1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#include "cmCryptoHash.h"
#include <cassert>
#include <cm/memory>
#include <cm3p/kwiml/int.h>
#include <cm3p/rhash.h>
#include "cmsys/FStream.hxx"
static unsigned int const cmCryptoHashAlgoToId[] = {
/* clang-format needs this comment to break after the opening brace */
RHASH_MD5, //
RHASH_SHA1, //
RHASH_SHA224, //
RHASH_SHA256, //
RHASH_SHA384, //
RHASH_SHA512, //
RHASH_SHA3_224, //
RHASH_SHA3_256, //
RHASH_SHA3_384, //
RHASH_SHA3_512
};
static int cmCryptoHash_rhash_library_initialized;
static rhash cmCryptoHash_rhash_init(unsigned int id)
{
if (!cmCryptoHash_rhash_library_initialized) {
cmCryptoHash_rhash_library_initialized = 1;
rhash_library_init();
}
return rhash_init(id);
}
cmCryptoHash::cmCryptoHash(Algo algo)
: Id(cmCryptoHashAlgoToId[algo])
, CTX(cmCryptoHash_rhash_init(this->Id))
{
}
cmCryptoHash::~cmCryptoHash()
{
rhash_free(this->CTX);
}
std::unique_ptr<cmCryptoHash> cmCryptoHash::New(cm::string_view algo)
{
if (algo == "MD5") {
return cm::make_unique<cmCryptoHash>(AlgoMD5);
}
if (algo == "SHA1") {
return cm::make_unique<cmCryptoHash>(AlgoSHA1);
}
if (algo == "SHA224") {
return cm::make_unique<cmCryptoHash>(AlgoSHA224);
}
if (algo == "SHA256") {
return cm::make_unique<cmCryptoHash>(AlgoSHA256);
}
if (algo == "SHA384") {
return cm::make_unique<cmCryptoHash>(AlgoSHA384);
}
if (algo == "SHA512") {
return cm::make_unique<cmCryptoHash>(AlgoSHA512);
}
if (algo == "SHA3_224") {
return cm::make_unique<cmCryptoHash>(AlgoSHA3_224);
}
if (algo == "SHA3_256") {
return cm::make_unique<cmCryptoHash>(AlgoSHA3_256);
}
if (algo == "SHA3_384") {
return cm::make_unique<cmCryptoHash>(AlgoSHA3_384);
}
if (algo == "SHA3_512") {
return cm::make_unique<cmCryptoHash>(AlgoSHA3_512);
}
return std::unique_ptr<cmCryptoHash>(nullptr);
}
std::string cmCryptoHash::GetHashAlgoName() const
{
#ifndef CMAKE_USE_SYSTEM_LIBRHASH
static_assert(RHASH_HASH_COUNT == 10, "Update switch statement!");
#endif
switch (this->Id) {
case RHASH_MD5:
return "MD5";
case RHASH_SHA1:
return "SHA1";
case RHASH_SHA224:
return "SHA224";
case RHASH_SHA256:
return "SHA256";
case RHASH_SHA384:
return "SHA384";
case RHASH_SHA512:
return "SHA512";
case RHASH_SHA3_224:
return "SHA3_224";
case RHASH_SHA3_256:
return "SHA3_256";
case RHASH_SHA3_384:
return "SHA3_384";
case RHASH_SHA3_512:
return "SHA3_512";
}
assert(false);
return "UNKNOWN";
}
bool cmCryptoHash::IntFromHexDigit(char input, char& output)
{
if (input >= '0' && input <= '9') {
output = static_cast<char>(input - '0');
return true;
}
if (input >= 'a' && input <= 'f') {
output = static_cast<char>(input - 'a' + 0xA);
return true;
}
if (input >= 'A' && input <= 'F') {
output = static_cast<char>(input - 'A' + 0xA);
return true;
}
return false;
}
std::string cmCryptoHash::ByteHashToString(
const std::vector<unsigned char>& hash)
{
// Map from 4-bit index to hexadecimal representation.
static char const hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
std::string res;
res.reserve(hash.size() * 2);
for (unsigned char v : hash) {
res.push_back(hex[v >> 4]);
res.push_back(hex[v & 0xF]);
}
return res;
}
std::vector<unsigned char> cmCryptoHash::ByteHashString(cm::string_view input)
{
this->Initialize();
this->Append(input);
return this->Finalize();
}
std::vector<unsigned char> cmCryptoHash::ByteHashFile(const std::string& file)
{
cmsys::ifstream fin(file.c_str(), std::ios::in | std::ios::binary);
if (fin) {
this->Initialize();
{
// Should be efficient enough on most system:
KWIML_INT_uint64_t buffer[512];
char* buffer_c = reinterpret_cast<char*>(buffer);
unsigned char const* buffer_uc =
reinterpret_cast<unsigned char const*>(buffer);
// This copy loop is very sensitive on certain platforms with
// slightly broken stream libraries (like HPUX). Normally, it is
// incorrect to not check the error condition on the fin.read()
// before using the data, but the fin.gcount() will be zero if an
// error occurred. Therefore, the loop should be safe everywhere.
while (fin) {
fin.read(buffer_c, sizeof(buffer));
if (int gcount = static_cast<int>(fin.gcount())) {
this->Append(buffer_uc, gcount);
}
}
}
if (fin.eof()) {
// Success
return this->Finalize();
}
// Finalize anyway
this->Finalize();
}
// Return without success
return std::vector<unsigned char>();
}
std::string cmCryptoHash::HashString(cm::string_view input)
{
return ByteHashToString(this->ByteHashString(input));
}
std::string cmCryptoHash::HashFile(const std::string& file)
{
return ByteHashToString(this->ByteHashFile(file));
}
void cmCryptoHash::Initialize()
{
rhash_reset(this->CTX);
}
void cmCryptoHash::Append(void const* buf, size_t sz)
{
rhash_update(this->CTX, buf, sz);
}
void cmCryptoHash::Append(cm::string_view input)
{
rhash_update(this->CTX, input.data(), input.size());
}
std::vector<unsigned char> cmCryptoHash::Finalize()
{
std::vector<unsigned char> hash(rhash_get_digest_size(this->Id), 0);
rhash_final(this->CTX, hash.data());
return hash;
}
std::string cmCryptoHash::FinalizeHex()
{
return cmCryptoHash::ByteHashToString(this->Finalize());
}
|