/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /* Caveat emptor: this file deviates from the libuv convention of returning * negated errno codes. Most uv_fs_*() functions map directly to the system * call of the same name. For more complex wrappers, it's easier to just * return -1 with errno set. The dispatcher in uv__fs_work() takes care of * getting the errno to the right place (req->result or as the return value.) */ #include "uv.h" #include "internal.h" #include #include #include #include #include /* PATH_MAX */ #include #include #include #include #include #include #include #include #include #if defined(__DragonFly__) || \ defined(__FreeBSD__) || \ defined(__FreeBSD_kernel_) || \ defined(__OpenBSD__) || \ defined(__NetBSD__) # define HAVE_PREADV 1 #else # define HAVE_PREADV 0 #endif #if defined(__linux__) || defined(__sun) # include #endif #if defined(__APPLE__) # include # include #elif defined(__linux__) && !defined(FICLONE) # include # define FICLONE _IOW(0x94, 9, int) #endif #if defined(_AIX) && !defined(_AIX71) # include #endif #if defined(_AIX) && _XOPEN_SOURCE <= 600 extern char *mkdtemp(char *template); /* See issue #740 on AIX < 7 */ #endif #define INIT(subtype) \ do { \ if (req == NULL) \ return UV_EINVAL; \ UV_REQ_INIT(req, UV_FS); \ req->fs_type = UV_FS_ ## subtype; \ req->result = 0; \ req->ptr = NULL; \ req->loop = loop; \ req->path = NULL; \ req->new_path = NULL; \ req->bufs = NULL; \ req->cb = cb; \ } \ while (0) #define PATH \ do { \ assert(path != NULL); \ if (cb == NULL) { \ req->path = path; \ } else { \ req->path = uv__strdup(path); \ if (req->path == NULL) \ return UV_ENOMEM; \ } \ } \ while (0) #define PATH2 \ do { \ if (cb == NULL) { \ req->path = path; \ req->new_path = new_path; \ } else { \ size_t path_len; \ size_t new_path_len; \ path_len = strlen(path) + 1; \ new_path_len = strlen(new_path) + 1; \ req->path = uv__malloc(path_len + new_path_len); \ if (req->path == NULL) \ return UV_ENOMEM; \ req->new_path = req->path + path_len; \ memcpy((void*) req->path, path, path_len); \ memcpy((void*) req->new_path, new_path, new_path_len); \ } \ } \ while (0) #define POST \ do { \ if (cb != NULL) { \ uv__req_register(loop, req); \ uv__work_submit(loop, \ &req->work_req, \ UV__WORK_FAST_IO, \ uv__fs_work, \ uv__fs_done); \ return 0; \ } \ else { \ uv__fs_work(&req->work_req); \ return req->result; \ } \ } \ while (0) static ssize_t uv__fs_fsync(uv_fs_t* req) { #if defined(__APPLE__) /* Apple's fdatasync and fsync explicitly do NOT flush the drive write cache * to the drive platters. This is in contrast to Linux's fdatasync and fsync * which do, according to recent man pages. F_FULLFSYNC is Apple's equivalent * for flushing buffered data to permanent storage. If F_FULLFSYNC is not * supported by the file system we should fall back to fsync(). This is the * same approach taken by sqlite. */ int r; r = fcntl(req->file, F_FULLFSYNC); if (r != 0) r = fsync(req->file); return r; #else return fsync(req->file); #endif } static ssize_t uv__fs_fdatasync(uv_fs_t* req) { #if defined(__linux__) || defined(__sun) || defined(__NetBSD__) return fdatasync(req->file); #elif defined(__APPLE__) /* See the comment in uv__fs_fsync. */ return uv__fs_fsync(req); #else return fsync(req->file); #endif } static ssize_t uv__fs_futime(uv_fs_t* req) { #if defined(__linux__) \ || defined(_AIX71) /* utimesat() has nanosecond resolution but we stick to microseconds * for the sake of consistency with other platforms. */ struct timespec ts[2]; ts[0].tv_sec = req->atime; ts[0].tv_nsec = (uint64_t)(req->atime * 1000000) % 1000000 * 1000; ts[1].tv_sec = req->mtime; ts[1].tv_nsec = (uint64_t)(req->mtime * 1000000) % 1000000 * 1000; return futimens(req->file, ts); #elif defined(__APPLE__) \ || defined(__DragonFly__) \ || defined(__FreeBSD__) \ || defined(__FreeBSD_kernel__) \ || defined(__NetBSD__) \ || defined(__OpenBSD__) \ || defined(__sun) struct timeval tv[2]; tv[0].tv_sec = req->atime; tv[0].tv_usec = (uint64_t)(req->atime * 1000000) % 1000000; tv[1].tv_sec = req->mtime; tv[1].tv_usec = (uint64_t)(req->mtime * 1000000) % 1000000; # if defined(__sun) return futimesat(req->file, NULL, tv); # else return futimes(req->file, tv); # endif #elif defined(__MVS__) attrib_t atr; memset(&atr, 0, sizeof(atr)); atr.att_mtimechg = 1; atr.att_atimechg = 1; atr.att_mtime = req->mtime; atr.att_atime = req->atime; return __fchattr(req->file, &atr, sizeof(atr)); #else errno = ENOSYS; return -1; #endif } #if defined(__sun) && (_XOPEN_SOURCE < 600 || defined(CMAKE_BOOTSTRAP)) static char* uv__mkdtemp(char *template) { if (!mktemp(template) || mkdir(template, 0700)) return NULL; return template; } #else #define uv__mkdtemp mkdtemp #endif static ssize_t uv__fs_mkdtemp(uv_fs_t* req) { return uv__mkdtemp((char*) req->path) ? 0 : -1; } static ssize_t uv__fs_open(uv_fs_t* req) { static int no_cloexec_support; int r; /* Try O_CLOEXEC before entering locks */ if (no_cloexec_support == 0) { #ifdef O_CLOEXEC r = open(req->path, req->flags | O_CLOEXEC, req->mode); if (r >= 0) return r; if (errno != EINVAL) return r; no_cloexec_support = 1; #endif /* O_CLOEXEC */ } if (req->cb != NULL) uv_rwlock_rdlock(&req->loop->cloexec_lock); r = open(req->path, req->flags, req->mode); /* In case of failure `uv__cloexec` will leave error in `errno`, * so it is enough to just set `r` to `-1`. */ if (r >= 0 && uv__cloexec(r, 1) != 0) { r = uv__close(r); if (r != 0) abort(); r = -1; } if (req->cb != NULL) uv_rwlock_rdunlock(&req->loop->cloexec_lock); return r; } static ssize_t uv__fs_read(uv_fs_t* req) { #if defined(__linux__) static int no_preadv; #endif unsigned int iovmax; ssize_t result; iovmax = uv__getiovmax(); if (req->nbufs > iovmax) req->nbufs = iovmax; if (req->off < 0) { if (req->nbufs == 1) result = read(req->file, req->bufs[0].base, req->bufs[0].len); else result = readv(req->file, (struct iovec*) req->bufs, req->nbufs); } else { if (req->nbufs == 1) { result = pread(req->file, req->bufs[0].base, req->bufs[0].len, req->off); goto done; } #if HAVE_PREADV result = preadv(req->file, (struct iovec*) req->bufs, req->nbufs, req->off); #else # if defined(__linux__) if (no_preadv) retry: # endif { result = pread(req->file, req->bufs[0].base, req->bufs[0].len, req->off); } # if defined(__linux__) else { result = uv__preadv(req->file, (struct iovec*)req->bufs, req->nbufs, req->off); if (result == -1 && errno == ENOSYS) { no_preadv = 1; goto retry; } } # endif #endif } done: /* Early cleanup of bufs allocation, since we're done with it. */ if (req->bufs != req->bufsml) uv__free(req->bufs); req->bufs = NULL; req->nbufs = 0; return result; } #if defined(__APPLE__) && !defined(MAC_OS_X_VERSION_10_8) #define UV_CONST_DIRENT uv__dirent_t #else #define UV_CONST_DIRENT const uv__dirent_t #endif static int uv__fs_scandir_filter(UV_CONST_DIRENT* dent) { return strcmp(dent->d_name, ".") != 0 && strcmp(dent->d_name, "..") != 0; } static int uv__fs_scandir_sort(UV_CONST_DIRENT** a, UV_CONST_DIRENT** b) { return strcmp((*a)->d_name, (*b)->d_name); } static ssize_t uv__fs_scandir(uv_fs_t* req) { uv__dirent_t **dents; int n; dents = NULL; n = scandir(req->path, &dents, uv__fs_scandir_filter, uv__fs_scandir_sort); /* NOTE: We will use nbufs as an index field */ req->nbufs = 0; if (n == 0) { /* OS X still needs to deallocate some memory. * Memory was allocated using the system allocator, so use free() here. */ free(dents); dents = NULL; } else if (n == -1) { return n; } req->ptr = dents; return n; } #if defined(_POSIX_PATH_MAX) # define UV__FS_PATH_MAX _POSIX_PATH_MAX #elif defined(PATH_MAX) # define UV__FS_PATH_MAX PATH_MAX #else # define UV__FS_PATH_MAX_FALLBACK 8192 # define UV__FS_PATH_MAX UV__FS_PATH_MAX_FALLBACK #endif static ssize_t uv__fs_pathmax_size(const char* path) { ssize_t pathmax; pathmax = pathconf(path, _PC_PATH_MAX); if (pathmax == -1) pathmax = UV__FS_PATH_MAX; return pathmax; } static ssize_t uv__fs_readlink(uv_fs_t* req) { ssize_t maxlen; ssize_t len; char* buf; char* newbuf; #if defined(UV__FS_PATH_MAX_FALLBACK) /* We may not have a real PATH_MAX. Read size of link. */ struct stat st; int ret; ret = lstat(req->path, &st); if (ret != 0) return -1; if (!S_ISLNK(st.st_mode)) { errno = EINVAL; return -1; } maxlen = st.st_size; /* According to readlink(2) lstat can report st_size == 0 for some symlinks, such as those in /proc or /sys. */ if (maxlen == 0) maxlen = uv__fs_pathmax_size(req->path); #else maxlen = uv__fs_pathmax_size(req->path); #endif buf = uv__malloc(maxlen); if (buf == NULL) { errno = ENOMEM; return -1; } #if defined(__MVS__) len = os390_readlink(req->path, buf, maxlen); #else len = readlink(req->path, buf, maxlen); #endif if (len == -1) { uv__free(buf); return -1; } /* Uncommon case: resize to make room for the trailing nul byte. */ if (len == maxlen) { newbuf = uv__realloc(buf, len + 1); if (newbuf == NULL) { uv__free(buf); return -1; } buf = newbuf; } buf[len] = '\0'; req->ptr = buf; return 0; } static ssize_t uv__fs_realpath(uv_fs_t* req) { char* buf; #if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L buf = realpath(req->path, NULL); if (buf == NULL) return -1; #else ssize_t len; len = uv__fs_pathmax_size(req->path); buf = uv__malloc(len + 1); if (buf == NULL) { errno = ENOMEM; return -1; } if (realpath(req->path, buf) == NULL) { uv__free(buf); return -1; } #endif req->ptr = buf; return 0; } static ssize_t uv__fs_sendfile_emul(uv_fs_t* req) { struct pollfd pfd; int use_pread; off_t offset; ssize_t nsent; ssize_t nread; ssize_t nwritten; size_t buflen; size_t len; ssize_t n; int in_fd; int out_fd; char buf[8192]; len = req->bufsml[0].len; in_fd = req->flags; out_fd = req->file; offset = req->off; use_pread = 1; /* Here are the rules regarding errors: * * 1. Read errors are reported only if nsent==0, otherwise we return nsent. * The user needs to know that some data has already been sent, to stop * them from sending it twice. * * 2. Write errors are always reported. Write errors are bad because they * mean data loss: we've read data but now we can't write it out. * * We try to use pread() and fall back to regular read() if the source fd * doesn't support positional reads, for example when it's a pipe fd. * * If we get EAGAIN when writing to the target fd, we poll() on it until * it becomes writable again. * * FIXME: If we get a write error when use_pread==1, it should be safe to * return the number of sent bytes instead of an error because pread() * is, in theory, idempotent. However, special files in /dev or /proc * may support pread() but not necessarily return the same data on * successive reads. * * FIXME: There is no way now to signal that we managed to send *some* data * before a write error. */ for (nsent = 0; (size_t) nsent < len; ) { buflen = len - nsent; if (buflen > sizeof(buf)) buflen = sizeof(buf); do if (use_pread) nread = pread(in_fd, buf, buflen, offset); else nread = read(in_fd, buf, buflen); while (nread == -1 && errno == EINTR); if (nread == 0) goto out; if (nread == -1) { if (use_pread && nsent == 0 && (errno == EIO || errno == ESPIPE)) { use_pread = 0; continue; } if (nsent == 0) nsent = -1; goto out; } for (nwritten = 0; nwritten < nread; ) { do n = write(out_fd, buf + nwritten, nread - nwritten); while (n == -1 && errno == EINTR); if (n != -1) { nwritten += n; continue; } if (errno != EAGAIN && errno != EWOULDBLOCK) { nsent = -1; goto out; } pfd.fd = out_fd; pfd.events = POLLOUT; pfd.revents = 0; do n = poll(&pfd, 1, -1); while (n == -1 && errno == EINTR); if (n == -1 || (pfd.revents & ~POLLOUT) != 0) { errno = EIO; nsent = -1; goto out; } } offset += nread; nsent += nread; } out: if (nsent != -1) req->off = offset; return nsent; } static ssize_t uv__fs_sendfile(uv_fs_t* req) { int in_fd; int out_fd; in_fd = req->flags; out_fd = req->file; #if defined(__linux__) || defined(__sun) { off_t off; ssize_t r; off = req->off; r = sendfile(out_fd, in_fd, &off, req->bufsml[0].len); /* sendfile() on SunOS returns EINVAL if the target fd is not a socket but * it still writes out data. Fortunately, we can detect it by checking if * the offset has been updated. */ if (r != -1 || off > req->off) { r = off - req->off; req->off = off; return r; } if (errno == EINVAL || errno == EIO || errno == ENOTSOCK || errno == EXDEV) { errno = 0; return uv__fs_sendfile_emul(req); } return -1; } #elif defined(__APPLE__) || \ defined(__DragonFly__) || \ defined(__FreeBSD__) || \ defined(__FreeBSD_kernel__) { off_t len; ssize_t r; /* sendfile() on FreeBSD and Darwin returns EAGAIN if the target fd is in * non-blocking mode and not all data could be written. If a non-zero * number of bytes have been sent, we don't consider it an error. */ #if defined(__FreeBSD__) || defined(__DragonFly__) len = 0; r = sendfile(in_fd, out_fd, req->off, req->bufsml[0].len, NULL, &len, 0); #elif defined(__FreeBSD_kernel__) len = 0; r = bsd_sendfile(in_fd, out_fd, req->off, req->bufsml[0].len, NULL, &len, 0); #else /* The darwin sendfile takes len as an input for the length to send, * so make sure to initialize it with the caller's value. */ len = req->bufsml[0].len; r = sendfile(in_fd, out_fd, req->off, &len, NULL, 0); #endif /* * The man page for sendfile(2) on DragonFly states that `len` contains * a meaningful value ONLY in case of EAGAIN and EINTR. * Nothing is said about it's value in case of other errors, so better * not depend on the potential wrong assumption that is was not modified * by the syscall. */ if (r == 0 || ((errno == EAGAIN || errno == EINTR) && len != 0)) { req->off += len; return (ssize_t) len; } if (errno == EINVAL || errno == EIO || errno == ENOTSOCK || errno == EXDEV) { errno = 0; return uv__fs_sendfile_emul(req); } return -1; } #else /* Squelch compiler warnings. */ (void) &in_fd; (void) &out_fd; return uv__fs_sendfile_emul(req); #endif } static ssize_t uv__fs_utime(uv_fs_t* req) { #if defined(__linux__) \ || defined(_AIX71) \ || defined(__sun) /* utimesat() has nanosecond resolution but we stick to microseconds * for the sake of consistency with other platforms. */ struct timespec ts[2]; ts[0].tv_sec = req->atime; ts[0].tv_nsec = (uint64_t)(req->atime * 1000000) % 1000000 * 1000; ts[1].tv_sec = req->mtime; ts[1].tv_nsec = (uint64_t)(req->mtime * 1000000) % 1000000 * 1000; return utimensat(AT_FDCWD, req->path, ts, 0); #elif defined(__APPLE__) \ || defined(__DragonFly__) \ || defined(__FreeBSD__) \ || defined(__FreeBSD_kernel__) \ || defined(__NetBSD__) \ || defined(__OpenBSD__) struct timeval tv[2]; tv[0].tv_sec = req->atime; tv[0].tv_usec = (uint64_t)(req->atime * 1000000) % 1000000; tv[1].tv_sec = req->mtime; tv[1].tv_usec = (uint64_t)(req->mtime * 1000000) % 1000000; return utimes(req->path, tv); #elif defined(_AIX) \ && !defined(_AIX71) struct utimbuf buf; buf.actime = req->atime; buf.modtime = req->mtime; return utime(req->path, &buf); #elif defined(__MVS__) attrib_t atr; memset(&atr, 0, sizeof(atr)); atr.att_mtimechg = 1; atr.att_atimechg = 1; atr.att_mtime = req->mtime; atr.att_atime = req->atime; return __lchattr((char*) req->path, &atr, sizeof(atr)); #else errno = ENOSYS; return -1; #endif } static ssize_t uv__fs_write(uv_fs_t* req) { #if defined(__linux__) static int no_pwritev; #endif ssize_t r; /* Serialize writes on OS X, concurrent write() and pwrite() calls result in * data loss. We can't use a per-file descriptor lock, the descriptor may be * a dup(). */ #if defined(__APPLE__) static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; if (pthread_mutex_lock(&lock)) abort(); #endif if (req->off < 0) { if (req->nbufs == 1) r = write(req->file, req->bufs[0].base, req->bufs[0].len); else r = writev(req->file, (struct iovec*) req->bufs, req->nbufs); } else { if (req->nbufs == 1) { r = pwrite(req->file, req->bufs[0].base, req->bufs[0].len, req->off); goto done; } #if HAVE_PREADV r = pwritev(req->file, (struct iovec*) req->bufs, req->nbufs, req->off); #else # if defined(__linux__) if (no_pwritev) retry: # endif { r = pwrite(req->file, req->bufs[0].base, req->bufs[0].len, req->off); } # if defined(__linux__) else { r = uv__pwritev(req->file, (struct iovec*) req->bufs, req->nbufs, req->off); if (r == -1 && errno == ENOSYS) { no_pwritev = 1; goto retry; } } # endif #endif } done: #if defined(__APPLE__) if (pthread_mutex_unlock(&lock)) abort(); #endif return r; } static ssize_t uv__fs_copyfile(uv_fs_t* req) { #if defined(__APPLE__) && !TARGET_OS_IPHONE /* On macOS, use the native copyfile(3). */ static int can_clone; copyfile_flags_t flags; char buf[64]; size_t len; int major; flags = COPYFILE_ALL; if (req->flags & UV_FS_COPYFILE_EXCL) flags |= COPYFILE_EXCL; /* Check OS version. Cloning is only supported on macOS >= 10.12. */ if (req->flags & UV_FS_COPYFILE_FICLONE_FORCE) { if (can_clone == 0) { len = sizeof(buf); if (sysctlbyname("kern.osrelease", buf, &len, NULL, 0)) return UV__ERR(errno); if (1 != sscanf(buf, "%d", &major)) abort(); can_clone = -1 + 2 * (major >= 16); /* macOS >= 10.12 */ } if (can_clone < 0) return UV_ENOSYS; } /* copyfile() simply ignores COPYFILE_CLONE if it's not supported. */ if (req->flags & UV_FS_COPYFILE_FICLONE) flags |= 1 << 24; /* COPYFILE_CLONE */ if (req->flags & UV_FS_COPYFILE_FICLONE_FORCE) flags |= 1 << 25; /* COPYFILE_CLONE_FORCE */ return copyfile(req->path, req->new_path, NULL, flags); #else uv_fs_t fs_req; uv_file srcfd; uv_file dstfd; struct stat statsbuf; int dst_flags; int result; int err; size_t bytes_to_send; int64_t in_offset; dstfd = -1; err = 0; /* Open the source file. */ srcfd = uv_fs_open(NULL, &fs_req, req->path, O_RDONLY, 0, NULL); uv_fs_req_cleanup(&fs_req); if (srcfd < 0) return srcfd; /* Get the source file's mode. */ if (fstat(srcfd, &statsbuf)) { err = UV__ERR(errno); goto out; } dst_flags = O_WRONLY | O_CREAT | O_TRUNC; if (req->flags & UV_FS_COPYFILE_EXCL) dst_flags |= O_EXCL; /* Open the destination file. */ dstfd = uv_fs_open(NULL, &fs_req, req->new_path, dst_flags, statsbuf.st_mode, NULL); uv_fs_req_cleanup(&fs_req); if (dstfd < 0) { err = dstfd; goto out; } if (fchmod(dstfd, statsbuf.st_mode) == -1) { err = UV__ERR(errno); goto out; } #ifdef FICLONE if (req->flags & UV_FS_COPYFILE_FICLONE || req->flags & UV_FS_COPYFILE_FICLONE_FORCE) { if (ioctl(dstfd, FICLONE, srcfd) == -1) { /* If an error occurred that the sendfile fallback also won't handle, or this is a force clone then exit. Otherwise, fall through to try using sendfile(). */ if (errno != ENOTTY && errno != EOPNOTSUPP && errno != EXDEV) { err = UV__ERR(errno); goto out; } else if (req->flags & UV_FS_COPYFILE_FICLONE_FORCE) { err = UV_ENOTSUP; goto out; } } else { goto out; } } #else if (req->flags & UV_FS_COPYFILE_FICLONE_FORCE) { err = UV_ENOSYS; goto out; } #endif bytes_to_send = statsbuf.st_size; in_offset = 0; while (bytes_to_send != 0) { err = uv_fs_sendfile(NULL, &fs_req, dstfd, srcfd, in_offset, bytes_to_send, NULL); uv_fs_req_cleanup(&fs_req); if (err < 0) break; bytes_to_send -= fs_req.result; in_offset += fs_req.result; } out: if (err < 0) result = err; else result = 0; /* Close the source file. */ err = uv__close_nocheckstdio(srcfd); /* Don't overwrite any existing errors. */ if (err != 0 && result == 0) result = err; /* Close the destination file if it is open. */ if (dstfd >= 0) { err = uv__close_nocheckstdio(dstfd); /* Don't overwrite any existing errors. */ if (err != 0 && result == 0) result = err; /* Remove the destination file if something went wrong. */ if (result != 0) { uv_fs_unlink(NULL, &fs_req, req->new_path, NULL); /* Ignore the unlink return value, as an error already happened. */ uv_fs_req_cleanup(&fs_req); } } if (result == 0) return 0; errno = UV__ERR(result); return -1; #endif } static void uv__to_stat(struct stat* src, uv_stat_t* dst) { dst->st_dev = src->st_dev; dst->st_mode = src->st_mode; dst->st_nlink = src->st_nlink; dst->st_uid = src->st_uid; dst->st_gid = src->st_gid; dst->st_rdev = src->st_rdev; dst->st_ino = src->st_ino; dst->st_size = src->st_size; dst->st_blksize = src->st_blksize; dst->st_blocks = src->st_blocks; #if defined(__APPLE__) dst->st_atim.tv_sec = src->st_atimespec.tv_sec; dst->st_atim.tv_nsec = src->st_atimespec.tv_nsec; dst->st_mtim.tv_sec = src->st_mtimespec.tv_sec; dst->st_mtim.tv_nsec = src->st_mtimespec.tv_nsec; dst->st_ctim.tv_sec = src->st_ctimespec.tv_sec; dst->st_ctim.tv_nsec = src->st_ctimespec.tv_nsec; dst->st_birthtim.tv_sec = src->st_birthtimespec.tv_sec; dst->st_birthtim.tv_nsec = src->st_birthtimespec.tv_nsec; dst->st_flags = src->st_flags; dst->st_gen = src->st_gen; #elif defined(__ANDROID__) dst->st_atim.tv_sec = src->st_atime; dst->st_atim.tv_nsec = src->st_atimensec; dst->st_mtim.tv_sec = src->st_mtime; dst->st_mtim.tv_nsec = src->st_mtimensec; dst->st_ctim.tv_sec = src->st_ctime; dst->st_ctim.tv_nsec = src->st_ctimensec; dst->st_birthtim.tv_sec = src->st_ctime; dst->st_birthtim.tv_nsec = src->st_ctimensec; dst->st_flags = 0; dst->st_gen = 0; #elif !defined(_AIX) && ( \ defined(__DragonFly__) || \ defined(__FreeBSD__) || \ defined(__OpenBSD__) || \ defined(__NetBSD__) || \ defined(_GNU_SOURCE) || \ defined(_BSD_SOURCE) || \ defined(_SVID_SOURCE) || \ defined(_XOPEN_SOURCE) || \ defined(_DEFAULT_SOURCE)) dst->st_atim.tv_sec = src->st_atim.tv_sec; dst->st_atim.tv_nsec = src->st_atim.tv_nsec; dst->st_mtim.tv_sec = src->st_mtim.tv_sec; dst->st_mtim.tv_nsec = src->st_mtim.tv_nsec; dst->st_ctim.tv_sec = src->st_ctim.tv_sec; dst->st_ctim.tv_nsec = src->st_ctim.tv_nsec; # if defined(__FreeBSD__) || \ defined(__NetBSD__) dst->st_birthtim.tv_sec = src->st_birthtim.tv_sec; dst->st_birthtim.tv_nsec = src->st_birthtim.tv_nsec; dst->st_flags = src->st_flags; dst->st_gen = src->st_gen; # else dst->st_birthtim.tv_sec = src->st_ctim.tv_sec; dst->st_birthtim.tv_nsec = src->st_ctim.tv_nsec; dst->st_flags = 0; dst->st_gen = 0; # endif #else dst->st_atim.tv_sec = src->st_atime; dst->st_atim.tv_nsec = 0; dst->st_mtim.tv_sec = src->st_mtime; dst->st_mtim.tv_nsec = 0; dst->st_ctim.tv_sec = src->st_ctime; dst->st_ctim.tv_nsec = 0; dst->st_birthtim.tv_sec = src->st_ctime; dst->st_birthtim.tv_nsec = 0; dst->st_flags = 0; dst->st_gen = 0; #endif } static int uv__fs_stat(const char *path, uv_stat_t *buf) { struct stat pbuf; int ret; ret = stat(path, &pbuf); if (ret == 0) uv__to_stat(&pbuf, buf); return ret; } static int uv__fs_lstat(const char *path, uv_stat_t *buf) { struct stat pbuf; int ret; ret = lstat(path, &pbuf); if (ret == 0) uv__to_stat(&pbuf, buf); return ret; } static int uv__fs_fstat(int fd, uv_stat_t *buf) { struct stat pbuf; int ret; ret = fstat(fd, &pbuf); if (ret == 0) uv__to_stat(&pbuf, buf); return ret; } static size_t uv__fs_buf_offset(uv_buf_t* bufs, size_t size) { size_t offset; /* Figure out which bufs are done */ for (offset = 0; size > 0 && bufs[offset].len <= size; ++offset) size -= bufs[offset].len; /* Fix a partial read/write */ if (size > 0) { bufs[offset].base += size; bufs[offset].len -= size; } return offset; } static ssize_t uv__fs_write_all(uv_fs_t* req) { unsigned int iovmax; unsigned int nbufs; uv_buf_t* bufs; ssize_t total; ssize_t result; iovmax = uv__getiovmax(); nbufs = req->nbufs; bufs = req->bufs; total = 0; while (nbufs > 0) { req->nbufs = nbufs; if (req->nbufs > iovmax) req->nbufs = iovmax; do result = uv__fs_write(req); while (result < 0 && errno == EINTR); if (result <= 0) { if (total == 0) total = result; break; } if (req->off >= 0) req->off += result; req->nbufs = uv__fs_buf_offset(req->bufs, result); req->bufs += req->nbufs; nbufs -= req->nbufs; total += result; } if (bufs != req->bufsml) uv__free(bufs); req->bufs = NULL; req->nbufs = 0; return total; } static void uv__fs_work(struct uv__work* w) { int retry_on_eintr; uv_fs_t* req; ssize_t r; req = container_of(w, uv_fs_t, work_req); retry_on_eintr = !(req->fs_type == UV_FS_CLOSE || req->fs_type == UV_FS_READ); do { errno = 0; #define X(type, action) \ case UV_FS_ ## type: \ r = action; \ break; switch (req->fs_type) { X(ACCESS, access(req->path, req->flags)); X(CHMOD, chmod(req->path, req->mode)); X(CHOWN, chown(req->path, req->uid, req->gid)); X(CLOSE, close(req->file)); X(COPYFILE, uv__fs_copyfile(req)); X(FCHMOD, fchmod(req->file, req->mode)); X(FCHOWN, fchown(req->file, req->uid, req->gid)); X(LCHOWN, lchown(req->path, req->uid, req->gid)); X(FDATASYNC, uv__fs_fdatasync(req)); X(FSTAT, uv__fs_fstat(req->file, &req->statbuf)); X(FSYNC, uv__fs_fsync(req)); X(FTRUNCATE, ftruncate(req->file, req->off)); X(FUTIME, uv__fs_futime(req)); X(LSTAT, uv__fs_lstat(req->path, &req->statbuf)); X(LINK, link(req->path, req->new_path)); X(MKDIR, mkdir(req->path, req->mode)); X(MKDTEMP, uv__fs_mkdtemp(req)); X(OPEN, uv__fs_open(req)); X(READ, uv__fs_read(req)); X(SCANDIR, uv__fs_scandir(req)); X(READLINK, uv__fs_readlink(req)); X(REALPATH, uv__fs_realpath(req)); X(RENAME, rename(req->path, req->new_path)); X(RMDIR, rmdir(req->path)); X(SENDFILE, uv__fs_sendfile(req)); X(STAT, uv__fs_stat(req->path, &req->statbuf)); X(SYMLINK, symlink(req->path, req->new_path)); X(UNLINK, unlink(req->path)); X(UTIME, uv__fs_utime(req)); X(WRITE, uv__fs_write_all(req)); default: abort(); } #undef X } while (r == -1 && errno == EINTR && retry_on_eintr); if (r == -1) req->result = UV__ERR(errno); else req->result = r; if (r == 0 && (req->fs_type == UV_FS_STAT || req->fs_type == UV_FS_FSTAT || req->fs_type == UV_FS_LSTAT)) { req->ptr = &req->statbuf; } } static void uv__fs_done(struct uv__work* w, int status) { uv_fs_t* req; req = container_of(w, uv_fs_t, work_req); uv__req_unregister(req->loop, req); if (status == UV_ECANCELED) { assert(req->result == 0); req->result = UV_ECANCELED; } req->cb(req); } int uv_fs_access(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, uv_fs_cb cb) { INIT(ACCESS); PATH; req->flags = flags; POST; } int uv_fs_chmod(uv_loop_t* loop, uv_fs_t* req, const char* path, int mode, uv_fs_cb cb) { INIT(CHMOD); PATH; req->mode = mode; POST; } int uv_fs_chown(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb) { INIT(CHOWN); PATH; req->uid = uid; req->gid = gid; POST; } int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb) { INIT(CLOSE); req->file = file; POST; } int uv_fs_fchmod(uv_loop_t* loop, uv_fs_t* req, uv_file file, int mode, uv_fs_cb cb) { INIT(FCHMOD); req->file = file; req->mode = mode; POST; } int uv_fs_fchown(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb) { INIT(FCHOWN); req->file = file; req->uid = uid; req->gid = gid; POST; } int uv_fs_lchown(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb) { INIT(LCHOWN); PATH; req->uid = uid; req->gid = gid; POST; } int uv_fs_fdatasync(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb) { INIT(FDATASYNC); req->file = file; POST; } int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb) { INIT(FSTAT); req->file = file; POST; } int uv_fs_fsync(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb) { INIT(FSYNC); req->file = file; POST; } int uv_fs_ftruncate(uv_loop_t* loop, uv_fs_t* req, uv_file file, int64_t off, uv_fs_cb cb) { INIT(FTRUNCATE); req->file = file; req->off = off; POST; } int uv_fs_futime(uv_loop_t* loop, uv_fs_t* req, uv_file file, double atime, double mtime, uv_fs_cb cb) { INIT(FUTIME); req->file = file; req->atime = atime; req->mtime = mtime; POST; } int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb) { INIT(LSTAT); PATH; POST; } int uv_fs_link(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, uv_fs_cb cb) { INIT(LINK); PATH2; POST; } int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const char* path, int mode, uv_fs_cb cb) { INIT(MKDIR); PATH; req->mode = mode; POST; } int uv_fs_mkdtemp(uv_loop_t* loop, uv_fs_t* req, const char* tpl, uv_fs_cb cb) { INIT(MKDTEMP); req->path = uv__strdup(tpl); if (req->path == NULL) return UV_ENOMEM; POST; } int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, int mode, uv_fs_cb cb) { INIT(OPEN); PATH; req->flags = flags; req->mode = mode; POST; } int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file, const uv_buf_t bufs[], unsigned int nbufs, int64_t off, uv_fs_cb cb) { INIT(READ); if (bufs == NULL || nbufs == 0) return UV_EINVAL; req->file = file; req->nbufs = nbufs; req->bufs = req->bufsml; if (nbufs > ARRAY_SIZE(req->bufsml)) req->bufs = uv__malloc(nbufs * sizeof(*bufs)); if (req->bufs == NULL) return UV_ENOMEM; memcpy(req->bufs, bufs, nbufs * sizeof(*bufs)); req->off = off; POST; } int uv_fs_scandir(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, uv_fs_cb cb) { INIT(SCANDIR); PATH; req->flags = flags; POST; } int uv_fs_readlink(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb) { INIT(READLINK); PATH; POST; } int uv_fs_realpath(uv_loop_t* loop, uv_fs_t* req, const char * path, uv_fs_cb cb) { INIT(REALPATH); PATH; POST; } int uv_fs_rename(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, uv_fs_cb cb) { INIT(RENAME); PATH2; POST; } int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb) { INIT(RMDIR); PATH; POST; } int uv_fs_sendfile(uv_loop_t* loop, uv_fs_t* req, uv_file out_fd, uv_file in_fd, int64_t off, size_t len, uv_fs_cb cb) { INIT(SENDFILE); req->flags = in_fd; /* hack */ req->file = out_fd; req->off = off; req->bufsml[0].len = len; POST; } int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb) { INIT(STAT); PATH; POST; } int uv_fs_symlink(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, int flags, uv_fs_cb cb) { INIT(SYMLINK); PATH2; req->flags = flags; POST; } int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb) { INIT(UNLINK); PATH; POST; } int uv_fs_utime(uv_loop_t* loop, uv_fs_t* req, const char* path, double atime, double mtime, uv_fs_cb cb) { INIT(UTIME); PATH; req->atime = atime; req->mtime = mtime; POST; } int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file, const uv_buf_t bufs[], unsigned int nbufs, int64_t off, uv_fs_cb cb) { INIT(WRITE); if (bufs == NULL || nbufs == 0) return UV_EINVAL; req->file = file; req->nbufs = nbufs; req->bufs = req->bufsml; if (nbufs > ARRAY_SIZE(req->bufsml)) req->bufs = uv__malloc(nbufs * sizeof(*bufs)); if (req->bufs == NULL) return UV_ENOMEM; memcpy(req->bufs, bufs, nbufs * sizeof(*bufs)); req->off = off; POST; } void uv_fs_req_cleanup(uv_fs_t* req) { if (req == NULL) return; /* Only necessary for asychronous requests, i.e., requests with a callback. * Synchronous ones don't copy their arguments and have req->path and * req->new_path pointing to user-owned memory. UV_FS_MKDTEMP is the * exception to the rule, it always allocates memory. */ if (req->path != NULL && (req->cb != NULL || req->fs_type == UV_FS_MKDTEMP)) uv__free((void*) req->path); /* Memory is shared with req->new_path. */ req->path = NULL; req->new_path = NULL; if (req->fs_type == UV_FS_SCANDIR && req->ptr != NULL) uv__fs_scandir_cleanup(req); if (req->bufs != req->bufsml) uv__free(req->bufs); req->bufs = NULL; if (req->ptr != &req->statbuf) uv__free(req->ptr); req->ptr = NULL; } int uv_fs_copyfile(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, int flags, uv_fs_cb cb) { INIT(COPYFILE); if (flags & ~(UV_FS_COPYFILE_EXCL | UV_FS_COPYFILE_FICLONE | UV_FS_COPYFILE_FICLONE_FORCE)) { return UV_EINVAL; } PATH2; req->flags = flags; POST; }