summaryrefslogtreecommitdiffstats
path: root/Source/cmGlobalNinjaGenerator.h
blob: 00dc237bd0b0062c138cbc096678cb02b5d8811a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*============================================================================
  CMake - Cross Platform Makefile Generator
  Copyright 2011 Peter Collingbourne <peter@pcc.me.uk>
  Copyright 2011 Nicolas Despres <nicolas.despres@gmail.com>

  Distributed under the OSI-approved BSD License (the "License");
  see accompanying file Copyright.txt for details.

  This software is distributed WITHOUT ANY WARRANTY; without even the
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the License for more information.
============================================================================*/
#ifndef cmGlobalNinjaGenerator_h
#  define cmGlobalNinjaGenerator_h

#  include "cmGlobalGenerator.h"
#  include "cmGlobalGeneratorFactory.h"
#  include "cmNinjaTypes.h"

//#define NINJA_GEN_VERBOSE_FILES

class cmLocalGenerator;
class cmGeneratedFileStream;
class cmGeneratorTarget;

/**
 * \class cmGlobalNinjaGenerator
 * \brief Write a build.ninja file.
 *
 * The main differences between this generator and the UnixMakefile
 * generator family are:
 * - We don't care about VERBOSE variable or RULE_MESSAGES property since
 *   it is handle by Ninja's -v option.
 * - We don't care about computing any progress status since Ninja manages
 *   it itself.
 * - We don't care about generating a clean target since Ninja already have
 *   a clean tool.
 * - We generate one build.ninja and one rules.ninja per project.
 * - We try to minimize the number of generated rules: one per target and
 *   language.
 * - We use Ninja special variable $in and $out to produce nice output.
 * - We extensively use Ninja variable overloading system to minimize the
 *   number of generated rules.
 */
class cmGlobalNinjaGenerator : public cmGlobalGenerator
{
public:
  /// The default name of Ninja's build file. Typically: build.ninja.
  static const char* NINJA_BUILD_FILE;

  /// The default name of Ninja's rules file. Typically: rules.ninja.
  /// It is included in the main build.ninja file.
  static const char* NINJA_RULES_FILE;

  /// The indentation string used when generating Ninja's build file.
  static const char* INDENT;

  /// Write @a count times INDENT level to output stream @a os.
  static void Indent(std::ostream& os, int count);

  /// Write a divider in the given output stream @a os.
  static void WriteDivider(std::ostream& os);

  static std::string EncodeIdent(const std::string &ident, std::ostream &vars);
  static std::string EncodeLiteral(const std::string &lit);
  std::string EncodePath(const std::string &path);
  static std::string EncodeDepfileSpace(const std::string &path);

  /**
   * Write the given @a comment to the output stream @a os. It
   * handles new line character properly.
   */
  static void WriteComment(std::ostream& os, const std::string& comment);

  /**
   * Write a build statement to @a os with the @a comment using
   * the @a rule the list of @a outputs files and inputs.
   * It also writes the variables bound to this build statement.
   * @warning no escaping of any kind is done here.
   */
  void WriteBuild(std::ostream& os,
                  const std::string& comment,
                  const std::string& rule,
                  const cmNinjaDeps& outputs,
                  const cmNinjaDeps& explicitDeps,
                  const cmNinjaDeps& implicitDeps,
                  const cmNinjaDeps& orderOnlyDeps,
                  const cmNinjaVars& variables,
                  const std::string& rspfile = std::string(),
                  int cmdLineLimit = -1);

  /**
   * Helper to write a build statement with the special 'phony' rule.
   */
  void WritePhonyBuild(std::ostream& os,
                       const std::string& comment,
                       const cmNinjaDeps& outputs,
                       const cmNinjaDeps& explicitDeps,
                       const cmNinjaDeps& implicitDeps = cmNinjaDeps(),
                       const cmNinjaDeps& orderOnlyDeps = cmNinjaDeps(),
                       const cmNinjaVars& variables = cmNinjaVars());

  void WriteCustomCommandBuild(const std::string& command,
                               const std::string& description,
                               const std::string& comment,
                               bool uses_terminal,
                               const cmNinjaDeps& outputs,
                               const cmNinjaDeps& deps = cmNinjaDeps(),
                               const cmNinjaDeps& orderOnly = cmNinjaDeps());
  void WriteMacOSXContentBuild(const std::string& input,
                               const std::string& output);

  /**
   * Write a rule statement named @a name to @a os with the @a comment,
   * the mandatory @a command, the @a depfile and the @a description.
   * It also writes the variables bound to this rule statement.
   * @warning no escaping of any kind is done here.
   */
  static void WriteRule(std::ostream& os,
                        const std::string& name,
                        const std::string& command,
                        const std::string& description,
                        const std::string& comment,
                        const std::string& depfile,
                        const std::string& deptype,
                        const std::string& rspfile,
                        const std::string& rspcontent,
                        const std::string& restat,
                        bool generator);

  /**
   * Write a variable named @a name to @a os with value @a value and an
   * optional @a comment. An @a indent level can be specified.
   * @warning no escaping of any kind is done here.
   */
  static void WriteVariable(std::ostream& os,
                            const std::string& name,
                            const std::string& value,
                            const std::string& comment = "",
                            int indent = 0);

  /**
   * Write an include statement including @a filename with an optional
   * @a comment to the @a os stream.
   */
  static void WriteInclude(std::ostream& os,
                           const std::string& filename,
                           const std::string& comment = "");

  /**
   * Write a default target statement specifying @a targets as
   * the default targets.
   */
  static void WriteDefault(std::ostream& os,
                           const cmNinjaDeps& targets,
                           const std::string& comment = "");

  bool IsGCCOnWindows() const { return UsingGCCOnWindows; }

public:
  /// Default constructor.
  cmGlobalNinjaGenerator();

  /// Convenience method for creating an instance of this class.
  static cmGlobalGeneratorFactory* NewFactory() {
    return new cmGlobalGeneratorSimpleFactory<cmGlobalNinjaGenerator>(); }

  /// Destructor.
  virtual ~cmGlobalNinjaGenerator() { }

  /// Overloaded methods. @see cmGlobalGenerator::CreateLocalGenerator()
  virtual cmLocalGenerator* CreateLocalGenerator(cmLocalGenerator* parent = 0);

  /// Overloaded methods. @see cmGlobalGenerator::GetName().
  virtual std::string GetName() const {
    return cmGlobalNinjaGenerator::GetActualName(); }

  /// @return the name of this generator.
  static std::string GetActualName() { return "Ninja"; }

  /// Overloaded methods. @see cmGlobalGenerator::GetDocumentation()
  static void GetDocumentation(cmDocumentationEntry& entry);

  /// Overloaded methods. @see cmGlobalGenerator::EnableLanguage()
  virtual void EnableLanguage(std::vector<std::string>const& languages,
                              cmMakefile* mf,
                              bool optional);

  /// Overloaded methods. @see cmGlobalGenerator::GenerateBuildCommand()
  virtual void GenerateBuildCommand(
    std::vector<std::string>& makeCommand,
    const std::string& makeProgram,
    const std::string& projectName,
    const std::string& projectDir,
    const std::string& targetName,
    const std::string& config,
    bool fast, bool verbose,
    std::vector<std::string> const& makeOptions = std::vector<std::string>()
    );

  // Setup target names
  virtual const char* GetAllTargetName()           const { return "all"; }
  virtual const char* GetInstallTargetName()       const { return "install"; }
  virtual const char* GetInstallLocalTargetName()  const {
    return "install/local";
  }
  virtual const char* GetInstallStripTargetName()  const {
    return "install/strip";
  }
  virtual const char* GetTestTargetName()          const { return "test"; }
  virtual const char* GetPackageTargetName()       const { return "package"; }
  virtual const char* GetPackageSourceTargetName() const {
    return "package_source";
  }
  virtual const char* GetEditCacheTargetName()     const {
    return "edit_cache";
  }
  virtual const char* GetRebuildCacheTargetName()  const {
    return "rebuild_cache";
  }
  virtual const char* GetCleanTargetName()         const { return "clean"; }


  cmGeneratedFileStream* GetBuildFileStream() const {
    return this->BuildFileStream; }

  cmGeneratedFileStream* GetRulesFileStream() const {
    return this->RulesFileStream; }

  void AddCXXCompileCommand(const std::string &commandLine,
                            const std::string &sourceFile);

  /**
   * Add a rule to the generated build system.
   * Call WriteRule() behind the scene but perform some check before like:
   * - Do not add twice the same rule.
   */
  void AddRule(const std::string& name,
               const std::string& command,
               const std::string& description,
               const std::string& comment,
               const std::string& depfile,
               const std::string& deptype,
               const std::string& rspfile,
               const std::string& rspcontent,
               const std::string& restat,
               bool generator);

  bool HasRule(const std::string& name);

  void AddCustomCommandRule();
  void AddMacOSXContentRule();

  bool HasCustomCommandOutput(const std::string &output) {
    return this->CustomCommandOutputs.find(output) !=
           this->CustomCommandOutputs.end();
  }

  /// Called when we have seen the given custom command.  Returns true
  /// if we has seen it before.
  bool SeenCustomCommand(cmCustomCommand const *cc) {
    return !this->CustomCommands.insert(cc).second;
  }

  /// Called when we have seen the given custom command output.
  void SeenCustomCommandOutput(const std::string &output) {
    this->CustomCommandOutputs.insert(output);
    // We don't need the assumed dependencies anymore, because we have
    // an output.
    this->AssumedSourceDependencies.erase(output);
  }

  void AddAssumedSourceDependencies(const std::string &source,
                                    const cmNinjaDeps &deps) {
    std::set<std::string> &ASD = this->AssumedSourceDependencies[source];
    // Because we may see the same source file multiple times (same source
    // specified in multiple targets), compute the union of any assumed
    // dependencies.
    ASD.insert(deps.begin(), deps.end());
  }

  void AppendTargetOutputs(cmTarget const* target, cmNinjaDeps& outputs);
  void AppendTargetDepends(cmTarget const* target, cmNinjaDeps& outputs);
  void AddDependencyToAll(cmTarget* target);
  void AddDependencyToAll(const std::string& input);

  const std::vector<cmLocalGenerator*>& GetLocalGenerators() const {
    return LocalGenerators; }

  bool IsExcluded(cmLocalGenerator* root, cmTarget& target) {
    return cmGlobalGenerator::IsExcluded(root, target); }

  int GetRuleCmdLength(const std::string& name) {
    return RuleCmdLength[name]; }

  void AddTargetAlias(const std::string& alias, cmTarget* target);

  virtual void ComputeTargetObjectDirectory(cmGeneratorTarget* gt) const;

  std::string ninjaVersion() const;

  bool SupportsConsolePool() const;

protected:

  /// Overloaded methods. @see cmGlobalGenerator::Generate()
  virtual void Generate();

  /// Overloaded methods.
  /// @see cmGlobalGenerator::CheckALLOW_DUPLICATE_CUSTOM_TARGETS()
  virtual bool CheckALLOW_DUPLICATE_CUSTOM_TARGETS() const { return true; }


private:
  virtual std::string GetEditCacheCommand() const;


  void OpenBuildFileStream();
  void CloseBuildFileStream();

  void CloseCompileCommandsStream();

  void OpenRulesFileStream();
  void CloseRulesFileStream();

  /// Write the common disclaimer text at the top of each build file.
  void WriteDisclaimer(std::ostream& os);

  void WriteAssumedSourceDependencies();

  void WriteTargetAliases(std::ostream& os);
  void WriteUnknownExplicitDependencies(std::ostream& os);

  void WriteBuiltinTargets(std::ostream& os);
  void WriteTargetAll(std::ostream& os);
  void WriteTargetRebuildManifest(std::ostream& os);
  void WriteTargetClean(std::ostream& os);
  void WriteTargetHelp(std::ostream& os);

  std::string ninjaCmd() const;

  /// The file containing the build statement. (the relationship of the
  /// compilation DAG).
  cmGeneratedFileStream* BuildFileStream;
  /// The file containing the rule statements. (The action attached to each
  /// edge of the compilation DAG).
  cmGeneratedFileStream* RulesFileStream;
  cmGeneratedFileStream* CompileCommandsStream;

  /// The type used to store the set of rules added to the generated build
  /// system.
  typedef std::set<std::string> RulesSetType;

  /// The set of rules added to the generated build system.
  RulesSetType Rules;

  /// Length of rule command, used by rsp file evaluation
  std::map<std::string, int> RuleCmdLength;

  /// The set of dependencies to add to the "all" target.
  cmNinjaDeps AllDependencies;

  bool UsingGCCOnWindows;

  /// The set of custom commands we have seen.
  std::set<cmCustomCommand const*> CustomCommands;

  /// The set of custom command outputs we have seen.
  std::set<std::string> CustomCommandOutputs;

  /// Whether we are collecting known build outputs and needed
  /// dependencies to determine unknown dependencies.
  bool ComputingUnknownDependencies;
  cmPolicies::PolicyStatus PolicyCMP0058;

  /// The combined explicit dependencies of custom build commands
  std::set<std::string> CombinedCustomCommandExplicitDependencies;

  /// When combined with CombinedCustomCommandExplicitDependencies it allows
  /// us to detect the set of explicit dependencies that have
  std::set<std::string> CombinedBuildOutputs;

  /// The mapping from source file to assumed dependencies.
  std::map<std::string, std::set<std::string> > AssumedSourceDependencies;

  typedef std::map<std::string, cmTarget*> TargetAliasMap;
  TargetAliasMap TargetAliases;
};

#endif // ! cmGlobalNinjaGenerator_h
49'>1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
/* Dictionary object implementation using a hash table */

/* The distribution includes a separate file, Objects/dictnotes.txt,
   describing explorations into dictionary design and optimization.
   It covers typical dictionary use patterns, the parameters for
   tuning dictionaries, and several ideas for possible optimizations.
*/

/* PyDictKeysObject

This implements the dictionary's hashtable.

As of Python 3.6, this is compact and ordered. Basic idea is described here:
* https://mail.python.org/pipermail/python-dev/2012-December/123028.html
* https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html

layout:

+---------------------+
| dk_refcnt           |
| dk_log2_size        |
| dk_log2_index_bytes |
| dk_kind             |
| dk_usable           |
| dk_nentries         |
+---------------------+
| dk_indices[]        |
|                     |
+---------------------+
| dk_entries[]        |
|                     |
+---------------------+

dk_indices is actual hashtable.  It holds index in entries, or DKIX_EMPTY(-1)
or DKIX_DUMMY(-2).
Size of indices is dk_size.  Type of each index in indices is vary on dk_size:

* int8  for          dk_size <= 128
* int16 for 256   <= dk_size <= 2**15
* int32 for 2**16 <= dk_size <= 2**31
* int64 for 2**32 <= dk_size

dk_entries is array of PyDictKeyEntry when dk_kind == DICT_KEYS_GENERAL or
PyDictUnicodeEntry otherwise. Its length is USABLE_FRACTION(dk_size).

NOTE: Since negative value is used for DKIX_EMPTY and DKIX_DUMMY, type of
dk_indices entry is signed integer and int16 is used for table which
dk_size == 256.
*/


/*
The DictObject can be in one of two forms.

Either:
  A combined table:
    ma_values == NULL, dk_refcnt == 1.
    Values are stored in the me_value field of the PyDictKeysObject.
Or:
  A split table:
    ma_values != NULL, dk_refcnt >= 1
    Values are stored in the ma_values array.
    Only string (unicode) keys are allowed.

There are four kinds of slots in the table (slot is index, and
DK_ENTRIES(keys)[index] if index >= 0):

1. Unused.  index == DKIX_EMPTY
   Does not hold an active (key, value) pair now and never did.  Unused can
   transition to Active upon key insertion.  This is each slot's initial state.

2. Active.  index >= 0, me_key != NULL and me_value != NULL
   Holds an active (key, value) pair.  Active can transition to Dummy or
   Pending upon key deletion (for combined and split tables respectively).
   This is the only case in which me_value != NULL.

3. Dummy.  index == DKIX_DUMMY  (combined only)
   Previously held an active (key, value) pair, but that was deleted and an
   active pair has not yet overwritten the slot.  Dummy can transition to
   Active upon key insertion.  Dummy slots cannot be made Unused again
   else the probe sequence in case of collision would have no way to know
   they were once active.

4. Pending. index >= 0, key != NULL, and value == NULL  (split only)
   Not yet inserted in split-table.
*/

/*
Preserving insertion order

It's simple for combined table.  Since dk_entries is mostly append only, we can
get insertion order by just iterating dk_entries.

One exception is .popitem().  It removes last item in dk_entries and decrement
dk_nentries to achieve amortized O(1).  Since there are DKIX_DUMMY remains in
dk_indices, we can't increment dk_usable even though dk_nentries is
decremented.

To preserve the order in a split table, a bit vector is used  to record the
insertion order. When a key is inserted the bit vector is shifted up by 4 bits
and the index of the key is stored in the low 4 bits.
As a consequence of this, split keys have a maximum size of 16.
*/

/* PyDict_MINSIZE is the starting size for any new dict.
 * 8 allows dicts with no more than 5 active entries; experiments suggested
 * this suffices for the majority of dicts (consisting mostly of usually-small
 * dicts created to pass keyword arguments).
 * Making this 8, rather than 4 reduces the number of resizes for most
 * dictionaries, without any significant extra memory use.
 */
#define PyDict_LOG_MINSIZE 3
#define PyDict_MINSIZE 8

#include "Python.h"
#include "pycore_bitutils.h"      // _Py_bit_length
#include "pycore_call.h"          // _PyObject_CallNoArgs()
#include "pycore_code.h"          // stats
#include "pycore_dict.h"          // PyDictKeysObject
#include "pycore_gc.h"            // _PyObject_GC_IS_TRACKED()
#include "pycore_object.h"        // _PyObject_GC_TRACK()
#include "pycore_pyerrors.h"      // _PyErr_Fetch()
#include "pycore_pystate.h"       // _PyThreadState_GET()
#include "stringlib/eq.h"         // unicode_eq()

#include <stdbool.h>

/*[clinic input]
class dict "PyDictObject *" "&PyDict_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f157a5a0ce9589d6]*/


/*
To ensure the lookup algorithm terminates, there must be at least one Unused
slot (NULL key) in the table.
To avoid slowing down lookups on a near-full table, we resize the table when
it's USABLE_FRACTION (currently two-thirds) full.
*/

#define PERTURB_SHIFT 5

/*
Major subtleties ahead:  Most hash schemes depend on having a "good" hash
function, in the sense of simulating randomness.  Python doesn't:  its most
important hash functions (for ints) are very regular in common
cases:

  >>>[hash(i) for i in range(4)]
  [0, 1, 2, 3]

This isn't necessarily bad!  To the contrary, in a table of size 2**i, taking
the low-order i bits as the initial table index is extremely fast, and there
are no collisions at all for dicts indexed by a contiguous range of ints. So
this gives better-than-random behavior in common cases, and that's very
desirable.

OTOH, when collisions occur, the tendency to fill contiguous slices of the
hash table makes a good collision resolution strategy crucial.  Taking only
the last i bits of the hash code is also vulnerable:  for example, consider
the list [i << 16 for i in range(20000)] as a set of keys.  Since ints are
their own hash codes, and this fits in a dict of size 2**15, the last 15 bits
 of every hash code are all 0:  they *all* map to the same table index.

But catering to unusual cases should not slow the usual ones, so we just take
the last i bits anyway.  It's up to collision resolution to do the rest.  If
we *usually* find the key we're looking for on the first try (and, it turns
out, we usually do -- the table load factor is kept under 2/3, so the odds
are solidly in our favor), then it makes best sense to keep the initial index
computation dirt cheap.

The first half of collision resolution is to visit table indices via this
recurrence:

    j = ((5*j) + 1) mod 2**i

For any initial j in range(2**i), repeating that 2**i times generates each
int in range(2**i) exactly once (see any text on random-number generation for
proof).  By itself, this doesn't help much:  like linear probing (setting
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
order.  This would be bad, except that's not the only thing we do, and it's
actually *good* in the common cases where hash keys are consecutive.  In an
example that's really too small to make this entirely clear, for a table of
size 2**3 the order of indices is:

    0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]

If two things come in at index 5, the first place we look after is index 2,
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
Linear probing is deadly in this case because there the fixed probe order
is the *same* as the order consecutive keys are likely to arrive.  But it's
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
and certain that consecutive hash codes do not.

The other half of the strategy is to get the other bits of the hash code
into play.  This is done by initializing a (unsigned) vrbl "perturb" to the
full hash code, and changing the recurrence to:

    perturb >>= PERTURB_SHIFT;
    j = (5*j) + 1 + perturb;
    use j % 2**i as the next table index;

Now the probe sequence depends (eventually) on every bit in the hash code,
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
because it quickly magnifies small differences in the bits that didn't affect
the initial index.  Note that because perturb is unsigned, if the recurrence
is executed often enough perturb eventually becomes and remains 0.  At that
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
that's certain to find an empty slot eventually (since it generates every int
in range(2**i), and we make sure there's always at least one empty slot).

Selecting a good value for PERTURB_SHIFT is a balancing act.  You want it
small so that the high bits of the hash code continue to affect the probe
sequence across iterations; but you want it large so that in really bad cases
the high-order hash bits have an effect on early iterations.  5 was "the
best" in minimizing total collisions across experiments Tim Peters ran (on
both normal and pathological cases), but 4 and 6 weren't significantly worse.

Historical: Reimer Behrends contributed the idea of using a polynomial-based
approach, using repeated multiplication by x in GF(2**n) where an irreducible
polynomial for each table size was chosen such that x was a primitive root.
Christian Tismer later extended that to use division by x instead, as an
efficient way to get the high bits of the hash code into play.  This scheme
also gave excellent collision statistics, but was more expensive:  two
if-tests were required inside the loop; computing "the next" index took about
the same number of operations but without as much potential parallelism
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
above, and then shifting perturb can be done while the table index is being
masked); and the PyDictObject struct required a member to hold the table's
polynomial.  In Tim's experiments the current scheme ran faster, produced
equally good collision statistics, needed less code & used less memory.

*/

static int dictresize(PyDictObject *mp, uint8_t log_newsize, int unicode);

static PyObject* dict_iter(PyDictObject *dict);

#include "clinic/dictobject.c.h"


#if PyDict_MAXFREELIST > 0
static struct _Py_dict_state *
get_dict_state(void)
{
    PyInterpreterState *interp = _PyInterpreterState_GET();
    return &interp->dict_state;
}
#endif


void
_PyDict_ClearFreeList(PyInterpreterState *interp)
{
#if PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = &interp->dict_state;
    while (state->numfree) {
        PyDictObject *op = state->free_list[--state->numfree];
        assert(PyDict_CheckExact(op));
        PyObject_GC_Del(op);
    }
    while (state->keys_numfree) {
        PyObject_Free(state->keys_free_list[--state->keys_numfree]);
    }
#endif
}


void
_PyDict_Fini(PyInterpreterState *interp)
{
    _PyDict_ClearFreeList(interp);
#if defined(Py_DEBUG) && PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = &interp->dict_state;
    state->numfree = -1;
    state->keys_numfree = -1;
#endif
}

static inline Py_hash_t
unicode_get_hash(PyObject *o)
{
    assert(PyUnicode_CheckExact(o));
    return _PyASCIIObject_CAST(o)->hash;
}

/* Print summary info about the state of the optimized allocator */
void
_PyDict_DebugMallocStats(FILE *out)
{
#if PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = get_dict_state();
    _PyDebugAllocatorStats(out, "free PyDictObject",
                           state->numfree, sizeof(PyDictObject));
#endif
}

#define DK_MASK(dk) (DK_SIZE(dk)-1)

static void free_keys_object(PyDictKeysObject *keys);

static inline void
dictkeys_incref(PyDictKeysObject *dk)
{
#ifdef Py_REF_DEBUG
    _Py_RefTotal++;
#endif
    dk->dk_refcnt++;
}

static inline void
dictkeys_decref(PyDictKeysObject *dk)
{
    assert(dk->dk_refcnt > 0);
#ifdef Py_REF_DEBUG
    _Py_RefTotal--;
#endif
    if (--dk->dk_refcnt == 0) {
        free_keys_object(dk);
    }
}

/* lookup indices.  returns DKIX_EMPTY, DKIX_DUMMY, or ix >=0 */
static inline Py_ssize_t
dictkeys_get_index(const PyDictKeysObject *keys, Py_ssize_t i)
{
    int log2size = DK_LOG_SIZE(keys);
    Py_ssize_t ix;

    if (log2size < 8) {
        const int8_t *indices = (const int8_t*)(keys->dk_indices);
        ix = indices[i];
    }
    else if (log2size < 16) {
        const int16_t *indices = (const int16_t*)(keys->dk_indices);
        ix = indices[i];
    }
#if SIZEOF_VOID_P > 4
    else if (log2size >= 32) {
        const int64_t *indices = (const int64_t*)(keys->dk_indices);
        ix = indices[i];
    }
#endif
    else {
        const int32_t *indices = (const int32_t*)(keys->dk_indices);
        ix = indices[i];
    }
    assert(ix >= DKIX_DUMMY);
    return ix;
}

/* write to indices. */
static inline void
dictkeys_set_index(PyDictKeysObject *keys, Py_ssize_t i, Py_ssize_t ix)
{
    int log2size = DK_LOG_SIZE(keys);

    assert(ix >= DKIX_DUMMY);
    assert(keys->dk_version == 0);

    if (log2size < 8) {
        int8_t *indices = (int8_t*)(keys->dk_indices);
        assert(ix <= 0x7f);
        indices[i] = (char)ix;
    }
    else if (log2size < 16) {
        int16_t *indices = (int16_t*)(keys->dk_indices);
        assert(ix <= 0x7fff);
        indices[i] = (int16_t)ix;
    }
#if SIZEOF_VOID_P > 4
    else if (log2size >= 32) {
        int64_t *indices = (int64_t*)(keys->dk_indices);
        indices[i] = ix;
    }
#endif
    else {
        int32_t *indices = (int32_t*)(keys->dk_indices);
        assert(ix <= 0x7fffffff);
        indices[i] = (int32_t)ix;
    }
}


/* USABLE_FRACTION is the maximum dictionary load.
 * Increasing this ratio makes dictionaries more dense resulting in more
 * collisions.  Decreasing it improves sparseness at the expense of spreading
 * indices over more cache lines and at the cost of total memory consumed.
 *
 * USABLE_FRACTION must obey the following:
 *     (0 < USABLE_FRACTION(n) < n) for all n >= 2
 *
 * USABLE_FRACTION should be quick to calculate.
 * Fractions around 1/2 to 2/3 seem to work well in practice.
 */
#define USABLE_FRACTION(n) (((n) << 1)/3)

/* Find the smallest dk_size >= minsize. */
static inline uint8_t
calculate_log2_keysize(Py_ssize_t minsize)
{
#if SIZEOF_LONG == SIZEOF_SIZE_T
    minsize = (minsize | PyDict_MINSIZE) - 1;
    return _Py_bit_length(minsize | (PyDict_MINSIZE-1));
#elif defined(_MSC_VER)
    // On 64bit Windows, sizeof(long) == 4.
    minsize = (minsize | PyDict_MINSIZE) - 1;
    unsigned long msb;
    _BitScanReverse64(&msb, (uint64_t)minsize);
    return (uint8_t)(msb + 1);
#else
    uint8_t log2_size;
    for (log2_size = PyDict_LOG_MINSIZE;
            (((Py_ssize_t)1) << log2_size) < minsize;
            log2_size++)
        ;
    return log2_size;
#endif
}

/* estimate_keysize is reverse function of USABLE_FRACTION.
 *
 * This can be used to reserve enough size to insert n entries without
 * resizing.
 */
static inline uint8_t
estimate_log2_keysize(Py_ssize_t n)
{
    return calculate_log2_keysize((n*3 + 1) / 2);
}


/* GROWTH_RATE. Growth rate upon hitting maximum load.
 * Currently set to used*3.
 * This means that dicts double in size when growing without deletions,
 * but have more head room when the number of deletions is on a par with the
 * number of insertions.  See also bpo-17563 and bpo-33205.
 *
 * GROWTH_RATE was set to used*4 up to version 3.2.
 * GROWTH_RATE was set to used*2 in version 3.3.0
 * GROWTH_RATE was set to used*2 + capacity/2 in 3.4.0-3.6.0.
 */
#define GROWTH_RATE(d) ((d)->ma_used*3)

/* This immutable, empty PyDictKeysObject is used for PyDict_Clear()
 * (which cannot fail and thus can do no allocation).
 */
static PyDictKeysObject empty_keys_struct = {
        1, /* dk_refcnt */
        0, /* dk_log2_size */
        0, /* dk_log2_index_bytes */
        DICT_KEYS_UNICODE, /* dk_kind */
        1, /* dk_version */
        0, /* dk_usable (immutable) */
        0, /* dk_nentries */
        {DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY,
         DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY}, /* dk_indices */
};

#define Py_EMPTY_KEYS &empty_keys_struct

/* Uncomment to check the dict content in _PyDict_CheckConsistency() */
// #define DEBUG_PYDICT

#ifdef DEBUG_PYDICT
#  define ASSERT_CONSISTENT(op) assert(_PyDict_CheckConsistency((PyObject *)(op), 1))
#else
#  define ASSERT_CONSISTENT(op) assert(_PyDict_CheckConsistency((PyObject *)(op), 0))
#endif

static inline int
get_index_from_order(PyDictObject *mp, Py_ssize_t i)
{
    assert(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
    assert(i < (((char *)mp->ma_values)[-2]));
    return ((char *)mp->ma_values)[-3-i];
}

#ifdef DEBUG_PYDICT
static void
dump_entries(PyDictKeysObject *dk)
{
    for (Py_ssize_t i = 0; i < dk->dk_nentries; i++) {
        if (DK_IS_UNICODE(dk)) {
            PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(dk)[i];
            printf("key=%p value=%p\n", ep->me_key, ep->me_value);
        }
        else {
            PyDictKeyEntry *ep = &DK_ENTRIES(dk)[i];
            printf("key=%p hash=%lx value=%p\n", ep->me_key, ep->me_hash, ep->me_value);
        }
    }
}
#endif

int
_PyDict_CheckConsistency(PyObject *op, int check_content)
{
#define CHECK(expr) \
    do { if (!(expr)) { _PyObject_ASSERT_FAILED_MSG(op, Py_STRINGIFY(expr)); } } while (0)

    assert(op != NULL);
    CHECK(PyDict_Check(op));
    PyDictObject *mp = (PyDictObject *)op;

    PyDictKeysObject *keys = mp->ma_keys;
    int splitted = _PyDict_HasSplitTable(mp);
    Py_ssize_t usable = USABLE_FRACTION(DK_SIZE(keys));

    CHECK(0 <= mp->ma_used && mp->ma_used <= usable);
    CHECK(0 <= keys->dk_usable && keys->dk_usable <= usable);
    CHECK(0 <= keys->dk_nentries && keys->dk_nentries <= usable);
    CHECK(keys->dk_usable + keys->dk_nentries <= usable);

    if (!splitted) {
        /* combined table */
        CHECK(keys->dk_kind != DICT_KEYS_SPLIT);
        CHECK(keys->dk_refcnt == 1 || keys == Py_EMPTY_KEYS);
    }
    else {
        CHECK(keys->dk_kind == DICT_KEYS_SPLIT);
        CHECK(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
    }

    if (check_content) {
        for (Py_ssize_t i=0; i < DK_SIZE(keys); i++) {
            Py_ssize_t ix = dictkeys_get_index(keys, i);
            CHECK(DKIX_DUMMY <= ix && ix <= usable);
        }

        if (keys->dk_kind == DICT_KEYS_GENERAL) {
            PyDictKeyEntry *entries = DK_ENTRIES(keys);
            for (Py_ssize_t i=0; i < usable; i++) {
                PyDictKeyEntry *entry = &entries[i];
                PyObject *key = entry->me_key;

                if (key != NULL) {
                    /* test_dict fails if PyObject_Hash() is called again */
                    CHECK(entry->me_hash != -1);
                    CHECK(entry->me_value != NULL);

                    if (PyUnicode_CheckExact(key)) {
                        Py_hash_t hash = unicode_get_hash(key);
                        CHECK(entry->me_hash == hash);
                    }
                }
            }
        }
        else {
            PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(keys);
            for (Py_ssize_t i=0; i < usable; i++) {
                PyDictUnicodeEntry *entry = &entries[i];
                PyObject *key = entry->me_key;

                if (key != NULL) {
                    CHECK(PyUnicode_CheckExact(key));
                    Py_hash_t hash = unicode_get_hash(key);
                    CHECK(hash != -1);
                    if (!splitted) {
                        CHECK(entry->me_value != NULL);
                    }
                }

                if (splitted) {
                    CHECK(entry->me_value == NULL);
                }
            }
        }

        if (splitted) {
            CHECK(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
            /* splitted table */
            int duplicate_check = 0;
            for (Py_ssize_t i=0; i < mp->ma_used; i++) {
                int index = get_index_from_order(mp, i);
                CHECK((duplicate_check & (1<<index)) == 0);
                duplicate_check |= (1<<index);
                CHECK(mp->ma_values->values[index] != NULL);
            }
        }
    }
    return 1;

#undef CHECK
}


static PyDictKeysObject*
new_keys_object(uint8_t log2_size, bool unicode)
{
    PyDictKeysObject *dk;
    Py_ssize_t usable;
    int log2_bytes;
    size_t entry_size = unicode ? sizeof(PyDictUnicodeEntry) : sizeof(PyDictKeyEntry);

    assert(log2_size >= PyDict_LOG_MINSIZE);

    usable = USABLE_FRACTION(1<<log2_size);
    if (log2_size < 8) {
        log2_bytes = log2_size;
    }
    else if (log2_size < 16) {
        log2_bytes = log2_size + 1;
    }
#if SIZEOF_VOID_P > 4
    else if (log2_size >= 32) {
        log2_bytes = log2_size + 3;
    }
#endif
    else {
        log2_bytes = log2_size + 2;
    }

#if PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = get_dict_state();
#ifdef Py_DEBUG
    // new_keys_object() must not be called after _PyDict_Fini()
    assert(state->keys_numfree != -1);
#endif
    if (log2_size == PyDict_LOG_MINSIZE && unicode && state->keys_numfree > 0) {
        dk = state->keys_free_list[--state->keys_numfree];
        OBJECT_STAT_INC(from_freelist);
    }
    else
#endif
    {
        dk = PyObject_Malloc(sizeof(PyDictKeysObject)
                             + ((size_t)1 << log2_bytes)
                             + entry_size * usable);
        if (dk == NULL) {
            PyErr_NoMemory();
            return NULL;
        }
    }
#ifdef Py_REF_DEBUG
    _Py_RefTotal++;
#endif
    dk->dk_refcnt = 1;
    dk->dk_log2_size = log2_size;
    dk->dk_log2_index_bytes = log2_bytes;
    dk->dk_kind = unicode ? DICT_KEYS_UNICODE : DICT_KEYS_GENERAL;
    dk->dk_nentries = 0;
    dk->dk_usable = usable;
    dk->dk_version = 0;
    memset(&dk->dk_indices[0], 0xff, ((size_t)1 << log2_bytes));
    memset(&dk->dk_indices[(size_t)1 << log2_bytes], 0, entry_size * usable);
    return dk;
}

static void
free_keys_object(PyDictKeysObject *keys)
{
    assert(keys != Py_EMPTY_KEYS);
    if (DK_IS_UNICODE(keys)) {
        PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(keys);
        Py_ssize_t i, n;
        for (i = 0, n = keys->dk_nentries; i < n; i++) {
            Py_XDECREF(entries[i].me_key);
            Py_XDECREF(entries[i].me_value);
        }
    }
    else {
        PyDictKeyEntry *entries = DK_ENTRIES(keys);
        Py_ssize_t i, n;
        for (i = 0, n = keys->dk_nentries; i < n; i++) {
            Py_XDECREF(entries[i].me_key);
            Py_XDECREF(entries[i].me_value);
        }
    }
#if PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = get_dict_state();
#ifdef Py_DEBUG
    // free_keys_object() must not be called after _PyDict_Fini()
    assert(state->keys_numfree != -1);
#endif
    if (DK_LOG_SIZE(keys) == PyDict_LOG_MINSIZE
            && state->keys_numfree < PyDict_MAXFREELIST
            && DK_IS_UNICODE(keys)) {
        state->keys_free_list[state->keys_numfree++] = keys;
        OBJECT_STAT_INC(to_freelist);
        return;
    }
#endif
    PyObject_Free(keys);
}

static inline PyDictValues*
new_values(Py_ssize_t size)
{
    assert(size > 0);
    size_t prefix_size = _Py_SIZE_ROUND_UP(size+2, sizeof(PyObject *));
    assert(prefix_size < 256);
    size_t n = prefix_size + size * sizeof(PyObject *);
    uint8_t *mem = PyMem_Malloc(n);
    if (mem == NULL) {
        return NULL;
    }
    assert(prefix_size % sizeof(PyObject *) == 0);
    mem[prefix_size-1] = (uint8_t)prefix_size;
    return (PyDictValues*)(mem + prefix_size);
}

static inline void
free_values(PyDictValues *values)
{
    int prefix_size = ((uint8_t *)values)[-1];
    PyMem_Free(((char *)values)-prefix_size);
}

/* Consumes a reference to the keys object */
static PyObject *
new_dict(PyDictKeysObject *keys, PyDictValues *values, Py_ssize_t used, int free_values_on_failure)
{
    PyDictObject *mp;
    assert(keys != NULL);
#if PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = get_dict_state();
#ifdef Py_DEBUG
    // new_dict() must not be called after _PyDict_Fini()
    assert(state->numfree != -1);
#endif
    if (state->numfree) {
        mp = state->free_list[--state->numfree];
        assert (mp != NULL);
        assert (Py_IS_TYPE(mp, &PyDict_Type));
        OBJECT_STAT_INC(from_freelist);
        _Py_NewReference((PyObject *)mp);
    }
    else
#endif
    {
        mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
        if (mp == NULL) {
            dictkeys_decref(keys);
            if (free_values_on_failure) {
                free_values(values);
            }
            return NULL;
        }
    }
    mp->ma_keys = keys;
    mp->ma_values = values;
    mp->ma_used = used;
    mp->ma_version_tag = DICT_NEXT_VERSION();
    ASSERT_CONSISTENT(mp);
    return (PyObject *)mp;
}

static inline Py_ssize_t
shared_keys_usable_size(PyDictKeysObject *keys)
{
    return keys->dk_nentries + keys->dk_usable;
}

/* Consumes a reference to the keys object */
static PyObject *
new_dict_with_shared_keys(PyDictKeysObject *keys)
{
    PyDictValues *values;
    Py_ssize_t i, size;

    size = shared_keys_usable_size(keys);
    values = new_values(size);
    if (values == NULL) {
        dictkeys_decref(keys);
        return PyErr_NoMemory();
    }
    ((char *)values)[-2] = 0;
    for (i = 0; i < size; i++) {
        values->values[i] = NULL;
    }
    return new_dict(keys, values, 0, 1);
}


static PyDictKeysObject *
clone_combined_dict_keys(PyDictObject *orig)
{
    assert(PyDict_Check(orig));
    assert(Py_TYPE(orig)->tp_iter == (getiterfunc)dict_iter);
    assert(orig->ma_values == NULL);
    assert(orig->ma_keys->dk_refcnt == 1);

    Py_ssize_t keys_size = _PyDict_KeysSize(orig->ma_keys);
    PyDictKeysObject *keys = PyObject_Malloc(keys_size);
    if (keys == NULL) {
        PyErr_NoMemory();
        return NULL;
    }

    memcpy(keys, orig->ma_keys, keys_size);

    /* After copying key/value pairs, we need to incref all
       keys and values and they are about to be co-owned by a
       new dict object. */
    PyObject **pkey, **pvalue;
    size_t offs;
    if (DK_IS_UNICODE(orig->ma_keys)) {
        PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(keys);
        pkey = &ep0->me_key;
        pvalue = &ep0->me_value;
        offs = sizeof(PyDictUnicodeEntry) / sizeof(PyObject*);
    }
    else {
        PyDictKeyEntry *ep0 = DK_ENTRIES(keys);
        pkey = &ep0->me_key;
        pvalue = &ep0->me_value;
        offs = sizeof(PyDictKeyEntry) / sizeof(PyObject*);
    }

    Py_ssize_t n = keys->dk_nentries;
    for (Py_ssize_t i = 0; i < n; i++) {
        PyObject *value = *pvalue;
        if (value != NULL) {
            Py_INCREF(value);
            Py_INCREF(*pkey);
        }
        pvalue += offs;
        pkey += offs;
    }

    /* Since we copied the keys table we now have an extra reference
       in the system.  Manually call increment _Py_RefTotal to signal that
       we have it now; calling dictkeys_incref would be an error as
       keys->dk_refcnt is already set to 1 (after memcpy). */
#ifdef Py_REF_DEBUG
    _Py_RefTotal++;
#endif
    return keys;
}

PyObject *
PyDict_New(void)
{
    dictkeys_incref(Py_EMPTY_KEYS);
    return new_dict(Py_EMPTY_KEYS, NULL, 0, 0);
}

/* Search index of hash table from offset of entry table */
static Py_ssize_t
lookdict_index(PyDictKeysObject *k, Py_hash_t hash, Py_ssize_t index)
{
    size_t mask = DK_MASK(k);
    size_t perturb = (size_t)hash;
    size_t i = (size_t)hash & mask;

    for (;;) {
        Py_ssize_t ix = dictkeys_get_index(k, i);
        if (ix == index) {
            return i;
        }
        if (ix == DKIX_EMPTY) {
            return DKIX_EMPTY;
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
    }
    Py_UNREACHABLE();
}

// Search non-Unicode key from Unicode table
static Py_ssize_t
unicodekeys_lookup_generic(PyDictObject *mp, PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
{
    PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(dk);
    size_t mask = DK_MASK(dk);
    size_t perturb = hash;
    size_t i = (size_t)hash & mask;
    Py_ssize_t ix;
    for (;;) {
        ix = dictkeys_get_index(dk, i);
        if (ix >= 0) {
            PyDictUnicodeEntry *ep = &ep0[ix];
            assert(ep->me_key != NULL);
            assert(PyUnicode_CheckExact(ep->me_key));
            if (ep->me_key == key) {
                return ix;
            }
            if (unicode_get_hash(ep->me_key) == hash) {
                PyObject *startkey = ep->me_key;
                Py_INCREF(startkey);
                int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
                Py_DECREF(startkey);
                if (cmp < 0) {
                    return DKIX_ERROR;
                }
                if (dk == mp->ma_keys && ep->me_key == startkey) {
                    if (cmp > 0) {
                        return ix;
                    }
                }
                else {
                    /* The dict was mutated, restart */
                    return DKIX_KEY_CHANGED;
                }
            }
        }
        else if (ix == DKIX_EMPTY) {
            return DKIX_EMPTY;
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
    }
    Py_UNREACHABLE();
}

// Search Unicode key from Unicode table.
static Py_ssize_t _Py_HOT_FUNCTION
unicodekeys_lookup_unicode(PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
{
    PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(dk);
    size_t mask = DK_MASK(dk);
    size_t perturb = hash;
    size_t i = (size_t)hash & mask;
    Py_ssize_t ix;
    for (;;) {
        ix = dictkeys_get_index(dk, i);
        if (ix >= 0) {
            PyDictUnicodeEntry *ep = &ep0[ix];
            assert(ep->me_key != NULL);
            assert(PyUnicode_CheckExact(ep->me_key));
            if (ep->me_key == key ||
                    (unicode_get_hash(ep->me_key) == hash && unicode_eq(ep->me_key, key))) {
                return ix;
            }
        }
        else if (ix == DKIX_EMPTY) {
            return DKIX_EMPTY;
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
        ix = dictkeys_get_index(dk, i);
        if (ix >= 0) {
            PyDictUnicodeEntry *ep = &ep0[ix];
            assert(ep->me_key != NULL);
            assert(PyUnicode_CheckExact(ep->me_key));
            if (ep->me_key == key ||
                    (unicode_get_hash(ep->me_key) == hash && unicode_eq(ep->me_key, key))) {
                return ix;
            }
        }
        else if (ix == DKIX_EMPTY) {
            return DKIX_EMPTY;
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
    }
    Py_UNREACHABLE();
}

// Search key from Generic table.
static Py_ssize_t
dictkeys_generic_lookup(PyDictObject *mp, PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
{
    PyDictKeyEntry *ep0 = DK_ENTRIES(dk);
    size_t mask = DK_MASK(dk);
    size_t perturb = hash;
    size_t i = (size_t)hash & mask;
    Py_ssize_t ix;
    for (;;) {
        ix = dictkeys_get_index(dk, i);
        if (ix >= 0) {
            PyDictKeyEntry *ep = &ep0[ix];
            assert(ep->me_key != NULL);
            if (ep->me_key == key) {
                return ix;
            }
            if (ep->me_hash == hash) {
                PyObject *startkey = ep->me_key;
                Py_INCREF(startkey);
                int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
                Py_DECREF(startkey);
                if (cmp < 0) {
                    return DKIX_ERROR;
                }
                if (dk == mp->ma_keys && ep->me_key == startkey) {
                    if (cmp > 0) {
                        return ix;
                    }
                }
                else {
                    /* The dict was mutated, restart */
                    return DKIX_KEY_CHANGED;
                }
            }
        }
        else if (ix == DKIX_EMPTY) {
            return DKIX_EMPTY;
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
    }
    Py_UNREACHABLE();
}

/* Lookup a string in a (all unicode) dict keys.
 * Returns DKIX_ERROR if key is not a string,
 * or if the dict keys is not all strings.
 * If the keys is present then return the index of key.
 * If the key is not present then return DKIX_EMPTY.
 */
Py_ssize_t
_PyDictKeys_StringLookup(PyDictKeysObject* dk, PyObject *key)
{
    DictKeysKind kind = dk->dk_kind;
    if (!PyUnicode_CheckExact(key) || kind == DICT_KEYS_GENERAL) {
        return DKIX_ERROR;
    }
    Py_hash_t hash = unicode_get_hash(key);
    if (hash == -1) {
        hash = PyUnicode_Type.tp_hash(key);
        if (hash == -1) {
            PyErr_Clear();
            return DKIX_ERROR;
        }
    }
    return unicodekeys_lookup_unicode(dk, key, hash);
}

/*
The basic lookup function used by all operations.
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
Open addressing is preferred over chaining since the link overhead for
chaining would be substantial (100% with typical malloc overhead).

The initial probe index is computed as hash mod the table size. Subsequent
probe indices are computed as explained earlier.

All arithmetic on hash should ignore overflow.

_Py_dict_lookup() is general-purpose, and may return DKIX_ERROR if (and only if) a
comparison raises an exception.
When the key isn't found a DKIX_EMPTY is returned.
*/
Py_ssize_t
_Py_dict_lookup(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject **value_addr)
{
    PyDictKeysObject *dk;
    DictKeysKind kind;
    Py_ssize_t ix;

start:
    dk = mp->ma_keys;
    kind = dk->dk_kind;

    if (kind != DICT_KEYS_GENERAL) {
        if (PyUnicode_CheckExact(key)) {
            ix = unicodekeys_lookup_unicode(dk, key, hash);
        }
        else {
            ix = unicodekeys_lookup_generic(mp, dk, key, hash);
            if (ix == DKIX_KEY_CHANGED) {
                goto start;
            }
        }

        if (ix >= 0) {
            if (kind == DICT_KEYS_SPLIT) {
                *value_addr = mp->ma_values->values[ix];
            }
            else {
                *value_addr = DK_UNICODE_ENTRIES(dk)[ix].me_value;
            }
        }
        else {
            *value_addr = NULL;
        }
    }
    else {
        ix = dictkeys_generic_lookup(mp, dk, key, hash);
        if (ix == DKIX_KEY_CHANGED) {
            goto start;
        }
        if (ix >= 0) {
            *value_addr = DK_ENTRIES(dk)[ix].me_value;
        }
        else {
            *value_addr = NULL;
        }
    }

    return ix;
}

int
_PyDict_HasOnlyStringKeys(PyObject *dict)
{
    Py_ssize_t pos = 0;
    PyObject *key, *value;
    assert(PyDict_Check(dict));
    /* Shortcut */
    if (((PyDictObject *)dict)->ma_keys->dk_kind != DICT_KEYS_GENERAL)
        return 1;
    while (PyDict_Next(dict, &pos, &key, &value))
        if (!PyUnicode_Check(key))
            return 0;
    return 1;
}

#define MAINTAIN_TRACKING(mp, key, value) \
    do { \
        if (!_PyObject_GC_IS_TRACKED(mp)) { \
            if (_PyObject_GC_MAY_BE_TRACKED(key) || \
                _PyObject_GC_MAY_BE_TRACKED(value)) { \
                _PyObject_GC_TRACK(mp); \
            } \
        } \
    } while(0)

void
_PyDict_MaybeUntrack(PyObject *op)
{
    PyDictObject *mp;
    PyObject *value;
    Py_ssize_t i, numentries;

    if (!PyDict_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op))
        return;

    mp = (PyDictObject *) op;
    numentries = mp->ma_keys->dk_nentries;
    if (_PyDict_HasSplitTable(mp)) {
        for (i = 0; i < numentries; i++) {
            if ((value = mp->ma_values->values[i]) == NULL)
                continue;
            if (_PyObject_GC_MAY_BE_TRACKED(value)) {
                return;
            }
        }
    }
    else {
        if (DK_IS_UNICODE(mp->ma_keys)) {
            PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(mp->ma_keys);
            for (i = 0; i < numentries; i++) {
                if ((value = ep0[i].me_value) == NULL)
                    continue;
                if (_PyObject_GC_MAY_BE_TRACKED(value))
                    return;
            }
        }
        else {
            PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys);
            for (i = 0; i < numentries; i++) {
                if ((value = ep0[i].me_value) == NULL)
                    continue;
                if (_PyObject_GC_MAY_BE_TRACKED(value) ||
                    _PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key))
                    return;
            }
        }
    }
    _PyObject_GC_UNTRACK(op);
}

/* Internal function to find slot for an item from its hash
   when it is known that the key is not present in the dict.

   The dict must be combined. */
static Py_ssize_t
find_empty_slot(PyDictKeysObject *keys, Py_hash_t hash)
{
    assert(keys != NULL);

    const size_t mask = DK_MASK(keys);
    size_t i = hash & mask;
    Py_ssize_t ix = dictkeys_get_index(keys, i);
    for (size_t perturb = hash; ix >= 0;) {
        perturb >>= PERTURB_SHIFT;
        i = (i*5 + perturb + 1) & mask;
        ix = dictkeys_get_index(keys, i);
    }
    return i;
}

static int
insertion_resize(PyDictObject *mp, int unicode)
{
    return dictresize(mp, calculate_log2_keysize(GROWTH_RATE(mp)), unicode);
}

static Py_ssize_t
insert_into_dictkeys(PyDictKeysObject *keys, PyObject *name)
{
    assert(PyUnicode_CheckExact(name));
    Py_hash_t hash = unicode_get_hash(name);
    if (hash == -1) {
        hash = PyUnicode_Type.tp_hash(name);
        if (hash == -1) {
            PyErr_Clear();
            return DKIX_EMPTY;
        }
    }
    Py_ssize_t ix = unicodekeys_lookup_unicode(keys, name, hash);
    if (ix == DKIX_EMPTY) {
        if (keys->dk_usable <= 0) {
            return DKIX_EMPTY;
        }
        /* Insert into new slot. */
        keys->dk_version = 0;
        Py_ssize_t hashpos = find_empty_slot(keys, hash);
        ix = keys->dk_nentries;
        PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(keys)[ix];
        dictkeys_set_index(keys, hashpos, ix);
        assert(ep->me_key == NULL);
        ep->me_key = Py_NewRef(name);
        keys->dk_usable--;
        keys->dk_nentries++;
    }
    assert (ix < SHARED_KEYS_MAX_SIZE);
    return ix;
}

/*
Internal routine to insert a new item into the table.
Used both by the internal resize routine and by the public insert routine.
Returns -1 if an error occurred, or 0 on success.
Consumes key and value references.
*/
static int
insertdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value)
{
    PyObject *old_value;

    if (DK_IS_UNICODE(mp->ma_keys) && !PyUnicode_CheckExact(key)) {
        if (insertion_resize(mp, 0) < 0)
            goto Fail;
        assert(mp->ma_keys->dk_kind == DICT_KEYS_GENERAL);
    }

    Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, &old_value);
    if (ix == DKIX_ERROR)
        goto Fail;

    MAINTAIN_TRACKING(mp, key, value);

    if (ix == DKIX_EMPTY) {
        uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_ADDED, mp, key, value);
        /* Insert into new slot. */
        mp->ma_keys->dk_version = 0;
        assert(old_value == NULL);
        if (mp->ma_keys->dk_usable <= 0) {
            /* Need to resize. */
            if (insertion_resize(mp, 1) < 0)
                goto Fail;
        }

        Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash);
        dictkeys_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);

        if (DK_IS_UNICODE(mp->ma_keys)) {
            PyDictUnicodeEntry *ep;
            ep = &DK_UNICODE_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
            ep->me_key = key;
            if (mp->ma_values) {
                Py_ssize_t index = mp->ma_keys->dk_nentries;
                _PyDictValues_AddToInsertionOrder(mp->ma_values, index);
                assert (mp->ma_values->values[index] == NULL);
                mp->ma_values->values[index] = value;
            }
            else {
                ep->me_value = value;
            }
        }
        else {
            PyDictKeyEntry *ep;
            ep = &DK_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
            ep->me_key = key;
            ep->me_hash = hash;
            ep->me_value = value;
        }
        mp->ma_used++;
        mp->ma_version_tag = new_version;
        mp->ma_keys->dk_usable--;
        mp->ma_keys->dk_nentries++;
        assert(mp->ma_keys->dk_usable >= 0);
        ASSERT_CONSISTENT(mp);
        return 0;
    }

    if (old_value != value) {
        uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_MODIFIED, mp, key, value);
        if (_PyDict_HasSplitTable(mp)) {
            mp->ma_values->values[ix] = value;
            if (old_value == NULL) {
                _PyDictValues_AddToInsertionOrder(mp->ma_values, ix);
                mp->ma_used++;
            }
        }
        else {
            assert(old_value != NULL);
            if (DK_IS_UNICODE(mp->ma_keys)) {
                DK_UNICODE_ENTRIES(mp->ma_keys)[ix].me_value = value;
            }
            else {
                DK_ENTRIES(mp->ma_keys)[ix].me_value = value;
            }
        }
        mp->ma_version_tag = new_version;
    }
    Py_XDECREF(old_value); /* which **CAN** re-enter (see issue #22653) */
    ASSERT_CONSISTENT(mp);
    Py_DECREF(key);
    return 0;

Fail:
    Py_DECREF(value);
    Py_DECREF(key);
    return -1;
}

// Same to insertdict but specialized for ma_keys = Py_EMPTY_KEYS.
// Consumes key and value references.
static int
insert_to_emptydict(PyDictObject *mp, PyObject *key, Py_hash_t hash,
                    PyObject *value)
{
    assert(mp->ma_keys == Py_EMPTY_KEYS);

    uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_ADDED, mp, key, value);

    int unicode = PyUnicode_CheckExact(key);
    PyDictKeysObject *newkeys = new_keys_object(PyDict_LOG_MINSIZE, unicode);
    if (newkeys == NULL) {
        Py_DECREF(key);
        Py_DECREF(value);
        return -1;
    }
    dictkeys_decref(Py_EMPTY_KEYS);
    mp->ma_keys = newkeys;
    mp->ma_values = NULL;

    MAINTAIN_TRACKING(mp, key, value);

    size_t hashpos = (size_t)hash & (PyDict_MINSIZE-1);
    dictkeys_set_index(mp->ma_keys, hashpos, 0);
    if (unicode) {
        PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(mp->ma_keys);
        ep->me_key = key;
        ep->me_value = value;
    }
    else {
        PyDictKeyEntry *ep = DK_ENTRIES(mp->ma_keys);
        ep->me_key = key;
        ep->me_hash = hash;
        ep->me_value = value;
    }
    mp->ma_used++;
    mp->ma_version_tag = new_version;
    mp->ma_keys->dk_usable--;
    mp->ma_keys->dk_nentries++;
    return 0;
}

/*
Internal routine used by dictresize() to build a hashtable of entries.
*/
static void
build_indices_generic(PyDictKeysObject *keys, PyDictKeyEntry *ep, Py_ssize_t n)
{
    size_t mask = DK_MASK(keys);
    for (Py_ssize_t ix = 0; ix != n; ix++, ep++) {
        Py_hash_t hash = ep->me_hash;
        size_t i = hash & mask;
        for (size_t perturb = hash; dictkeys_get_index(keys, i) != DKIX_EMPTY;) {
            perturb >>= PERTURB_SHIFT;
            i = mask & (i*5 + perturb + 1);
        }
        dictkeys_set_index(keys, i, ix);
    }
}

static void
build_indices_unicode(PyDictKeysObject *keys, PyDictUnicodeEntry *ep, Py_ssize_t n)
{
    size_t mask = DK_MASK(keys);
    for (Py_ssize_t ix = 0; ix != n; ix++, ep++) {
        Py_hash_t hash = unicode_get_hash(ep->me_key);
        assert(hash != -1);
        size_t i = hash & mask;
        for (size_t perturb = hash; dictkeys_get_index(keys, i) != DKIX_EMPTY;) {
            perturb >>= PERTURB_SHIFT;
            i = mask & (i*5 + perturb + 1);
        }
        dictkeys_set_index(keys, i, ix);
    }
}

/*
Restructure the table by allocating a new table and reinserting all
items again.  When entries have been deleted, the new table may
actually be smaller than the old one.
If a table is split (its keys and hashes are shared, its values are not),
then the values are temporarily copied into the table, it is resized as
a combined table, then the me_value slots in the old table are NULLed out.
After resizing a table is always combined.

This function supports:
 - Unicode split -> Unicode combined or Generic
 - Unicode combined -> Unicode combined or Generic
 - Generic -> Generic
*/
static int
dictresize(PyDictObject *mp, uint8_t log2_newsize, int unicode)
{
    PyDictKeysObject *oldkeys;
    PyDictValues *oldvalues;

    if (log2_newsize >= SIZEOF_SIZE_T*8) {
        PyErr_NoMemory();
        return -1;
    }
    assert(log2_newsize >= PyDict_LOG_MINSIZE);

    oldkeys = mp->ma_keys;
    oldvalues = mp->ma_values;

    if (!DK_IS_UNICODE(oldkeys)) {
        unicode = 0;
    }

    /* NOTE: Current odict checks mp->ma_keys to detect resize happen.
     * So we can't reuse oldkeys even if oldkeys->dk_size == newsize.
     * TODO: Try reusing oldkeys when reimplement odict.
     */

    /* Allocate a new table. */
    mp->ma_keys = new_keys_object(log2_newsize, unicode);
    if (mp->ma_keys == NULL) {
        mp->ma_keys = oldkeys;
        return -1;
    }
    // New table must be large enough.
    assert(mp->ma_keys->dk_usable >= mp->ma_used);

    Py_ssize_t numentries = mp->ma_used;

    if (oldvalues != NULL) {
         PyDictUnicodeEntry *oldentries = DK_UNICODE_ENTRIES(oldkeys);
        /* Convert split table into new combined table.
         * We must incref keys; we can transfer values.
         */
        if (mp->ma_keys->dk_kind == DICT_KEYS_GENERAL) {
            // split -> generic
            PyDictKeyEntry *newentries = DK_ENTRIES(mp->ma_keys);

            for (Py_ssize_t i = 0; i < numentries; i++) {
                int index = get_index_from_order(mp, i);
                PyDictUnicodeEntry *ep = &oldentries[index];
                assert(oldvalues->values[index] != NULL);
                newentries[i].me_key = Py_NewRef(ep->me_key);
                newentries[i].me_hash = unicode_get_hash(ep->me_key);
                newentries[i].me_value = oldvalues->values[index];
            }
            build_indices_generic(mp->ma_keys, newentries, numentries);
        }
        else { // split -> combined unicode
            PyDictUnicodeEntry *newentries = DK_UNICODE_ENTRIES(mp->ma_keys);

            for (Py_ssize_t i = 0; i < numentries; i++) {
                int index = get_index_from_order(mp, i);
                PyDictUnicodeEntry *ep = &oldentries[index];
                assert(oldvalues->values[index] != NULL);
                newentries[i].me_key = Py_NewRef(ep->me_key);
                newentries[i].me_value = oldvalues->values[index];
            }
            build_indices_unicode(mp->ma_keys, newentries, numentries);
        }
        dictkeys_decref(oldkeys);
        mp->ma_values = NULL;
        free_values(oldvalues);
    }
    else {  // oldkeys is combined.
        if (oldkeys->dk_kind == DICT_KEYS_GENERAL) {
            // generic -> generic
            assert(mp->ma_keys->dk_kind == DICT_KEYS_GENERAL);
            PyDictKeyEntry *oldentries = DK_ENTRIES(oldkeys);
            PyDictKeyEntry *newentries = DK_ENTRIES(mp->ma_keys);
            if (oldkeys->dk_nentries == numentries) {
                memcpy(newentries, oldentries, numentries * sizeof(PyDictKeyEntry));
            }
            else {
                PyDictKeyEntry *ep = oldentries;
                for (Py_ssize_t i = 0; i < numentries; i++) {
                    while (ep->me_value == NULL)
                        ep++;
                    newentries[i] = *ep++;
                }
            }
            build_indices_generic(mp->ma_keys, newentries, numentries);
        }
        else {  // oldkeys is combined unicode
            PyDictUnicodeEntry *oldentries = DK_UNICODE_ENTRIES(oldkeys);
            if (unicode) { // combined unicode -> combined unicode
                PyDictUnicodeEntry *newentries = DK_UNICODE_ENTRIES(mp->ma_keys);
                if (oldkeys->dk_nentries == numentries && mp->ma_keys->dk_kind == DICT_KEYS_UNICODE) {
                    memcpy(newentries, oldentries, numentries * sizeof(PyDictUnicodeEntry));
                }
                else {
                    PyDictUnicodeEntry *ep = oldentries;
                    for (Py_ssize_t i = 0; i < numentries; i++) {
                        while (ep->me_value == NULL)
                            ep++;
                        newentries[i] = *ep++;
                    }
                }
                build_indices_unicode(mp->ma_keys, newentries, numentries);
            }
            else { // combined unicode -> generic
                PyDictKeyEntry *newentries = DK_ENTRIES(mp->ma_keys);
                PyDictUnicodeEntry *ep = oldentries;
                for (Py_ssize_t i = 0; i < numentries; i++) {
                    while (ep->me_value == NULL)
                        ep++;
                    newentries[i].me_key = ep->me_key;
                    newentries[i].me_hash = unicode_get_hash(ep->me_key);
                    newentries[i].me_value = ep->me_value;
                    ep++;
                }
                build_indices_generic(mp->ma_keys, newentries, numentries);
            }
        }

        // We can not use free_keys_object here because key's reference
        // are moved already.
#ifdef Py_REF_DEBUG
        _Py_RefTotal--;
#endif
        if (oldkeys == Py_EMPTY_KEYS) {
            oldkeys->dk_refcnt--;
            assert(oldkeys->dk_refcnt > 0);
        }
        else {
            assert(oldkeys->dk_kind != DICT_KEYS_SPLIT);
            assert(oldkeys->dk_refcnt == 1);
#if PyDict_MAXFREELIST > 0
            struct _Py_dict_state *state = get_dict_state();
#ifdef Py_DEBUG
            // dictresize() must not be called after _PyDict_Fini()
            assert(state->keys_numfree != -1);
#endif
            if (DK_LOG_SIZE(oldkeys) == PyDict_LOG_MINSIZE &&
                    DK_IS_UNICODE(oldkeys) &&
                    state->keys_numfree < PyDict_MAXFREELIST)
            {
                state->keys_free_list[state->keys_numfree++] = oldkeys;
                OBJECT_STAT_INC(to_freelist);
            }
            else
#endif
            {
                PyObject_Free(oldkeys);
            }
        }
    }

    mp->ma_keys->dk_usable -= numentries;
    mp->ma_keys->dk_nentries = numentries;
    ASSERT_CONSISTENT(mp);
    return 0;
}

static PyObject *
dict_new_presized(Py_ssize_t minused, bool unicode)
{
    const uint8_t log2_max_presize = 17;
    const Py_ssize_t max_presize = ((Py_ssize_t)1) << log2_max_presize;
    uint8_t log2_newsize;
    PyDictKeysObject *new_keys;

    if (minused <= USABLE_FRACTION(PyDict_MINSIZE)) {
        return PyDict_New();
    }
    /* There are no strict guarantee that returned dict can contain minused
     * items without resize.  So we create medium size dict instead of very
     * large dict or MemoryError.
     */
    if (minused > USABLE_FRACTION(max_presize)) {
        log2_newsize = log2_max_presize;
    }
    else {
        log2_newsize = estimate_log2_keysize(minused);
    }

    new_keys = new_keys_object(log2_newsize, unicode);
    if (new_keys == NULL)
        return NULL;
    return new_dict(new_keys, NULL, 0, 0);
}

PyObject *
_PyDict_NewPresized(Py_ssize_t minused)
{
    return dict_new_presized(minused, false);
}

PyObject *
_PyDict_FromItems(PyObject *const *keys, Py_ssize_t keys_offset,
                  PyObject *const *values, Py_ssize_t values_offset,
                  Py_ssize_t length)
{
    bool unicode = true;
    PyObject *const *ks = keys;

    for (Py_ssize_t i = 0; i < length; i++) {
        if (!PyUnicode_CheckExact(*ks)) {
            unicode = false;
            break;
        }
        ks += keys_offset;
    }

    PyObject *dict = dict_new_presized(length, unicode);
    if (dict == NULL) {
        return NULL;
    }

    ks = keys;
    PyObject *const *vs = values;

    for (Py_ssize_t i = 0; i < length; i++) {
        PyObject *key = *ks;
        PyObject *value = *vs;
        if (PyDict_SetItem(dict, key, value) < 0) {
            Py_DECREF(dict);
            return NULL;
        }
        ks += keys_offset;
        vs += values_offset;
    }

    return dict;
}

/* Note that, for historical reasons, PyDict_GetItem() suppresses all errors
 * that may occur (originally dicts supported only string keys, and exceptions
 * weren't possible).  So, while the original intent was that a NULL return
 * meant the key wasn't present, in reality it can mean that, or that an error
 * (suppressed) occurred while computing the key's hash, or that some error
 * (suppressed) occurred when comparing keys in the dict's internal probe
 * sequence.  A nasty example of the latter is when a Python-coded comparison
 * function hits a stack-depth error, which can cause this to return NULL
 * even if the key is present.
 */
PyObject *
PyDict_GetItem(PyObject *op, PyObject *key)
{
    if (!PyDict_Check(op)) {
        return NULL;
    }
    PyDictObject *mp = (PyDictObject *)op;

    Py_hash_t hash;
    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1) {
            PyErr_Clear();
            return NULL;
        }
    }

    PyThreadState *tstate = _PyThreadState_GET();
#ifdef Py_DEBUG
    // bpo-40839: Before Python 3.10, it was possible to call PyDict_GetItem()
    // with the GIL released.
    _Py_EnsureTstateNotNULL(tstate);
#endif

    /* Preserve the existing exception */
    PyObject *exc_type, *exc_value, *exc_tb;
    PyObject *value;
    Py_ssize_t ix; (void)ix;

    _PyErr_Fetch(tstate, &exc_type, &exc_value, &exc_tb);
    ix = _Py_dict_lookup(mp, key, hash, &value);

    /* Ignore any exception raised by the lookup */
    _PyErr_Restore(tstate, exc_type, exc_value, exc_tb);


    assert(ix >= 0 || value == NULL);
    return value;
}

Py_ssize_t
_PyDict_LookupIndex(PyDictObject *mp, PyObject *key)
{
    PyObject *value;
    assert(PyDict_CheckExact((PyObject*)mp));
    assert(PyUnicode_CheckExact(key));

    Py_hash_t hash = unicode_get_hash(key);
    if (hash == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1) {
            return -1;
        }
    }

    return _Py_dict_lookup(mp, key, hash, &value);
}

/* Same as PyDict_GetItemWithError() but with hash supplied by caller.
   This returns NULL *with* an exception set if an exception occurred.
   It returns NULL *without* an exception set if the key wasn't present.
*/
PyObject *
_PyDict_GetItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
{
    Py_ssize_t ix; (void)ix;
    PyDictObject *mp = (PyDictObject *)op;
    PyObject *value;

    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return NULL;
    }

    ix = _Py_dict_lookup(mp, key, hash, &value);
    assert(ix >= 0 || value == NULL);
    return value;
}

/* Variant of PyDict_GetItem() that doesn't suppress exceptions.
   This returns NULL *with* an exception set if an exception occurred.
   It returns NULL *without* an exception set if the key wasn't present.
*/
PyObject *
PyDict_GetItemWithError(PyObject *op, PyObject *key)
{
    Py_ssize_t ix; (void)ix;
    Py_hash_t hash;
    PyDictObject*mp = (PyDictObject *)op;
    PyObject *value;

    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1)
    {
        hash = PyObject_Hash(key);
        if (hash == -1) {
            return NULL;
        }
    }

    ix = _Py_dict_lookup(mp, key, hash, &value);
    assert(ix >= 0 || value == NULL);
    return value;
}

PyObject *
_PyDict_GetItemWithError(PyObject *dp, PyObject *kv)
{
    assert(PyUnicode_CheckExact(kv));
    Py_hash_t hash = kv->ob_type->tp_hash(kv);
    if (hash == -1) {
        return NULL;
    }
    return _PyDict_GetItem_KnownHash(dp, kv, hash);
}

PyObject *
_PyDict_GetItemIdWithError(PyObject *dp, _Py_Identifier *key)
{
    PyObject *kv;
    kv = _PyUnicode_FromId(key); /* borrowed */
    if (kv == NULL)
        return NULL;
    Py_hash_t hash = unicode_get_hash(kv);
    assert (hash != -1);  /* interned strings have their hash value initialised */
    return _PyDict_GetItem_KnownHash(dp, kv, hash);
}

PyObject *
_PyDict_GetItemStringWithError(PyObject *v, const char *key)
{
    PyObject *kv, *rv;
    kv = PyUnicode_FromString(key);
    if (kv == NULL) {
        return NULL;
    }
    rv = PyDict_GetItemWithError(v, kv);
    Py_DECREF(kv);
    return rv;
}

/* Fast version of global value lookup (LOAD_GLOBAL).
 * Lookup in globals, then builtins.
 *
 *
 *
 *
 * Raise an exception and return NULL if an error occurred (ex: computing the
 * key hash failed, key comparison failed, ...). Return NULL if the key doesn't
 * exist. Return the value if the key exists.
 */
PyObject *
_PyDict_LoadGlobal(PyDictObject *globals, PyDictObject *builtins, PyObject *key)
{
    Py_ssize_t ix;
    Py_hash_t hash;
    PyObject *value;

    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return NULL;
    }

    /* namespace 1: globals */
    ix = _Py_dict_lookup(globals, key, hash, &value);
    if (ix == DKIX_ERROR)
        return NULL;
    if (ix != DKIX_EMPTY && value != NULL)
        return value;

    /* namespace 2: builtins */
    ix = _Py_dict_lookup(builtins, key, hash, &value);
    assert(ix >= 0 || value == NULL);
    return value;
}

/* Consumes references to key and value */
int
_PyDict_SetItem_Take2(PyDictObject *mp, PyObject *key, PyObject *value)
{
    assert(key);
    assert(value);
    assert(PyDict_Check(mp));
    Py_hash_t hash;
    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1) {
            Py_DECREF(key);
            Py_DECREF(value);
            return -1;
        }
    }
    if (mp->ma_keys == Py_EMPTY_KEYS) {
        return insert_to_emptydict(mp, key, hash, value);
    }
    /* insertdict() handles any resizing that might be necessary */
    return insertdict(mp, key, hash, value);
}

/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
 * dictionary if it's merely replacing the value for an existing key.
 * This means that it's safe to loop over a dictionary with PyDict_Next()
 * and occasionally replace a value -- but you can't insert new keys or
 * remove them.
 */
int
PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value)
{
    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    assert(key);
    assert(value);
    return _PyDict_SetItem_Take2((PyDictObject *)op,
                                 Py_NewRef(key), Py_NewRef(value));
}

int
_PyDict_SetItem_KnownHash(PyObject *op, PyObject *key, PyObject *value,
                         Py_hash_t hash)
{
    PyDictObject *mp;

    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    assert(key);
    assert(value);
    assert(hash != -1);
    mp = (PyDictObject *)op;

    if (mp->ma_keys == Py_EMPTY_KEYS) {
        return insert_to_emptydict(mp, Py_NewRef(key), hash, Py_NewRef(value));
    }
    /* insertdict() handles any resizing that might be necessary */
    return insertdict(mp, Py_NewRef(key), hash, Py_NewRef(value));
}

static void
delete_index_from_values(PyDictValues *values, Py_ssize_t ix)
{
    uint8_t *size_ptr = ((uint8_t *)values)-2;
    int size = *size_ptr;
    int i;
    for (i = 1; size_ptr[-i] != ix; i++) {
        assert(i <= size);
    }
    assert(i <= size);
    for (; i < size; i++) {
        size_ptr[-i] = size_ptr[-i-1];
    }
    *size_ptr = size -1;
}

static int
delitem_common(PyDictObject *mp, Py_hash_t hash, Py_ssize_t ix,
               PyObject *old_value, uint64_t new_version)
{
    PyObject *old_key;

    Py_ssize_t hashpos = lookdict_index(mp->ma_keys, hash, ix);
    assert(hashpos >= 0);

    mp->ma_used--;
    mp->ma_version_tag = new_version;
    if (mp->ma_values) {
        assert(old_value == mp->ma_values->values[ix]);
        mp->ma_values->values[ix] = NULL;
        assert(ix < SHARED_KEYS_MAX_SIZE);
        /* Update order */
        delete_index_from_values(mp->ma_values, ix);
        ASSERT_CONSISTENT(mp);
    }
    else {
        mp->ma_keys->dk_version = 0;
        dictkeys_set_index(mp->ma_keys, hashpos, DKIX_DUMMY);
        if (DK_IS_UNICODE(mp->ma_keys)) {
            PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(mp->ma_keys)[ix];
            old_key = ep->me_key;
            ep->me_key = NULL;
            ep->me_value = NULL;
        }
        else {
            PyDictKeyEntry *ep = &DK_ENTRIES(mp->ma_keys)[ix];
            old_key = ep->me_key;
            ep->me_key = NULL;
            ep->me_value = NULL;
            ep->me_hash = 0;
        }
        Py_DECREF(old_key);
    }
    Py_DECREF(old_value);

    ASSERT_CONSISTENT(mp);
    return 0;
}

int
PyDict_DelItem(PyObject *op, PyObject *key)
{
    Py_hash_t hash;
    assert(key);
    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }

    return _PyDict_DelItem_KnownHash(op, key, hash);
}

int
_PyDict_DelItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
{
    Py_ssize_t ix;
    PyDictObject *mp;
    PyObject *old_value;

    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    assert(key);
    assert(hash != -1);
    mp = (PyDictObject *)op;
    ix = _Py_dict_lookup(mp, key, hash, &old_value);
    if (ix == DKIX_ERROR)
        return -1;
    if (ix == DKIX_EMPTY || old_value == NULL) {
        _PyErr_SetKeyError(key);
        return -1;
    }

    uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_DELETED, mp, key, NULL);
    return delitem_common(mp, hash, ix, old_value, new_version);
}

/* This function promises that the predicate -> deletion sequence is atomic
 * (i.e. protected by the GIL), assuming the predicate itself doesn't
 * release the GIL.
 */
int
_PyDict_DelItemIf(PyObject *op, PyObject *key,
                  int (*predicate)(PyObject *value))
{
    Py_ssize_t hashpos, ix;
    PyDictObject *mp;
    Py_hash_t hash;
    PyObject *old_value;
    int res;

    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    assert(key);
    hash = PyObject_Hash(key);
    if (hash == -1)
        return -1;
    mp = (PyDictObject *)op;
    ix = _Py_dict_lookup(mp, key, hash, &old_value);
    if (ix == DKIX_ERROR)
        return -1;
    if (ix == DKIX_EMPTY || old_value == NULL) {
        _PyErr_SetKeyError(key);
        return -1;
    }

    res = predicate(old_value);
    if (res == -1)
        return -1;

    hashpos = lookdict_index(mp->ma_keys, hash, ix);
    assert(hashpos >= 0);

    if (res > 0) {
        uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_DELETED, mp, key, NULL);
        return delitem_common(mp, hashpos, ix, old_value, new_version);
    } else {
        return 0;
    }
}


void
PyDict_Clear(PyObject *op)
{
    PyDictObject *mp;
    PyDictKeysObject *oldkeys;
    PyDictValues *oldvalues;
    Py_ssize_t i, n;

    if (!PyDict_Check(op))
        return;
    mp = ((PyDictObject *)op);
    oldkeys = mp->ma_keys;
    oldvalues = mp->ma_values;
    if (oldkeys == Py_EMPTY_KEYS) {
        return;
    }
    /* Empty the dict... */
    uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_CLEARED, mp, NULL, NULL);
    dictkeys_incref(Py_EMPTY_KEYS);
    mp->ma_keys = Py_EMPTY_KEYS;
    mp->ma_values = NULL;
    mp->ma_used = 0;
    mp->ma_version_tag = new_version;
    /* ...then clear the keys and values */
    if (oldvalues != NULL) {
        n = oldkeys->dk_nentries;
        for (i = 0; i < n; i++)
            Py_CLEAR(oldvalues->values[i]);
        free_values(oldvalues);
        dictkeys_decref(oldkeys);
    }
    else {
       assert(oldkeys->dk_refcnt == 1);
       dictkeys_decref(oldkeys);
    }
    ASSERT_CONSISTENT(mp);
}

/* Internal version of PyDict_Next that returns a hash value in addition
 * to the key and value.
 * Return 1 on success, return 0 when the reached the end of the dictionary
 * (or if op is not a dictionary)
 */
int
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey,
             PyObject **pvalue, Py_hash_t *phash)
{
    Py_ssize_t i;
    PyDictObject *mp;
    PyObject *key, *value;
    Py_hash_t hash;

    if (!PyDict_Check(op))
        return 0;
    mp = (PyDictObject *)op;
    i = *ppos;
    if (mp->ma_values) {
        assert(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
        if (i < 0 || i >= mp->ma_used)
            return 0;
        int index = get_index_from_order(mp, i);
        value = mp->ma_values->values[index];

        key = DK_UNICODE_ENTRIES(mp->ma_keys)[index].me_key;
        hash = unicode_get_hash(key);
        assert(value != NULL);
    }
    else {
        Py_ssize_t n = mp->ma_keys->dk_nentries;
        if (i < 0 || i >= n)
            return 0;
        if (DK_IS_UNICODE(mp->ma_keys)) {
            PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(mp->ma_keys)[i];
            while (i < n && entry_ptr->me_value == NULL) {
                entry_ptr++;
                i++;
            }
            if (i >= n)
                return 0;
            key = entry_ptr->me_key;
            hash = unicode_get_hash(entry_ptr->me_key);
            value = entry_ptr->me_value;
        }
        else {
            PyDictKeyEntry *entry_ptr = &DK_ENTRIES(mp->ma_keys)[i];
            while (i < n && entry_ptr->me_value == NULL) {
                entry_ptr++;
                i++;
            }
            if (i >= n)
                return 0;
            key = entry_ptr->me_key;
            hash = entry_ptr->me_hash;
            value = entry_ptr->me_value;
        }
    }
    *ppos = i+1;
    if (pkey)
        *pkey = key;
    if (pvalue)
        *pvalue = value;
    if (phash)
        *phash = hash;
    return 1;
}

/*
 * Iterate over a dict.  Use like so:
 *
 *     Py_ssize_t i;
 *     PyObject *key, *value;
 *     i = 0;   # important!  i should not otherwise be changed by you
 *     while (PyDict_Next(yourdict, &i, &key, &value)) {
 *         Refer to borrowed references in key and value.
 *     }
 *
 * Return 1 on success, return 0 when the reached the end of the dictionary
 * (or if op is not a dictionary)
 *
 * CAUTION:  In general, it isn't safe to use PyDict_Next in a loop that
 * mutates the dict.  One exception:  it is safe if the loop merely changes
 * the values associated with the keys (but doesn't insert new keys or
 * delete keys), via PyDict_SetItem().
 */
int
PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
{
    return _PyDict_Next(op, ppos, pkey, pvalue, NULL);
}

/* Internal version of dict.pop(). */
PyObject *
_PyDict_Pop_KnownHash(PyObject *dict, PyObject *key, Py_hash_t hash, PyObject *deflt)
{
    Py_ssize_t ix;
    PyObject *old_value;
    PyDictObject *mp;

    assert(PyDict_Check(dict));
    mp = (PyDictObject *)dict;

    if (mp->ma_used == 0) {
        if (deflt) {
            return Py_NewRef(deflt);
        }
        _PyErr_SetKeyError(key);
        return NULL;
    }
    ix = _Py_dict_lookup(mp, key, hash, &old_value);
    if (ix == DKIX_ERROR)
        return NULL;
    if (ix == DKIX_EMPTY || old_value == NULL) {
        if (deflt) {
            return Py_NewRef(deflt);
        }
        _PyErr_SetKeyError(key);
        return NULL;
    }
    assert(old_value != NULL);
    uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_DELETED, mp, key, NULL);
    delitem_common(mp, hash, ix, Py_NewRef(old_value), new_version);

    ASSERT_CONSISTENT(mp);
    return old_value;
}

PyObject *
_PyDict_Pop(PyObject *dict, PyObject *key, PyObject *deflt)
{
    Py_hash_t hash;

    if (((PyDictObject *)dict)->ma_used == 0) {
        if (deflt) {
            return Py_NewRef(deflt);
        }
        _PyErr_SetKeyError(key);
        return NULL;
    }
    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return NULL;
    }
    return _PyDict_Pop_KnownHash(dict, key, hash, deflt);
}

/* Internal version of dict.from_keys().  It is subclass-friendly. */
PyObject *
_PyDict_FromKeys(PyObject *cls, PyObject *iterable, PyObject *value)
{
    PyObject *it;       /* iter(iterable) */
    PyObject *key;
    PyObject *d;
    int status;

    d = _PyObject_CallNoArgs(cls);
    if (d == NULL)
        return NULL;

    if (PyDict_CheckExact(d) && ((PyDictObject *)d)->ma_used == 0) {
        if (PyDict_CheckExact(iterable)) {
            PyDictObject *mp = (PyDictObject *)d;
            PyObject *oldvalue;
            Py_ssize_t pos = 0;
            PyObject *key;
            Py_hash_t hash;

            int unicode = DK_IS_UNICODE(((PyDictObject*)iterable)->ma_keys);
            if (dictresize(mp, estimate_log2_keysize(PyDict_GET_SIZE(iterable)), unicode)) {
                Py_DECREF(d);
                return NULL;
            }

            while (_PyDict_Next(iterable, &pos, &key, &oldvalue, &hash)) {
                if (insertdict(mp, Py_NewRef(key), hash, Py_NewRef(value))) {
                    Py_DECREF(d);
                    return NULL;
                }
            }
            return d;
        }
        if (PyAnySet_CheckExact(iterable)) {
            PyDictObject *mp = (PyDictObject *)d;
            Py_ssize_t pos = 0;
            PyObject *key;
            Py_hash_t hash;

            if (dictresize(mp, estimate_log2_keysize(PySet_GET_SIZE(iterable)), 0)) {
                Py_DECREF(d);
                return NULL;
            }

            while (_PySet_NextEntry(iterable, &pos, &key, &hash)) {
                if (insertdict(mp, Py_NewRef(key), hash, Py_NewRef(value))) {
                    Py_DECREF(d);
                    return NULL;
                }
            }
            return d;
        }
    }

    it = PyObject_GetIter(iterable);
    if (it == NULL){
        Py_DECREF(d);
        return NULL;
    }

    if (PyDict_CheckExact(d)) {
        while ((key = PyIter_Next(it)) != NULL) {
            status = PyDict_SetItem(d, key, value);
            Py_DECREF(key);
            if (status < 0)
                goto Fail;
        }
    } else {
        while ((key = PyIter_Next(it)) != NULL) {
            status = PyObject_SetItem(d, key, value);
            Py_DECREF(key);
            if (status < 0)
                goto Fail;
        }
    }

    if (PyErr_Occurred())
        goto Fail;
    Py_DECREF(it);
    return d;

Fail:
    Py_DECREF(it);
    Py_DECREF(d);
    return NULL;
}

/* Methods */

static void
dict_dealloc(PyDictObject *mp)
{
    _PyDict_NotifyEvent(PyDict_EVENT_DEALLOCATED, mp, NULL, NULL);
    PyDictValues *values = mp->ma_values;
    PyDictKeysObject *keys = mp->ma_keys;
    Py_ssize_t i, n;

    /* bpo-31095: UnTrack is needed before calling any callbacks */
    PyObject_GC_UnTrack(mp);
    Py_TRASHCAN_BEGIN(mp, dict_dealloc)
    if (values != NULL) {
        for (i = 0, n = mp->ma_keys->dk_nentries; i < n; i++) {
            Py_XDECREF(values->values[i]);
        }
        free_values(values);
        dictkeys_decref(keys);
    }
    else if (keys != NULL) {
        assert(keys->dk_refcnt == 1 || keys == Py_EMPTY_KEYS);
        dictkeys_decref(keys);
    }
#if PyDict_MAXFREELIST > 0
    struct _Py_dict_state *state = get_dict_state();
#ifdef Py_DEBUG
    // new_dict() must not be called after _PyDict_Fini()
    assert(state->numfree != -1);
#endif
    if (state->numfree < PyDict_MAXFREELIST && Py_IS_TYPE(mp, &PyDict_Type)) {
        state->free_list[state->numfree++] = mp;
        OBJECT_STAT_INC(to_freelist);
    }
    else
#endif
    {
        Py_TYPE(mp)->tp_free((PyObject *)mp);
    }
    Py_TRASHCAN_END
}


static PyObject *
dict_repr(PyDictObject *mp)
{
    Py_ssize_t i;
    PyObject *key = NULL, *value = NULL;
    _PyUnicodeWriter writer;
    int first;

    i = Py_ReprEnter((PyObject *)mp);
    if (i != 0) {
        return i > 0 ? PyUnicode_FromString("{...}") : NULL;
    }

    if (mp->ma_used == 0) {
        Py_ReprLeave((PyObject *)mp);
        return PyUnicode_FromString("{}");
    }

    _PyUnicodeWriter_Init(&writer);
    writer.overallocate = 1;
    /* "{" + "1: 2" + ", 3: 4" * (len - 1) + "}" */
    writer.min_length = 1 + 4 + (2 + 4) * (mp->ma_used - 1) + 1;

    if (_PyUnicodeWriter_WriteChar(&writer, '{') < 0)
        goto error;

    /* Do repr() on each key+value pair, and insert ": " between them.
       Note that repr may mutate the dict. */
    i = 0;
    first = 1;
    while (PyDict_Next((PyObject *)mp, &i, &key, &value)) {
        PyObject *s;
        int res;

        /* Prevent repr from deleting key or value during key format. */
        Py_INCREF(key);
        Py_INCREF(value);

        if (!first) {
            if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
                goto error;
        }
        first = 0;

        s = PyObject_Repr(key);
        if (s == NULL)
            goto error;
        res = _PyUnicodeWriter_WriteStr(&writer, s);
        Py_DECREF(s);
        if (res < 0)
            goto error;

        if (_PyUnicodeWriter_WriteASCIIString(&writer, ": ", 2) < 0)
            goto error;

        s = PyObject_Repr(value);
        if (s == NULL)
            goto error;
        res = _PyUnicodeWriter_WriteStr(&writer, s);
        Py_DECREF(s);
        if (res < 0)
            goto error;

        Py_CLEAR(key);
        Py_CLEAR(value);
    }

    writer.overallocate = 0;
    if (_PyUnicodeWriter_WriteChar(&writer, '}') < 0)
        goto error;

    Py_ReprLeave((PyObject *)mp);

    return _PyUnicodeWriter_Finish(&writer);

error:
    Py_ReprLeave((PyObject *)mp);
    _PyUnicodeWriter_Dealloc(&writer);
    Py_XDECREF(key);
    Py_XDECREF(value);
    return NULL;
}

static Py_ssize_t
dict_length(PyDictObject *mp)
{
    return mp->ma_used;
}

static PyObject *
dict_subscript(PyDictObject *mp, PyObject *key)
{
    Py_ssize_t ix;
    Py_hash_t hash;
    PyObject *value;

    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return NULL;
    }
    ix = _Py_dict_lookup(mp, key, hash, &value);
    if (ix == DKIX_ERROR)
        return NULL;
    if (ix == DKIX_EMPTY || value == NULL) {
        if (!PyDict_CheckExact(mp)) {
            /* Look up __missing__ method if we're a subclass. */
            PyObject *missing, *res;
            missing = _PyObject_LookupSpecial(
                    (PyObject *)mp, &_Py_ID(__missing__));
            if (missing != NULL) {
                res = PyObject_CallOneArg(missing, key);
                Py_DECREF(missing);
                return res;
            }
            else if (PyErr_Occurred())
                return NULL;
        }
        _PyErr_SetKeyError(key);
        return NULL;
    }
    return Py_NewRef(value);
}

static int
dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w)
{
    if (w == NULL)
        return PyDict_DelItem((PyObject *)mp, v);
    else
        return PyDict_SetItem((PyObject *)mp, v, w);
}

static PyMappingMethods dict_as_mapping = {
    (lenfunc)dict_length, /*mp_length*/
    (binaryfunc)dict_subscript, /*mp_subscript*/
    (objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
};

static PyObject *
dict_keys(PyDictObject *mp)
{
    PyObject *v;
    Py_ssize_t n;

  again:
    n = mp->ma_used;
    v = PyList_New(n);
    if (v == NULL)
        return NULL;
    if (n != mp->ma_used) {
        /* Durnit.  The allocations caused the dict to resize.
         * Just start over, this shouldn't normally happen.
         */
        Py_DECREF(v);
        goto again;
    }

    /* Nothing we do below makes any function calls. */
    Py_ssize_t j = 0, pos = 0;
    PyObject *key;
    while (_PyDict_Next((PyObject*)mp, &pos, &key, NULL, NULL)) {
        assert(j < n);
        PyList_SET_ITEM(v, j, Py_NewRef(key));
        j++;
    }
    assert(j == n);
    return v;
}

static PyObject *
dict_values(PyDictObject *mp)
{
    PyObject *v;
    Py_ssize_t n;

  again:
    n = mp->ma_used;
    v = PyList_New(n);
    if (v == NULL)
        return NULL;
    if (n != mp->ma_used) {
        /* Durnit.  The allocations caused the dict to resize.
         * Just start over, this shouldn't normally happen.
         */
        Py_DECREF(v);
        goto again;
    }

    /* Nothing we do below makes any function calls. */
    Py_ssize_t j = 0, pos = 0;
    PyObject *value;
    while (_PyDict_Next((PyObject*)mp, &pos, NULL, &value, NULL)) {
        assert(j < n);
        PyList_SET_ITEM(v, j, Py_NewRef(value));
        j++;
    }
    assert(j == n);
    return v;
}

static PyObject *
dict_items(PyDictObject *mp)
{
    PyObject *v;
    Py_ssize_t i, n;
    PyObject *item;

    /* Preallocate the list of tuples, to avoid allocations during
     * the loop over the items, which could trigger GC, which
     * could resize the dict. :-(
     */
  again:
    n = mp->ma_used;
    v = PyList_New(n);
    if (v == NULL)
        return NULL;
    for (i = 0; i < n; i++) {
        item = PyTuple_New(2);
        if (item == NULL) {
            Py_DECREF(v);
            return NULL;
        }
        PyList_SET_ITEM(v, i, item);
    }
    if (n != mp->ma_used) {
        /* Durnit.  The allocations caused the dict to resize.
         * Just start over, this shouldn't normally happen.
         */
        Py_DECREF(v);
        goto again;
    }

    /* Nothing we do below makes any function calls. */
    Py_ssize_t j = 0, pos = 0;
    PyObject *key, *value;
    while (_PyDict_Next((PyObject*)mp, &pos, &key, &value, NULL)) {
        assert(j < n);
        PyObject *item = PyList_GET_ITEM(v, j);
        PyTuple_SET_ITEM(item, 0, Py_NewRef(key));
        PyTuple_SET_ITEM(item, 1, Py_NewRef(value));
        j++;
    }
    assert(j == n);
    return v;
}

/*[clinic input]
@classmethod
dict.fromkeys
    iterable: object
    value: object=None
    /

Create a new dictionary with keys from iterable and values set to value.
[clinic start generated code]*/

static PyObject *
dict_fromkeys_impl(PyTypeObject *type, PyObject *iterable, PyObject *value)
/*[clinic end generated code: output=8fb98e4b10384999 input=382ba4855d0f74c3]*/
{
    return _PyDict_FromKeys((PyObject *)type, iterable, value);
}

/* Single-arg dict update; used by dict_update_common and operators. */
static int
dict_update_arg(PyObject *self, PyObject *arg)
{
    if (PyDict_CheckExact(arg)) {
        return PyDict_Merge(self, arg, 1);
    }
    PyObject *func;
    if (_PyObject_LookupAttr(arg, &_Py_ID(keys), &func) < 0) {
        return -1;
    }
    if (func != NULL) {
        Py_DECREF(func);
        return PyDict_Merge(self, arg, 1);
    }
    return PyDict_MergeFromSeq2(self, arg, 1);
}

static int
dict_update_common(PyObject *self, PyObject *args, PyObject *kwds,
                   const char *methname)
{
    PyObject *arg = NULL;
    int result = 0;

    if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg)) {
        result = -1;
    }
    else if (arg != NULL) {
        result = dict_update_arg(self, arg);
    }

    if (result == 0 && kwds != NULL) {
        if (PyArg_ValidateKeywordArguments(kwds))
            result = PyDict_Merge(self, kwds, 1);
        else
            result = -1;
    }
    return result;
}

/* Note: dict.update() uses the METH_VARARGS|METH_KEYWORDS calling convention.
   Using METH_FASTCALL|METH_KEYWORDS would make dict.update(**dict2) calls
   slower, see the issue #29312. */
static PyObject *
dict_update(PyObject *self, PyObject *args, PyObject *kwds)
{
    if (dict_update_common(self, args, kwds, "update") != -1)
        Py_RETURN_NONE;
    return NULL;
}

/* Update unconditionally replaces existing items.
   Merge has a 3rd argument 'override'; if set, it acts like Update,
   otherwise it leaves existing items unchanged.

   PyDict_{Update,Merge} update/merge from a mapping object.

   PyDict_MergeFromSeq2 updates/merges from any iterable object
   producing iterable objects of length 2.
*/

int
PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override)
{
    PyObject *it;       /* iter(seq2) */
    Py_ssize_t i;       /* index into seq2 of current element */
    PyObject *item;     /* seq2[i] */
    PyObject *fast;     /* item as a 2-tuple or 2-list */

    assert(d != NULL);
    assert(PyDict_Check(d));
    assert(seq2 != NULL);

    it = PyObject_GetIter(seq2);
    if (it == NULL)
        return -1;

    for (i = 0; ; ++i) {
        PyObject *key, *value;
        Py_ssize_t n;

        fast = NULL;
        item = PyIter_Next(it);
        if (item == NULL) {
            if (PyErr_Occurred())
                goto Fail;
            break;
        }

        /* Convert item to sequence, and verify length 2. */
        fast = PySequence_Fast(item, "");
        if (fast == NULL) {
            if (PyErr_ExceptionMatches(PyExc_TypeError))
                PyErr_Format(PyExc_TypeError,
                    "cannot convert dictionary update "
                    "sequence element #%zd to a sequence",
                    i);
            goto Fail;
        }
        n = PySequence_Fast_GET_SIZE(fast);
        if (n != 2) {
            PyErr_Format(PyExc_ValueError,
                         "dictionary update sequence element #%zd "
                         "has length %zd; 2 is required",
                         i, n);
            goto Fail;
        }

        /* Update/merge with this (key, value) pair. */
        key = PySequence_Fast_GET_ITEM(fast, 0);
        value = PySequence_Fast_GET_ITEM(fast, 1);
        Py_INCREF(key);
        Py_INCREF(value);
        if (override) {
            if (PyDict_SetItem(d, key, value) < 0) {
                Py_DECREF(key);
                Py_DECREF(value);
                goto Fail;
            }
        }
        else {
            if (PyDict_SetDefault(d, key, value) == NULL) {
                Py_DECREF(key);
                Py_DECREF(value);
                goto Fail;
            }
        }

        Py_DECREF(key);
        Py_DECREF(value);
        Py_DECREF(fast);
        Py_DECREF(item);
    }

    i = 0;
    ASSERT_CONSISTENT(d);
    goto Return;
Fail:
    Py_XDECREF(item);
    Py_XDECREF(fast);
    i = -1;
Return:
    Py_DECREF(it);
    return Py_SAFE_DOWNCAST(i, Py_ssize_t, int);
}

static int
dict_merge(PyObject *a, PyObject *b, int override)
{
    PyDictObject *mp, *other;

    assert(0 <= override && override <= 2);

    /* We accept for the argument either a concrete dictionary object,
     * or an abstract "mapping" object.  For the former, we can do
     * things quite efficiently.  For the latter, we only require that
     * PyMapping_Keys() and PyObject_GetItem() be supported.
     */
    if (a == NULL || !PyDict_Check(a) || b == NULL) {
        PyErr_BadInternalCall();
        return -1;
    }
    mp = (PyDictObject*)a;
    if (PyDict_Check(b) && (Py_TYPE(b)->tp_iter == (getiterfunc)dict_iter)) {
        other = (PyDictObject*)b;
        if (other == mp || other->ma_used == 0)
            /* a.update(a) or a.update({}); nothing to do */
            return 0;
        if (mp->ma_used == 0) {
            /* Since the target dict is empty, PyDict_GetItem()
             * always returns NULL.  Setting override to 1
             * skips the unnecessary test.
             */
            override = 1;
            PyDictKeysObject *okeys = other->ma_keys;

            // If other is clean, combined, and just allocated, just clone it.
            if (other->ma_values == NULL &&
                    other->ma_used == okeys->dk_nentries &&
                    (DK_LOG_SIZE(okeys) == PyDict_LOG_MINSIZE ||
                     USABLE_FRACTION(DK_SIZE(okeys)/2) < other->ma_used)) {
                uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_CLONED, mp, b, NULL);
                PyDictKeysObject *keys = clone_combined_dict_keys(other);
                if (keys == NULL) {
                    return -1;
                }

                dictkeys_decref(mp->ma_keys);
                mp->ma_keys = keys;
                if (mp->ma_values != NULL) {
                    free_values(mp->ma_values);
                    mp->ma_values = NULL;
                }

                mp->ma_used = other->ma_used;
                mp->ma_version_tag = new_version;
                ASSERT_CONSISTENT(mp);

                if (_PyObject_GC_IS_TRACKED(other) && !_PyObject_GC_IS_TRACKED(mp)) {
                    /* Maintain tracking. */
                    _PyObject_GC_TRACK(mp);
                }

                return 0;
            }
        }
        /* Do one big resize at the start, rather than
         * incrementally resizing as we insert new items.  Expect
         * that there will be no (or few) overlapping keys.
         */
        if (USABLE_FRACTION(DK_SIZE(mp->ma_keys)) < other->ma_used) {
            int unicode = DK_IS_UNICODE(other->ma_keys);
            if (dictresize(mp, estimate_log2_keysize(mp->ma_used + other->ma_used), unicode)) {
               return -1;
            }
        }

        Py_ssize_t orig_size = other->ma_keys->dk_nentries;
        Py_ssize_t pos = 0;
        Py_hash_t hash;
        PyObject *key, *value;

        while (_PyDict_Next((PyObject*)other, &pos, &key, &value, &hash)) {
            int err = 0;
            Py_INCREF(key);
            Py_INCREF(value);
            if (override == 1) {
                err = insertdict(mp, Py_NewRef(key), hash, Py_NewRef(value));
            }
            else {
                err = _PyDict_Contains_KnownHash(a, key, hash);
                if (err == 0) {
                    err = insertdict(mp, Py_NewRef(key), hash, Py_NewRef(value));
                }
                else if (err > 0) {
                    if (override != 0) {
                        _PyErr_SetKeyError(key);
                        Py_DECREF(value);
                        Py_DECREF(key);
                        return -1;
                    }
                    err = 0;
                }
            }
            Py_DECREF(value);
            Py_DECREF(key);
            if (err != 0)
                return -1;

            if (orig_size != other->ma_keys->dk_nentries) {
                PyErr_SetString(PyExc_RuntimeError,
                        "dict mutated during update");
                return -1;
            }
        }
    }
    else {
        /* Do it the generic, slower way */
        PyObject *keys = PyMapping_Keys(b);
        PyObject *iter;
        PyObject *key, *value;
        int status;

        if (keys == NULL)
            /* Docstring says this is equivalent to E.keys() so
             * if E doesn't have a .keys() method we want
             * AttributeError to percolate up.  Might as well
             * do the same for any other error.
             */
            return -1;

        iter = PyObject_GetIter(keys);
        Py_DECREF(keys);
        if (iter == NULL)
            return -1;

        for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
            if (override != 1) {
                status = PyDict_Contains(a, key);
                if (status != 0) {
                    if (status > 0) {
                        if (override == 0) {
                            Py_DECREF(key);
                            continue;
                        }
                        _PyErr_SetKeyError(key);
                    }
                    Py_DECREF(key);
                    Py_DECREF(iter);
                    return -1;
                }
            }
            value = PyObject_GetItem(b, key);
            if (value == NULL) {
                Py_DECREF(iter);
                Py_DECREF(key);
                return -1;
            }
            status = PyDict_SetItem(a, key, value);
            Py_DECREF(key);
            Py_DECREF(value);
            if (status < 0) {
                Py_DECREF(iter);
                return -1;
            }
        }
        Py_DECREF(iter);
        if (PyErr_Occurred())
            /* Iterator completed, via error */
            return -1;
    }
    ASSERT_CONSISTENT(a);
    return 0;
}

int
PyDict_Update(PyObject *a, PyObject *b)
{
    return dict_merge(a, b, 1);
}

int
PyDict_Merge(PyObject *a, PyObject *b, int override)
{
    /* XXX Deprecate override not in (0, 1). */
    return dict_merge(a, b, override != 0);
}

int
_PyDict_MergeEx(PyObject *a, PyObject *b, int override)
{
    return dict_merge(a, b, override);
}

static PyObject *
dict_copy(PyDictObject *mp, PyObject *Py_UNUSED(ignored))
{
    return PyDict_Copy((PyObject*)mp);
}

PyObject *
PyDict_Copy(PyObject *o)
{
    PyObject *copy;
    PyDictObject *mp;
    Py_ssize_t i, n;

    if (o == NULL || !PyDict_Check(o)) {
        PyErr_BadInternalCall();
        return NULL;
    }

    mp = (PyDictObject *)o;
    if (mp->ma_used == 0) {
        /* The dict is empty; just return a new dict. */
        return PyDict_New();
    }

    if (_PyDict_HasSplitTable(mp)) {
        PyDictObject *split_copy;
        Py_ssize_t size = shared_keys_usable_size(mp->ma_keys);
        PyDictValues *newvalues;
        newvalues = new_values(size);
        if (newvalues == NULL)
            return PyErr_NoMemory();
        split_copy = PyObject_GC_New(PyDictObject, &PyDict_Type);
        if (split_copy == NULL) {
            free_values(newvalues);
            return NULL;
        }
        size_t prefix_size = ((uint8_t *)newvalues)[-1];
        memcpy(((char *)newvalues)-prefix_size, ((char *)mp->ma_values)-prefix_size, prefix_size-1);
        split_copy->ma_values = newvalues;
        split_copy->ma_keys = mp->ma_keys;
        split_copy->ma_used = mp->ma_used;
        split_copy->ma_version_tag = DICT_NEXT_VERSION();
        dictkeys_incref(mp->ma_keys);
        for (i = 0, n = size; i < n; i++) {
            PyObject *value = mp->ma_values->values[i];
            split_copy->ma_values->values[i] = Py_XNewRef(value);
        }
        if (_PyObject_GC_IS_TRACKED(mp))
            _PyObject_GC_TRACK(split_copy);
        return (PyObject *)split_copy;
    }

    if (Py_TYPE(mp)->tp_iter == (getiterfunc)dict_iter &&
            mp->ma_values == NULL &&
            (mp->ma_used >= (mp->ma_keys->dk_nentries * 2) / 3))
    {
        /* Use fast-copy if:

           (1) type(mp) doesn't override tp_iter; and

           (2) 'mp' is not a split-dict; and

           (3) if 'mp' is non-compact ('del' operation does not resize dicts),
               do fast-copy only if it has at most 1/3 non-used keys.

           The last condition (3) is important to guard against a pathological
           case when a large dict is almost emptied with multiple del/pop
           operations and copied after that.  In cases like this, we defer to
           PyDict_Merge, which produces a compacted copy.
        */
        PyDictKeysObject *keys = clone_combined_dict_keys(mp);
        if (keys == NULL) {
            return NULL;
        }
        PyDictObject *new = (PyDictObject *)new_dict(keys, NULL, 0, 0);
        if (new == NULL) {
            /* In case of an error, `new_dict()` takes care of
               cleaning up `keys`. */
            return NULL;
        }

        new->ma_used = mp->ma_used;
        ASSERT_CONSISTENT(new);
        if (_PyObject_GC_IS_TRACKED(mp)) {
            /* Maintain tracking. */
            _PyObject_GC_TRACK(new);
        }

        return (PyObject *)new;
    }

    copy = PyDict_New();
    if (copy == NULL)
        return NULL;
    if (dict_merge(copy, o, 1) == 0)
        return copy;
    Py_DECREF(copy);
    return NULL;
}

Py_ssize_t
PyDict_Size(PyObject *mp)
{
    if (mp == NULL || !PyDict_Check(mp)) {
        PyErr_BadInternalCall();
        return -1;
    }
    return ((PyDictObject *)mp)->ma_used;
}

PyObject *
PyDict_Keys(PyObject *mp)
{
    if (mp == NULL || !PyDict_Check(mp)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    return dict_keys((PyDictObject *)mp);
}

PyObject *
PyDict_Values(PyObject *mp)
{
    if (mp == NULL || !PyDict_Check(mp)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    return dict_values((PyDictObject *)mp);
}

PyObject *
PyDict_Items(PyObject *mp)
{
    if (mp == NULL || !PyDict_Check(mp)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    return dict_items((PyDictObject *)mp);
}

/* Return 1 if dicts equal, 0 if not, -1 if error.
 * Gets out as soon as any difference is detected.
 * Uses only Py_EQ comparison.
 */
static int
dict_equal(PyDictObject *a, PyDictObject *b)
{
    Py_ssize_t i;

    if (a->ma_used != b->ma_used)
        /* can't be equal if # of entries differ */
        return 0;
    /* Same # of entries -- check all of 'em.  Exit early on any diff. */
    for (i = 0; i < a->ma_keys->dk_nentries; i++) {
        PyObject *key, *aval;
        Py_hash_t hash;
        if (DK_IS_UNICODE(a->ma_keys)) {
            PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(a->ma_keys)[i];
            key = ep->me_key;
            if (key == NULL) {
                continue;
            }
            hash = unicode_get_hash(key);
            if (a->ma_values)
                aval = a->ma_values->values[i];
            else
                aval = ep->me_value;
        }
        else {
            PyDictKeyEntry *ep = &DK_ENTRIES(a->ma_keys)[i];
            key = ep->me_key;
            aval = ep->me_value;
            hash = ep->me_hash;
        }
        if (aval != NULL) {
            int cmp;
            PyObject *bval;
            /* temporarily bump aval's refcount to ensure it stays
               alive until we're done with it */
            Py_INCREF(aval);
            /* ditto for key */
            Py_INCREF(key);
            /* reuse the known hash value */
            _Py_dict_lookup(b, key, hash, &bval);
            if (bval == NULL) {
                Py_DECREF(key);
                Py_DECREF(aval);
                if (PyErr_Occurred())
                    return -1;
                return 0;
            }
            Py_INCREF(bval);
            cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
            Py_DECREF(key);
            Py_DECREF(aval);
            Py_DECREF(bval);
            if (cmp <= 0)  /* error or not equal */
                return cmp;
        }
    }
    return 1;
}

static PyObject *
dict_richcompare(PyObject *v, PyObject *w, int op)
{
    int cmp;
    PyObject *res;

    if (!PyDict_Check(v) || !PyDict_Check(w)) {
        res = Py_NotImplemented;
    }
    else if (op == Py_EQ || op == Py_NE) {
        cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w);
        if (cmp < 0)
            return NULL;
        res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
    }
    else
        res = Py_NotImplemented;
    return Py_NewRef(res);
}

/*[clinic input]

@coexist
dict.__contains__

  key: object
  /

True if the dictionary has the specified key, else False.
[clinic start generated code]*/

static PyObject *
dict___contains__(PyDictObject *self, PyObject *key)
/*[clinic end generated code: output=a3d03db709ed6e6b input=fe1cb42ad831e820]*/
{
    register PyDictObject *mp = self;
    Py_hash_t hash;
    Py_ssize_t ix;
    PyObject *value;

    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return NULL;
    }
    ix = _Py_dict_lookup(mp, key, hash, &value);
    if (ix == DKIX_ERROR)
        return NULL;
    if (ix == DKIX_EMPTY || value == NULL)
        Py_RETURN_FALSE;
    Py_RETURN_TRUE;
}

/*[clinic input]
dict.get

    key: object
    default: object = None
    /

Return the value for key if key is in the dictionary, else default.
[clinic start generated code]*/

static PyObject *
dict_get_impl(PyDictObject *self, PyObject *key, PyObject *default_value)
/*[clinic end generated code: output=bba707729dee05bf input=279ddb5790b6b107]*/
{
    PyObject *val = NULL;
    Py_hash_t hash;
    Py_ssize_t ix;

    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return NULL;
    }
    ix = _Py_dict_lookup(self, key, hash, &val);
    if (ix == DKIX_ERROR)
        return NULL;
    if (ix == DKIX_EMPTY || val == NULL) {
        val = default_value;
    }
    return Py_NewRef(val);
}

PyObject *
PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *defaultobj)
{
    PyDictObject *mp = (PyDictObject *)d;
    PyObject *value;
    Py_hash_t hash;

    if (!PyDict_Check(d)) {
        PyErr_BadInternalCall();
        return NULL;
    }

    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return NULL;
    }

    if (mp->ma_keys == Py_EMPTY_KEYS) {
        if (insert_to_emptydict(mp, Py_NewRef(key), hash,
                                Py_NewRef(defaultobj)) < 0) {
            return NULL;
        }
        return defaultobj;
    }

    if (!PyUnicode_CheckExact(key) && DK_IS_UNICODE(mp->ma_keys)) {
        if (insertion_resize(mp, 0) < 0) {
            return NULL;
        }
    }

    Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, &value);
    if (ix == DKIX_ERROR)
        return NULL;

    if (ix == DKIX_EMPTY) {
        uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_ADDED, mp, key, defaultobj);
        mp->ma_keys->dk_version = 0;
        value = defaultobj;
        if (mp->ma_keys->dk_usable <= 0) {
            if (insertion_resize(mp, 1) < 0) {
                return NULL;
            }
        }
        Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash);
        dictkeys_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);
        if (DK_IS_UNICODE(mp->ma_keys)) {
            assert(PyUnicode_CheckExact(key));
            PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
            ep->me_key = Py_NewRef(key);
            if (_PyDict_HasSplitTable(mp)) {
                Py_ssize_t index = (int)mp->ma_keys->dk_nentries;
                assert(index < SHARED_KEYS_MAX_SIZE);
                assert(mp->ma_values->values[index] == NULL);
                mp->ma_values->values[index] = Py_NewRef(value);
                _PyDictValues_AddToInsertionOrder(mp->ma_values, index);
            }
            else {
                ep->me_value = Py_NewRef(value);
            }
        }
        else {
            PyDictKeyEntry *ep = &DK_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
            ep->me_key = Py_NewRef(key);
            ep->me_hash = hash;
            ep->me_value = Py_NewRef(value);
        }
        MAINTAIN_TRACKING(mp, key, value);
        mp->ma_used++;
        mp->ma_version_tag = new_version;
        mp->ma_keys->dk_usable--;
        mp->ma_keys->dk_nentries++;
        assert(mp->ma_keys->dk_usable >= 0);
    }
    else if (value == NULL) {
        uint64_t new_version = _PyDict_NotifyEvent(PyDict_EVENT_ADDED, mp, key, defaultobj);
        value = defaultobj;
        assert(_PyDict_HasSplitTable(mp));
        assert(mp->ma_values->values[ix] == NULL);
        MAINTAIN_TRACKING(mp, key, value);
        mp->ma_values->values[ix] = Py_NewRef(value);
        _PyDictValues_AddToInsertionOrder(mp->ma_values, ix);
        mp->ma_used++;
        mp->ma_version_tag = new_version;
    }

    ASSERT_CONSISTENT(mp);
    return value;
}

/*[clinic input]
dict.setdefault

    key: object
    default: object = None
    /

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.
[clinic start generated code]*/

static PyObject *
dict_setdefault_impl(PyDictObject *self, PyObject *key,
                     PyObject *default_value)
/*[clinic end generated code: output=f8c1101ebf69e220 input=0f063756e815fd9d]*/
{
    PyObject *val;

    val = PyDict_SetDefault((PyObject *)self, key, default_value);
    return Py_XNewRef(val);
}

static PyObject *
dict_clear(PyDictObject *mp, PyObject *Py_UNUSED(ignored))
{
    PyDict_Clear((PyObject *)mp);
    Py_RETURN_NONE;
}

/*[clinic input]
dict.pop

    key: object
    default: object = NULL
    /

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise,
raise a KeyError.
[clinic start generated code]*/

static PyObject *
dict_pop_impl(PyDictObject *self, PyObject *key, PyObject *default_value)
/*[clinic end generated code: output=3abb47b89f24c21c input=e221baa01044c44c]*/
{
    return _PyDict_Pop((PyObject*)self, key, default_value);
}

/*[clinic input]
dict.popitem

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
[clinic start generated code]*/

static PyObject *
dict_popitem_impl(PyDictObject *self)
/*[clinic end generated code: output=e65fcb04420d230d input=1c38a49f21f64941]*/
{
    Py_ssize_t i, j;
    PyObject *res;
    uint64_t new_version;

    /* Allocate the result tuple before checking the size.  Believe it
     * or not, this allocation could trigger a garbage collection which
     * could empty the dict, so if we checked the size first and that
     * happened, the result would be an infinite loop (searching for an
     * entry that no longer exists).  Note that the usual popitem()
     * idiom is "while d: k, v = d.popitem()". so needing to throw the
     * tuple away if the dict *is* empty isn't a significant
     * inefficiency -- possible, but unlikely in practice.
     */
    res = PyTuple_New(2);
    if (res == NULL)
        return NULL;
    if (self->ma_used == 0) {
        Py_DECREF(res);
        PyErr_SetString(PyExc_KeyError, "popitem(): dictionary is empty");
        return NULL;
    }
    /* Convert split table to combined table */
    if (self->ma_keys->dk_kind == DICT_KEYS_SPLIT) {
        if (dictresize(self, DK_LOG_SIZE(self->ma_keys), 1)) {
            Py_DECREF(res);
            return NULL;
        }
    }
    self->ma_keys->dk_version = 0;

    /* Pop last item */
    PyObject *key, *value;
    Py_hash_t hash;
    if (DK_IS_UNICODE(self->ma_keys)) {
        PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(self->ma_keys);
        i = self->ma_keys->dk_nentries - 1;
        while (i >= 0 && ep0[i].me_value == NULL) {
            i--;
        }
        assert(i >= 0);

        key = ep0[i].me_key;
        new_version = _PyDict_NotifyEvent(PyDict_EVENT_DELETED, self, key, NULL);
        hash = unicode_get_hash(key);
        value = ep0[i].me_value;
        ep0[i].me_key = NULL;
        ep0[i].me_value = NULL;
    }
    else {
        PyDictKeyEntry *ep0 = DK_ENTRIES(self->ma_keys);
        i = self->ma_keys->dk_nentries - 1;
        while (i >= 0 && ep0[i].me_value == NULL) {
            i--;
        }
        assert(i >= 0);

        key = ep0[i].me_key;
        new_version = _PyDict_NotifyEvent(PyDict_EVENT_DELETED, self, key, NULL);
        hash = ep0[i].me_hash;
        value = ep0[i].me_value;
        ep0[i].me_key = NULL;
        ep0[i].me_hash = -1;
        ep0[i].me_value = NULL;
    }

    j = lookdict_index(self->ma_keys, hash, i);
    assert(j >= 0);
    assert(dictkeys_get_index(self->ma_keys, j) == i);
    dictkeys_set_index(self->ma_keys, j, DKIX_DUMMY);

    PyTuple_SET_ITEM(res, 0, key);
    PyTuple_SET_ITEM(res, 1, value);
    /* We can't dk_usable++ since there is DKIX_DUMMY in indices */
    self->ma_keys->dk_nentries = i;
    self->ma_used--;
    self->ma_version_tag = new_version;
    ASSERT_CONSISTENT(self);
    return res;
}

static int
dict_traverse(PyObject *op, visitproc visit, void *arg)
{
    PyDictObject *mp = (PyDictObject *)op;
    PyDictKeysObject *keys = mp->ma_keys;
    Py_ssize_t i, n = keys->dk_nentries;

    if (DK_IS_UNICODE(keys)) {
        if (mp->ma_values != NULL) {
            for (i = 0; i < n; i++) {
                Py_VISIT(mp->ma_values->values[i]);
            }
        }
        else {
            PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(keys);
            for (i = 0; i < n; i++) {
                Py_VISIT(entries[i].me_value);
            }
        }
    }
    else {
        PyDictKeyEntry *entries = DK_ENTRIES(keys);
        for (i = 0; i < n; i++) {
            if (entries[i].me_value != NULL) {
                Py_VISIT(entries[i].me_value);
                Py_VISIT(entries[i].me_key);
            }
        }
    }
    return 0;
}

static int
dict_tp_clear(PyObject *op)
{
    PyDict_Clear(op);
    return 0;
}

static PyObject *dictiter_new(PyDictObject *, PyTypeObject *);

Py_ssize_t
_PyDict_SizeOf(PyDictObject *mp)
{
    Py_ssize_t res;

    res = _PyObject_SIZE(Py_TYPE(mp));
    if (mp->ma_values) {
        res += shared_keys_usable_size(mp->ma_keys) * sizeof(PyObject*);
    }
    /* If the dictionary is split, the keys portion is accounted-for
       in the type object. */
    if (mp->ma_keys->dk_refcnt == 1) {
        res += _PyDict_KeysSize(mp->ma_keys);
    }
    return res;
}

Py_ssize_t
_PyDict_KeysSize(PyDictKeysObject *keys)
{
    size_t es = keys->dk_kind == DICT_KEYS_GENERAL
        ?  sizeof(PyDictKeyEntry) : sizeof(PyDictUnicodeEntry);
    return (sizeof(PyDictKeysObject)
            + ((size_t)1 << keys->dk_log2_index_bytes)
            + USABLE_FRACTION(DK_SIZE(keys)) * es);
}

static PyObject *
dict_sizeof(PyDictObject *mp, PyObject *Py_UNUSED(ignored))
{
    return PyLong_FromSsize_t(_PyDict_SizeOf(mp));
}

static PyObject *
dict_or(PyObject *self, PyObject *other)
{
    if (!PyDict_Check(self) || !PyDict_Check(other)) {
        Py_RETURN_NOTIMPLEMENTED;
    }
    PyObject *new = PyDict_Copy(self);
    if (new == NULL) {
        return NULL;
    }
    if (dict_update_arg(new, other)) {
        Py_DECREF(new);
        return NULL;
    }
    return new;
}

static PyObject *
dict_ior(PyObject *self, PyObject *other)
{
    if (dict_update_arg(self, other)) {
        return NULL;
    }
    return Py_NewRef(self);
}

PyDoc_STRVAR(getitem__doc__,
"__getitem__($self, key, /)\n--\n\nReturn self[key].");

PyDoc_STRVAR(sizeof__doc__,
"D.__sizeof__() -> size of D in memory, in bytes");

PyDoc_STRVAR(update__doc__,
"D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.\n\
If E is present and has a .keys() method, then does:  for k in E: D[k] = E[k]\n\
If E is present and lacks a .keys() method, then does:  for k, v in E: D[k] = v\n\
In either case, this is followed by: for k in F:  D[k] = F[k]");

PyDoc_STRVAR(clear__doc__,
"D.clear() -> None.  Remove all items from D.");

PyDoc_STRVAR(copy__doc__,
"D.copy() -> a shallow copy of D");

/* Forward */
static PyObject *dictkeys_new(PyObject *, PyObject *);
static PyObject *dictitems_new(PyObject *, PyObject *);
static PyObject *dictvalues_new(PyObject *, PyObject *);

PyDoc_STRVAR(keys__doc__,
             "D.keys() -> a set-like object providing a view on D's keys");
PyDoc_STRVAR(items__doc__,
             "D.items() -> a set-like object providing a view on D's items");
PyDoc_STRVAR(values__doc__,
             "D.values() -> an object providing a view on D's values");

static PyMethodDef mapp_methods[] = {
    DICT___CONTAINS___METHODDEF
    {"__getitem__", _PyCFunction_CAST(dict_subscript),        METH_O | METH_COEXIST,
     getitem__doc__},
    {"__sizeof__",      _PyCFunction_CAST(dict_sizeof),       METH_NOARGS,
     sizeof__doc__},
    DICT_GET_METHODDEF
    DICT_SETDEFAULT_METHODDEF
    DICT_POP_METHODDEF
    DICT_POPITEM_METHODDEF
    {"keys",            dictkeys_new,                   METH_NOARGS,
    keys__doc__},
    {"items",           dictitems_new,                  METH_NOARGS,
    items__doc__},
    {"values",          dictvalues_new,                 METH_NOARGS,
    values__doc__},
    {"update",          _PyCFunction_CAST(dict_update), METH_VARARGS | METH_KEYWORDS,
     update__doc__},
    DICT_FROMKEYS_METHODDEF
    {"clear",           (PyCFunction)dict_clear,        METH_NOARGS,
     clear__doc__},
    {"copy",            (PyCFunction)dict_copy,         METH_NOARGS,
     copy__doc__},
    DICT___REVERSED___METHODDEF
    {"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
    {NULL,              NULL}   /* sentinel */
};

/* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */
int
PyDict_Contains(PyObject *op, PyObject *key)
{
    Py_hash_t hash;
    Py_ssize_t ix;
    PyDictObject *mp = (PyDictObject *)op;
    PyObject *value;

    if (!PyUnicode_CheckExact(key) || (hash = unicode_get_hash(key)) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }
    ix = _Py_dict_lookup(mp, key, hash, &value);
    if (ix == DKIX_ERROR)
        return -1;
    return (ix != DKIX_EMPTY && value != NULL);
}

/* Internal version of PyDict_Contains used when the hash value is already known */
int
_PyDict_Contains_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
{
    PyDictObject *mp = (PyDictObject *)op;
    PyObject *value;
    Py_ssize_t ix;

    ix = _Py_dict_lookup(mp, key, hash, &value);
    if (ix == DKIX_ERROR)
        return -1;
    return (ix != DKIX_EMPTY && value != NULL);
}

int
_PyDict_ContainsId(PyObject *op, _Py_Identifier *key)
{
    PyObject *kv = _PyUnicode_FromId(key); /* borrowed */
    if (kv == NULL) {
        return -1;
    }
    return PyDict_Contains(op, kv);
}

/* Hack to implement "key in dict" */
static PySequenceMethods dict_as_sequence = {
    0,                          /* sq_length */
    0,                          /* sq_concat */
    0,                          /* sq_repeat */
    0,                          /* sq_item */
    0,                          /* sq_slice */
    0,                          /* sq_ass_item */
    0,                          /* sq_ass_slice */
    PyDict_Contains,            /* sq_contains */
    0,                          /* sq_inplace_concat */
    0,                          /* sq_inplace_repeat */
};

static PyNumberMethods dict_as_number = {
    .nb_or = dict_or,
    .nb_inplace_or = dict_ior,
};

static PyObject *
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    assert(type != NULL);
    assert(type->tp_alloc != NULL);
    // dict subclasses must implement the GC protocol
    assert(_PyType_IS_GC(type));

    PyObject *self = type->tp_alloc(type, 0);
    if (self == NULL) {
        return NULL;
    }
    PyDictObject *d = (PyDictObject *)self;

    d->ma_used = 0;
    d->ma_version_tag = DICT_NEXT_VERSION();
    dictkeys_incref(Py_EMPTY_KEYS);
    d->ma_keys = Py_EMPTY_KEYS;
    d->ma_values = NULL;
    ASSERT_CONSISTENT(d);

    if (type != &PyDict_Type) {
        // Don't track if a subclass tp_alloc is PyType_GenericAlloc()
        if (!_PyObject_GC_IS_TRACKED(d)) {
            _PyObject_GC_TRACK(d);
        }
    }
    else {
        // _PyType_AllocNoTrack() does not track the created object
        assert(!_PyObject_GC_IS_TRACKED(d));