summaryrefslogtreecommitdiffstats
path: root/MD5.c
blob: 7ae26305b81d426db70cbcf4d1cbc42ab2122f04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/* Distributed under the OSI-approved BSD 3-Clause License.  See accompanying
   file Copyright.txt or https://cmake.org/licensing#kwsys for details.  */
#include "kwsysPrivate.h"
#include KWSYS_HEADER(MD5.h)

/* Work-around CMake dependency scanning limitation.  This must
   duplicate the above list of headers.  */
#if 0
#  include "MD5.h.in"
#endif

#include <stddef.h> /* size_t */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memcpy, strlen */

/* This MD5 implementation has been taken from a third party.  Slight
   modifications to the arrangement of the code have been made to put
   it in a single source file instead of a separate header and
   implementation file.  */

#if defined(__clang__) && !defined(__INTEL_COMPILER)
#  pragma clang diagnostic push
#  pragma clang diagnostic ignored "-Wcast-align"
#endif

/*
  Copyright (C) 1999, 2000, 2002 Aladdin Enterprises.  All rights reserved.

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  L. Peter Deutsch
  ghost@aladdin.com

 */
/*
  Independent implementation of MD5 (RFC 1321).

  This code implements the MD5 Algorithm defined in RFC 1321, whose
  text is available at
        http://www.ietf.org/rfc/rfc1321.txt
  The code is derived from the text of the RFC, including the test suite
  (section A.5) but excluding the rest of Appendix A.  It does not include
  any code or documentation that is identified in the RFC as being
  copyrighted.

  The original and principal author of md5.c is L. Peter Deutsch
  <ghost@aladdin.com>.  Other authors are noted in the change history
  that follows (in reverse chronological order):

  2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
        either statically or dynamically; added missing #include <string.h>
        in library.
  2002-03-11 lpd Corrected argument list for main(), and added int return
        type, in test program and T value program.
  2002-02-21 lpd Added missing #include <stdio.h> in test program.
  2000-07-03 lpd Patched to eliminate warnings about "constant is
        unsigned in ANSI C, signed in traditional"; made test program
        self-checking.
  1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
  1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
  1999-05-03 lpd Original version.
 */

/*
 * This package supports both compile-time and run-time determination of CPU
 * byte order.  If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
 * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
 * defined as non-zero, the code will be compiled to run only on big-endian
 * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
 * run on either big- or little-endian CPUs, but will run slightly less
 * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
 */

typedef unsigned char md5_byte_t; /* 8-bit byte */
typedef unsigned int md5_word_t;  /* 32-bit word */

/* Define the state of the MD5 Algorithm. */
typedef struct md5_state_s
{
  md5_word_t count[2]; /* message length in bits, lsw first */
  md5_word_t abcd[4];  /* digest buffer */
  md5_byte_t buf[64];  /* accumulate block */
} md5_state_t;

#undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
#ifdef ARCH_IS_BIG_ENDIAN
#  define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
#else
#  define BYTE_ORDER 0
#endif

#define T_MASK ((md5_word_t)~0)
#define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
#define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
#define T3 0x242070db
#define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
#define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
#define T6 0x4787c62a
#define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
#define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
#define T9 0x698098d8
#define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
#define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
#define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
#define T13 0x6b901122
#define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
#define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
#define T16 0x49b40821
#define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
#define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
#define T19 0x265e5a51
#define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
#define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
#define T22 0x02441453
#define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
#define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
#define T25 0x21e1cde6
#define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
#define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
#define T28 0x455a14ed
#define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
#define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
#define T31 0x676f02d9
#define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
#define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
#define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
#define T35 0x6d9d6122
#define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
#define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
#define T38 0x4bdecfa9
#define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
#define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
#define T41 0x289b7ec6
#define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
#define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
#define T44 0x04881d05
#define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
#define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
#define T47 0x1fa27cf8
#define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
#define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
#define T50 0x432aff97
#define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
#define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
#define T53 0x655b59c3
#define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
#define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
#define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
#define T57 0x6fa87e4f
#define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
#define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
#define T60 0x4e0811a1
#define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
#define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
#define T63 0x2ad7d2bb
#define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)

static void md5_process(md5_state_t* pms, const md5_byte_t* data /*[64]*/)
{
  md5_word_t a = pms->abcd[0];
  md5_word_t b = pms->abcd[1];
  md5_word_t c = pms->abcd[2];
  md5_word_t d = pms->abcd[3];
  md5_word_t t;
#if BYTE_ORDER > 0
  /* Define storage only for big-endian CPUs. */
  md5_word_t X[16];
#else
  /* Define storage for little-endian or both types of CPUs. */
  md5_word_t xbuf[16];
  const md5_word_t* X;
#endif

  {
#if BYTE_ORDER == 0
    /*
     * Determine dynamically whether this is a big-endian or
     * little-endian machine, since we can use a more efficient
     * algorithm on the latter.
     */
    static const int w = 1;

    if (*((const md5_byte_t*)&w)) /* dynamic little-endian */
#endif
#if BYTE_ORDER <= 0 /* little-endian */
    {
      /*
       * On little-endian machines, we can process properly aligned
       * data without copying it.
       */
      if (!((data - (const md5_byte_t*)0) & 3)) {
        /* data are properly aligned */
        X = (const md5_word_t*)data;
      } else {
        /* not aligned */
        memcpy(xbuf, data, 64);
        X = xbuf;
      }
    }
#endif
#if BYTE_ORDER == 0
    else /* dynamic big-endian */
#endif
#if BYTE_ORDER >= 0 /* big-endian */
    {
      /*
       * On big-endian machines, we must arrange the bytes in the
       * right order.
       */
      const md5_byte_t* xp = data;
      int i;

#  if BYTE_ORDER == 0
      X = xbuf; /* (dynamic only) */
#  else
#    define xbuf X /* (static only) */
#  endif
      for (i = 0; i < 16; ++i, xp += 4) {
        xbuf[i] =
          (md5_word_t)(xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24));
      }
    }
#endif
  }

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))

/* Round 1. */
/* Let [abcd k s i] denote the operation
   a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + F(b, c, d) + X[k] + (Ti);                                           \
  a = ROTATE_LEFT(t, s) + b
  /* Do the following 16 operations. */
  SET(a, b, c, d, 0, 7, T1);
  SET(d, a, b, c, 1, 12, T2);
  SET(c, d, a, b, 2, 17, T3);
  SET(b, c, d, a, 3, 22, T4);
  SET(a, b, c, d, 4, 7, T5);
  SET(d, a, b, c, 5, 12, T6);
  SET(c, d, a, b, 6, 17, T7);
  SET(b, c, d, a, 7, 22, T8);
  SET(a, b, c, d, 8, 7, T9);
  SET(d, a, b, c, 9, 12, T10);
  SET(c, d, a, b, 10, 17, T11);
  SET(b, c, d, a, 11, 22, T12);
  SET(a, b, c, d, 12, 7, T13);
  SET(d, a, b, c, 13, 12, T14);
  SET(c, d, a, b, 14, 17, T15);
  SET(b, c, d, a, 15, 22, T16);
#undef SET

/* Round 2. */
/* Let [abcd k s i] denote the operation
     a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + G(b, c, d) + X[k] + (Ti);                                           \
  a = ROTATE_LEFT(t, s) + b
  /* Do the following 16 operations. */
  SET(a, b, c, d, 1, 5, T17);
  SET(d, a, b, c, 6, 9, T18);
  SET(c, d, a, b, 11, 14, T19);
  SET(b, c, d, a, 0, 20, T20);
  SET(a, b, c, d, 5, 5, T21);
  SET(d, a, b, c, 10, 9, T22);
  SET(c, d, a, b, 15, 14, T23);
  SET(b, c, d, a, 4, 20, T24);
  SET(a, b, c, d, 9, 5, T25);
  SET(d, a, b, c, 14, 9, T26);
  SET(c, d, a, b, 3, 14, T27);
  SET(b, c, d, a, 8, 20, T28);
  SET(a, b, c, d, 13, 5, T29);
  SET(d, a, b, c, 2, 9, T30);
  SET(c, d, a, b, 7, 14, T31);
  SET(b, c, d, a, 12, 20, T32);
#undef SET

/* Round 3. */
/* Let [abcd k s t] denote the operation
     a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + H(b, c, d) + X[k] + (Ti);                                           \
  a = ROTATE_LEFT(t, s) + b
  /* Do the following 16 operations. */
  SET(a, b, c, d, 5, 4, T33);
  SET(d, a, b, c, 8, 11, T34);
  SET(c, d, a, b, 11, 16, T35);
  SET(b, c, d, a, 14, 23, T36);
  SET(a, b, c, d, 1, 4, T37);
  SET(d, a, b, c, 4, 11, T38);
  SET(c, d, a, b, 7, 16, T39);
  SET(b, c, d, a, 10, 23, T40);
  SET(a, b, c, d, 13, 4, T41);
  SET(d, a, b, c, 0, 11, T42);
  SET(c, d, a, b, 3, 16, T43);
  SET(b, c, d, a, 6, 23, T44);
  SET(a, b, c, d, 9, 4, T45);
  SET(d, a, b, c, 12, 11, T46);
  SET(c, d, a, b, 15, 16, T47);
  SET(b, c, d, a, 2, 23, T48);
#undef SET

/* Round 4. */
/* Let [abcd k s t] denote the operation
     a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + I(b, c, d) + X[k] + (Ti);                                           \
  a = ROTATE_LEFT(t, s) + b
  /* Do the following 16 operations. */
  SET(a, b, c, d, 0, 6, T49);
  SET(d, a, b, c, 7, 10, T50);
  SET(c, d, a, b, 14, 15, T51);
  SET(b, c, d, a, 5, 21, T52);
  SET(a, b, c, d, 12, 6, T53);
  SET(d, a, b, c, 3, 10, T54);
  SET(c, d, a, b, 10, 15, T55);
  SET(b, c, d, a, 1, 21, T56);
  SET(a, b, c, d, 8, 6, T57);
  SET(d, a, b, c, 15, 10, T58);
  SET(c, d, a, b, 6, 15, T59);
  SET(b, c, d, a, 13, 21, T60);
  SET(a, b, c, d, 4, 6, T61);
  SET(d, a, b, c, 11, 10, T62);
  SET(c, d, a, b, 2, 15, T63);
  SET(b, c, d, a, 9, 21, T64);
#undef SET

  /* Then perform the following additions. (That is increment each
     of the four registers by the value it had before this block
     was started.) */
  pms->abcd[0] += a;
  pms->abcd[1] += b;
  pms->abcd[2] += c;
  pms->abcd[3] += d;
}

/* Initialize the algorithm. */
static void md5_init(md5_state_t* pms)
{
  pms->count[0] = pms->count[1] = 0;
  pms->abcd[0] = 0x67452301;
  pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
  pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
  pms->abcd[3] = 0x10325476;
}

/* Append a string to the message. */
static void md5_append(md5_state_t* pms, const md5_byte_t* data, size_t nbytes)
{
  const md5_byte_t* p = data;
  size_t left = nbytes;
  size_t offset = (pms->count[0] >> 3) & 63;
  md5_word_t nbits = (md5_word_t)(nbytes << 3);

  if (nbytes <= 0) {
    return;
  }

  /* Update the message length. */
  pms->count[1] += (md5_word_t)(nbytes >> 29);
  pms->count[0] += nbits;
  if (pms->count[0] < nbits) {
    pms->count[1]++;
  }

  /* Process an initial partial block. */
  if (offset) {
    size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);

    memcpy(pms->buf + offset, p, copy);
    if (offset + copy < 64) {
      return;
    }
    p += copy;
    left -= copy;
    md5_process(pms, pms->buf);
  }

  /* Process full blocks. */
  for (; left >= 64; p += 64, left -= 64) {
    md5_process(pms, p);
  }

  /* Process a final partial block. */
  if (left) {
    memcpy(pms->buf, p, left);
  }
}

/* Finish the message and return the digest. */
static void md5_finish(md5_state_t* pms, md5_byte_t digest[16])
{
  static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  md5_byte_t data[8];
  int i;

  /* Save the length before padding. */
  for (i = 0; i < 8; ++i)
    data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
  /* Pad to 56 bytes mod 64. */
  md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
  /* Append the length. */
  md5_append(pms, data, 8);
  for (i = 0; i < 16; ++i)
    digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
}

#if defined(__clang__) && !defined(__INTEL_COMPILER)
#  pragma clang diagnostic pop
#endif

/* Wrap up the MD5 state in our opaque structure.  */
struct kwsysMD5_s
{
  md5_state_t md5_state;
};

kwsysMD5* kwsysMD5_New(void)
{
  /* Allocate a process control structure.  */
  kwsysMD5* md5 = (kwsysMD5*)malloc(sizeof(kwsysMD5));
  if (!md5) {
    return 0;
  }
  return md5;
}

void kwsysMD5_Delete(kwsysMD5* md5)
{
  /* Make sure we have an instance.  */
  if (!md5) {
    return;
  }

  /* Free memory.  */
  free(md5);
}

void kwsysMD5_Initialize(kwsysMD5* md5)
{
  md5_init(&md5->md5_state);
}

void kwsysMD5_Append(kwsysMD5* md5, unsigned char const* data, int length)
{
  size_t dlen;
  if (length < 0) {
    dlen = strlen((char const*)data);
  } else {
    dlen = (size_t)length;
  }
  md5_append(&md5->md5_state, (md5_byte_t const*)data, dlen);
}

void kwsysMD5_Finalize(kwsysMD5* md5, unsigned char digest[16])
{
  md5_finish(&md5->md5_state, (md5_byte_t*)digest);
}

void kwsysMD5_FinalizeHex(kwsysMD5* md5, char buffer[32])
{
  unsigned char digest[16];
  kwsysMD5_Finalize(md5, digest);
  kwsysMD5_DigestToHex(digest, buffer);
}

void kwsysMD5_DigestToHex(unsigned char const digest[16], char buffer[32])
{
  /* Map from 4-bit index to hexadecimal representation.  */
  static char const hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
                                '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };

  /* Map each 4-bit block separately.  */
  char* out = buffer;
  int i;
  for (i = 0; i < 16; ++i) {
    *out++ = hex[digest[i] >> 4];
    *out++ = hex[digest[i] & 0xF];
  }
}