_CHECK; } else { /* * User didn't request full permissions, so don't * restore SUID, SGID bits and obey umask. */ a->mode &= ~S_ISUID; a->mode &= ~S_ISGID; a->mode &= ~S_ISVTX; a->mode &= ~a->user_umask; } if (a->flags & ARCHIVE_EXTRACT_OWNER) a->todo |= TODO_OWNER; if (a->flags & ARCHIVE_EXTRACT_TIME) a->todo |= TODO_TIMES; if (a->flags & ARCHIVE_EXTRACT_ACL) { if (archive_entry_filetype(a->entry) == AE_IFDIR) a->deferred |= TODO_ACLS; else a->todo |= TODO_ACLS; } if (a->flags & ARCHIVE_EXTRACT_MAC_METADATA) { if (archive_entry_filetype(a->entry) == AE_IFDIR) a->deferred |= TODO_MAC_METADATA; else a->todo |= TODO_MAC_METADATA; } #if defined(__APPLE__) && defined(UF_COMPRESSED) && defined(HAVE_ZLIB_H) if ((a->flags & ARCHIVE_EXTRACT_NO_HFS_COMPRESSION) == 0) { unsigned long set, clear; archive_entry_fflags(a->entry, &set, &clear); if ((set & ~clear) & UF_COMPRESSED) { a->todo |= TODO_HFS_COMPRESSION; a->decmpfs_block_count = (unsigned)-1; } } if ((a->flags & ARCHIVE_EXTRACT_HFS_COMPRESSION_FORCED) != 0 && (a->mode & AE_IFMT) == AE_IFREG && a->filesize > 0) { a->todo |= TODO_HFS_COMPRESSION; a->decmpfs_block_count = (unsigned)-1; } { const char *p; /* Check if the current file name is a type of the * resource fork file. */ p = strrchr(a->name, '/'); if (p == NULL) p = a->name; else p++; if (p[0] == '.' && p[1] == '_') { /* Do not compress "._XXX" files. */ a->todo &= ~TODO_HFS_COMPRESSION; if (a->filesize > 0) a->todo |= TODO_APPLEDOUBLE; } } #endif if (a->flags & ARCHIVE_EXTRACT_XATTR) a->todo |= TODO_XATTR; if (a->flags & ARCHIVE_EXTRACT_FFLAGS) a->todo |= TODO_FFLAGS; if (a->flags & ARCHIVE_EXTRACT_SECURE_SYMLINKS) { ret = check_symlinks(a); if (ret != ARCHIVE_OK) return (ret); } #if defined(HAVE_FCHDIR) && defined(PATH_MAX) /* If path exceeds PATH_MAX, shorten the path. */ edit_deep_directories(a); #endif ret = restore_entry(a); #if defined(__APPLE__) && defined(UF_COMPRESSED) && defined(HAVE_ZLIB_H) /* * Check if the filesystem the file is restoring on supports * HFS+ Compression. If not, cancel HFS+ Compression. */ if (a->todo | TODO_HFS_COMPRESSION) { /* * NOTE: UF_COMPRESSED is ignored even if the filesystem * supports HFS+ Compression because the file should * have at least an extended attribute "com.apple.decmpfs" * before the flag is set to indicate that the file have * been compressed. If the filesystem does not support * HFS+ Compression the system call will fail. */ if (a->fd < 0 || fchflags(a->fd, UF_COMPRESSED) != 0) a->todo &= ~TODO_HFS_COMPRESSION; } #endif /* * TODO: There are rumours that some extended attributes must * be restored before file data is written. If this is true, * then we either need to write all extended attributes both * before and after restoring the data, or find some rule for * determining which must go first and which last. Due to the * many ways people are using xattrs, this may prove to be an * intractable problem. */ #ifdef HAVE_FCHDIR /* If we changed directory above, restore it here. */ if (a->restore_pwd >= 0) { r = fchdir(a->restore_pwd); if (r != 0) { archive_set_error(&a->archive, errno, "chdir() failure"); ret = ARCHIVE_FATAL; } close(a->restore_pwd); a->restore_pwd = -1; } #endif /* * Fixup uses the unedited pathname from archive_entry_pathname(), * because it is relative to the base dir and the edited path * might be relative to some intermediate dir as a result of the * deep restore logic. */ if (a->deferred & TODO_MODE) { fe = current_fixup(a, archive_entry_pathname(entry)); if (fe == NULL) return (ARCHIVE_FATAL); fe->fixup |= TODO_MODE_BASE; fe->mode = a->mode; } if ((a->deferred & TODO_TIMES) && (archive_entry_mtime_is_set(entry) || archive_entry_atime_is_set(entry))) { fe = current_fixup(a, archive_entry_pathname(entry)); if (fe == NULL) return (ARCHIVE_FATAL); fe->mode = a->mode; fe->fixup |= TODO_TIMES; if (archive_entry_atime_is_set(entry)) { fe->atime = archive_entry_atime(entry); fe->atime_nanos = archive_entry_atime_nsec(entry); } else { /* If atime is unset, use start time. */ fe->atime = a->start_time; fe->atime_nanos = 0; } if (archive_entry_mtime_is_set(entry)) { fe->mtime = archive_entry_mtime(entry); fe->mtime_nanos = archive_entry_mtime_nsec(entry); } else { /* If mtime is unset, use start time. */ fe->mtime = a->start_time; fe->mtime_nanos = 0; } if (archive_entry_birthtime_is_set(entry)) { fe->birthtime = archive_entry_birthtime(entry); fe->birthtime_nanos = archive_entry_birthtime_nsec( entry); } else { /* If birthtime is unset, use mtime. */ fe->birthtime = fe->mtime; fe->birthtime_nanos = fe->mtime_nanos; } } if (a->deferred & TODO_ACLS) { fe = current_fixup(a, archive_entry_pathname(entry)); if (fe == NULL) return (ARCHIVE_FATAL); fe->fixup |= TODO_ACLS; archive_acl_copy(&fe->acl, archive_entry_acl(entry)); } if (a->deferred & TODO_MAC_METADATA) { const void *metadata; size_t metadata_size; metadata = archive_entry_mac_metadata(a->entry, &metadata_size); if (metadata != NULL && metadata_size > 0) { fe = current_fixup(a, archive_entry_pathname(entry)); if (fe == NULL) return (ARCHIVE_FATAL); fe->mac_metadata = malloc(metadata_size); if (fe->mac_metadata != NULL) { memcpy(fe->mac_metadata, metadata, metadata_size); fe->mac_metadata_size = metadata_size; fe->fixup |= TODO_MAC_METADATA; } } } if (a->deferred & TODO_FFLAGS) { fe = current_fixup(a, archive_entry_pathname(entry)); if (fe == NULL) return (ARCHIVE_FATAL); fe->fixup |= TODO_FFLAGS; /* TODO: Complete this.. defer fflags from below. */ } /* We've created the object and are ready to pour data into it. */ if (ret >= ARCHIVE_WARN) a->archive.state = ARCHIVE_STATE_DATA; /* * If it's not open, tell our client not to try writing. * In particular, dirs, links, etc, don't get written to. */ if (a->fd < 0) { archive_entry_set_size(entry, 0); a->filesize = 0; } return (ret); } int archive_write_disk_set_skip_file(struct archive *_a, int64_t d, int64_t i) { struct archive_write_disk *a = (struct archive_write_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_write_disk_set_skip_file"); a->skip_file_set = 1; a->skip_file_dev = d; a->skip_file_ino = i; return (ARCHIVE_OK); } static ssize_t write_data_block(struct archive_write_disk *a, const char *buff, size_t size) { uint64_t start_size = size; ssize_t bytes_written = 0; ssize_t block_size = 0, bytes_to_write; if (size == 0) return (ARCHIVE_OK); if (a->filesize == 0 || a->fd < 0) { archive_set_error(&a->archive, 0, "Attempt to write to an empty file"); return (ARCHIVE_WARN); } if (a->flags & ARCHIVE_EXTRACT_SPARSE) { #if HAVE_STRUCT_STAT_ST_BLKSIZE int r; if ((r = lazy_stat(a)) != ARCHIVE_OK) return (r); block_size = a->pst->st_blksize; #else /* XXX TODO XXX Is there a more appropriate choice here ? */ /* This needn't match the filesystem allocation size. */ block_size = 16*1024; #endif } /* If this write would run beyond the file size, truncate it. */ if (a->filesize >= 0 && (int64_t)(a->offset + size) > a->filesize) start_size = size = (size_t)(a->filesize - a->offset); /* Write the data. */ while (size > 0) { if (block_size == 0) { bytes_to_write = size; } else { /* We're sparsifying the file. */ const char *p, *end; int64_t block_end; /* Skip leading zero bytes. */ for (p = buff, end = buff + size; p < end; ++p) { if (*p != '\0') break; } a->offset += p - buff; size -= p - buff; buff = p; if (size == 0) break; /* Calculate next block boundary after offset. */ block_end = (a->offset / block_size + 1) * block_size; /* If the adjusted write would cross block boundary, * truncate it to the block boundary. */ bytes_to_write = size; if (a->offset + bytes_to_write > block_end) bytes_to_write = block_end - a->offset; } /* Seek if necessary to the specified offset. */ if (a->offset != a->fd_offset) { if (lseek(a->fd, a->offset, SEEK_SET) < 0) { archive_set_error(&a->archive, errno, "Seek failed"); return (ARCHIVE_FATAL); } a->fd_offset = a->offset; } bytes_written = write(a->fd, buff, bytes_to_write); if (bytes_written < 0) { archive_set_error(&a->archive, errno, "Write failed"); return (ARCHIVE_WARN); } buff += bytes_written; size -= bytes_written; a->total_bytes_written += bytes_written; a->offset += bytes_written; a->fd_offset = a->offset; } return (start_size - size); } #if defined(__APPLE__) && defined(UF_COMPRESSED) && defined(HAVE_SYS_XATTR_H)\ && defined(HAVE_ZLIB_H) /* * Set UF_COMPRESSED file flag. * This have to be called after hfs_write_decmpfs() because if the * file does not have "com.apple.decmpfs" xattr the flag is ignored. */ static int hfs_set_compressed_fflag(struct archive_write_disk *a) { int r; if ((r = lazy_stat(a)) != ARCHIVE_OK) return (r); a->st.st_flags |= UF_COMPRESSED; if (fchflags(a->fd, a->st.st_flags) != 0) { archive_set_error(&a->archive, errno, "Failed to set UF_COMPRESSED file flag"); return (ARCHIVE_WARN); } return (ARCHIVE_OK); } /* * HFS+ Compression decmpfs * * +------------------------------+ +0 * | Magic(LE 4 bytes) | * +------------------------------+ * | Type(LE 4 bytes) | * +------------------------------+ * | Uncompressed size(LE 8 bytes)| * +------------------------------+ +16 * | | * | Compressed data | * | (Placed only if Type == 3) | * | | * +------------------------------+ +3802 = MAX_DECMPFS_XATTR_SIZE * * Type is 3: decmpfs has compressed data. * Type is 4: Resource Fork has compressed data. */ /* * Write "com.apple.decmpfs" */ static int hfs_write_decmpfs(struct archive_write_disk *a) { int r; uint32_t compression_type; r = fsetxattr(a->fd, DECMPFS_XATTR_NAME, a->decmpfs_header_p, a->decmpfs_attr_size, 0, 0); if (r < 0) { archive_set_error(&a->archive, errno, "Cannot restore xattr:%s", DECMPFS_XATTR_NAME); compression_type = archive_le32dec( &a->decmpfs_header_p[DECMPFS_COMPRESSION_TYPE]); if (compression_type == CMP_RESOURCE_FORK) fremovexattr(a->fd, XATTR_RESOURCEFORK_NAME, XATTR_SHOWCOMPRESSION); return (ARCHIVE_WARN); } return (ARCHIVE_OK); } /* * HFS+ Compression Resource Fork * * +-----------------------------+ * | Header(260 bytes) | * +-----------------------------+ * | Block count(LE 4 bytes) | * +-----------------------------+ --+ * +-- | Offset (LE 4 bytes) | | * | | [distance from Block count] | | Block 0 * | +-----------------------------+ | * | | Compressed size(LE 4 bytes) | | * | +-----------------------------+ --+ * | | | * | | .................. | * | | | * | +-----------------------------+ --+ * | | Offset (LE 4 bytes) | | * | +-----------------------------+ | Block (Block count -1) * | | Compressed size(LE 4 bytes) | | * +-> +-----------------------------+ --+ * | Compressed data(n bytes) | Block 0 * +-----------------------------+ * | | * | .................. | * | | * +-----------------------------+ * | Compressed data(n bytes) | Block (Block count -1) * +-----------------------------+ * | Footer(50 bytes) | * +-----------------------------+ * */ /* * Write the header of "com.apple.ResourceFork" */ static int hfs_write_resource_fork(struct archive_write_disk *a, unsigned char *buff, size_t bytes, uint32_t position) { int ret; ret = fsetxattr(a->fd, XATTR_RESOURCEFORK_NAME, buff, bytes, position, a->rsrc_xattr_options); if (ret < 0) { archive_set_error(&a->archive, errno, "Cannot restore xattr: %s at %u pos %u bytes", XATTR_RESOURCEFORK_NAME, (unsigned)position, (unsigned)bytes); return (ARCHIVE_WARN); } a->rsrc_xattr_options &= ~XATTR_CREATE; return (ARCHIVE_OK); } static int hfs_write_compressed_data(struct archive_write_disk *a, size_t bytes_compressed) { int ret; ret = hfs_write_resource_fork(a, a->compressed_buffer, bytes_compressed, a->compressed_rsrc_position); if (ret == ARCHIVE_OK) a->compressed_rsrc_position += bytes_compressed; return (ret); } static int hfs_write_resource_fork_header(struct archive_write_disk *a) { unsigned char *buff; uint32_t rsrc_bytes; uint32_t rsrc_header_bytes; /* * Write resource fork header + block info. */ buff = a->resource_fork; rsrc_bytes = a->compressed_rsrc_position - RSRC_F_SIZE; rsrc_header_bytes = RSRC_H_SIZE + /* Header base size. */ 4 + /* Block count. */ (a->decmpfs_block_count * 8);/* Block info */ archive_be32enc(buff, 0x100); archive_be32enc(buff + 4, rsrc_bytes); archive_be32enc(buff + 8, rsrc_bytes - 256); archive_be32enc(buff + 12, 0x32); memset(buff + 16, 0, 240); archive_be32enc(buff + 256, rsrc_bytes - 260); return hfs_write_resource_fork(a, buff, rsrc_header_bytes, 0); } static size_t hfs_set_resource_fork_footer(unsigned char *buff, size_t buff_size) { static const char rsrc_footer[RSRC_F_SIZE] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x32, 0x00, 0x00, 'c', 'm', 'p', 'f', 0x00, 0x00, 0x00, 0x0a, 0x00, 0x01, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; if (buff_size < sizeof(rsrc_footer)) return (0); memcpy(buff, rsrc_footer, sizeof(rsrc_footer)); return (sizeof(rsrc_footer)); } static int hfs_reset_compressor(struct archive_write_disk *a) { int ret; if (a->stream_valid) ret = deflateReset(&a->stream); else ret = deflateInit(&a->stream, a->decmpfs_compression_level); if (ret != Z_OK) { archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Failed to initialize compressor"); return (ARCHIVE_FATAL); } else a->stream_valid = 1; return (ARCHIVE_OK); } static int hfs_decompress(struct archive_write_disk *a) { uint32_t *block_info; unsigned int block_count; uint32_t data_pos, data_size; ssize_t r; ssize_t bytes_written, bytes_to_write; unsigned char *b; block_info = (uint32_t *)(a->resource_fork + RSRC_H_SIZE); block_count = archive_le32dec(block_info++); while (block_count--) { data_pos = RSRC_H_SIZE + archive_le32dec(block_info++); data_size = archive_le32dec(block_info++); r = fgetxattr(a->fd, XATTR_RESOURCEFORK_NAME, a->compressed_buffer, data_size, data_pos, 0); if (r != data_size) { archive_set_error(&a->archive, (r < 0)?errno:ARCHIVE_ERRNO_MISC, "Failed to read resource fork"); return (ARCHIVE_WARN); } if (a->compressed_buffer[0] == 0xff) { bytes_to_write = data_size -1; b = a->compressed_buffer + 1; } else { uLong dest_len = MAX_DECMPFS_BLOCK_SIZE; int zr; zr = uncompress((Bytef *)a->uncompressed_buffer, &dest_len, a->compressed_buffer, data_size); if (zr != Z_OK) { archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Failed to decompress resource fork"); return (ARCHIVE_WARN); } bytes_to_write = dest_len; b = (unsigned char *)a->uncompressed_buffer; } do { bytes_written = write(a->fd, b, bytes_to_write); if (bytes_written < 0) { archive_set_error(&a->archive, errno, "Write failed"); return (ARCHIVE_WARN); } bytes_to_write -= bytes_written; b += bytes_written; } while (bytes_to_write > 0); } r = fremovexattr(a->fd, XATTR_RESOURCEFORK_NAME, 0); if (r == -1) { archive_set_error(&a->archive, errno, "Failed to remove resource fork"); return (ARCHIVE_WARN); } return (ARCHIVE_OK); } static int hfs_drive_compressor(struct archive_write_disk *a, const char *buff, size_t size) { unsigned char *buffer_compressed; size_t bytes_compressed; size_t bytes_used; int ret; ret = hfs_reset_compressor(a); if (ret != ARCHIVE_OK) return (ret); if (a->compressed_buffer == NULL) { size_t block_size; block_size = COMPRESSED_W_SIZE + RSRC_F_SIZE + + compressBound(MAX_DECMPFS_BLOCK_SIZE); a->compressed_buffer = malloc(block_size); if (a->compressed_buffer == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for Resource Fork"); return (ARCHIVE_FATAL); } a->compressed_buffer_size = block_size; a->compressed_buffer_remaining = block_size; } buffer_compressed = a->compressed_buffer + a->compressed_buffer_size - a->compressed_buffer_remaining; a->stream.next_in = (Bytef *)(uintptr_t)(const void *)buff; a->stream.avail_in = size; a->stream.next_out = buffer_compressed; a->stream.avail_out = a->compressed_buffer_remaining; do { ret = deflate(&a->stream, Z_FINISH); switch (ret) { case Z_OK: case Z_STREAM_END: break; default: archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Failed to compress data"); return (ARCHIVE_FAILED); } } while (ret == Z_OK); bytes_compressed = a->compressed_buffer_remaining - a->stream.avail_out; /* * If the compressed size is larger than the original size, * throw away compressed data, use uncompressed data instead. */ if (bytes_compressed > size) { buffer_compressed[0] = 0xFF;/* uncompressed marker. */ memcpy(buffer_compressed + 1, buff, size); bytes_compressed = size + 1; } a->compressed_buffer_remaining -= bytes_compressed; /* * If the compressed size is smaller than MAX_DECMPFS_XATTR_SIZE * and the block count in the file is only one, store compressed * data to decmpfs xattr instead of the resource fork. */ if (a->decmpfs_block_count == 1 && (a->decmpfs_attr_size + bytes_compressed) <= MAX_DECMPFS_XATTR_SIZE) { archive_le32enc(&a->decmpfs_header_p[DECMPFS_COMPRESSION_TYPE], CMP_XATTR); memcpy(a->decmpfs_header_p + DECMPFS_HEADER_SIZE, buffer_compressed, bytes_compressed); a->decmpfs_attr_size += bytes_compressed; a->compressed_buffer_remaining = a->compressed_buffer_size; /* * Finish HFS+ Compression. * - Write the decmpfs xattr. * - Set the UF_COMPRESSED file flag. */ ret = hfs_write_decmpfs(a); if (ret == ARCHIVE_OK) ret = hfs_set_compressed_fflag(a); return (ret); } /* Update block info. */ archive_le32enc(a->decmpfs_block_info++, a->compressed_rsrc_position_v - RSRC_H_SIZE); archive_le32enc(a->decmpfs_block_info++, bytes_compressed); a->compressed_rsrc_position_v += bytes_compressed; /* * Write the compressed data to the resource fork. */ bytes_used = a->compressed_buffer_size - a->compressed_buffer_remaining; while (bytes_used >= COMPRESSED_W_SIZE) { ret = hfs_write_compressed_data(a, COMPRESSED_W_SIZE); if (ret != ARCHIVE_OK) return (ret); bytes_used -= COMPRESSED_W_SIZE; if (bytes_used > COMPRESSED_W_SIZE) memmove(a->compressed_buffer, a->compressed_buffer + COMPRESSED_W_SIZE, bytes_used); else memcpy(a->compressed_buffer, a->compressed_buffer + COMPRESSED_W_SIZE, bytes_used); } a->compressed_buffer_remaining = a->compressed_buffer_size - bytes_used; /* * If the current block is the last block, write the remaining * compressed data and the resource fork footer. */ if (a->file_remaining_bytes == 0) { size_t rsrc_size; int64_t bk; /* Append the resource footer. */ rsrc_size = hfs_set_resource_fork_footer( a->compressed_buffer + bytes_used, a->compressed_buffer_remaining); ret = hfs_write_compressed_data(a, bytes_used + rsrc_size); a->compressed_buffer_remaining = a->compressed_buffer_size; /* If the compressed size is not enough smaller than * the uncompressed size. cancel HFS+ compression. * TODO: study a behavior of ditto utility and improve * the condition to fall back into no HFS+ compression. */ bk = HFS_BLOCKS(a->compressed_rsrc_position); bk += bk >> 7; if (bk > HFS_BLOCKS(a->filesize)) return hfs_decompress(a); /* * Write the resourcefork header. */ if (ret == ARCHIVE_OK) ret = hfs_write_resource_fork_header(a); /* * Finish HFS+ Compression. * - Write the decmpfs xattr. * - Set the UF_COMPRESSED file flag. */ if (ret == ARCHIVE_OK) ret = hfs_write_decmpfs(a); if (ret == ARCHIVE_OK) ret = hfs_set_compressed_fflag(a); } return (ret); } static ssize_t hfs_write_decmpfs_block(struct archive_write_disk *a, const char *buff, size_t size) { const char *buffer_to_write; size_t bytes_to_write; int ret; if (a->decmpfs_block_count == (unsigned)-1) { void *new_block; size_t new_size; unsigned int block_count; if (a->decmpfs_header_p == NULL) { new_block = malloc(MAX_DECMPFS_XATTR_SIZE + sizeof(uint32_t)); if (new_block == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for decmpfs"); return (ARCHIVE_FATAL); } a->decmpfs_header_p = new_block; } a->decmpfs_attr_size = DECMPFS_HEADER_SIZE; archive_le32enc(&a->decmpfs_header_p[DECMPFS_COMPRESSION_MAGIC], DECMPFS_MAGIC); archive_le32enc(&a->decmpfs_header_p[DECMPFS_COMPRESSION_TYPE], CMP_RESOURCE_FORK); archive_le64enc(&a->decmpfs_header_p[DECMPFS_UNCOMPRESSED_SIZE], a->filesize); /* Calculate a block count of the file. */ block_count = (a->filesize + MAX_DECMPFS_BLOCK_SIZE -1) / MAX_DECMPFS_BLOCK_SIZE; /* * Allocate buffer for resource fork. * Set up related pointers; */ new_size = RSRC_H_SIZE + /* header */ 4 + /* Block count */ (block_count * sizeof(uint32_t) * 2) + RSRC_F_SIZE; /* footer */ if (new_size > a->resource_fork_allocated_size) { new_block = realloc(a->resource_fork, new_size); if (new_block == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for ResourceFork"); return (ARCHIVE_FATAL); } a->resource_fork_allocated_size = new_size; a->resource_fork = new_block; } /* Allocate uncompressed buffer */ if (a->uncompressed_buffer == NULL) { new_block = malloc(MAX_DECMPFS_BLOCK_SIZE); if (new_block == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for decmpfs"); return (ARCHIVE_FATAL); } a->uncompressed_buffer = new_block; } a->block_remaining_bytes = MAX_DECMPFS_BLOCK_SIZE; a->file_remaining_bytes = a->filesize; a->compressed_buffer_remaining = a->compressed_buffer_size; /* * Set up a resource fork. */ a->rsrc_xattr_options = XATTR_CREATE; /* Get the position where we are going to set a bunch * of block info. */ a->decmpfs_block_info = (uint32_t *)(a->resource_fork + RSRC_H_SIZE); /* Set the block count to the resource fork. */ archive_le32enc(a->decmpfs_block_info++, block_count); /* Get the position where we are going to set compressed * data. */ a->compressed_rsrc_position = RSRC_H_SIZE + 4 + (block_count * 8); a->compressed_rsrc_position_v = a->compressed_rsrc_position; a->decmpfs_block_count = block_count; } /* Ignore redundant bytes. */ if (a->file_remaining_bytes == 0) return ((ssize_t)size); /* Do not overrun a block size. */ if (size > a->block_remaining_bytes) bytes_to_write = a->block_remaining_bytes; else bytes_to_write = size; /* Do not overrun the file size. */ if (bytes_to_write > a->file_remaining_bytes) bytes_to_write = a->file_remaining_bytes; /* For efficiency, if a copy length is full of the uncompressed * buffer size, do not copy writing data to it. */ if (bytes_to_write == MAX_DECMPFS_BLOCK_SIZE) buffer_to_write = buff; else { memcpy(a->uncompressed_buffer + MAX_DECMPFS_BLOCK_SIZE - a->block_remaining_bytes, buff, bytes_to_write); buffer_to_write = a->uncompressed_buffer; } a->block_remaining_bytes -= bytes_to_write; a->file_remaining_bytes -= bytes_to_write; if (a->block_remaining_bytes == 0 || a->file_remaining_bytes == 0) { ret = hfs_drive_compressor(a, buffer_to_write, MAX_DECMPFS_BLOCK_SIZE - a->block_remaining_bytes); if (ret < 0) return (ret); a->block_remaining_bytes = MAX_DECMPFS_BLOCK_SIZE; } /* Ignore redundant bytes. */ if (a->file_remaining_bytes == 0) return ((ssize_t)size); return (bytes_to_write); } static ssize_t hfs_write_data_block(struct archive_write_disk *a, const char *buff, size_t size) { uint64_t start_size = size; ssize_t bytes_written = 0; ssize_t bytes_to_write; if (size == 0) return (ARCHIVE_OK); if (a->filesize == 0 || a->fd < 0) { archive_set_error(&a->archive, 0, "Attempt to write to an empty file"); return (ARCHIVE_WARN); } /* If this write would run beyond the file size, truncate it. */ if (a->filesize >= 0 && (int64_t)(a->offset + size) > a->filesize) start_size = size = (size_t)(a->filesize - a->offset); /* Write the data. */ while (size > 0) { bytes_to_write = size; /* Seek if necessary to the specified offset. */ if (a->offset < a->fd_offset) { /* Can't support backward move. */ archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Seek failed"); return (ARCHIVE_FATAL); } else if (a->offset > a->fd_offset) { int64_t skip = a->offset - a->fd_offset; char nullblock[1024]; memset(nullblock, 0, sizeof(nullblock)); while (skip > 0) { if (skip > (int64_t)sizeof(nullblock)) bytes_written = hfs_write_decmpfs_block( a, nullblock, sizeof(nullblock)); else bytes_written = hfs_write_decmpfs_block( a, nullblock, skip); if (bytes_written < 0) { archive_set_error(&a->archive, errno, "Write failed"); return (ARCHIVE_WARN); } skip -= bytes_written; } a->fd_offset = a->offset; } bytes_written = hfs_write_decmpfs_block(a, buff, bytes_to_write); if (bytes_written < 0) return (bytes_written); buff += bytes_written; size -= bytes_written; a->total_bytes_written += bytes_written; a->offset += bytes_written; a->fd_offset = a->offset; } return (start_size - size); } #else static ssize_t hfs_write_data_block(struct archive_write_disk *a, const char *buff, size_t size) { return (write_data_block(a, buff, size)); } #endif static ssize_t _archive_write_disk_data_block(struct archive *_a, const void *buff, size_t size, int64_t offset) { struct archive_write_disk *a = (struct archive_write_disk *)_a; ssize_t r; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_DATA, "archive_write_data_block"); a->offset = offset; if (a->todo & TODO_HFS_COMPRESSION) r = hfs_write_data_block(a, buff, size); else r = write_data_block(a, buff, size); if (r < ARCHIVE_OK) return (r); if ((size_t)r < size) { archive_set_error(&a->archive, 0, "Too much data: Truncating file at %ju bytes", (uintmax_t)a->filesize); return (ARCHIVE_WARN); } #if ARCHIVE_VERSION_NUMBER < 3999000 return (ARCHIVE_OK); #else return (size); #endif } static ssize_t _archive_write_disk_data(struct archive *_a, const void *buff, size_t size) { struct archive_write_disk *a = (struct archive_write_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_DATA, "archive_write_data"); if (a->todo & TODO_HFS_COMPRESSION) return (hfs_write_data_block(a, buff, size)); return (write_data_block(a, buff, size)); } static int _archive_write_disk_finish_entry(struct archive *_a) { struct archive_write_disk *a = (struct archive_write_disk *)_a; int ret = ARCHIVE_OK; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_write_finish_entry"); if (a->archive.state & ARCHIVE_STATE_HEADER) return (ARCHIVE_OK); archive_clear_error(&a->archive); /* Pad or truncate file to the right size. */ if (a->fd < 0) { /* There's no file. */ } else if (a->filesize < 0) { /* File size is unknown, so we can't set the size. */ } else if (a->fd_offset == a->filesize) { /* Last write ended at exactly the filesize; we're done. */ /* Hopefully, this is the common case. */ #if defined(__APPLE__) && defined(UF_COMPRESSED) && defined(HAVE_ZLIB_H) } else if (a->todo & TODO_HFS_COMPRESSION) { char null_d[1024]; ssize_t r; if (a->file_remaining_bytes) memset(null_d, 0, sizeof(null_d)); while (a->file_remaining_bytes) { if (a->file_remaining_bytes > sizeof(null_d)) r = hfs_write_data_block( a, null_d, sizeof(null_d)); else r = hfs_write_data_block( a, null_d, a->file_remaining_bytes); if (r < 0) return ((int)r); } #endif } else { #if HAVE_FTRUNCATE if (ftruncate(a->fd, a->filesize) == -1 && a->filesize == 0) { archive_set_error(&a->archive, errno, "File size could not be restored"); return (ARCHIVE_FAILED); } #endif /* * Not all platforms implement the XSI option to * extend files via ftruncate. Stat() the file again * to see what happened. */ a->pst = NULL; if ((ret = lazy_stat(a)) != ARCHIVE_OK) return (ret); /* We can use lseek()/write() to extend the file if * ftruncate didn't work or isn't available. */ if (a->st.st_size < a->filesize) { const char nul = '\0'; if (lseek(a->fd, a->filesize - 1, SEEK_SET) < 0) { archive_set_error(&a->archive, errno, "Seek failed"); return (ARCHIVE_FATAL); } if (write(a->fd, &nul, 1) < 0) { archive_set_error(&a->archive, errno, "Write to restore size failed"); return (ARCHIVE_FATAL); } a->pst = NULL; } } /* Restore metadata. */ /* * This is specific to Mac OS X. * If the current file is an AppleDouble file, it should be * linked with the data fork file and remove it. */ if (a->todo & TODO_APPLEDOUBLE) { int r2 = fixup_appledouble(a, a->name); if (r2 == ARCHIVE_EOF) { /* The current file has been successfully linked * with the data fork file and removed. So there * is nothing to do on the current file. */ goto finish_metadata; } if (r2 < ret) ret = r2; } /* * Look up the "real" UID only if we're going to need it. * TODO: the TODO_SGID condition can be dropped here, can't it? */ if (a->todo & (TODO_OWNER | TODO_SUID | TODO_SGID)) { a->uid = archive_write_disk_uid(&a->archive, archive_entry_uname(a->entry), archive_entry_uid(a->entry)); } /* Look up the "real" GID only if we're going to need it. */ /* TODO: the TODO_SUID condition can be dropped here, can't it? */ if (a->todo & (TODO_OWNER | TODO_SGID | TODO_SUID)) { a->gid = archive_write_disk_gid(&a->archive, archive_entry_gname(a->entry), archive_entry_gid(a->entry)); } /* * Restore ownership before set_mode tries to restore suid/sgid * bits. If we set the owner, we know what it is and can skip * a stat() call to examine the ownership of the file on disk. */ if (a->todo & TODO_OWNER) { int r2 = set_ownership(a); if (r2 < ret) ret = r2; } /* * set_mode must precede ACLs on systems such as Solaris and * FreeBSD where setting the mode implicitly clears extended ACLs */ if (a->todo & TODO_MODE) { int r2 = set_mode(a, a->mode); if (r2 < ret) ret = r2; } /* * Security-related extended attributes (such as * security.capability on Linux) have to be restored last, * since they're implicitly removed by other file changes. */ if (a->todo & TODO_XATTR) { int r2 = set_xattrs(a); if (r2 < ret) ret = r2; } /* * Some flags prevent file modification; they must be restored after * file contents are written. */ if (a->todo & TODO_FFLAGS) { int r2 = set_fflags(a); if (r2 < ret) ret = r2; } /* * Time must follow most other metadata; * otherwise atime will get changed. */ if (a->todo & TODO_TIMES) { int r2 = set_times_from_entry(a); if (r2 < ret) ret = r2; } /* * Mac extended metadata includes ACLs. */ if (a->todo & TODO_MAC_METADATA) { const void *metadata; size_t metadata_size; metadata = archive_entry_mac_metadata(a->entry, &metadata_size); if (metadata != NULL && metadata_size > 0) { int r2 = set_mac_metadata(a, archive_entry_pathname( a->entry), metadata, metadata_size); if (r2 < ret) ret = r2; } } /* * ACLs must be restored after timestamps because there are * ACLs that prevent attribute changes (including time). */ if (a->todo & TODO_ACLS) { int r2; #ifdef HAVE_DARWIN_ACL /* * On Mac OS, platform ACLs are stored also in mac_metadata by * the operating system. If mac_metadata is present it takes * precedence and we skip extracting libarchive NFSv4 ACLs */ const void *metadata; size_t metadata_size; metadata = archive_entry_mac_metadata(a->entry, &metadata_size); if (metadata == NULL || metadata_size == 0) { #endif r2 = archive_write_disk_set_acls(&a->archive, a->fd, archive_entry_pathname(a->entry), archive_entry_acl(a->entry)); if (r2 < ret) ret = r2; #ifdef HAVE_DARWIN_ACL } #endif } finish_metadata: /* If there's an fd, we can close it now. */ if (a->fd >= 0) { close(a->fd); a->fd = -1; } /* If there's an entry, we can release it now. */ if (a->entry) { archive_entry_free(a->entry); a->entry = NULL; } a->archive.state = ARCHIVE_STATE_HEADER; return (ret); } int archive_write_disk_set_group_lookup(struct archive *_a, void *private_data, int64_t (*lookup_gid)(void *private, const char *gname, int64_t gid), void (*cleanup_gid)(void *private)) { struct archive_write_disk *a = (struct archive_write_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_write_disk_set_group_lookup"); if (a->cleanup_gid != NULL && a->lookup_gid_data != NULL) (a->cleanup_gid)(a->lookup_gid_data); a->lookup_gid = lookup_gid; a->cleanup_gid = cleanup_gid; a->lookup_gid_data = private_data; return (ARCHIVE_OK); } int archive_write_disk_set_user_lookup(struct archive *_a, void *private_data, int64_t (*lookup_uid)(void *private, const char *uname, int64_t uid), void (*cleanup_uid)(void *private)) { struct archive_write_disk *a = (struct archive_write_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_write_disk_set_user_lookup"); if (a->cleanup_uid != NULL && a->lookup_uid_data != NULL) (a->cleanup_uid)(a->lookup_uid_data); a->lookup_uid = lookup_uid; a->cleanup_uid = cleanup_uid; a->lookup_uid_data = private_data; return (ARCHIVE_OK); } int64_t archive_write_disk_gid(struct archive *_a, const char *name, int64_t id) { struct archive_write_disk *a = (struct archive_write_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_write_disk_gid"); if (a->lookup_gid) return (a->lookup_gid)(a->lookup_gid_data, name, id); return (id); } int64_t archive_write_disk_uid(struct archive *_a, const char *name, int64_t id) { struct archive_write_disk *a = (struct archive_write_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_write_disk_uid"); if (a->lookup_uid) return (a->lookup_uid)(a->lookup_uid_data, name, id); return (id); } /* * Create a new archive_write_disk object and initialize it with global state. */ struct archive * archive_write_disk_new(void) { struct archive_write_disk *a; a = (struct archive_write_disk *)calloc(1, sizeof(*a)); if (a == NULL) return (NULL); a->archive.magic = ARCHIVE_WRITE_DISK_MAGIC; /* We're ready to write a header immediately. */ a->archive.state = ARCHIVE_STATE_HEADER; a->archive.vtable = archive_write_disk_vtable(); a->start_time = time(NULL); /* Query and restore the umask. */ umask(a->user_umask = umask(0)); #ifdef HAVE_GETEUID a->user_uid = geteuid(); #endif /* HAVE_GETEUID */ if (archive_string_ensure(&a->path_safe, 512) == NULL) { free(a); return (NULL); } #ifdef HAVE_ZLIB_H a->decmpfs_compression_level = 5; #endif return (&a->archive); } /* * If pathname is longer than PATH_MAX, chdir to a suitable * intermediate dir and edit the path down to a shorter suffix. Note * that this routine never returns an error; if the chdir() attempt * fails for any reason, we just go ahead with the long pathname. The * object creation is likely to fail, but any error will get handled * at that time. */ #if defined(HAVE_FCHDIR) && defined(PATH_MAX) static void edit_deep_directories(struct archive_write_disk *a) { int ret; char *tail = a->name; /* If path is short, avoid the open() below. */ if (strlen(tail) < PATH_MAX) return; /* Try to record our starting dir. */ a->restore_pwd = open(".", O_RDONLY | O_BINARY | O_CLOEXEC); __archive_ensure_cloexec_flag(a->restore_pwd); if (a->restore_pwd < 0) return; /* As long as the path is too long... */ while (strlen(tail) >= PATH_MAX) { /* Locate a dir prefix shorter than PATH_MAX. */ tail += PATH_MAX - 8; while (tail > a->name && *tail != '/') tail--; /* Exit if we find a too-long path component. */ if (tail <= a->name) return; /* Create the intermediate dir and chdir to it. */ *tail = '\0'; /* Terminate dir portion */ ret = create_dir(a, a->name); if (ret == ARCHIVE_OK && chdir(a->name) != 0) ret = ARCHIVE_FAILED; *tail = '/'; /* Restore the / we removed. */ if (ret != ARCHIVE_OK) return; tail++; /* The chdir() succeeded; we've now shortened the path. */ a->name = tail; } return; } #endif /* * The main restore function. */ static int restore_entry(struct archive_write_disk *a) { int ret = ARCHIVE_OK, en; if (a->flags & ARCHIVE_EXTRACT_UNLINK && !S_ISDIR(a->mode)) { /* * TODO: Fix this. Apparently, there are platforms * that still allow root to hose the entire filesystem * by unlinking a dir. The S_ISDIR() test above * prevents us from using unlink() here if the new * object is a dir, but that doesn't mean the old * object isn't a dir. */ if (a->flags & ARCHIVE_EXTRACT_CLEAR_NOCHANGE_FFLAGS) (void)clear_nochange_fflags(a); if (unlink(a->name) == 0) { /* We removed it, reset cached stat. */ a->pst = NULL; } else if (errno == ENOENT) { /* File didn't exist, that's just as good. */ } else if (rmdir(a->name) == 0) { /* It was a dir, but now it's gone. */ a->pst = NULL; } else { /* We tried, but couldn't get rid of it. */ archive_set_error(&a->archive, errno, "Could not unlink"); return(ARCHIVE_FAILED); } } /* Try creating it first; if this fails, we'll try to recover. */ en = create_filesystem_object(a); if ((en == ENOTDIR || en == ENOENT) && !(a->flags & ARCHIVE_EXTRACT_NO_AUTODIR)) { /* If the parent dir doesn't exist, try creating it. */ create_parent_dir(a, a->name); /* Now try to create the object again. */ en = create_filesystem_object(a); } if ((en == ENOENT) && (archive_entry_hardlink(a->entry) != NULL)) { archive_set_error(&a->archive, en, "Hard-link target '%s' does not exist.", archive_entry_hardlink(a->entry)); return (ARCHIVE_FAILED); } if ((en == EISDIR || en == EEXIST) && (a->flags & ARCHIVE_EXTRACT_NO_OVERWRITE)) { /* If we're not overwriting, we're done. */ archive_entry_unset_size(a->entry); return (ARCHIVE_OK); } /* * Some platforms return EISDIR if you call * open(O_WRONLY | O_EXCL | O_CREAT) on a directory, some * return EEXIST. POSIX is ambiguous, requiring EISDIR * for open(O_WRONLY) on a dir and EEXIST for open(O_EXCL | O_CREAT) * on an existing item. */ if (en == EISDIR) { /* A dir is in the way of a non-dir, rmdir it. */ if (rmdir(a->name) != 0) { archive_set_error(&a->archive, errno, "Can't remove already-existing dir"); return (ARCHIVE_FAILED); } a->pst = NULL; /* Try again. */ en = create_filesystem_object(a); } else if (en == EEXIST) { /* * We know something is in the way, but we don't know what; * we need to find out before we go any further. */ int r = 0; /* * The SECURE_SYMLINKS logic has already removed a * symlink to a dir if the client wants that. So * follow the symlink if we're creating a dir. */ if (S_ISDIR(a->mode)) r = stat(a->name, &a->st); /* * If it's not a dir (or it's a broken symlink), * then don't follow it. */ if (r != 0 || !S_ISDIR(a->mode)) r = lstat(a->name, &a->st); if (r != 0) { archive_set_error(&a->archive, errno, "Can't stat existing object"); return (ARCHIVE_FAILED); } /* * NO_OVERWRITE_NEWER doesn't apply to directories. */ if ((a->flags & ARCHIVE_EXTRACT_NO_OVERWRITE_NEWER) && !S_ISDIR(a->st.st_mode)) { if (!older(&(a->st), a->entry)) { archive_entry_unset_size(a->entry); return (ARCHIVE_OK); } } /* If it's our archive, we're done. */ if (a->skip_file_set && a->st.st_dev == (dev_t)a->skip_file_dev && a->st.st_ino == (ino_t)a->skip_file_ino) { archive_set_error(&a->archive, 0, "Refusing to overwrite archive"); return (ARCHIVE_FAILED); } if (!S_ISDIR(a->st.st_mode)) { /* A non-dir is in the way, unlink it. */ if (a->flags & ARCHIVE_EXTRACT_CLEAR_NOCHANGE_FFLAGS) (void)clear_nochange_fflags(a); if (unlink(a->name) != 0) { archive_set_error(&a->archive, errno, "Can't unlink already-existing object"); return (ARCHIVE_FAILED); } a->pst = NULL; /* Try again. */ en = create_filesystem_object(a); } else if (!S_ISDIR(a->mode)) { /* A dir is in the way of a non-dir, rmdir it. */ if (a->flags & ARCHIVE_EXTRACT_CLEAR_NOCHANGE_FFLAGS) (void)clear_nochange_fflags(a); if (rmdir(a->name) != 0) { archive_set_error(&a->archive, errno, "Can't replace existing directory with non-directory"); return (ARCHIVE_FAILED); } /* Try again. */ en = create_filesystem_object(a); } else { /* * There's a dir in the way of a dir. Don't * waste time with rmdir()/mkdir(), just fix * up the permissions on the existing dir. * Note that we don't change perms on existing * dirs unless _EXTRACT_PERM is specified. */ if ((a->mode != a->st.st_mode) && (a->todo & TODO_MODE_FORCE)) a->deferred |= (a->todo & TODO_MODE); /* Ownership doesn't need deferred fixup. */ en = 0; /* Forget the EEXIST. */ } } if (en) { /* Everything failed; give up here. */ if ((&a->archive)->error == NULL) archive_set_error(&a->archive, en, "Can't create '%s'", a->name); return (ARCHIVE_FAILED); } a->pst = NULL; /* Cached stat data no longer valid. */ return (ret); } /* * Returns 0 if creation succeeds, or else returns errno value from * the failed system call. Note: This function should only ever perform * a single system call. */ static int create_filesystem_object(struct archive_write_disk *a) { /* Create the entry. */ const char *linkname; mode_t final_mode, mode; int r; /* these for check_symlinks_fsobj */ char *linkname_copy; /* non-const copy of linkname */ struct stat st; struct archive_string error_string; int error_number; /* We identify hard/symlinks according to the link names. */ /* Since link(2) and symlink(2) don't handle modes, we're done here. */ linkname = archive_entry_hardlink(a->entry); if (linkname != NULL) { #if !HAVE_LINK return (EPERM); #else archive_string_init(&error_string); linkname_copy = strdup(linkname); if (linkname_copy == NULL) { return (EPERM); } /* * TODO: consider using the cleaned-up path as the link * target? */ r = cleanup_pathname_fsobj(linkname_copy, &error_number, &error_string, a->flags); if (r != ARCHIVE_OK) { archive_set_error(&a->archive, error_number, "%s", error_string.s); free(linkname_copy); archive_string_free(&error_string); /* * EPERM is more appropriate than error_number for our * callers */ return (EPERM); } r = check_symlinks_fsobj(linkname_copy, &error_number, &error_string, a->flags); if (r != ARCHIVE_OK) { archive_set_error(&a->archive, error_number, "%s", error_string.s); free(linkname_copy); archive_string_free(&error_string); /* * EPERM is more appropriate than error_number for our * callers */ return (EPERM); } free(linkname_copy); archive_string_free(&error_string); r = link(linkname, a->name) ? errno : 0; /* * New cpio and pax formats allow hardlink entries * to carry data, so we may have to open the file * for hardlink entries. * * If the hardlink was successfully created and * the archive doesn't have carry data for it, * consider it to be non-authoritative for meta data. * This is consistent with GNU tar and BSD pax. * If the hardlink does carry data, let the last * archive entry decide ownership. */ if (r == 0 && a->filesize <= 0) { a->todo = 0; a->deferred = 0; } else if (r == 0 && a->filesize > 0) { #ifdef HAVE_LSTAT r = lstat(a->name, &st); #else r = stat(a->name, &st); #endif if (r != 0) r = errno; else if ((st.st_mode & AE_IFMT) == AE_IFREG) { a->fd = open(a->name, O_WRONLY | O_TRUNC | O_BINARY | O_CLOEXEC | O_NOFOLLOW); __archive_ensure_cloexec_flag(a->fd); if (a->fd < 0) r = errno; } } return (r); #endif } linkname = archive_entry_symlink(a->entry); if (linkname != NULL) { #if HAVE_SYMLINK return symlink(linkname, a->name) ? errno : 0; #else return (EPERM); #endif } /* * The remaining system calls all set permissions, so let's * try to take advantage of that to avoid an extra chmod() * call. (Recall that umask is set to zero right now!) */ /* Mode we want for the final restored object (w/o file type bits). */ final_mode = a->mode & 07777; /* * The mode that will actually be restored in this step. Note * that SUID, SGID, etc, require additional work to ensure * security, so we never restore them at this point. */ mode = final_mode & 0777 & ~a->user_umask; switch (a->mode & AE_IFMT) { default: /* POSIX requires that we fall through here. */ /* FALLTHROUGH */ case AE_IFREG: a->fd = open(a->name, O_WRONLY | O_CREAT | O_EXCL | O_BINARY | O_CLOEXEC, mode); __archive_ensure_cloexec_flag(a->fd); r = (a->fd < 0); break; case AE_IFCHR: #ifdef HAVE_MKNOD /* Note: we use AE_IFCHR for the case label, and * S_IFCHR for the mknod() call. This is correct. */ r = mknod(a->name, mode | S_IFCHR, archive_entry_rdev(a->entry)); break; #else /* TODO: Find a better way to warn about our inability * to restore a char device node. */ return (EINVAL); #endif /* HAVE_MKNOD */ case AE_IFBLK: #ifdef HAVE_MKNOD r = mknod(a->name, mode | S_IFBLK, archive_entry_rdev(a->entry)); break; #else /* TODO: Find a better way to warn about our inability * to restore a block device node. */ return (EINVAL); #endif /* HAVE_MKNOD */ case AE_IFDIR: mode = (mode | MINIMUM_DIR_MODE) & MAXIMUM_DIR_MODE; r = mkdir(a->name, mode); if (r == 0) { /* Defer setting dir times. */ a->deferred |= (a->todo & TODO_TIMES); a->todo &= ~TODO_TIMES; /* Never use an immediate chmod(). */ /* We can't avoid the chmod() entirely if EXTRACT_PERM * because of SysV SGID inheritance. */ if ((mode != final_mode) || (a->flags & ARCHIVE_EXTRACT_PERM)) a->deferred |= (a->todo & TODO_MODE); a->todo &= ~TODO_MODE; } break; case AE_IFIFO: #ifdef HAVE_MKFIFO r = mkfifo(a->name, mode); break; #else /* TODO: Find a better way to warn about our inability * to restore a fifo. */ return (EINVAL); #endif /* HAVE_MKFIFO */ } /* All the system calls above set errno on failure. */ if (r) return (errno); /* If we managed to set the final mode, we've avoided a chmod(). */ if (mode == final_mode) a->todo &= ~TODO_MODE; return (0); } /* * Cleanup function for archive_extract. Mostly, this involves processing * the fixup list, which is used to address a number of problems: * * Dir permissions might prevent us from restoring a file in that * dir, so we restore the dir with minimum 0700 permissions first, * then correct the mode at the end. * * Similarly, the act of restoring a file touches the directory * and changes the timestamp on the dir, so we have to touch-up dir * timestamps at the end as well. * * Some file flags can interfere with the restore by, for example, * preventing the creation of hardlinks to those files. * * Mac OS extended metadata includes ACLs, so must be deferred on dirs. * * Note that tar/cpio do not require that archives be in a particular * order; there is no way to know when the last file has been restored * within a directory, so there's no way to optimize the memory usage * here by fixing up the directory any earlier than the * end-of-archive. * * XXX TODO: Directory ACLs should be restored here, for the same * reason we set directory perms here. XXX */ static int _archive_write_disk_close(struct archive *_a) { struct archive_write_disk *a = (struct archive_write_disk *)_a; struct fixup_entry *next, *p; int ret; archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_write_disk_close"); ret = _archive_write_disk_finish_entry(&a->archive); /* Sort dir list so directories are fixed up in depth-first order. */ p = sort_dir_list(a->fixup_list); while (p != NULL) { a->pst = NULL; /* Mark stat cache as out-of-date. */ if (p->fixup & TODO_TIMES) { set_times(a, -1, p->mode, p->name, p->atime, p->atime_nanos, p->birthtime, p->birthtime_nanos, p->mtime, p->mtime_nanos, p->ctime, p->ctime_nanos); } if (p->fixup & TODO_MODE_BASE) chmod(p->name, p->mode); if (p->fixup & TODO_ACLS) #ifdef HAVE_DARWIN_ACL if (p->mac_metadata == NULL || p->mac_metadata_size == 0) #endif archive_write_disk_set_acls(&a->archive, -1, p->name, &p->acl); if (p->fixup & TODO_FFLAGS) set_fflags_platform(a, -1, p->name, p->mode, p->fflags_set, 0); if (p->fixup & TODO_MAC_METADATA) set_mac_metadata(a, p->name, p->mac_metadata, p->mac_metadata_size); next = p->next; archive_acl_clear(&p->acl); free(p->mac_metadata); free(p->name); free(p); p = next; } a->fixup_list = NULL; return (ret); } static int _archive_write_disk_free(struct archive *_a) { struct archive_write_disk *a; int ret; if (_a == NULL) return (ARCHIVE_OK); archive_check_magic(_a, ARCHIVE_WRITE_DISK_MAGIC, ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_write_disk_free"); a = (struct archive_write_disk *)_a; ret = _archive_write_disk_close(&a->archive); archive_write_disk_set_group_lookup(&a->archive, NULL, NULL, NULL); archive_write_disk_set_user_lookup(&a->archive, NULL, NULL, NULL); if (a->entry) archive_entry_free(a->entry); archive_string_free(&a->_name_data); archive_string_free(&a->archive.error_string); archive_string_free(&a->path_safe); a->archive.magic = 0; __archive_clean(&a->archive); free(a->decmpfs_header_p); free(a->resource_fork); free(a->compressed_buffer); free(a->uncompressed_buffer); #if defined(__APPLE__) && defined(UF_COMPRESSED) && defined(HAVE_SYS_XATTR_H)\ && defined(HAVE_ZLIB_H) if (a->stream_valid) { switch (deflateEnd(&a->stream)) { case Z_OK: break; default: archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Failed to clean up compressor"); ret = ARCHIVE_FATAL; break; } } #endif free(a); return (ret); } /* * Simple O(n log n) merge sort to order the fixup list. In * particular, we want to restore dir timestamps depth-first. */ static struct fixup_entry * sort_dir_list(struct fixup_entry *p) { struct fixup_entry *a, *b, *t; if (p == NULL) return (NULL); /* A one-item list is already sorted. */ if (p->next == NULL) return (p); /* Step 1: split the list. */ t = p; a = p->next->next; while (a != NULL) { /* Step a twice, t once. */ a = a->next; if (a != NULL) a = a->next; t = t->next; } /* Now, t is at the mid-point, so break the list here. */ b = t->next; t->next = NULL; a = p; /* Step 2: Recursively sort the two sub-lists. */ a = sort_dir_list(a); b = sort_dir_list(b); /* Step 3: Merge the returned lists. */ /* Pick the first element for the merged list. */ if (strcmp(a->name, b->name) > 0) { t = p = a; a = a->next; } else { t = p = b; b = b->next; } /* Always put the later element on the list first. */ while (a != NULL && b != NULL) { if (strcmp(a->name, b->name) > 0) { t->next = a; a = a->next; } else { t->next = b; b = b->next; } t = t->next; } /* Only one list is non-empty, so just splice it on. */ if (a != NULL) t->next = a; if (b != NULL) t->next = b; return (p); } /* * Returns a new, initialized fixup entry. * * TODO: Reduce the memory requirements for this list by using a tree * structure rather than a simple list of names. */ static struct fixup_entry * new_fixup(struct archive_write_disk *a, const char *pathname) { struct fixup_entry *fe; fe = (struct fixup_entry *)calloc(1, sizeof(struct fixup_entry)); if (fe == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for a fixup"); return (NULL); } fe->next = a->fixup_list; a->fixup_list = fe; fe->fixup = 0; fe->name = strdup(pathname); return (fe); } /* * Returns a fixup structure for the current entry. */ static struct fixup_entry * current_fixup(struct archive_write_disk *a, const char *pathname) { if (a->current_fixup == NULL) a->current_fixup = new_fixup(a, pathname); return (a->current_fixup); } /* Error helper for new *_fsobj functions */ static void fsobj_error(int *a_eno, struct archive_string *a_estr, int err, const char *errstr, const char *path) { if (a_eno) *a_eno = err; if (a_estr) archive_string_sprintf(a_estr, errstr, path); } /* * TODO: Someday, integrate this with the deep dir support; they both * scan the path and both can be optimized by comparing against other * recent paths. */ /* TODO: Extend this to support symlinks on Windows Vista and later. */ /* * Checks the given path to see if any elements along it are symlinks. Returns * ARCHIVE_OK if there are none, otherwise puts an error in errmsg. */ static int check_symlinks_fsobj(char *path, int *a_eno, struct archive_string *a_estr, int flags) { #if !defined(HAVE_LSTAT) /* Platform doesn't have lstat, so we can't look for symlinks. */ (void)path; /* UNUSED */ (void)error_number; /* UNUSED */ (void)error_string; /* UNUSED */ (void)flags; /* UNUSED */ return (ARCHIVE_OK); #else int res = ARCHIVE_OK; char *tail; char *head; int last; char c; int r; struct stat st; int restore_pwd; /* Nothing to do here if name is empty */ if(path[0] == '\0') return (ARCHIVE_OK); /* * Guard against symlink tricks. Reject any archive entry whose * destination would be altered by a symlink. * * Walk the filename in chunks separated by '/'. For each segment: * - if it doesn't exist, continue * - if it's symlink, abort or remove it * - if it's a directory and it's not the last chunk, cd into it * As we go: * head points to the current (relative) path * tail points to the temporary \0 terminating the segment we're * currently examining * c holds what used to be in *tail * last is 1 if this is the last tail */ restore_pwd = open(".", O_RDONLY | O_BINARY | O_CLOEXEC); __archive_ensure_cloexec_flag(restore_pwd); if (restore_pwd < 0) return (ARCHIVE_FATAL); head = path; tail = path; last = 0; /* TODO: reintroduce a safe cache here? */ /* Skip the root directory if the path is absolute. */ if(tail == path && tail[0] == '/') ++tail; /* Keep going until we've checked the entire name. * head, tail, path all alias the same string, which is * temporarily zeroed at tail, so be careful restoring the * stashed (c=tail[0]) for error messages. * Exiting the loop with break is okay; continue is not. */ while (!last) { /* * Skip the separator we just consumed, plus any adjacent ones */ while (*tail == '/') ++tail; /* Skip the next path element. */ while (*tail != '\0' && *tail != '/') ++tail; /* is this the last path component? */ last = (tail[0] == '\0') || (tail[0] == '/' && tail[1] == '\0'); /* temporarily truncate the string here */ c = tail[0]; tail[0] = '\0'; /* Check that we haven't hit a symlink. */ r = lstat(head, &st); if (r != 0) { tail[0] = c; /* We've hit a dir that doesn't exist; stop now. */ if (errno == ENOENT) { break; } else { /* * Treat any other error as fatal - best to be * paranoid here. * Note: This effectively disables deep * directory support when security checks are * enabled. Otherwise, very long pathnames that * trigger an error here could evade the * sandbox. * TODO: We could do better, but it would * probably require merging the symlink checks * with the deep-directory editing. */ fsobj_error(a_eno, a_estr, errno, "Could not stat %s", path); res = ARCHIVE_FAILED; break; } } else if (S_ISDIR(st.st_mode)) { if (!last) { if (chdir(head) != 0) { tail[0] = c; fsobj_error(a_eno, a_estr, errno, "Could not chdir %s", path); res = (ARCHIVE_FATAL); break; } /* Our view is now from inside this dir: */ head = tail + 1; } } else if (S_ISLNK(st.st_mode)) { if (last) { /* * Last element is symlink; remove it * so we can overwrite it with the * item being extracted. */ if (unlink(head)) { tail[0] = c; fsobj_error(a_eno, a_estr, errno, "Could not remove symlink %s", path); res = ARCHIVE_FAILED; break; } /* * Even if we did remove it, a warning * is in order. The warning is silly, * though, if we're just replacing one * symlink with another symlink. */ tail[0] = c; /* * FIXME: not sure how important this is to * restore */ /* if (!S_ISLNK(path)) { fsobj_error(a_eno, a_estr, 0, "Removing symlink %s", path); } */ /* Symlink gone. No more problem! */ res = ARCHIVE_OK; break; } else if (flags & ARCHIVE_EXTRACT_UNLINK) { /* User asked us to remove problems. */ if (unlink(head) != 0) { tail[0] = c; fsobj_error(a_eno, a_estr, 0, "Cannot remove intervening " "symlink %s", path); res = ARCHIVE_FAILED; break; } tail[0] = c; } else if ((flags & ARCHIVE_EXTRACT_SECURE_SYMLINKS) == 0) { /* * We are not the last element and we want to * follow symlinks if they are a directory. * * This is needed to extract hardlinks over * symlinks. */ r = stat(head, &st); if (r != 0) { tail[0] = c; if (errno == ENOENT) { break; } else { fsobj_error(a_eno, a_estr, errno, "Could not stat %s", path); res = (ARCHIVE_FAILED); break; } } else if (S_ISDIR(st.st_mode)) { if (chdir(head) != 0) { tail[0] = c; fsobj_error(a_eno, a_estr, errno, "Could not chdir %s", path); res = (ARCHIVE_FATAL); break; } /* * Our view is now from inside * this dir: */ head = tail + 1; } else { tail[0] = c; fsobj_error(a_eno, a_estr, 0, "Cannot extract through " "symlink %s", path); res = ARCHIVE_FAILED; break; } } else { tail[0] = c; fsobj_error(a_eno, a_estr, 0, "Cannot extract through symlink %s", path); res = ARCHIVE_FAILED; break; } } /* be sure to always maintain this */ tail[0] = c; if (tail[0] != '\0') tail++; /* Advance to the next segment. */ } /* Catches loop exits via break */ tail[0] = c; #ifdef HAVE_FCHDIR /* If we changed directory above, restore it here. */ if (restore_pwd >= 0) { r = fchdir(restore_pwd); if (r != 0) { fsobj_error(a_eno, a_estr, errno, "chdir() failure", ""); } close(restore_pwd); restore_pwd = -1; if (r != 0) { res = (ARCHIVE_FATAL); } } #endif /* TODO: reintroduce a safe cache here? */ return res; #endif } /* * Check a->name for symlinks, returning ARCHIVE_OK if its clean, otherwise * calls archive_set_error and returns ARCHIVE_{FATAL,FAILED} */ static int check_symlinks(struct archive_write_disk *a) { struct archive_string error_string; int error_number; int rc; archive_string_init(&error_string); rc = check_symlinks_fsobj(a->name, &error_number, &error_string, a->flags); if (rc != ARCHIVE_OK) { archive_set_error(&a->archive, error_number, "%s", error_string.s); } archive_string_free(&error_string); a->pst = NULL; /* to be safe */ return rc; } #if defined(__CYGWIN__) /* * 1. Convert a path separator from '\' to '/' . * We shouldn't check multibyte character directly because some * character-set have been using the '\' character for a part of * its multibyte character code. * 2. Replace unusable characters in Windows with underscore('_'). * See also : http://msdn.microsoft.com/en-us/library/aa365247.aspx */ static void cleanup_pathname_win(char *path) { wchar_t wc; char *p; size_t alen, l; int mb, complete, utf8; alen = 0; mb = 0; complete = 1; utf8 = (strcmp(nl_langinfo(CODESET), "UTF-8") == 0)? 1: 0; for (p = path; *p != '\0'; p++) { ++alen; if (*p == '\\') { /* If previous byte is smaller than 128, * this is not second byte of multibyte characters, * so we can replace '\' with '/'. */ if (utf8 || !mb) *p = '/'; else complete = 0;/* uncompleted. */ } else if (*(unsigned char *)p > 127) mb = 1; else mb = 0; /* Rewrite the path name if its next character is unusable. */ if (*p == ':' || *p == '*' || *p == '?' || *p == '"' || *p == '<' || *p == '>' || *p == '|') *p = '_'; } if (complete) return; /* * Convert path separator in wide-character. */ p = path; while (*p != '\0' && alen) { l = mbtowc(&wc, p, alen); if (l == (size_t)-1) { while (*p != '\0') { if (*p == '\\') *p = '/'; ++p; } break; } if (l == 1 && wc == L'\\') *p = '/'; p += l; alen -= l; } } #endif /* * Canonicalize the pathname. In particular, this strips duplicate * '/' characters, '.' elements, and trailing '/'. It also raises an * error for an empty path, a trailing '..', (if _SECURE_NODOTDOT is * set) any '..' in the path or (if ARCHIVE_EXTRACT_SECURE_NOABSOLUTEPATHS * is set) if the path is absolute. */ static int cleanup_pathname_fsobj(char *path, int *a_eno, struct archive_string *a_estr, int flags) { char *dest, *src; char separator = '\0'; dest = src = path; if (*src == '\0') { fsobj_error(a_eno, a_estr, ARCHIVE_ERRNO_MISC, "Invalid empty ", "pathname"); return (ARCHIVE_FAILED); } #if defined(__CYGWIN__) cleanup_pathname_win(path); #endif /* Skip leading '/'. */ if (*src == '/') { if (flags & ARCHIVE_EXTRACT_SECURE_NOABSOLUTEPATHS) { fsobj_error(a_eno, a_estr, ARCHIVE_ERRNO_MISC, "Path is ", "absolute"); return (ARCHIVE_FAILED); } separator = *src++; } /* Scan the pathname one element at a time. */ for (;;) { /* src points to first char after '/' */ if (src[0] == '\0') { break; } else if (src[0] == '/') { /* Found '//', ignore second one. */ src++; continue; } else if (src[0] == '.') { if (src[1] == '\0') { /* Ignore trailing '.' */ break; } else if (src[1] == '/') { /* Skip './'. */ src += 2; continue; } else if (src[1] == '.') { if (src[2] == '/' || src[2] == '\0') { /* Conditionally warn about '..' */ if (flags & ARCHIVE_EXTRACT_SECURE_NODOTDOT) { fsobj_error(a_eno, a_estr, ARCHIVE_ERRNO_MISC, "Path contains ", "'..'"); return (ARCHIVE_FAILED); } } /* * Note: Under no circumstances do we * remove '..' elements. In * particular, restoring * '/foo/../bar/' should create the * 'foo' dir as a side-effect. */ } } /* Copy current element, including leading '/'. */ if (separator) *dest++ = '/'; while (*src != '\0' && *src != '/') { *dest++ = *src++; } if (*src == '\0') break; /* Skip '/' separator. */ separator = *src++; } /* * We've just copied zero or more path elements, not including the * final '/'. */ if (dest == path) { /* * Nothing got copied. The path must have been something * like '.' or '/' or './' or '/././././/./'. */ if (separator) *dest++ = '/'; else *dest++ = '.'; } /* Terminate the result. */ *dest = '\0'; return (ARCHIVE_OK); } static int cleanup_pathname(struct archive_write_disk *a) { struct archive_string error_string; int error_number; int rc; archive_string_init(&error_string); rc = cleanup_pathname_fsobj(a->name, &error_number, &error_string, a->flags); if (rc != ARCHIVE_OK) { archive_set_error(&a->archive, error_number, "%s", error_string.s); } archive_string_free(&error_string); return rc; } /* * Create the parent directory of the specified path, assuming path * is already in mutable storage. */ static int create_parent_dir(struct archive_write_disk *a, char *path) { char *slash; int r; /* Remove tail element to obtain parent name. */ slash = strrchr(path, '/'); if (slash == NULL) return (ARCHIVE_OK); *slash = '\0'; r = create_dir(a, path); *slash = '/'; return (r); } /* * Create the specified dir, recursing to create parents as necessary. * * Returns ARCHIVE_OK if the path exists when we're done here. * Otherwise, returns ARCHIVE_FAILED. * Assumes path is in mutable storage; path is unchanged on exit. */ static int create_dir(struct archive_write_disk *a, char *path) { struct stat st; struct fixup_entry *le; char *slash, *base; mode_t mode_final, mode; int r; /* Check for special names and just skip them. */ slash = strrchr(path, '/'); if (slash == NULL) base = path; else base = slash + 1; if (base[0] == '\0' || (base[0] == '.' && base[1] == '\0') || (base[0] == '.' && base[1] == '.' && base[2] == '\0')) { /* Don't bother trying to create null path, '.', or '..'. */ if (slash != NULL) { *slash = '\0'; r = create_dir(a, path); *slash = '/'; return (r); } return (ARCHIVE_OK); } /* * Yes, this should be stat() and not lstat(). Using lstat() * here loses the ability to extract through symlinks. Also note * that this should not use the a->st cache. */ if (stat(path, &st) == 0) { if (S_ISDIR(st.st_mode)) return (ARCHIVE_OK); if ((a->flags & ARCHIVE_EXTRACT_NO_OVERWRITE)) { archive_set_error(&a->archive, EEXIST, "Can't create directory '%s'", path); return (ARCHIVE_FAILED); } if (unlink(path) != 0) { archive_set_error(&a->archive, errno, "Can't create directory '%s': " "Conflicting file cannot be removed", path); return (ARCHIVE_FAILED); } } else if (errno != ENOENT && errno != ENOTDIR) { /* Stat failed? */ archive_set_error(&a->archive, errno, "Can't test directory '%s'", path); return (ARCHIVE_FAILED); } else if (slash != NULL) { *slash = '\0'; r = create_dir(a, path); *slash = '/'; if (r != ARCHIVE_OK) return (r); } /* * Mode we want for the final restored directory. Per POSIX, * implicitly-created dirs must be created obeying the umask. * There's no mention whether this is different for privileged * restores (which the rest of this code handles by pretending * umask=0). I've chosen here to always obey the user's umask for * implicit dirs, even if _EXTRACT_PERM was specified. */ mode_final = DEFAULT_DIR_MODE & ~a->user_umask; /* Mode we want on disk during the restore process. */ mode = mode_final; mode |= MINIMUM_DIR_MODE; mode &= MAXIMUM_DIR_MODE; if (mkdir(path, mode) == 0) { if (mode != mode_final) { le = new_fixup(a, path); if (le == NULL) return (ARCHIVE_FATAL); le->fixup |=TODO_MODE_BASE; le->mode = mode_final; } return (ARCHIVE_OK); } /* * Without the following check, a/b/../b/c/d fails at the * second visit to 'b', so 'd' can't be created. Note that we * don't add it to the fixup list here, as it's already been * added. */ if (stat(path, &st) == 0 && S_ISDIR(st.st_mode)) return (ARCHIVE_OK); archive_set_error(&a->archive, errno, "Failed to create dir '%s'", path); return (ARCHIVE_FAILED); } /* * Note: Although we can skip setting the user id if the desired user * id matches the current user, we cannot skip setting the group, as * many systems set the gid based on the containing directory. So * we have to perform a chown syscall if we want to set the SGID * bit. (The alternative is to stat() and then possibly chown(); it's * more efficient to skip the stat() and just always chown().) Note * that a successful chown() here clears the TODO_SGID_CHECK bit, which * allows set_mode to skip the stat() check for the GID. */ static int set_ownership(struct archive_write_disk *a) { #ifndef __CYGWIN__ /* unfortunately, on win32 there is no 'root' user with uid 0, so we just have to try the chown and see if it works */ /* If we know we can't change it, don't bother trying. */ if (a->user_uid != 0 && a->user_uid != a->uid) { archive_set_error(&a->archive, errno, "Can't set UID=%jd", (intmax_t)a->uid); return (ARCHIVE_WARN); } #endif #ifdef HAVE_FCHOWN /* If we have an fd, we can avoid a race. */ if (a->fd >= 0 && fchown(a->fd, a->uid, a->gid) == 0) { /* We've set owner and know uid/gid are correct. */ a->todo &= ~(TODO_OWNER | TODO_SGID_CHECK | TODO_SUID_CHECK); return (ARCHIVE_OK); } #endif /* We prefer lchown() but will use chown() if that's all we have. */ /* Of course, if we have neither, this will always fail. */ #ifdef HAVE_LCHOWN if (lchown(a->name, a->uid, a->gid) == 0) { /* We've set owner and know uid/gid are correct. */ a->todo &= ~(TODO_OWNER | TODO_SGID_CHECK | TODO_SUID_CHECK); return (ARCHIVE_OK); } #elif HAVE_CHOWN if (!S_ISLNK(a->mode) && chown(a->name, a->uid, a->gid) == 0) { /* We've set owner and know uid/gid are correct. */ a->todo &= ~(TODO_OWNER | TODO_SGID_CHECK | TODO_SUID_CHECK); return (ARCHIVE_OK); } #endif archive_set_error(&a->archive, errno, "Can't set user=%jd/group=%jd for %s", (intmax_t)a->uid, (intmax_t)a->gid, a->name); return (ARCHIVE_WARN); } /* * Note: Returns 0 on success, non-zero on failure. */ static int set_time(int fd, int mode, const char *name, time_t atime, long atime_nsec, time_t mtime, long mtime_nsec) { /* Select the best implementation for this platform. */ #if defined(HAVE_UTIMENSAT) && defined(HAVE_FUTIMENS) /* * utimensat() and futimens() are defined in * POSIX.1-2008. They support ns resolution and setting times * on fds and symlinks. */ struct timespec ts[2]; (void)mode; /* UNUSED */ ts[0].tv_sec = atime; ts[0].tv_nsec = atime_nsec; ts[1].tv_sec = mtime; ts[1].tv_nsec = mtime_nsec; if (fd >= 0) return futimens(fd, ts); return utimensat(AT_FDCWD, name, ts, AT_SYMLINK_NOFOLLOW); #elif HAVE_UTIMES /* * The utimes()-family functions support µs-resolution and * setting times fds and symlinks. utimes() is documented as * LEGACY by POSIX, futimes() and lutimes() are not described * in POSIX. */ struct timeval times[2]; times[0].tv_sec = atime; times[0].tv_usec = atime_nsec / 1000; times[1].tv_sec = mtime; times[1].tv_usec = mtime_nsec / 1000; #ifdef HAVE_FUTIMES if (fd >= 0) return (futimes(fd, times)); #else (void)fd; /* UNUSED */ #endif #ifdef HAVE_LUTIMES (void)mode; /* UNUSED */ return (lutimes(name, times)); #else if (S_ISLNK(mode)) return (0); return (utimes(name, times)); #endif #elif defined(HAVE_UTIME) /* * utime() is POSIX-standard but only supports 1s resolution and * does not support fds or symlinks. */ struct utimbuf times; (void)fd; /* UNUSED */ (void)name; /* UNUSED */ (void)atime_nsec; /* UNUSED */ (void)mtime_nsec; /* UNUSED */ times.actime = atime; times.modtime = mtime; if (S_ISLNK(mode)) return (ARCHIVE_OK); return (utime(name, ×)); #else /* * We don't know how to set the time on this platform. */ (void)fd; /* UNUSED */ (void)mode; /* UNUSED */ (void)name; /* UNUSED */ (void)atime_nsec; /* UNUSED */ (void)mtime_nsec; /* UNUSED */ return (ARCHIVE_WARN); #endif } #ifdef F_SETTIMES static int set_time_tru64(int fd, int mode, const char *name, time_t atime, long atime_nsec, time_t mtime, long mtime_nsec, time_t ctime, long ctime_nsec) { struct attr_timbuf tstamp; tstamp.atime.tv_sec = atime; tstamp.mtime.tv_sec = mtime; tstamp.ctime.tv_sec = ctime; #if defined (__hpux) && defined (__ia64) tstamp.atime.tv_nsec = atime_nsec; tstamp.mtime.tv_nsec = mtime_nsec; tstamp.ctime.tv_nsec = ctime_nsec; #else tstamp.atime.tv_usec = atime_nsec / 1000; tstamp.mtime.tv_usec = mtime_nsec / 1000; tstamp.ctime.tv_usec = ctime_nsec / 1000; #endif return (fcntl(fd,F_SETTIMES,&tstamp)); } #endif /* F_SETTIMES */ static int set_times(struct archive_write_disk *a, int fd, int mode, const char *name, time_t atime, long atime_nanos, time_t birthtime, long birthtime_nanos, time_t mtime, long mtime_nanos, time_t cctime, long ctime_nanos) { /* Note: set_time doesn't use libarchive return conventions! * It uses syscall conventions. So 0 here instead of ARCHIVE_OK. */ int r1 = 0, r2 = 0; #ifdef F_SETTIMES /* * on Tru64 try own fcntl first which can restore even the * ctime, fall back to default code path below if it fails * or if we are not running as root */ if (a->user_uid == 0 && set_time_tru64(fd, mode, name, atime, atime_nanos, mtime, mtime_nanos, cctime, ctime_nanos) == 0) { return (ARCHIVE_OK); } #else /* Tru64 */ (void)cctime; /* UNUSED */ (void)ctime_nanos; /* UNUSED */ #endif /* Tru64 */ #ifdef HAVE_STRUCT_STAT_ST_BIRTHTIME /* * If you have struct stat.st_birthtime, we assume BSD * birthtime semantics, in which {f,l,}utimes() updates * birthtime to earliest mtime. So we set the time twice, * first using the birthtime, then using the mtime. If * birthtime == mtime, this isn't necessary, so we skip it. * If birthtime > mtime, then this won't work, so we skip it. */ if (birthtime < mtime || (birthtime == mtime && birthtime_nanos < mtime_nanos)) r1 = set_time(fd, mode, name, atime, atime_nanos, birthtime, birthtime_nanos); #else (void)birthtime; /* UNUSED */ (void)birthtime_nanos; /* UNUSED */ #endif r2 = set_time(fd, mode, name, atime, atime_nanos, mtime, mtime_nanos); if (r1 != 0 || r2 != 0) { archive_set_error(&a->archive, errno, "Can't restore time"); return (ARCHIVE_WARN); } return (ARCHIVE_OK); } static int set_times_from_entry(struct archive_write_disk *a) { time_t atime, birthtime, mtime, cctime; long atime_nsec, birthtime_nsec, mtime_nsec, ctime_nsec; /* Suitable defaults. */ atime = birthtime = mtime = cctime = a->start_time; atime_nsec = birthtime_nsec = mtime_nsec = ctime_nsec = 0; /* If no time was provided, we're done. */ if (!archive_entry_atime_is_set(a->entry) #if HAVE_STRUCT_STAT_ST_BIRTHTIME && !archive_entry_birthtime_is_set(a->entry) #endif && !archive_entry_mtime_is_set(a->entry)) return (ARCHIVE_OK); if (archive_entry_atime_is_set(a->entry)) { atime = archive_entry_atime(a->entry); atime_nsec = archive_entry_atime_nsec(a->entry); } if (archive_entry_birthtime_is_set(a->entry)) { birthtime = archive_entry_birthtime(a->entry); birthtime_nsec = archive_entry_birthtime_nsec(a->entry); } if (archive_entry_mtime_is_set(a->entry)) { mtime = archive_entry_mtime(a->entry); mtime_nsec = archive_entry_mtime_nsec(a->entry); } if (archive_entry_ctime_is_set(a->entry)) { cctime = archive_entry_ctime(a->entry); ctime_nsec = archive_entry_ctime_nsec(a->entry); } return set_times(a, a->fd, a->mode, a->name, atime, atime_nsec, birthtime, birthtime_nsec, mtime, mtime_nsec, cctime, ctime_nsec); } static int set_mode(struct archive_write_disk *a, int mode) { int r = ARCHIVE_OK; mode &= 07777; /* Strip off file type bits. */ if (a->todo & TODO_SGID_CHECK) { /* * If we don't know the GID is right, we must stat() * to verify it. We can't just check the GID of this * process, since systems sometimes set GID from * the enclosing dir or based on ACLs. */ if ((r = lazy_stat(a)) != ARCHIVE_OK) return (r); if (a->pst->st_gid != a->gid) { mode &= ~ S_ISGID; if (a->flags & ARCHIVE_EXTRACT_OWNER) { /* * This is only an error if you * requested owner restore. If you * didn't, we'll try to restore * sgid/suid, but won't consider it a * problem if we can't. */ archive_set_error(&a->archive, -1, "Can't restore SGID bit"); r = ARCHIVE_WARN; } } /* While we're here, double-check the UID. */ if (a->pst->st_uid != a->uid && (a->todo & TODO_SUID)) { mode &= ~ S_ISUID; if (a->flags & ARCHIVE_EXTRACT_OWNER) { archive_set_error(&a->archive, -1, "Can't restore SUID bit"); r = ARCHIVE_WARN; } } a->todo &= ~TODO_SGID_CHECK; a->todo &= ~TODO_SUID_CHECK; } else if (a->todo & TODO_SUID_CHECK) { /* * If we don't know the UID is right, we can just check * the user, since all systems set the file UID from * the process UID. */ if (a->user_uid != a->uid) { mode &= ~ S_ISUID; if (a->flags & ARCHIVE_EXTRACT_OWNER) { archive_set_error(&a->archive, -1, "Can't make file SUID"); r = ARCHIVE_WARN; } } a->todo &= ~TODO_SUID_CHECK; } if (S_ISLNK(a->mode)) { #ifdef HAVE_LCHMOD /* * If this is a symlink, use lchmod(). If the * platform doesn't support lchmod(), just skip it. A * platform that doesn't provide a way to set * permissions on symlinks probably ignores * permissions on symlinks, so a failure here has no * impact. */ if (lchmod(a->name, mode) != 0) { switch (errno) { case ENOTSUP: case ENOSYS: #if ENOTSUP != EOPNOTSUPP case EOPNOTSUPP: #endif /* * if lchmod is defined but the platform * doesn't support it, silently ignore * error */ break; default: archive_set_error(&a->archive, errno, "Can't set permissions to 0%o", (int)mode); r = ARCHIVE_WARN; } } #endif } else if (!S_ISDIR(a->mode)) { /* * If it's not a symlink and not a dir, then use * fchmod() or chmod(), depending on whether we have * an fd. Dirs get their perms set during the * post-extract fixup, which is handled elsewhere. */ #ifdef HAVE_FCHMOD if (a->fd >= 0) { if (fchmod(a->fd, mode) != 0) { archive_set_error(&a->archive, errno, "Can't set permissions to 0%o", (int)mode); r = ARCHIVE_WARN; } } else #endif /* If this platform lacks fchmod(), then * we'll just use chmod(). */ if (chmod(a->name, mode) != 0) { archive_set_error(&a->archive, errno, "Can't set permissions to 0%o", (int)mode); r = ARCHIVE_WARN; } } return (r); } static int set_fflags(struct archive_write_disk *a) { struct fixup_entry *le; unsigned long set, clear; int r; int critical_flags; mode_t mode = archive_entry_mode(a->entry); /* * Make 'critical_flags' hold all file flags that can't be * immediately restored. For example, on BSD systems, * SF_IMMUTABLE prevents hardlinks from being created, so * should not be set until after any hardlinks are created. To * preserve some semblance of portability, this uses #ifdef * extensively. Ugly, but it works. * * Yes, Virginia, this does create a security race. It's mitigated * somewhat by the practice of creating dirs 0700 until the extract * is done, but it would be nice if we could do more than that. * People restoring critical file systems should be wary of * other programs that might try to muck with files as they're * being restored. */ /* Hopefully, the compiler will optimize this mess into a constant. */ critical_flags = 0; #ifdef SF_IMMUTABLE critical_flags |= SF_IMMUTABLE; #endif #ifdef UF_IMMUTABLE critical_flags |= UF_IMMUTABLE; #endif #ifdef SF_APPEND critical_flags |= SF_APPEND; #endif #ifdef UF_APPEND critical_flags |= UF_APPEND; #endif #ifdef EXT2_APPEND_FL critical_flags |= EXT2_APPEND_FL; #endif #ifdef EXT2_IMMUTABLE_FL critical_flags |= EXT2_IMMUTABLE_FL; #endif if (a->todo & TODO_FFLAGS) { archive_entry_fflags(a->entry, &set, &clear); /* * The first test encourages the compiler to eliminate * all of this if it's not necessary. */ if ((critical_flags != 0) && (set & critical_flags)) { le = current_fixup(a, a->name); if (le == NULL) return (ARCHIVE_FATAL); le->fixup |= TODO_FFLAGS; le->fflags_set = set; /* Store the mode if it's not already there. */ if ((le->fixup & TODO_MODE) == 0) le->mode = mode; } else { r = set_fflags_platform(a, a->fd, a->name, mode, set, clear); if (r != ARCHIVE_OK) return (r); } } return (ARCHIVE_OK); } static int clear_nochange_fflags(struct archive_write_disk *a) { int nochange_flags; mode_t mode = archive_entry_mode(a->entry); /* Hopefully, the compiler will optimize this mess into a constant. */ nochange_flags = 0; #ifdef SF_IMMUTABLE nochange_flags |= SF_IMMUTABLE; #endif #ifdef UF_IMMUTABLE nochange_flags |= UF_IMMUTABLE; #endif #ifdef SF_APPEND nochange_flags |= SF_APPEND; #endif #ifdef UF_APPEND nochange_flags |= UF_APPEND; #endif #ifdef EXT2_APPEND_FL nochange_flags |= EXT2_APPEND_FL; #endif #ifdef EXT2_IMMUTABLE_FL nochange_flags |= EXT2_IMMUTABLE_FL; #endif return (set_fflags_platform(a, a->fd, a->name, mode, 0, nochange_flags)); } #if ( defined(HAVE_LCHFLAGS) || defined(HAVE_CHFLAGS) || defined(HAVE_FCHFLAGS) ) && defined(HAVE_STRUCT_STAT_ST_FLAGS) /* * BSD reads flags using stat() and sets them with one of {f,l,}chflags() */ static int set_fflags_platform(struct archive_write_disk *a, int fd, const char *name, mode_t mode, unsigned long set, unsigned long clear) { int r; (void)mode; /* UNUSED */ if (set == 0 && clear == 0) return (ARCHIVE_OK); /* * XXX Is the stat here really necessary? Or can I just use * the 'set' flags directly? In particular, I'm not sure * about the correct approach if we're overwriting an existing * file that already has flags on it. XXX */ if ((r = lazy_stat(a)) != ARCHIVE_OK) return (r); a->st.st_flags &= ~clear; a->st.st_flags |= set; #ifdef HAVE_FCHFLAGS /* If platform has fchflags() and we were given an fd, use it. */ if (fd >= 0 && fchflags(fd, a->st.st_flags) == 0) return (ARCHIVE_OK); #endif /* * If we can't use the fd to set the flags, we'll use the * pathname to set flags. We prefer lchflags() but will use * chflags() if we must. */ #ifdef HAVE_LCHFLAGS if (lchflags(name, a->st.st_flags) == 0) return (ARCHIVE_OK); #elif defined(HAVE_CHFLAGS) if (S_ISLNK(a->st.st_mode)) { archive_set_error(&a->archive, errno, "Can't set file flags on symlink."); return (ARCHIVE_WARN); } if (chflags(name, a->st.st_flags) == 0) return (ARCHIVE_OK); #endif archive_set_error(&a->archive, errno, "Failed to set file flags"); return (ARCHIVE_WARN); } #elif defined(EXT2_IOC_GETFLAGS) && defined(EXT2_IOC_SETFLAGS) && defined(HAVE_WORKING_EXT2_IOC_GETFLAGS) /* * Linux uses ioctl() to read and write file flags. */ static int set_fflags_platform(struct archive_write_disk *a, int fd, const char *name, mode_t mode, unsigned long set, unsigned long clear) { int ret; int myfd = fd; int newflags, oldflags; int sf_mask = 0; if (set == 0 && clear == 0) return (ARCHIVE_OK); /* Only regular files and dirs can have flags. */ if (!S_ISREG(mode) && !S_ISDIR(mode)) return (ARCHIVE_OK); /* If we weren't given an fd, open it ourselves. */ if (myfd < 0) { myfd = open(name, O_RDONLY | O_NONBLOCK | O_BINARY | O_CLOEXEC); __archive_ensure_cloexec_flag(myfd); } if (myfd < 0) return (ARCHIVE_OK); /* * Linux has no define for the flags that are only settable by * the root user. This code may seem a little complex, but * there seem to be some Linux systems that lack these * defines. (?) The code below degrades reasonably gracefully * if sf_mask is incomplete. */ #ifdef EXT2_IMMUTABLE_FL sf_mask |= EXT2_IMMUTABLE_FL; #endif #ifdef EXT2_APPEND_FL sf_mask |= EXT2_APPEND_FL; #endif /* * XXX As above, this would be way simpler if we didn't have * to read the current flags from disk. XXX */ ret = ARCHIVE_OK; /* Read the current file flags. */ if (ioctl(myfd, EXT2_IOC_GETFLAGS, &oldflags) < 0) goto fail; /* Try setting the flags as given. */ newflags = (oldflags & ~clear) | set; if (ioctl(myfd, EXT2_IOC_SETFLAGS, &newflags) >= 0) goto cleanup; if (errno != EPERM) goto fail; /* If we couldn't set all the flags, try again with a subset. */ newflags &= ~sf_mask; oldflags &= sf_mask; newflags |= oldflags; if (ioctl(myfd, EXT2_IOC_SETFLAGS, &newflags) >= 0) goto cleanup; /* We couldn't set the flags, so report the failure. */ fail: archive_set_error(&a->archive, errno, "Failed to set file flags"); ret = ARCHIVE_WARN; cleanup: if (fd < 0) close(myfd); return (ret); } #else /* * Of course, some systems have neither BSD chflags() nor Linux' flags * support through ioctl(). */ static int set_fflags_platform(struct archive_write_disk *a, int fd, const char *name, mode_t mode, unsigned long set, unsigned long clear) { (void)a; /* UNUSED */ (void)fd; /* UNUSED */ (void)name; /* UNUSED */ (void)mode; /* UNUSED */ (void)set; /* UNUSED */ (void)clear; /* UNUSED */ return (ARCHIVE_OK); } #endif /* __linux */ #ifndef HAVE_COPYFILE_H /* Default is to simply drop Mac extended metadata. */ static int set_mac_metadata(struct archive_write_disk *a, const char *pathname, const void *metadata, size_t metadata_size) { (void)a; /* UNUSED */ (void)pathname; /* UNUSED */ (void)metadata; /* UNUSED */ (void)metadata_size; /* UNUSED */ return (ARCHIVE_OK); } static int fixup_appledouble(struct archive_write_disk *a, const char *pathname) { (void)a; /* UNUSED */ (void)pathname; /* UNUSED */ return (ARCHIVE_OK); } #else /* * On Mac OS, we use copyfile() to unpack the metadata and * apply it to the target file. */ #if defined(HAVE_SYS_XATTR_H) static int copy_xattrs(struct archive_write_disk *a, int tmpfd, int dffd) { ssize_t xattr_size; char *xattr_names = NULL, *xattr_val = NULL; int ret = ARCHIVE_OK, xattr_i; xattr_size = flistxattr(tmpfd, NULL, 0, 0); if (xattr_size == -1) { archive_set_error(&a->archive, errno, "Failed to read metadata(xattr)"); ret = ARCHIVE_WARN; goto exit_xattr; } xattr_names = malloc(xattr_size); if (xattr_names == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for metadata(xattr)"); ret = ARCHIVE_FATAL; goto exit_xattr; } xattr_size = flistxattr(tmpfd, xattr_names, xattr_size, 0); if (xattr_size == -1) { archive_set_error(&a->archive, errno, "Failed to read metadata(xattr)"); ret = ARCHIVE_WARN; goto exit_xattr; } for (xattr_i = 0; xattr_i < xattr_size; xattr_i += strlen(xattr_names + xattr_i) + 1) { char *xattr_val_saved; ssize_t s; int f; s = fgetxattr(tmpfd, xattr_names + xattr_i, NULL, 0, 0, 0); if (s == -1) { archive_set_error(&a->archive, errno, "Failed to get metadata(xattr)"); ret = ARCHIVE_WARN; goto exit_xattr; } xattr_val_saved = xattr_val; xattr_val = realloc(xattr_val, s); if (xattr_val == NULL) { archive_set_error(&a->archive, ENOMEM, "Failed to get metadata(xattr)"); ret = ARCHIVE_WARN; free(xattr_val_saved); goto exit_xattr; } s = fgetxattr(tmpfd, xattr_names + xattr_i, xattr_val, s, 0, 0); if (s == -1) { archive_set_error(&a->archive, errno, "Failed to get metadata(xattr)"); ret = ARCHIVE_WARN; goto exit_xattr; } f = fsetxattr(dffd, xattr_names + xattr_i, xattr_val, s, 0, 0); if (f == -1) { archive_set_error(&a->archive, errno, "Failed to get metadata(xattr)"); ret = ARCHIVE_WARN; goto exit_xattr; } } exit_xattr: free(xattr_names); free(xattr_val); return (ret); } #endif static int copy_acls(struct archive_write_disk *a, int tmpfd, int dffd) { #ifndef HAVE_SYS_ACL_H return 0; #else acl_t acl, dfacl = NULL; int acl_r, ret = ARCHIVE_OK; acl = acl_get_fd(tmpfd); if (acl == NULL) { if (errno == ENOENT) /* There are not any ACLs. */ return (ret); archive_set_error(&a->archive, errno, "Failed to get metadata(acl)"); ret = ARCHIVE_WARN; goto exit_acl; } dfacl = acl_dup(acl); acl_r = acl_set_fd(dffd, dfacl); if (acl_r == -1) { archive_set_error(&a->archive, errno, "Failed to get metadata(acl)"); ret = ARCHIVE_WARN; goto exit_acl; } exit_acl: if (acl) acl_free(acl); if (dfacl) acl_free(dfacl); return (ret); #endif } static int create_tempdatafork(struct archive_write_disk *a, const char *pathname) { struct archive_string tmpdatafork; int tmpfd; archive_string_init(&tmpdatafork); archive_strcpy(&tmpdatafork, "tar.md.XXXXXX"); tmpfd = mkstemp(tmpdatafork.s); if (tmpfd < 0) { archive_set_error(&a->archive, errno, "Failed to mkstemp"); archive_string_free(&tmpdatafork); return (-1); } if (copyfile(pathname, tmpdatafork.s, 0, COPYFILE_UNPACK | COPYFILE_NOFOLLOW | COPYFILE_ACL | COPYFILE_XATTR) < 0) { archive_set_error(&a->archive, errno, "Failed to restore metadata"); close(tmpfd); tmpfd = -1; } unlink(tmpdatafork.s); archive_string_free(&tmpdatafork); return (tmpfd); } static int copy_metadata(struct archive_write_disk *a, const char *metadata, const char *datafork, int datafork_compressed) { int ret = ARCHIVE_OK; if (datafork_compressed) { int dffd, tmpfd; tmpfd = create_tempdatafork(a, metadata); if (tmpfd == -1) return (ARCHIVE_WARN); /* * Do not open the data fork compressed by HFS+ compression * with at least a writing mode(O_RDWR or O_WRONLY). it * makes the data fork uncompressed. */ dffd = open(datafork, 0); if (dffd == -1) { archive_set_error(&a->archive, errno, "Failed to open the data fork for metadata"); close(tmpfd); return (ARCHIVE_WARN); } #if defined(HAVE_SYS_XATTR_H) ret = copy_xattrs(a, tmpfd, dffd); if (ret == ARCHIVE_OK) #endif ret = copy_acls(a, tmpfd, dffd); close(tmpfd); close(dffd); } else { if (copyfile(metadata, datafork, 0, COPYFILE_UNPACK | COPYFILE_NOFOLLOW | COPYFILE_ACL | COPYFILE_XATTR) < 0) { archive_set_error(&a->archive, errno, "Failed to restore metadata"); ret = ARCHIVE_WARN; } } return (ret); } static int set_mac_metadata(struct archive_write_disk *a, const char *pathname, const void *metadata, size_t metadata_size) { struct archive_string tmp; ssize_t written; int fd; int ret = ARCHIVE_OK; /* This would be simpler if copyfile() could just accept the * metadata as a block of memory; then we could sidestep this * silly dance of writing the data to disk just so that * copyfile() can read it back in again. */ archive_string_init(&tmp); archive_strcpy(&tmp, pathname); archive_strcat(&tmp, ".XXXXXX"); fd = mkstemp(tmp.s); if (fd < 0) { archive_set_error(&a->archive, errno, "Failed to restore metadata"); archive_string_free(&tmp); return (ARCHIVE_WARN); } written = write(fd, metadata, metadata_size); close(fd); if ((size_t)written != metadata_size) { archive_set_error(&a->archive, errno, "Failed to restore metadata"); ret = ARCHIVE_WARN; } else { int compressed; #if defined(UF_COMPRESSED) if ((a->todo & TODO_HFS_COMPRESSION) != 0 && (ret = lazy_stat(a)) == ARCHIVE_OK) compressed = a->st.st_flags & UF_COMPRESSED; else #endif compressed = 0; ret = copy_metadata(a, tmp.s, pathname, compressed); } unlink(tmp.s); archive_string_free(&tmp); return (ret); } static int fixup_appledouble(struct archive_write_disk *a, const char *pathname) { char buff[8]; struct stat st; const char *p; struct archive_string datafork; int fd = -1, ret = ARCHIVE_OK; archive_string_init(&datafork); /* Check if the current file name is a type of the resource * fork file. */ p = strrchr(pathname, '/'); if (p == NULL) p = pathname; else p++; if (p[0] != '.' || p[1] != '_') goto skip_appledouble; /* * Check if the data fork file exists. * * TODO: Check if this write disk object has handled it. */ archive_strncpy(&datafork, pathname, p - pathname); archive_strcat(&datafork, p + 2); if (lstat(datafork.s, &st) == -1 || (st.st_mode & AE_IFMT) != AE_IFREG) goto skip_appledouble; /* * Check if the file is in the AppleDouble form. */ fd = open(pathname, O_RDONLY | O_BINARY | O_CLOEXEC); __archive_ensure_cloexec_flag(fd); if (fd == -1) { archive_set_error(&a->archive, errno, "Failed to open a restoring file"); ret = ARCHIVE_WARN; goto skip_appledouble; } if (read(fd, buff, 8) == -1) { archive_set_error(&a->archive, errno, "Failed to read a restoring file"); close(fd); ret = ARCHIVE_WARN; goto skip_appledouble; } close(fd); /* Check AppleDouble Magic Code. */ if (archive_be32dec(buff) != 0x00051607) goto skip_appledouble; /* Check AppleDouble Version. */ if (archive_be32dec(buff+4) != 0x00020000) goto skip_appledouble; ret = copy_metadata(a, pathname, datafork.s, #if defined(UF_COMPRESSED) st.st_flags & UF_COMPRESSED); #else 0); #endif if (ret == ARCHIVE_OK) { unlink(pathname); ret = ARCHIVE_EOF; } skip_appledouble: archive_string_free(&datafork); return (ret); } #endif #if HAVE_LSETXATTR || HAVE_LSETEA /* * Restore extended attributes - Linux and AIX implementations: * AIX' ea interface is syntaxwise identical to the Linux xattr interface. */ static int set_xattrs(struct archive_write_disk *a) { struct archive_entry *entry = a->entry; static int warning_done = 0; int ret = ARCHIVE_OK; int i = archive_entry_xattr_reset(entry); while (i--) { const char *name; const void *value; size_t size; archive_entry_xattr_next(entry, &name, &value, &size); if (name != NULL && strncmp(name, "xfsroot.", 8) != 0 && strncmp(name, "system.", 7) != 0) { int e; #if HAVE_FSETXATTR if (a->fd >= 0) e = fsetxattr(a->fd, name, value, size, 0); else #elif HAVE_FSETEA if (a->fd >= 0) e = fsetea(a->fd, name, value, size, 0); else #endif { #if HAVE_LSETXATTR e = lsetxattr(archive_entry_pathname(entry), name, value, size, 0); #elif HAVE_LSETEA e = lsetea(archive_entry_pathname(entry), name, value, size, 0); #endif } if (e == -1) { if (errno == ENOTSUP || errno == ENOSYS) { if (!warning_done) { warning_done = 1; archive_set_error(&a->archive, errno, "Cannot restore extended " "attributes on this file " "system"); } } else archive_set_error(&a->archive, errno, "Failed to set extended attribute"); ret = ARCHIVE_WARN; } } else { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid extended attribute encountered"); ret = ARCHIVE_WARN; } } return (ret); } #elif HAVE_EXTATTR_SET_FILE && HAVE_DECL_EXTATTR_NAMESPACE_USER /* * Restore extended attributes - FreeBSD implementation */ static int set_xattrs(struct archive_write_disk *a) { struct archive_entry *entry = a->entry; static int warning_done = 0; int ret = ARCHIVE_OK; int i = archive_entry_xattr_reset(entry); while (i--) { const char *name; const void *value; size_t size; archive_entry_xattr_next(entry, &name, &value, &size); if (name != NULL) { int e; int namespace; if (strncmp(name, "user.", 5) == 0) { /* "user." attributes go to user namespace */ name += 5; namespace = EXTATTR_NAMESPACE_USER; } else { /* Warn about other extended attributes. */ archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Can't restore extended attribute ``%s''", name); ret = ARCHIVE_WARN; continue; } errno = 0; #if HAVE_EXTATTR_SET_FD if (a->fd >= 0) e = extattr_set_fd(a->fd, namespace, name, value, size); else #endif /* TODO: should we use extattr_set_link() instead? */ { e = extattr_set_file( archive_entry_pathname(entry), namespace, name, value, size); } if (e != (int)size) { if (errno == ENOTSUP || errno == ENOSYS) { if (!warning_done) { warning_done = 1; archive_set_error(&a->archive, errno, "Cannot restore extended " "attributes on this file " "system"); } } else { archive_set_error(&a->archive, errno, "Failed to set extended attribute"); } ret = ARCHIVE_WARN; } } } return (ret); } #else /* * Restore extended attributes - stub implementation for unsupported systems */ static int set_xattrs(struct archive_write_disk *a) { static int warning_done = 0; /* If there aren't any extended attributes, then it's okay not * to extract them, otherwise, issue a single warning. */ if (archive_entry_xattr_count(a->entry) != 0 && !warning_done) { warning_done = 1; archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Cannot restore extended attributes on this system"); return (ARCHIVE_WARN); } /* Warning was already emitted; suppress further warnings. */ return (ARCHIVE_OK); } #endif /* * Test if file on disk is older than entry. */ static int older(struct stat *st, struct archive_entry *entry) { /* First, test the seconds and return if we have a definite answer. */ /* Definitely older. */ if (to_int64_time(st->st_mtime) < to_int64_time(archive_entry_mtime(entry))) return (1); /* Definitely younger. */ if (to_int64_time(st->st_mtime) > to_int64_time(archive_entry_mtime(entry))) return (0); /* If this platform supports fractional seconds, try those. */ #if HAVE_STRUCT_STAT_ST_MTIMESPEC_TV_NSEC /* Definitely older. */ if (st->st_mtimespec.tv_nsec < archive_entry_mtime_nsec(entry)) return (1); #elif HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC /* Definitely older. */ if (st->st_mtim.tv_nsec < archive_entry_mtime_nsec(entry)) return (1); #elif HAVE_STRUCT_STAT_ST_MTIME_N /* older. */ if (st->st_mtime_n < archive_entry_mtime_nsec(entry)) return (1); #elif HAVE_STRUCT_STAT_ST_UMTIME /* older. */ if (st->st_umtime * 1000 < archive_entry_mtime_nsec(entry)) return (1); #elif HAVE_STRUCT_STAT_ST_MTIME_USEC /* older. */ if (st->st_mtime_usec * 1000 < archive_entry_mtime_nsec(entry)) return (1); #else /* This system doesn't have high-res timestamps. */ #endif /* Same age or newer, so not older. */ return (0); } #endif /* !_WIN32 || __CYGWIN__ */