summaryrefslogtreecommitdiffstats
path: root/Source/cmComputeLinkDepends.cxx
blob: 29164a2f8cf6cae2c0b98025feea23e88ab8b1f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
/*=========================================================================

  Program:   CMake - Cross-Platform Makefile Generator
  Module:    $RCSfile$
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) 2002 Kitware, Inc., Insight Consortium.  All rights reserved.
  See Copyright.txt or http://www.cmake.org/HTML/Copyright.html for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#include "cmComputeLinkDepends.h"

#include "cmComputeComponentGraph.h"
#include "cmGlobalGenerator.h"
#include "cmLocalGenerator.h"
#include "cmMakefile.h"
#include "cmTarget.h"

#include <cmsys/stl/algorithm>

#include <assert.h>

/*

This file computes an ordered list of link items to use when linking a
single target in one configuration.  Each link item is identified by
the string naming it.  A graph of dependencies is created in which
each node corresponds to one item and directed eges lead from nodes to
those which must *precede* them on the link line.  For example, the
graph

  C -> B -> A

will lead to the link line order

  A B C

The set of items placed in the graph is formed with a breadth-first
search of the link dependencies starting from the main target.

There are two types of items: those with known direct dependencies and
those without known dependencies.  We will call the two types "known
items" and "unknown items", respecitvely.  Known items are those whose
names correspond to targets (built or imported) and those for which an
old-style <item>_LIB_DEPENDS variable is defined.  All other items are
unknown and we must infer dependencies for them.

Known items have dependency lists ordered based on how the user
specified them.  We can use this order to infer potential dependencies
of unknown items.  For example, if link items A and B are unknown and
items X and Y are known, then we might have the following dependency
lists:

  X: Y A B
  Y: A B

The explicitly known dependencies form graph edges

  X <- Y  ,  X <- A  ,  X <- B  ,  Y <- A  ,  Y <- B

We can also infer the edge

  A <- B

because *every* time A appears B is seen on its right.  We do not know
whether A really needs symbols from B to link, but it *might* so we
must preserve their order.  This is the case also for the following
explict lists:

  X: A B Y
  Y: A B

Here, A is followed by the set {B,Y} in one list, and {B} in the other
list.  The intersection of these sets is {B}, so we can infer that A
depends on at most B.  Meanwhile B is followed by the set {Y} in one
list and {} in the other.  The intersection is {} so we can infer that
B has no dependencies.

Let's make a more complex example by adding unknown item C and
considering these dependency lists:

  X: A B Y C
  Y: A C B

The explicit edges are

  X <- Y  ,  X <- A  ,  X <- B  ,  X <- C  ,  Y <- A  ,  Y <- B  ,  Y <- C

For the unknown items, we infer dependencies by looking at the
"follow" sets:

  A: intersect( {B,Y,C} , {C,B} ) = {B,C} ; infer edges  A <- B  ,  A <- C
  B: intersect( {Y,C}   , {}    ) = {}    ; infer no edges
  C: intersect( {}      , {B}   ) = {}    ; infer no edges

------------------------------------------------------------------------------

Once the complete graph is formed from all known and inferred
dependencies we must use it to produce a valid link line.  If the
dependency graph were known to be acyclic a simple depth-first-search
would produce a correct link line.  Unfortunately we cannot make this
assumption so the following technique is used.

The original graph is converted to a directed acyclic graph in which
each node corresponds to a strongly connected component of the
original graph.  For example, the dependency graph

  X <- A <- B <- C <- A <- Y

contains strongly connected components {X}, {A,B,C}, and {Y}.  The
implied directed acyclic graph (DAG) is

  {X} <- {A,B,C} <- {Y}

The final list of link items is constructed by a series of
depth-first-searches through this DAG of components.  When visiting a
component all outgoing edges are followed first because the neighbors
must precede it.  Once neighbors across all edges have been emitted it
is safe to emit the current component.

Trivial components (those with one item) are handled simply by
emitting the item.  Non-trivial components (those with more than one
item) are assumed to consist only of static libraries that may be
safely repeated on the link line.  We emit members of the component
multiple times (see code below for details).  The final link line for
the example graph might be

  X A B C A B C Y

------------------------------------------------------------------------------

The initial exploration of dependencies using a BFS associates an
integer index with each link item.  When the graph is built outgoing
edges are sorted by this index.

This preserves the original link
order as much as possible subject to the dependencies.

After the initial exploration of the link interface tree, any
transitive (dependent) shared libraries that were encountered and not
included in the interface are processed in their own BFS.  This BFS
follows only the dependent library lists and not the link interfaces.
They are added to the link items with a mark indicating that the are
transitive dependencies.  Then cmComputeLinkInformation deals with
them on a per-platform basis.

*/

//----------------------------------------------------------------------------
cmComputeLinkDepends
::cmComputeLinkDepends(cmTarget* target, const char* config)
{
  // Store context information.
  this->Target = target;
  this->Makefile = this->Target->GetMakefile();
  this->LocalGenerator = this->Makefile->GetLocalGenerator();
  this->GlobalGenerator = this->LocalGenerator->GetGlobalGenerator();

  // The configuration being linked.
  this->Config = config;

  // Enable debug mode if requested.
  this->DebugMode = this->Makefile->IsOn("CMAKE_LINK_DEPENDS_DEBUG_MODE");
}

//----------------------------------------------------------------------------
cmComputeLinkDepends::~cmComputeLinkDepends()
{
  for(std::vector<DependSetList*>::iterator
        i = this->InferredDependSets.begin();
      i != this->InferredDependSets.end(); ++i)
    {
    delete *i;
    }
}

//----------------------------------------------------------------------------
std::vector<cmComputeLinkDepends::LinkEntry> const&
cmComputeLinkDepends::Compute()
{
  // Follow the link dependencies of the target to be linked.
  this->AddTargetLinkEntries(-1, this->Target->GetOriginalLinkLibraries());

  // Complete the breadth-first search of dependencies.
  while(!this->BFSQueue.empty())
    {
    // Get the next entry.
    BFSEntry qe = this->BFSQueue.front();
    this->BFSQueue.pop();

    // Follow the entry's dependencies.
    this->FollowLinkEntry(qe);
    }

  // Complete the search of shared library dependencies.
  while(!this->SharedDepQueue.empty())
    {
    // Handle the next entry.
    this->HandleSharedDependency(this->SharedDepQueue.front());
    this->SharedDepQueue.pop();
    }

  // Infer dependencies of targets for which they were not known.
  this->InferDependencies();

  // Cleanup the constraint graph.
  this->CleanConstraintGraph();

  // Display the constraint graph.
  if(this->DebugMode)
    {
    fprintf(stderr,
            "---------------------------------------"
            "---------------------------------------\n");
    fprintf(stderr, "Link dependency analysis for target %s, config %s\n",
            this->Target->GetName(), this->Config?this->Config:"noconfig");
    this->DisplayConstraintGraph();
    }

  // Compute the final set of link entries.
  this->OrderLinkEntires();

  // Display the final set.
  if(this->DebugMode)
    {
    this->DisplayFinalEntries();
    }

  return this->FinalLinkEntries;
}

//----------------------------------------------------------------------------
std::map<cmStdString, int>::iterator
cmComputeLinkDepends::AllocateLinkEntry(std::string const& item)
{
  std::map<cmStdString, int>::value_type
    index_entry(item, static_cast<int>(this->EntryList.size()));
  std::map<cmStdString, int>::iterator
    lei = this->LinkEntryIndex.insert(index_entry).first;
  this->EntryList.push_back(LinkEntry());
  this->InferredDependSets.push_back(0);
  this->EntryConstraintGraph.push_back(NodeList());
  return lei;
}

//----------------------------------------------------------------------------
int cmComputeLinkDepends::AddLinkEntry(std::string const& item)
{
  // Check if the item entry has already been added.
  std::map<cmStdString, int>::iterator lei = this->LinkEntryIndex.find(item);
  if(lei != this->LinkEntryIndex.end())
    {
    // Yes.  We do not need to follow the item's dependencies again.
    return lei->second;
    }

  // Allocate a spot for the item entry.
  lei = this->AllocateLinkEntry(item);

  // Initialize the item entry.
  int index = lei->second;
  LinkEntry& entry = this->EntryList[index];
  entry.Item = item;
  entry.Target = this->Makefile->FindTargetToUse(entry.Item.c_str());

  // If the item has dependencies queue it to follow them.
  if(entry.Target)
    {
    // Target dependencies are always known.  Follow them.
    BFSEntry qe = {index, 0};
    this->BFSQueue.push(qe);
    }
  else
    {
    // Look for an old-style <item>_LIB_DEPENDS variable.
    std::string var = entry.Item;
    var += "_LIB_DEPENDS";
    if(const char* val = this->Makefile->GetDefinition(var.c_str()))
      {
      // The item dependencies are known.  Follow them.
      BFSEntry qe = {index, val};
      this->BFSQueue.push(qe);
      }
    else
      {
      // The item dependencies are not known.  We need to infer them.
      this->InferredDependSets[index] = new DependSetList;
      }
    }

  return index;
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::FollowLinkEntry(BFSEntry const& qe)
{
  // Get this entry representation.
  int depender_index = qe.Index;
  LinkEntry const& entry = this->EntryList[depender_index];

  // Follow the item's dependencies.
  if(entry.Target)
    {
    // Follow the target dependencies.
    if(cmTargetLinkInterface const* interface =
       entry.Target->GetLinkInterface(this->Config))
      {
      // This target provides its own link interface information.
      this->AddLinkEntries(depender_index, interface->Libraries);

      // Handle dependent shared libraries.
      this->QueueSharedDependencies(depender_index, interface->SharedDeps);
      }
    else if(!entry.Target->IsImported() &&
            entry.Target->GetType() != cmTarget::EXECUTABLE)
      {
      // Use the target's link implementation as the interface.
      this->AddTargetLinkEntries(depender_index,
                                 entry.Target->GetOriginalLinkLibraries());
      }
    }
  else
    {
    // Follow the old-style dependency list.
    this->AddVarLinkEntries(depender_index, qe.LibDepends);
    }
}

//----------------------------------------------------------------------------
void
cmComputeLinkDepends
::QueueSharedDependencies(int depender_index,
                          std::vector<std::string> const& deps)
{
  for(std::vector<std::string>::const_iterator li = deps.begin();
      li != deps.end(); ++li)
    {
    SharedDepEntry qe;
    qe.Item = *li;
    qe.DependerIndex = depender_index;
    this->SharedDepQueue.push(qe);
    }
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::HandleSharedDependency(SharedDepEntry const& dep)
{
  // Check if the target already has an entry.
  std::map<cmStdString, int>::iterator lei =
    this->LinkEntryIndex.find(dep.Item);
  if(lei == this->LinkEntryIndex.end())
    {
    // Allocate a spot for the item entry.
    lei = this->AllocateLinkEntry(dep.Item);

    // Initialize the item entry.
    LinkEntry& entry = this->EntryList[lei->second];
    entry.Item = dep.Item;
    entry.Target = this->Makefile->FindTargetToUse(dep.Item.c_str());

    // This item was added specifically because it is a dependent
    // shared library.  It may get special treatment
    // in cmComputeLinkInformation.
    entry.IsSharedDep = true;
    }

  // Get the link entry for this target.
  int index = lei->second;
  LinkEntry& entry = this->EntryList[index];

  // This shared library dependency must be preceded by the item that
  // listed it.
  this->EntryConstraintGraph[index].push_back(dep.DependerIndex);

  // Target items may have their own dependencies.
  if(entry.Target)
    {
    if(cmTargetLinkInterface const* interface =
       entry.Target->GetLinkInterface(this->Config))
      {
      // We use just the shared dependencies, not the interface.
      this->QueueSharedDependencies(index, interface->SharedDeps);
      }
    }
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::AddVarLinkEntries(int depender_index,
                                             const char* value)
{
  // This is called to add the dependencies named by
  // <item>_LIB_DEPENDS.  The variable contains a semicolon-separated
  // list.  The list contains link-type;item pairs and just items.
  std::vector<std::string> deplist;
  cmSystemTools::ExpandListArgument(value, deplist);

  // Compute which library configuration to link.
  cmTarget::LinkLibraryType linkType = cmTarget::OPTIMIZED;
  if(this->Config && cmSystemTools::UpperCase(this->Config) == "DEBUG")
    {
    linkType = cmTarget::DEBUG;
    }

  // Look for entries meant for this configuration.
  std::vector<std::string> actual_libs;
  cmTarget::LinkLibraryType llt = cmTarget::GENERAL;
  bool haveLLT = false;
  for(std::vector<std::string>::const_iterator di = deplist.begin();
      di != deplist.end(); ++di)
    {
    if(*di == "debug")
      {
      llt = cmTarget::DEBUG;
      haveLLT = true;
      }
    else if(*di == "optimized")
      {
      llt = cmTarget::OPTIMIZED;
      haveLLT = true;
      }
    else if(*di == "general")
      {
      llt = cmTarget::GENERAL;
      haveLLT = true;
      }
    else if(!di->empty())
      {
      // If no explicit link type was given prior to this entry then
      // check if the entry has its own link type variable.  This is
      // needed for compatibility with dependency files generated by
      // the export_library_dependencies command from CMake 2.4 and
      // lower.
      if(!haveLLT)
        {
        std::string var = *di;
        var += "_LINK_TYPE";
        if(const char* val = this->Makefile->GetDefinition(var.c_str()))
          {
          if(strcmp(val, "debug") == 0)
            {
            llt = cmTarget::DEBUG;
            }
          else if(strcmp(val, "optimized") == 0)
            {
            llt = cmTarget::OPTIMIZED;
            }
          }
        }

      // If the library is meant for this link type then use it.
      if(llt == cmTarget::GENERAL || llt == linkType)
        {
        actual_libs.push_back(*di);
        }

      // Reset the link type until another explicit type is given.
      llt = cmTarget::GENERAL;
      haveLLT = false;
      }
    }

  // Add the entries from this list.
  this->AddLinkEntries(depender_index, actual_libs);
}

//----------------------------------------------------------------------------
void
cmComputeLinkDepends::AddTargetLinkEntries(int depender_index,
                                           LinkLibraryVectorType const& libs)
{
  // Compute which library configuration to link.
  cmTarget::LinkLibraryType linkType = cmTarget::OPTIMIZED;
  if(this->Config && cmSystemTools::UpperCase(this->Config) == "DEBUG")
    {
    linkType = cmTarget::DEBUG;
    }

  // Look for entries meant for this configuration.
  std::vector<std::string> actual_libs;
  for(cmTarget::LinkLibraryVectorType::const_iterator li = libs.begin();
      li != libs.end(); ++li)
    {
    if(li->second == cmTarget::GENERAL || li->second == linkType)
      {
      actual_libs.push_back(li->first);
      }
    }

  // Add these entries.
  this->AddLinkEntries(depender_index, actual_libs);
}

//----------------------------------------------------------------------------
void
cmComputeLinkDepends::AddLinkEntries(int depender_index,
                                     std::vector<std::string> const& libs)
{
  // Track inferred dependency sets implied by this list.
  std::map<int, DependSet> dependSets;

  // Loop over the libraries linked directly by the depender.
  for(std::vector<std::string>::const_iterator li = libs.begin();
      li != libs.end(); ++li)
    {
    // Skip entries that will resolve to the target getting linked or
    // are empty.
    if(*li == this->Target->GetName() || li->empty())
      {
      continue;
      }

    // Add a link entry for this item.
    int dependee_index = this->AddLinkEntry(*li);

    // The depender must come before the dependee.
    if(depender_index >= 0)
      {
      this->EntryConstraintGraph[dependee_index].push_back(depender_index);
      }

    // Update the inferred dependencies for earlier items.
    for(std::map<int, DependSet>::iterator dsi = dependSets.begin();
        dsi != dependSets.end(); ++dsi)
      {
      if(dependee_index != dsi->first)
        {
        dsi->second.insert(dependee_index);
        }
      }

    // If this item needs to have dependencies inferred, do so.
    if(this->InferredDependSets[dependee_index])
      {
      // Make sure an entry exists to hold the set for the item.
      dependSets[dependee_index];
      }
    }

  // Store the inferred dependency sets discovered for this list.
  for(std::map<int, DependSet>::iterator dsi = dependSets.begin();
      dsi != dependSets.end(); ++dsi)
    {
    this->InferredDependSets[dsi->first]->push_back(dsi->second);
    }
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::InferDependencies()
{
  // The inferred dependency sets for each item list the possible
  // dependencies.  The intersection of the sets for one item form its
  // inferred dependencies.
  for(unsigned int depender_index=0;
      depender_index < this->InferredDependSets.size(); ++depender_index)
    {
    // Skip items for which dependencies do not need to be inferred or
    // for which the inferred dependency sets are empty.
    DependSetList* sets = this->InferredDependSets[depender_index];
    if(!sets || sets->empty())
      {
      continue;
      }

    // Intersect the sets for this item.
    DependSetList::const_iterator i = sets->begin();
    DependSet common = *i;
    for(++i; i != sets->end(); ++i)
      {
      DependSet intersection;
      cmsys_stl::set_intersection
        (common.begin(), common.end(), i->begin(), i->end(),
         std::inserter(intersection, intersection.begin()));
      common = intersection;
      }

    // Add the inferred dependencies to the graph.
    for(DependSet::const_iterator j = common.begin(); j != common.end(); ++j)
      {
      int dependee_index = *j;
      this->EntryConstraintGraph[dependee_index].push_back(depender_index);
      }
    }
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::CleanConstraintGraph()
{
  for(Graph::iterator i = this->EntryConstraintGraph.begin();
      i != this->EntryConstraintGraph.end(); ++i)
    {
    // Sort the outgoing edges for each graph node so that the
    // original order will be preserved as much as possible.
    cmsys_stl::sort(i->begin(), i->end());

    // Make the edge list unique.
    NodeList::iterator last = cmsys_stl::unique(i->begin(), i->end());
    i->erase(last, i->end());
    }
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::DisplayConstraintGraph()
{
  // Display the graph nodes and their edges.
  cmOStringStream e;
  for(unsigned int i=0; i < this->EntryConstraintGraph.size(); ++i)
    {
    NodeList const& nl = this->EntryConstraintGraph[i];
    e << "item " << i << " is [" << this->EntryList[i].Item << "]\n";
    for(NodeList::const_iterator j = nl.begin(); j != nl.end(); ++j)
      {
      e << "  item " << *j << " must precede it\n";
      }
    }
  fprintf(stderr, "%s\n", e.str().c_str());
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::OrderLinkEntires()
{
  // Compute the DAG of strongly connected components.  The algorithm
  // used by cmComputeComponentGraph should identify the components in
  // the same order in which the items were originally discovered in
  // the BFS.  This should preserve the original order when no
  // constraints disallow it.
  cmComputeComponentGraph ccg(this->EntryConstraintGraph);
  Graph const& cgraph = ccg.GetComponentGraph();
  if(this->DebugMode)
    {
    this->DisplayComponents(ccg);
    }

  // Setup visit tracking.
  this->ComponentVisited.resize(cgraph.size(), 0);

  // The component graph is guaranteed to be acyclic.  Start a DFS
  // from every entry.
  for(unsigned int c=0; c < cgraph.size(); ++c)
    {
    this->VisitComponent(ccg, c);
    }
}

//----------------------------------------------------------------------------
void
cmComputeLinkDepends::DisplayComponents(cmComputeComponentGraph const& ccg)
{
  fprintf(stderr, "The strongly connected components are:\n");
  std::vector<NodeList> const& components = ccg.GetComponents();
  for(unsigned int c=0; c < components.size(); ++c)
    {
    fprintf(stderr, "Component (%u):\n", c);
    NodeList const& nl = components[c];
    for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni)
      {
      int i = *ni;
      fprintf(stderr, "  item %d [%s]\n", i,
              this->EntryList[i].Item.c_str());
      }
    }
  fprintf(stderr, "\n");
}

//----------------------------------------------------------------------------
void
cmComputeLinkDepends::VisitComponent(cmComputeComponentGraph const& ccg,
                                     unsigned int c)
{
  // Check if the node has already been visited.
  if(this->ComponentVisited[c])
    {
    return;
    }

  // We are now visiting this component so mark it.
  this->ComponentVisited[c] = 1;

  // Visit the neighbors of the component first.
  NodeList const& nl = ccg.GetComponentGraphEdges(c);
  for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni)
    {
    this->VisitComponent(ccg, *ni);
    }

  // Now that all items required to come before this one have been
  // emmitted, emit this component's items.
  this->EmitComponent(ccg.GetComponent(c));
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::EmitComponent(NodeList const& nl)
{
  assert(!nl.empty());

  // Handle trivial components.
  if(nl.size() == 1)
    {
    this->FinalLinkEntries.push_back(this->EntryList[nl[0]]);
    return;
    }

  // This is a non-trivial strongly connected component of the
  // original graph.  It consists of two or more libraries (archives)
  // that mutually require objects from one another.  In the worst
  // case we may have to repeat the list of libraries as many times as
  // there are object files in the biggest archive.  For now we just
  // list them twice.
  //
  // The list of items in the component has been sorted by the order
  // of discovery in the original BFS of dependencies.  This has the
  // advantage that the item directly linked by a target requiring
  // this component will come first which minimizes the number of
  // repeats needed.
  for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni)
    {
    this->FinalLinkEntries.push_back(this->EntryList[*ni]);
    }
  for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni)
    {
    this->FinalLinkEntries.push_back(this->EntryList[*ni]);
    }
}

//----------------------------------------------------------------------------
void cmComputeLinkDepends::DisplayFinalEntries()
{
  fprintf(stderr, "target [%s] links to:\n", this->Target->GetName());
  for(std::vector<LinkEntry>::const_iterator lei =
        this->FinalLinkEntries.begin();
      lei != this->FinalLinkEntries.end(); ++lei)
    {
    if(lei->Target)
      {
      fprintf(stderr, "  target [%s]\n", lei->Target->GetName());
      }
    else
      {
      fprintf(stderr, "  item [%s]\n", lei->Item.c_str());
      }
    }
  fprintf(stderr, "\n");
}