/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include #include #include #include #include #include /* _NSGetExecutablePath */ #include #include #include /* sysconf */ int uv__platform_loop_init(uv_loop_t* loop) { loop->cf_state = NULL; if (uv__kqueue_init(loop)) return UV__ERR(errno); return 0; } void uv__platform_loop_delete(uv_loop_t* loop) { uv__fsevents_loop_delete(loop); } uint64_t uv__hrtime(uv_clocktype_t type) { static mach_timebase_info_data_t info; if ((ACCESS_ONCE(uint32_t, info.numer) == 0 || ACCESS_ONCE(uint32_t, info.denom) == 0) && mach_timebase_info(&info) != KERN_SUCCESS) abort(); return mach_absolute_time() * info.numer / info.denom; } int uv_exepath(char* buffer, size_t* size) { /* realpath(exepath) may be > PATH_MAX so double it to be on the safe side. */ char abspath[PATH_MAX * 2 + 1]; char exepath[PATH_MAX + 1]; uint32_t exepath_size; size_t abspath_size; if (buffer == NULL || size == NULL || *size == 0) return UV_EINVAL; exepath_size = sizeof(exepath); if (_NSGetExecutablePath(exepath, &exepath_size)) return UV_EIO; if (realpath(exepath, abspath) != abspath) return UV__ERR(errno); abspath_size = strlen(abspath); if (abspath_size == 0) return UV_EIO; *size -= 1; if (*size > abspath_size) *size = abspath_size; memcpy(buffer, abspath, *size); buffer[*size] = '\0'; return 0; } uint64_t uv_get_free_memory(void) { vm_statistics_data_t info; mach_msg_type_number_t count = sizeof(info) / sizeof(integer_t); if (host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&info, &count) != KERN_SUCCESS) { return UV_EINVAL; /* FIXME(bnoordhuis) Translate error. */ } return (uint64_t) info.free_count * sysconf(_SC_PAGESIZE); } uint64_t uv_get_total_memory(void) { uint64_t info; int which[] = {CTL_HW, HW_MEMSIZE}; size_t size = sizeof(info); if (sysctl(which, 2, &info, &size, NULL, 0)) return UV__ERR(errno); return (uint64_t) info; } uint64_t uv_get_constrained_memory(void) { return 0; /* Memory constraints are unknown. */ } void uv_loadavg(double avg[3]) { struct loadavg info; size_t size = sizeof(info); int which[] = {CTL_VM, VM_LOADAVG}; if (sysctl(which, 2, &info, &size, NULL, 0) < 0) return; avg[0] = (double) info.ldavg[0] / info.fscale; avg[1] = (double) info.ldavg[1] / info.fscale; avg[2] = (double) info.ldavg[2] / info.fscale; } int uv_resident_set_memory(size_t* rss) { mach_msg_type_number_t count; task_basic_info_data_t info; kern_return_t err; count = TASK_BASIC_INFO_COUNT; err = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t) &info, &count); (void) &err; /* task_info(TASK_BASIC_INFO) cannot really fail. Anything other than * KERN_SUCCESS implies a libuv bug. */ assert(err == KERN_SUCCESS); *rss = info.resident_size; return 0; } int uv_uptime(double* uptime) { time_t now; struct timeval info; size_t size = sizeof(info); static int which[] = {CTL_KERN, KERN_BOOTTIME}; if (sysctl(which, 2, &info, &size, NULL, 0)) return UV__ERR(errno); now = time(NULL); *uptime = now - info.tv_sec; return 0; } int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) { unsigned int ticks = (unsigned int)sysconf(_SC_CLK_TCK), multiplier = ((uint64_t)1000L / ticks); char model[512]; uint64_t cpuspeed; size_t size; unsigned int i; natural_t numcpus; mach_msg_type_number_t msg_type; processor_cpu_load_info_data_t *info; uv_cpu_info_t* cpu_info; size = sizeof(model); if (sysctlbyname("machdep.cpu.brand_string", &model, &size, NULL, 0) && sysctlbyname("hw.model", &model, &size, NULL, 0)) { return UV__ERR(errno); } size = sizeof(cpuspeed); if (sysctlbyname("hw.cpufrequency", &cpuspeed, &size, NULL, 0)) return UV__ERR(errno); if (host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &numcpus, (processor_info_array_t*)&info, &msg_type) != KERN_SUCCESS) { return UV_EINVAL; /* FIXME(bnoordhuis) Translate error. */ } *cpu_infos = uv__malloc(numcpus * sizeof(**cpu_infos)); if (!(*cpu_infos)) { vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type); return UV_ENOMEM; } *count = numcpus; for (i = 0; i < numcpus; i++) { cpu_info = &(*cpu_infos)[i]; cpu_info->cpu_times.user = (uint64_t)(info[i].cpu_ticks[0]) * multiplier; cpu_info->cpu_times.nice = (uint64_t)(info[i].cpu_ticks[3]) * multiplier; cpu_info->cpu_times.sys = (uint64_t)(info[i].cpu_ticks[1]) * multiplier; cpu_info->cpu_times.idle = (uint64_t)(info[i].cpu_ticks[2]) * multiplier; cpu_info->cpu_times.irq = 0; cpu_info->model = uv__strdup(model); cpu_info->speed = cpuspeed/1000000; } vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type); return 0; } void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count) { int i; for (i = 0; i < count; i++) { uv__free(cpu_infos[i].model); } uv__free(cpu_infos); }