summaryrefslogtreecommitdiffstats
path: root/Tests/CompileFeatures
ModeNameSize
-rw-r--r--.gitattributes118logstatsplain
-rw-r--r--CMakeLists.txt12972logstatsplain
-rw-r--r--c_function_prototypes.c95logstatsplain
-rw-r--r--c_restrict.c79logstatsplain
-rw-r--r--c_static_assert.c42logstatsplain
-rw-r--r--c_variadic_macros.c188logstatsplain
-rw-r--r--cxx_aggregate_default_initializers.cpp183logstatsplain
-rw-r--r--cxx_alias_templates.cpp157logstatsplain
-rw-r--r--cxx_alignas.cpp36logstatsplain
-rw-r--r--cxx_alignof.cpp43logstatsplain
-rw-r--r--cxx_attribute_deprecated.cpp76logstatsplain
-rw-r--r--cxx_attributes.cpp46logstatsplain
-rw-r--r--cxx_auto_type.cpp95logstatsplain
-rw-r--r--cxx_binary_literals.cpp53logstatsplain
-rw-r--r--cxx_constexpr.cpp41logstatsplain
-rw-r--r--cxx_contextual_conversions.cpp636logstatsplain
-rw-r--r--cxx_decltype.cpp74logstatsplain
-rw-r--r--cxx_decltype_auto.cpp75logstatsplain
-rw-r--r--cxx_decltype_incomplete_return_types.cpp245logstatsplain
-rw-r--r--cxx_default_function_template_args.cpp107logstatsplain
-rw-r--r--cxx_defaulted_functions.cpp60logstatsplain
-rw-r--r--cxx_defaulted_move_initializers.cpp83logstatsplain
-rw-r--r--cxx_delegating_constructors.cpp115logstatsplain
-rw-r--r--cxx_deleted_functions.cpp74logstatsplain
-rw-r--r--cxx_digit_separators.cpp78logstatsplain
-rw-r--r--cxx_enum_forward_declarations.cpp80logstatsplain
-rw-r--r--cxx_explicit_conversions.cpp82logstatsplain
-rw-r--r--cxx_extended_friend_declarations.cpp243logstatsplain
-rw-r--r--cxx_extern_templates.cpp123logstatsplain
-rw-r--r--cxx_final.cpp21logstatsplain
-rw-r--r--cxx_func_identifier.cpp61logstatsplain
-rw-r--r--cxx_generalized_initializers.cpp774logstatsplain
-rw-r--r--cxx_generic_lambdas.cpp86logstatsplain
-rw-r--r--cxx_inheriting_constructors.cpp143logstatsplain
-rw-r--r--cxx_inline_namespaces.cpp276logstatsplain
-rw-r--r--cxx_lambda_init_captures.cpp89logstatsplain
-rw-r--r--cxx_lambdas.cpp34logstatsplain
-rw-r--r--cxx_local_type_template_args.cpp294logstatsplain
-rw-r--r--cxx_long_long_type.cpp61logstatsplain
-rw-r--r--cxx_noexcept.cpp30logstatsplain
-rw-r--r--cxx_nonstatic_member_init.cpp29logstatsplain
-rw-r--r--cxx_nullptr.cpp68logstatsplain
-rw-r--r--cxx_override.cpp94logstatsplain
-rw-r--r--cxx_range_for.cpp127logstatsplain
-rw-r--r--cxx_raw_string_literals.cpp53logstatsplain
-rw-r--r--cxx_reference_qualified_functions.cpp130logstatsplain
-rw-r--r--cxx_relaxed_constexpr.cpp335logstatsplain
-rw-r--r--cxx_return_type_deduction.cpp85logstatsplain
-rw-r--r--cxx_right_angle_brackets.cpp163logstatsplain
-rw-r--r--cxx_rvalue_references.cpp26logstatsplain
-rw-r--r--cxx_sizeof_member.cpp83logstatsplain
-rw-r--r--cxx_static_assert.cpp44logstatsplain
-rw-r--r--cxx_strong_enums.cpp62logstatsplain
-rw-r--r--cxx_template_template_parameters.cpp162logstatsplain
-rw-r--r--cxx_thread_local.cpp37logstatsplain
-rw-r--r--cxx_trailing_return_types.cpp41logstatsplain
-rw-r--r--cxx_unicode_literals.cpp120logstatsplain
-rw-r--r--cxx_uniform_initialization.cpp69logstatsplain
-rw-r--r--cxx_unrestricted_unions.cpp153logstatsplain
-rw-r--r--cxx_user_literals.cpp97logstatsplain
-rw-r--r--cxx_variable_templates.cpp161logstatsplain
-rw-r--r--cxx_variadic_macros.cpp145logstatsplain
-rw-r--r--cxx_variadic_templates.cpp1467logstatsplain
-rw-r--r--default_dialect.c515logstatsplain
-rw-r--r--default_dialect.cpp1066logstatsplain
-rw-r--r--feature_test.c127logstatsplain
-rw-r--r--feature_test.cpp123logstatsplain
-rw-r--r--genex_test.c885logstatsplain
-rw-r--r--genex_test.cpp2010logstatsplain
-rw-r--r--main.cpp61logstatsplain
1436' href='#n1436'>1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
/*============================================================================
  KWSys - Kitware System Library
  Copyright 2000-2009 Kitware, Inc., Insight Software Consortium

  Distributed under the OSI-approved BSD License (the "License");
  see accompanying file Copyright.txt for details.

  This software is distributed WITHOUT ANY WARRANTY; without even the
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the License for more information.
============================================================================*/
#ifdef _WIN32
# include <winsock.h> // WSADATA, include before sys/types.h
#endif

// TODO:
// We need an alternative implementation for many functions in this file
// when USE_ASM_INSTRUCTIONS gets defined as 0.
//
// Consider using these on Win32/Win64 for some of them:
//
// IsProcessorFeaturePresent
// http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx
//
// GetProcessMemoryInfo
// http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx

#include "kwsysPrivate.h"
#include KWSYS_HEADER(FundamentalType.h)
#include KWSYS_HEADER(stl/string)
#include KWSYS_HEADER(stl/vector)
#include KWSYS_HEADER(ios/iosfwd)
#include KWSYS_HEADER(SystemInformation.hxx)
#include KWSYS_HEADER(Process.h)
#include KWSYS_HEADER(ios/iostream)
#include KWSYS_HEADER(ios/sstream)

// Work-around CMake dependency scanning limitation.  This must
// duplicate the above list of headers.
#if 0
# include "FundamentalType.h.in"
# include "SystemInformation.hxx.in"
# include "Process.h.in"
# include "Configure.hxx.in"
# include "kwsys_stl.hxx.in"
# include "kwsys_stl_vector.in"
# include "kwsys_stl_iosfwd.in"
# include "kwsys_ios_sstream.h.in"
# include "kwsys_ios_iostream.h.in"
#endif

#ifndef WIN32
# include <sys/utsname.h> // int uname(struct utsname *buf);
#endif

#ifdef _WIN32
# include <windows.h>
#endif

#ifdef __APPLE__
#include <sys/sysctl.h>
#include <mach/vm_statistics.h>
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_types.h>
#endif

#ifdef __linux
# include <sys/types.h>
# include <unistd.h>
# include <fcntl.h>
# include <ctype.h> // int isdigit(int c);
# include <errno.h> // extern int errno;
# include <sys/time.h>
#elif __hpux
# include <sys/param.h>
# include <sys/pstat.h>
#endif

#ifdef __HAIKU__
#include <OS.h>
#endif

#include <memory.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>


namespace KWSYS_NAMESPACE
{

// Create longlong
#if KWSYS_USE_LONG_LONG
  typedef long long LongLong;
#elif KWSYS_USE___INT64
  typedef __int64 LongLong;
#else
# error "No Long Long"
#endif


//  Define SystemInformationImplementation class
typedef  void (*DELAY_FUNC)(unsigned int uiMS);


class SystemInformationImplementation
{
public:
  SystemInformationImplementation ();
  ~SystemInformationImplementation ();

  const char * GetVendorString();
  const char * GetVendorID();
  kwsys_stl::string GetTypeID();
  kwsys_stl::string GetFamilyID();
  kwsys_stl::string GetModelID();
  kwsys_stl::string GetSteppingCode();
  const char * GetExtendedProcessorName();
  const char * GetProcessorSerialNumber();
  int GetProcessorCacheSize();
  unsigned int GetLogicalProcessorsPerPhysical();
  float GetProcessorClockFrequency();
  int GetProcessorAPICID();
  int GetProcessorCacheXSize(long int);
  bool DoesCPUSupportFeature(long int);
  
  const char * GetOSName();
  const char * GetHostname();
  const char * GetOSRelease();
  const char * GetOSVersion();
  const char * GetOSPlatform();

  bool Is64Bits();

  unsigned int GetNumberOfLogicalCPU(); // per physical cpu
  unsigned int GetNumberOfPhysicalCPU();

  bool DoesCPUSupportCPUID();

  // Retrieve memory information in megabyte.
  size_t GetTotalVirtualMemory();
  size_t GetAvailableVirtualMemory();
  size_t GetTotalPhysicalMemory();
  size_t GetAvailablePhysicalMemory();  

  /** Run the different checks */
  void RunCPUCheck();
  void RunOSCheck();
  void RunMemoryCheck();

public:
  typedef struct tagID
    {
    int Type;
    int Family;
    int Model;
    int Revision;
    int ExtendedFamily;
    int ExtendedModel;
    kwsys_stl::string ProcessorName;
    kwsys_stl::string Vendor;
    kwsys_stl::string SerialNumber;
    } ID;

  typedef struct tagCPUPowerManagement
    {
    bool HasVoltageID;
    bool HasFrequencyID;
    bool HasTempSenseDiode;
    } CPUPowerManagement;

  typedef struct tagCPUExtendedFeatures
    {
    bool Has3DNow;
    bool Has3DNowPlus;
    bool SupportsMP;
    bool HasMMXPlus;
    bool HasSSEMMX;
    bool SupportsHyperthreading;
    unsigned int LogicalProcessorsPerPhysical;
    int APIC_ID;
    CPUPowerManagement PowerManagement;
    } CPUExtendedFeatures;

  typedef struct CPUtagFeatures
    {
    bool HasFPU;
    bool HasTSC;
    bool HasMMX;
    bool HasSSE;
    bool HasSSEFP;
    bool HasSSE2;
    bool HasIA64;
    bool HasAPIC;
    bool HasCMOV;
    bool HasMTRR;
    bool HasACPI;
    bool HasSerial;
    bool HasThermal;
    int CPUSpeed;
    int L1CacheSize;
    int L2CacheSize;
    int L3CacheSize;
    CPUExtendedFeatures ExtendedFeatures;
    } CPUFeatures;

  enum Manufacturer
    {
    AMD, Intel, NSC, UMC, Cyrix, NexGen, IDT, Rise, Transmeta, Sun, IBM,
    Motorola, UnknownManufacturer
    };

protected:
  // Functions.
  bool RetrieveCPUFeatures();
  bool RetrieveCPUIdentity();
  bool RetrieveCPUCacheDetails();
  bool RetrieveClassicalCPUCacheDetails();
  bool RetrieveCPUClockSpeed();
  bool RetrieveClassicalCPUClockSpeed();
  bool RetrieveCPUExtendedLevelSupport(int);
  bool RetrieveExtendedCPUFeatures();
  bool RetrieveProcessorSerialNumber();
  bool RetrieveCPUPowerManagement();
  bool RetrieveClassicalCPUIdentity();
  bool RetrieveExtendedCPUIdentity();

  Manufacturer  ChipManufacturer;
  CPUFeatures   Features;
  ID            ChipID;
  float         CPUSpeedInMHz;
  unsigned int  NumberOfLogicalCPU;
  unsigned int  NumberOfPhysicalCPU;

  int CPUCount();
  unsigned char LogicalCPUPerPhysicalCPU();
  unsigned char GetAPICId();
  unsigned int IsHyperThreadingSupported();
  LongLong GetCyclesDifference(DELAY_FUNC, unsigned int);

  // For Linux and Cygwin, /proc/cpuinfo formats are slightly different
  int RetreiveInformationFromCpuInfoFile();
  kwsys_stl::string ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,
                                          const char* word, size_t init=0);

  static void Delay (unsigned int);
  static void DelayOverhead (unsigned int);

  void FindManufacturer();

  // For Mac
  bool ParseSysCtl();
  void CallSwVers();
  void TrimNewline(kwsys_stl::string&);
  kwsys_stl::string ExtractValueFromSysCtl(const char* word);
  kwsys_stl::string SysCtlBuffer;

  // For Solaris
  bool QuerySolarisInfo();
  kwsys_stl::string ParseValueFromKStat(const char* arguments);
  kwsys_stl::string RunProcess(kwsys_stl::vector<const char*> args);

  //For Haiku OS
  bool QueryHaikuInfo();

  //For QNX
  bool QueryQNXMemory();
  bool QueryQNXProcessor();

  // Evaluate the memory information.
  int QueryMemory();
  size_t TotalVirtualMemory;
  size_t AvailableVirtualMemory;
  size_t TotalPhysicalMemory;
  size_t AvailablePhysicalMemory;

  size_t CurrentPositionInFile;

  // Operating System information
  bool QueryOSInformation();
  kwsys_stl::string OSName;
  kwsys_stl::string Hostname;
  kwsys_stl::string OSRelease;
  kwsys_stl::string OSVersion;
  kwsys_stl::string OSPlatform; 
};


SystemInformation::SystemInformation()
{
  this->Implementation = new SystemInformationImplementation;
}

SystemInformation::~SystemInformation()
{
  delete this->Implementation;
}

const char * SystemInformation::GetVendorString()
{
  return this->Implementation->GetVendorString();
}

const char * SystemInformation::GetVendorID()
{
  return this->Implementation->GetVendorID();
}

kwsys_stl::string SystemInformation::GetTypeID()
{
  return this->Implementation->GetTypeID();
}

kwsys_stl::string SystemInformation::GetFamilyID()
{
  return this->Implementation->GetFamilyID();
}

kwsys_stl::string SystemInformation::GetModelID()
{
  return this->Implementation->GetModelID();
}

kwsys_stl::string SystemInformation::GetSteppingCode()
{
  return this->Implementation->GetSteppingCode();
}

const char * SystemInformation::GetExtendedProcessorName()
{
  return this->Implementation->GetExtendedProcessorName();
}

const char * SystemInformation::GetProcessorSerialNumber()
{
  return this->Implementation->GetProcessorSerialNumber();
}

int SystemInformation::GetProcessorCacheSize()
{
  return this->Implementation->GetProcessorCacheSize();
}

unsigned int SystemInformation::GetLogicalProcessorsPerPhysical()
{
  return this->Implementation->GetLogicalProcessorsPerPhysical();
}

float SystemInformation::GetProcessorClockFrequency()
{
  return this->Implementation->GetProcessorClockFrequency();
}

int SystemInformation::GetProcessorAPICID()
{
  return this->Implementation->GetProcessorAPICID();
}

int SystemInformation::GetProcessorCacheXSize(long int l)
{
  return this->Implementation->GetProcessorCacheXSize(l);
}

bool SystemInformation::DoesCPUSupportFeature(long int i)
{
  return this->Implementation->DoesCPUSupportFeature(i);
}

const char * SystemInformation::GetOSName()
{
  return this->Implementation->GetOSName();
}

const char * SystemInformation::GetHostname()
{
  return this->Implementation->GetHostname();
}

const char * SystemInformation::GetOSRelease()
{
  return this->Implementation->GetOSRelease();
}

const char * SystemInformation::GetOSVersion()
{
  return this->Implementation->GetOSVersion();
}

const char * SystemInformation::GetOSPlatform()
{
  return this->Implementation->GetOSPlatform();
}

bool SystemInformation::Is64Bits()
{
  return this->Implementation->Is64Bits();
}

unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu
{
  return this->Implementation->GetNumberOfLogicalCPU();
}

unsigned int SystemInformation::GetNumberOfPhysicalCPU()
{
  return this->Implementation->GetNumberOfPhysicalCPU();
}

bool SystemInformation::DoesCPUSupportCPUID()
{
  return this->Implementation->DoesCPUSupportCPUID();
}

// Retrieve memory information in megabyte.
size_t SystemInformation::GetTotalVirtualMemory()
{
  return this->Implementation->GetTotalVirtualMemory();
}

size_t SystemInformation::GetAvailableVirtualMemory()
{
  return this->Implementation->GetAvailableVirtualMemory();
}

size_t SystemInformation::GetTotalPhysicalMemory()
{
  return this->Implementation->GetTotalPhysicalMemory();
}

size_t SystemInformation::GetAvailablePhysicalMemory()
{
  return this->Implementation->GetAvailablePhysicalMemory();
}

/** Run the different checks */
void SystemInformation::RunCPUCheck()
{
  this->Implementation->RunCPUCheck();
}

void SystemInformation::RunOSCheck()
{
  this->Implementation->RunOSCheck();
}

void SystemInformation::RunMemoryCheck()
{
  this->Implementation->RunMemoryCheck();
}


// --------------------------------------------------------------
// SystemInformationImplementation starts here

#if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64)
#define USE_ASM_INSTRUCTIONS 1
#else
#define USE_ASM_INSTRUCTIONS 0
#endif

#define STORE_TLBCACHE_INFO(x,y)  x = (x < y) ? y : x
#define TLBCACHE_INFO_UNITS      (15)
#define CLASSICAL_CPU_FREQ_LOOP    10000000
#define RDTSC_INSTRUCTION      _asm _emit 0x0f _asm _emit 0x31

#define CPUID_AWARE_COMPILER
#ifdef CPUID_AWARE_COMPILER
  #define CPUID_INSTRUCTION    cpuid
#else
  #define CPUID_INSTRUCTION    _asm _emit 0x0f _asm _emit 0xa2
#endif

#define MMX_FEATURE            0x00000001
#define MMX_PLUS_FEATURE       0x00000002
#define SSE_FEATURE            0x00000004
#define SSE2_FEATURE           0x00000008
#define AMD_3DNOW_FEATURE      0x00000010
#define AMD_3DNOW_PLUS_FEATURE 0x00000020
#define IA64_FEATURE           0x00000040
#define MP_CAPABLE             0x00000080
#define HYPERTHREAD_FEATURE    0x00000100
#define SERIALNUMBER_FEATURE   0x00000200
#define APIC_FEATURE           0x00000400
#define SSE_FP_FEATURE         0x00000800
#define SSE_MMX_FEATURE        0x00001000
#define CMOV_FEATURE           0x00002000
#define MTRR_FEATURE           0x00004000
#define L1CACHE_FEATURE        0x00008000
#define L2CACHE_FEATURE        0x00010000
#define L3CACHE_FEATURE        0x00020000
#define ACPI_FEATURE           0x00040000
#define THERMALMONITOR_FEATURE 0x00080000
#define TEMPSENSEDIODE_FEATURE 0x00100000
#define FREQUENCYID_FEATURE    0x00200000
#define VOLTAGEID_FREQUENCY    0x00400000

// Status Flag
#define HT_NOT_CAPABLE           0
#define HT_ENABLED               1
#define HT_DISABLED              2
#define HT_SUPPORTED_NOT_ENABLED 3
#define HT_CANNOT_DETECT         4

// EDX[28]  Bit 28 is set if HT is supported
#define HT_BIT             0x10000000   

// EAX[11:8] Bit 8-11 contains family processor ID.
#define FAMILY_ID          0x0F00
#define PENTIUM4_ID        0x0F00         
// EAX[23:20] Bit 20-23 contains extended family processor ID
#define EXT_FAMILY_ID      0x0F00000 
// EBX[23:16] Bit 16-23 in ebx contains the number of logical
#define NUM_LOGICAL_BITS   0x00FF0000  
// processors per physical processor when execute cpuid with 
// eax set to 1
// EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique 
#define INITIAL_APIC_ID_BITS  0xFF000000  
// initial APIC ID for the processor this code is running on.
// Default value = 0xff if HT is not supported


SystemInformationImplementation::SystemInformationImplementation()
{
  this->TotalVirtualMemory = 0;
  this->AvailableVirtualMemory = 0;
  this->TotalPhysicalMemory = 0;
  this->AvailablePhysicalMemory = 0;
  this->CurrentPositionInFile = 0;
  this->ChipManufacturer = UnknownManufacturer;
  memset(&this->Features, 0, sizeof(CPUFeatures));
  this->ChipID.Type = 0;
  this->ChipID.Family = 0;
  this->ChipID.Model = 0;
  this->ChipID.Revision = 0;
  this->ChipID.ExtendedFamily = 0;
  this->ChipID.ExtendedModel = 0;
  this->CPUSpeedInMHz = 0;
  this->NumberOfLogicalCPU = 0;
  this->NumberOfPhysicalCPU = 0;
  this->OSName = "";
  this->Hostname = "";
  this->OSRelease = "";
  this->OSVersion = "";
  this->OSPlatform = "";
}

SystemInformationImplementation::~SystemInformationImplementation()
{
}

void SystemInformationImplementation::RunCPUCheck()
{
#ifdef WIN32
  // Check to see if this processor supports CPUID.
  bool supportsCPUID = DoesCPUSupportCPUID();

  if (supportsCPUID)
    {
    // Retrieve the CPU details.
    RetrieveCPUIdentity();
    RetrieveCPUFeatures();
    }

  // These two may be called without support for the CPUID instruction.
  // (But if the instruction is there, they should be called *after*
  // the above call to RetrieveCPUIdentity... that's why the two if
  // blocks exist with the same "if (supportsCPUID)" logic...
  //
  if (!RetrieveCPUClockSpeed())
    {
    RetrieveClassicalCPUClockSpeed();
    }

  if (supportsCPUID)
    {
    // Retrieve cache information.
    if (!RetrieveCPUCacheDetails()) 
      {
      RetrieveClassicalCPUCacheDetails();
      }

    // Retrieve the extended CPU details.
    if (!RetrieveExtendedCPUIdentity()) 
      {
      RetrieveClassicalCPUIdentity();
      }

    RetrieveExtendedCPUFeatures();
    RetrieveCPUPowerManagement();

    // Now attempt to retrieve the serial number (if possible).
    RetrieveProcessorSerialNumber();
    }

  this->CPUCount();

#elif defined(__APPLE__)
  this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
  this->QuerySolarisInfo();
#elif defined(__HAIKU__)
  this->QueryHaikuInfo();
#elif defined(__QNX__)
  this->QueryQNXProcessor();
#else
  this->RetreiveInformationFromCpuInfoFile();
#endif
}

void SystemInformationImplementation::RunOSCheck()
{
  this->QueryOSInformation();
}

void SystemInformationImplementation::RunMemoryCheck()
{
#if defined(__APPLE__)
  this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
  this->QuerySolarisInfo();
#elif defined(__HAIKU__)
  this->QueryHaikuInfo();
#elif defined(__QNX__)
  this->QueryQNXMemory();
#else
  this->QueryMemory();
#endif
}

/** Get the vendor string */
const char * SystemInformationImplementation::GetVendorString()
{
  return this->ChipID.Vendor.c_str();
}

/** Get the OS Name */
const char * SystemInformationImplementation::GetOSName()
{
  return this->OSName.c_str();
}

/** Get the hostname */
const char* SystemInformationImplementation::GetHostname()
{
  return this->Hostname.c_str();
}

/** Get the OS release */
const char* SystemInformationImplementation::GetOSRelease()
{
  return this->OSRelease.c_str();
}

/** Get the OS version */
const char* SystemInformationImplementation::GetOSVersion()
{
  return this->OSVersion.c_str();
}

/** Get the OS platform */
const char* SystemInformationImplementation::GetOSPlatform()
{
  return this->OSPlatform.c_str();
}

/** Get the vendor ID */
const char * SystemInformationImplementation::GetVendorID()
{
  // Return the vendor ID.
  switch (this->ChipManufacturer)
    {
    case Intel:
      return "Intel Corporation";
    case AMD:
      return "Advanced Micro Devices";
    case NSC:
      return "National Semiconductor";
    case Cyrix:
      return "Cyrix Corp., VIA Inc.";
    case NexGen:
      return "NexGen Inc., Advanced Micro Devices";
    case IDT:
      return "IDT\\Centaur, Via Inc.";
    case UMC:
      return "United Microelectronics Corp.";
    case Rise:
      return "Rise";
    case Transmeta:
      return "Transmeta";
    case Sun:
      return "Sun Microelectronics";
    case IBM:
      return "IBM";
    case Motorola:
      return "Motorola";
    default:
      return "Unknown Manufacturer";
    }
}

/** Return the type ID of the CPU */
kwsys_stl::string SystemInformationImplementation::GetTypeID()
{
  kwsys_ios::ostringstream str;
  str << this->ChipID.Type;
  return str.str();
}

/** Return the family of the CPU present */
kwsys_stl::string SystemInformationImplementation::GetFamilyID()
{
  kwsys_ios::ostringstream str;
  str << this->ChipID.Family;
  return str.str();
}

// Return the model of CPU present */
kwsys_stl::string SystemInformationImplementation::GetModelID()
{
  kwsys_ios::ostringstream str;
  str << this->ChipID.Model;
  return str.str();
}

/** Return the stepping code of the CPU present. */
kwsys_stl::string SystemInformationImplementation::GetSteppingCode()
{ 
  kwsys_ios::ostringstream str;
  str << this->ChipID.Revision;
  return str.str();
}

/** Return the stepping code of the CPU present. */
const char * SystemInformationImplementation::GetExtendedProcessorName()
{
  return this->ChipID.ProcessorName.c_str();
}
  
/** Return the serial number of the processor 
 *  in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */
const char * SystemInformationImplementation::GetProcessorSerialNumber()
{
  return this->ChipID.SerialNumber.c_str();
}

/** Return the logical processors per physical */
unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical()
{
  return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical;
}

/** Return the processor clock frequency. */
float SystemInformationImplementation::GetProcessorClockFrequency()
{
  return this->CPUSpeedInMHz;
}

/**  Return the APIC ID. */
int SystemInformationImplementation::GetProcessorAPICID()
{
  return this->Features.ExtendedFeatures.APIC_ID;
}

/** Return the L1 cache size. */
int SystemInformationImplementation::GetProcessorCacheSize()
{
  return this->Features.L1CacheSize;
}

/** Return the chosen cache size. */
int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID)
{
  switch (dwCacheID)
    {
    case L1CACHE_FEATURE:
      return this->Features.L1CacheSize;
    case L2CACHE_FEATURE:
      return this->Features.L2CacheSize;
    case L3CACHE_FEATURE:
      return this->Features.L3CacheSize;
    }
  return -1;
}


bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature)
{
  bool bHasFeature = false;

  // Check for MMX instructions.
  if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX) bHasFeature = true;

  // Check for MMX+ instructions.
  if (((dwFeature & MMX_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true;

  // Check for SSE FP instructions.
  if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE) bHasFeature = true;

  // Check for SSE FP instructions.
  if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP) bHasFeature = true;

  // Check for SSE MMX instructions.
  if (((dwFeature & SSE_MMX_FEATURE) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true;

  // Check for SSE2 instructions.
  if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2) bHasFeature = true;

  // Check for 3DNow! instructions.
  if (((dwFeature & AMD_3DNOW_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true;

  // Check for 3DNow+ instructions.
  if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true;

  // Check for IA64 instructions.
  if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64) bHasFeature = true;

  // Check for MP capable.
  if (((dwFeature & MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true;

  // Check for a serial number for the processor.
  if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial) bHasFeature = true;

  // Check for a local APIC in the processor.
  if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC) bHasFeature = true;

  // Check for CMOV instructions.
  if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV) bHasFeature = true;

  // Check for MTRR instructions.
  if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR) bHasFeature = true;

  // Check for L1 cache size.
  if (((dwFeature & L1CACHE_FEATURE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true;

  // Check for L2 cache size.
  if (((dwFeature & L2CACHE_FEATURE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true;

  // Check for L3 cache size.
  if (((dwFeature & L3CACHE_FEATURE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true;

  // Check for ACPI capability.
  if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI) bHasFeature = true;

  // Check for thermal monitor support.
  if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal) bHasFeature = true;

  // Check for temperature sensing diode support.
  if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true;

  // Check for frequency ID support.
  if (((dwFeature & FREQUENCYID_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true;

  // Check for voltage ID support.
  if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true;

  return bHasFeature;
}


void SystemInformationImplementation::Delay(unsigned int uiMS)
{
#ifdef WIN32
  LARGE_INTEGER Frequency, StartCounter, EndCounter;
  __int64 x;

  // Get the frequency of the high performance counter.
  if (!QueryPerformanceFrequency (&Frequency)) return;
  x = Frequency.QuadPart / 1000 * uiMS;

  // Get the starting position of the counter.
  QueryPerformanceCounter (&StartCounter);

  do {
    // Get the ending position of the counter.  
    QueryPerformanceCounter (&EndCounter);
    } while (EndCounter.QuadPart - StartCounter.QuadPart < x);
#endif
  (void)uiMS;
}


bool SystemInformationImplementation::DoesCPUSupportCPUID()
{
#if USE_ASM_INSTRUCTIONS
  // Use SEH to determine CPUID presence
    __try {
        _asm {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>> 
            mov eax, 0
      CPUID_INSTRUCTION

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
        }
    }
  __except(1) 
    {
    // Stop the class from trying to use CPUID again!
    return false;
    }

  // The cpuid instruction succeeded.
  return true;

#else
  // Assume no cpuid instruction.
  return false;
#endif
}


bool SystemInformationImplementation::RetrieveCPUFeatures()
{
#if USE_ASM_INSTRUCTIONS
  int localCPUFeatures = 0;
  int localCPUAdvanced = 0;

  // Use assembly to detect CPUID information...
  __try {
    _asm {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>> 
      ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
      ;        ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
      ;        edx: CPU feature flags
      mov eax,1
      CPUID_INSTRUCTION
      mov localCPUFeatures, edx
      mov localCPUAdvanced, ebx

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
    }
  }
  __except(1) 
    {
    return false;
    }

  // Retrieve the features of CPU present.
  this->Features.HasFPU =     ((localCPUFeatures & 0x00000001) != 0);    // FPU Present --> Bit 0
  this->Features.HasTSC =     ((localCPUFeatures & 0x00000010) != 0);    // TSC Present --> Bit 4
  this->Features.HasAPIC =    ((localCPUFeatures & 0x00000200) != 0);    // APIC Present --> Bit 9
  this->Features.HasMTRR =    ((localCPUFeatures & 0x00001000) != 0);    // MTRR Present --> Bit 12
  this->Features.HasCMOV =    ((localCPUFeatures & 0x00008000) != 0);    // CMOV Present --> Bit 15
  this->Features.HasSerial =  ((localCPUFeatures & 0x00040000) != 0);    // Serial Present --> Bit 18
  this->Features.HasACPI =    ((localCPUFeatures & 0x00400000) != 0);    // ACPI Capable --> Bit 22
  this->Features.HasMMX =     ((localCPUFeatures & 0x00800000) != 0);    // MMX Present --> Bit 23
  this->Features.HasSSE =     ((localCPUFeatures & 0x02000000) != 0);    // SSE Present --> Bit 25
  this->Features.HasSSE2 =    ((localCPUFeatures & 0x04000000) != 0);    // SSE2 Present --> Bit 26
  this->Features.HasThermal = ((localCPUFeatures & 0x20000000) != 0);    // Thermal Monitor Present --> Bit 29
  this->Features.HasIA64 =    ((localCPUFeatures & 0x40000000) != 0);    // IA64 Present --> Bit 30

  // Retrieve extended SSE capabilities if SSE is available.
  if (this->Features.HasSSE) {
    
    // Attempt to __try some SSE FP instructions.
    __try 
      {
      // Perform: orps xmm0, xmm0
      _asm 
        {
        _emit 0x0f
        _emit 0x56
        _emit 0xc0  
        }

      // SSE FP capable processor.
      this->Features.HasSSEFP = true;
      }   
    __except(1) 
      {
      // bad instruction - processor or OS cannot handle SSE FP.
      this->Features.HasSSEFP = false;
      }
    } 
  else 
    {
    // Set the advanced SSE capabilities to not available.
    this->Features.HasSSEFP = false;
    }

  // Retrieve Intel specific extended features.
  if (this->ChipManufacturer == Intel) 
    {
    this->Features.ExtendedFeatures.SupportsHyperthreading =  ((localCPUFeatures &  0x10000000) != 0);  // Intel specific: Hyperthreading --> Bit 28
    this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = (this->Features.ExtendedFeatures.SupportsHyperthreading) ? ((localCPUAdvanced & 0x00FF0000) >> 16) : 1;
    
    if ((this->Features.ExtendedFeatures.SupportsHyperthreading) && (this->Features.HasAPIC))
      {
      // Retrieve APIC information if there is one present.
      this->Features.ExtendedFeatures.APIC_ID = ((localCPUAdvanced & 0xFF000000) >> 24);
      }
    }

  return true;

#else
  return false;
#endif
}


/** Find the manufacturer given the vendor id */
void SystemInformationImplementation::FindManufacturer()
{
  if (this->ChipID.Vendor == "GenuineIntel")       this->ChipManufacturer = Intel;        // Intel Corp.
  else if (this->ChipID.Vendor == "UMC UMC UMC ")  this->ChipManufacturer = UMC;          // United Microelectronics Corp.
  else if (this->ChipID.Vendor == "AuthenticAMD")  this->ChipManufacturer = AMD;          // Advanced Micro Devices
  else if (this->ChipID.Vendor == "AMD ISBETTER")  this->ChipManufacturer = AMD;          // Advanced Micro Devices (1994)
  else if (this->ChipID.Vendor == "CyrixInstead")  this->ChipManufacturer = Cyrix;        // Cyrix Corp., VIA Inc.
  else if (this->ChipID.Vendor == "NexGenDriven")  this->ChipManufacturer = NexGen;        // NexGen Inc. (now AMD)
  else if (this->ChipID.Vendor == "CentaurHauls")  this->ChipManufacturer = IDT;          // IDT/Centaur (now VIA)
  else if (this->ChipID.Vendor == "RiseRiseRise")  this->ChipManufacturer = Rise;        // Rise
  else if (this->ChipID.Vendor == "GenuineTMx86")  this->ChipManufacturer = Transmeta;      // Transmeta
  else if (this->ChipID.Vendor == "TransmetaCPU")  this->ChipManufacturer = Transmeta;      // Transmeta
  else if (this->ChipID.Vendor == "Geode By NSC")  this->ChipManufacturer = NSC;          // National Semiconductor
  else if (this->ChipID.Vendor == "Sun")           this->ChipManufacturer = Sun;          // Sun Microelectronics
  else if (this->ChipID.Vendor == "IBM")           this->ChipManufacturer = IBM;          // IBM Microelectronics
  else if (this->ChipID.Vendor == "Motorola")      this->ChipManufacturer = Motorola;          // Motorola Microelectronics
  else                                             this->ChipManufacturer = UnknownManufacturer;  // Unknown manufacturer
}


/** */
bool SystemInformationImplementation::RetrieveCPUIdentity()
{
#if USE_ASM_INSTRUCTIONS
  int localCPUVendor[3];
  int localCPUSignature;

  // Use assembly to detect CPUID information...
  __try 
    {
    _asm 
      {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>>
      ; eax = 0 --> eax: maximum value of CPUID instruction.
      ;        ebx: part 1 of 3; CPU signature.
      ;        edx: part 2 of 3; CPU signature.
      ;        ecx: part 3 of 3; CPU signature.
      mov eax, 0
      CPUID_INSTRUCTION
      mov localCPUVendor[0 * TYPE int], ebx
      mov localCPUVendor[1 * TYPE int], edx
      mov localCPUVendor[2 * TYPE int], ecx

      ; <<CPUID>> 
      ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
      ;        ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
      ;        edx: CPU feature flags
      mov eax,1
      CPUID_INSTRUCTION
      mov localCPUSignature, eax

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
    }
  }
  __except(1) 
    {
    return false;
    }

  // Process the returned information.
  char vbuf[13];
  memcpy (&(vbuf[0]), &(localCPUVendor[0]), sizeof (int));
  memcpy (&(vbuf[4]), &(localCPUVendor[1]), sizeof (int));
  memcpy (&(vbuf[8]), &(localCPUVendor[2]), sizeof (int));
  vbuf[12] = '\0';
  this->ChipID.Vendor = vbuf;

  this->FindManufacturer();

  // Retrieve the family of CPU present.
  this->ChipID.ExtendedFamily =    ((localCPUSignature & 0x0FF00000) >> 20);  // Bits 27..20 Used
  this->ChipID.ExtendedModel =    ((localCPUSignature & 0x000F0000) >> 16);  // Bits 19..16 Used
  this->ChipID.Type =        ((localCPUSignature & 0x0000F000) >> 12);  // Bits 15..12 Used
  this->ChipID.Family =        ((localCPUSignature & 0x00000F00) >> 8);    // Bits 11..8 Used
  this->ChipID.Model =        ((localCPUSignature & 0x000000F0) >> 4);    // Bits 7..4 Used
  this->ChipID.Revision =      ((localCPUSignature & 0x0000000F) >> 0);    // Bits 3..0 Used

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUCacheDetails()
{
#if USE_ASM_INSTRUCTIONS
  int L1Cache[4] = { 0, 0, 0, 0 };
  int L2Cache[4] = { 0, 0, 0, 0 };

  // Check to see if what we are about to do is supported...
  if (RetrieveCPUExtendedLevelSupport (0x80000005)) 
    {
    // Use assembly to retrieve the L1 cache information ...
    __try 
      {
      _asm 
        {
#ifdef CPUID_AWARE_COMPILER
         ; we must push/pop the registers <<CPUID>> writes to, as the
        ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
        ; these registers to change.
        push eax
        push ebx
        push ecx
        push edx
#endif
        ; <<CPUID>>
        ; eax = 0x80000005 --> eax: L1 cache information - Part 1 of 4.
        ;             ebx: L1 cache information - Part 2 of 4.
        ;             edx: L1 cache information - Part 3 of 4.
        ;              ecx: L1 cache information - Part 4 of 4.
        mov eax, 0x80000005
        CPUID_INSTRUCTION
        mov L1Cache[0 * TYPE int], eax
        mov L1Cache[1 * TYPE int], ebx
        mov L1Cache[2 * TYPE int], ecx
        mov L1Cache[3 * TYPE int], edx

#ifdef CPUID_AWARE_COMPILER
        pop edx
        pop ecx
        pop ebx
        pop eax
#endif
        }
      }
    __except(1) 
      {
      return false;
      }
    // Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as data cache size from edx: bits 31..24.
    this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24);
    this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24);
    } 
  else 
    {
    // Store -1 to indicate the cache could not be queried.
    this->Features.L1CacheSize = -1;
    }

  // Check to see if what we are about to do is supported...
  if (RetrieveCPUExtendedLevelSupport (0x80000006)) 
    {
    // Use assembly to retrieve the L2 cache information ...
    __try 
      {
      _asm 
        {
#ifdef CPUID_AWARE_COMPILER
         ; we must push/pop the registers <<CPUID>> writes to, as the
        ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
        ; these registers to change.
        push eax
        push ebx
        push ecx
        push edx
#endif
        ; <<CPUID>>
        ; eax = 0x80000006 --> eax: L2 cache information - Part 1 of 4.
        ;             ebx: L2 cache information - Part 2 of 4.
        ;             edx: L2 cache information - Part 3 of 4.
        ;              ecx: L2 cache information - Part 4 of 4.
        mov eax, 0x80000006
        CPUID_INSTRUCTION
        mov L2Cache[0 * TYPE int], eax
        mov L2Cache[1 * TYPE int], ebx
        mov L2Cache[2 * TYPE int], ecx
        mov L2Cache[3 * TYPE int], edx

#ifdef CPUID_AWARE_COMPILER
        pop edx
        pop ecx
        pop ebx
        pop eax
#endif
        }
      }
    __except(1) 
      {
      return false;
      }
    // Save the L2 unified cache size (in KB) from ecx: bits 31..16.
    this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16);
    } 
  else
    {
    // Store -1 to indicate the cache could not be queried.
    this->Features.L2CacheSize = -1;
    }
  
  // Define L3 as being not present as we cannot test for it.
  this->Features.L3CacheSize = -1;

#endif

  // Return failure if we cannot detect either cache with this method.
  return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true;
}


/** */
bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails()
{
#if USE_ASM_INSTRUCTIONS
  int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1;
  int TLBCacheData[4] = { 0, 0, 0, 0 };
  int TLBPassCounter = 0;
  int TLBCacheUnit = 0;


  do {
    // Use assembly to retrieve the L2 cache information ...
    __try {
      _asm {
#ifdef CPUID_AWARE_COMPILER
         ; we must push/pop the registers <<CPUID>> writes to, as the
        ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
        ; these registers to change.
        push eax
        push ebx
        push ecx
        push edx
#endif
        ; <<CPUID>>
        ; eax = 2 --> eax: TLB and cache information - Part 1 of 4.
        ;        ebx: TLB and cache information - Part 2 of 4.
        ;        ecx: TLB and cache information - Part 3 of 4.
        ;        edx: TLB and cache information - Part 4 of 4.
        mov eax, 2
        CPUID_INSTRUCTION
        mov TLBCacheData[0 * TYPE int], eax
        mov TLBCacheData[1 * TYPE int], ebx
        mov TLBCacheData[2 * TYPE int], ecx
        mov TLBCacheData[3 * TYPE int], edx

#ifdef CPUID_AWARE_COMPILER
        pop edx
        pop ecx
        pop ebx
        pop eax
#endif
        }
      }
    __except(1)
      {
      return false;
      }

    int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16);
    (void)bob;
    // Process the returned TLB and cache information.
    for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter ++) 
      {
      // First of all - decide which unit we are dealing with.
      switch (nCounter) 
        {
        // eax: bits 8..15 : bits 16..23 : bits 24..31
        case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break;
        case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break;
        case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break;

        // ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
        case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break;
        case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break;
        case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break;
        case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break;

        // ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
        case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break;
        case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break;
        case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break;
        case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break;

        // edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
        case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break;
        case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break;
        case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break;
        case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break;

        // Default case - an error has occured.
        default: return false;
        }

      // Now process the resulting unit to see what it means....
      switch (TLBCacheUnit) 
        {
        case 0x00: break;
        case 0x01: STORE_TLBCACHE_INFO (TLBCode, 4); break;
        case 0x02: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x03: STORE_TLBCACHE_INFO (TLBData, 4); break;
        case 0x04: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x06: STORE_TLBCACHE_INFO (L1Code, 8); break;
        case 0x08: STORE_TLBCACHE_INFO (L1Code, 16); break;
        case 0x0a: STORE_TLBCACHE_INFO (L1Data, 8); break;
        case 0x0c: STORE_TLBCACHE_INFO (L1Data, 16); break;
        case 0x10: STORE_TLBCACHE_INFO (L1Data, 16); break;      // <-- FIXME: IA-64 Only
        case 0x15: STORE_TLBCACHE_INFO (L1Code, 16); break;      // <-- FIXME: IA-64 Only
        case 0x1a: STORE_TLBCACHE_INFO (L2Unified, 96); break;    // <-- FIXME: IA-64 Only
        case 0x22: STORE_TLBCACHE_INFO (L3Unified, 512); break;
        case 0x23: STORE_TLBCACHE_INFO (L3Unified, 1024); break;
        case 0x25: STORE_TLBCACHE_INFO (L3Unified, 2048); break;
        case 0x29: STORE_TLBCACHE_INFO (L3Unified, 4096); break;
        case 0x39: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x3c: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x40: STORE_TLBCACHE_INFO (L2Unified, 0); break;    // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 core).
        case 0x41: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x42: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x43: STORE_TLBCACHE_INFO (L2Unified, 512); break;
        case 0x44: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
        case 0x45: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
        case 0x50: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x51: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x52: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x5b: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x5c: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x5d: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x66: STORE_TLBCACHE_INFO (L1Data, 8); break;
        case 0x67: STORE_TLBCACHE_INFO (L1Data, 16); break;
        case 0x68: STORE_TLBCACHE_INFO (L1Data, 32); break;
        case 0x70: STORE_TLBCACHE_INFO (L1Trace, 12); break;
        case 0x71: STORE_TLBCACHE_INFO (L1Trace, 16); break;
        case 0x72: STORE_TLBCACHE_INFO (L1Trace, 32); break;
        case 0x77: STORE_TLBCACHE_INFO (L1Code, 16); break;      // <-- FIXME: IA-64 Only
        case 0x79: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x7a: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x7b: STORE_TLBCACHE_INFO (L2Unified, 512); break;
        case 0x7c: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
        case 0x7e: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x81: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x82: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x83: STORE_TLBCACHE_INFO (L2Unified, 512); break;
        case 0x84: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
        case 0x85: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
        case 0x88: STORE_TLBCACHE_INFO (L3Unified, 2048); break;  // <-- FIXME: IA-64 Only
        case 0x89: STORE_TLBCACHE_INFO (L3Unified, 4096); break;  // <-- FIXME: IA-64 Only
        case 0x8a: STORE_TLBCACHE_INFO (L3Unified, 8192); break;  // <-- FIXME: IA-64 Only
        case 0x8d: STORE_TLBCACHE_INFO (L3Unified, 3096); break;  // <-- FIXME: IA-64 Only
        case 0x90: STORE_TLBCACHE_INFO (TLBCode, 262144); break;  // <-- FIXME: IA-64 Only
        case 0x96: STORE_TLBCACHE_INFO (TLBCode, 262144); break;  // <-- FIXME: IA-64 Only
        case 0x9b: STORE_TLBCACHE_INFO (TLBCode, 262144); break;  // <-- FIXME: IA-64 Only
        
        // Default case - an error has occured.
        default: return false;
        }
      }

    // Increment the TLB pass counter.
    TLBPassCounter ++;
    } while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter);

  // Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
  if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1)) 
    {
    this->Features.L1CacheSize = -1;
    }
  else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1)) 
    {
    this->Features.L1CacheSize = L1Trace;
    }
  else if ((L1Code != -1) && (L1Data == -1)) 
    {
    this->Features.L1CacheSize = L1Code;
    }
  else if ((L1Code == -1) && (L1Data != -1)) 
    {
    this->Features.L1CacheSize = L1Data;
    }
  else if ((L1Code != -1) && (L1Data != -1)) 
    {
    this->Features.L1CacheSize = L1Code + L1Data;
    }
  else 
    {
    this->Features.L1CacheSize = -1;
    }

  // Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
  if (L2Unified == -1) 
    {
    this->Features.L2CacheSize = -1;
    }
  else 
    {
    this->Features.L2CacheSize = L2Unified;
    }

  // Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
  if (L3Unified == -1) 
    {
    this->Features.L3CacheSize = -1;
    }
  else 
    {
    this->Features.L3CacheSize = L3Unified;
    }

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUClockSpeed()
{
  bool retrieved = false;

#if _WIN32
  // First of all we check to see if the RDTSC (0x0F, 0x31) instruction is
  // supported. If not, we fallback to trying to read this value from the
  // registry:
  //
  if (!this->Features.HasTSC)
    {
    HKEY hKey = NULL;
    LONG err = RegOpenKeyEx(HKEY_LOCAL_MACHINE,
      "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
      KEY_READ, &hKey);

    if (ERROR_SUCCESS == err)
      {
      DWORD dwType = 0;
      DWORD data = 0;
      DWORD dwSize = sizeof(DWORD);

      err = RegQueryValueEx(hKey, "~MHz", 0,
        &dwType, (LPBYTE) &data, &dwSize);

      if (ERROR_SUCCESS == err)
        {
        this->CPUSpeedInMHz = (float) data;
        retrieved = true;
        }

      RegCloseKey(hKey);
      hKey = NULL;
      }

    return retrieved;
    }

  unsigned int uiRepetitions = 1;
  unsigned int uiMSecPerRepetition = 50;
  __int64  i64Total = 0;
  __int64 i64Overhead = 0;

  for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter ++)
    {
    i64Total += GetCyclesDifference (SystemInformationImplementation::Delay,
                                     uiMSecPerRepetition);
    i64Overhead +=
      GetCyclesDifference (SystemInformationImplementation::DelayOverhead,
                           uiMSecPerRepetition);
    }

  // Calculate the MHz speed.
  i64Total -= i64Overhead;
  i64Total /= uiRepetitions;
  i64Total /= uiMSecPerRepetition;
  i64Total /= 1000;

  // Save the CPU speed.
  this->CPUSpeedInMHz = (float) i64Total;

  retrieved = true;
#endif

  return retrieved;
}


/** */
bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed()
{
#if USE_ASM_INSTRUCTIONS
  LARGE_INTEGER liStart, liEnd, liCountsPerSecond;
  double dFrequency, dDifference;

  // Attempt to get a starting tick count.
  QueryPerformanceCounter (&liStart);

  __try 
    {
    _asm 
      {
      mov eax, 0x80000000
      mov ebx, CLASSICAL_CPU_FREQ_LOOP
      Timer_Loop: 
      bsf ecx,eax
      dec ebx
      jnz Timer_Loop
      }  
    }
  __except(1) 
    {
    return false;
    }

  // Attempt to get a starting tick count.
  QueryPerformanceCounter (&liEnd);

  // Get the difference...  NB: This is in seconds....
  QueryPerformanceFrequency (&liCountsPerSecond);
  dDifference = (((double) liEnd.QuadPart - (double) liStart.QuadPart) / (double) liCountsPerSecond.QuadPart);

  // Calculate the clock speed.
  if (this->ChipID.Family == 3) 
    {
    // 80386 processors....  Loop time is 115 cycles!
    dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000);
    } 
  else if (this->ChipID.Family == 4) 
    {
    // 80486 processors....  Loop time is 47 cycles!
    dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000);
    } 
  else if (this->ChipID.Family == 5) 
    {
    // Pentium processors....  Loop time is 43 cycles!
    dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000);
    }
  
  // Save the clock speed.
  this->Features.CPUSpeed = (int) dFrequency;

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(int CPULevelToCheck)
{
  int MaxCPUExtendedLevel = 0;

  // The extended CPUID is supported by various vendors starting with the following CPU models: 
  //
  //    Manufacturer & Chip Name      |    Family     Model    Revision
  //
  //    AMD K6, K6-2                  |       5       6      x
  //    Cyrix GXm, Cyrix III "Joshua" |       5       4      x
  //    IDT C6-2                      |       5       8      x
  //    VIA Cyrix III                 |       6       5      x
  //    Transmeta Crusoe              |       5       x      x
  //    Intel Pentium 4               |       f       x      x
  //

  // We check to see if a supported processor is present...
  if (this->ChipManufacturer == AMD) 
    {
    if (this->ChipID.Family < 5) return false;
    if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false;
    } 
  else if (this->ChipManufacturer == Cyrix) 
    {
    if (this->ChipID.Family < 5) return false;
    if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false;
    if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false;
    } 
  else if (this->ChipManufacturer == IDT) 
    {
    if (this->ChipID.Family < 5) return false;
    if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false;
    } 
  else if (this->ChipManufacturer == Transmeta) 
    {
    if (this->ChipID.Family < 5) return false;
    } 
  else if (this->ChipManufacturer == Intel) 
    {
    if (this->ChipID.Family < 0xf)
      {
      return false;
      }
    }

#if USE_ASM_INSTRUCTIONS

  // Use assembly to detect CPUID information...
  __try {
    _asm {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>> 
      ; eax = 0x80000000 --> eax: maximum supported extended level
      mov eax,0x80000000
      CPUID_INSTRUCTION
      mov MaxCPUExtendedLevel, eax

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
    }
  }
  __except(1) 
    {
    return false;
    }
#endif

  // Now we have to check the level wanted vs level returned...
  int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF);
  int nLevelReturn = (MaxCPUExtendedLevel & 0x7FFFFFFF);

  // Check to see if the level provided is supported...
  if (nLevelWanted > nLevelReturn)
    {
    return false;
    }

  return true;
}


/** */
bool SystemInformationImplementation::RetrieveExtendedCPUFeatures()
{

  // Check that we are not using an Intel processor as it does not support this.
  if (this->ChipManufacturer == Intel) 
    {
    return false;
    }

  // Check to see if what we are about to do is supported...
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000001)))
    {
    return false;
    }

#if USE_ASM_INSTRUCTIONS
  int localCPUExtendedFeatures = 0;

  // Use assembly to detect CPUID information...
  __try 
    {
    _asm 
      {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>> 
      ; eax = 0x80000001 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
      ;             ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
      ;             edx: CPU feature flags
      mov eax,0x80000001
      CPUID_INSTRUCTION
      mov localCPUExtendedFeatures, edx

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
      }
    }
  __except(1) 
    {
    return false;
    }

  // Retrieve the extended features of CPU present.
  this->Features.ExtendedFeatures.Has3DNow = ((localCPUExtendedFeatures & 0x80000000) != 0);  // 3DNow Present --> Bit 31.
  this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures & 0x40000000) != 0);  // 3DNow+ Present -- > Bit 30.
  this->Features.ExtendedFeatures.HasSSEMMX = ((localCPUExtendedFeatures & 0x00400000) != 0);  // SSE MMX Present --> Bit 22.
  this->Features.ExtendedFeatures.SupportsMP = ((localCPUExtendedFeatures & 0x00080000) != 0);  // MP Capable -- > Bit 19.
  
  // Retrieve AMD specific extended features.
  if (this->ChipManufacturer == AMD) 
    {
    this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures &  0x00400000) != 0);  // AMD specific: MMX-SSE --> Bit 22
    }

  // Retrieve Cyrix specific extended features.
  if (this->ChipManufacturer == Cyrix) 
    {
    this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures &  0x01000000) != 0);  // Cyrix specific: Extended MMX --> Bit 24
    }

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveProcessorSerialNumber()
{
  // Check to see if the processor supports the processor serial number.
  if (!this->Features.HasSerial)
    {
    return false;
    }

#if USE_ASM_INSTRUCTIONS
  int SerialNumber[3];

    // Use assembly to detect CPUID information...
  __try {
    _asm {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>>
      ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: Transmeta only ?!?
      ;        ecx: middle 32 bits are the processor signature bits
      ;        edx: bottom 32 bits are the processor signature bits
      mov eax, 3
      CPUID_INSTRUCTION
      mov SerialNumber[0 * TYPE int], ebx
      mov SerialNumber[1 * TYPE int], ecx
      mov SerialNumber[2 * TYPE int], edx

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
    }
  }
  __except(1) 
    {
    return false;
    }

  // Process the returned information.
  char sn[128];
  sprintf (sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x",
       ((SerialNumber[0] & 0xff000000) >> 24),
       ((SerialNumber[0] & 0x00ff0000) >> 16),
       ((SerialNumber[0] & 0x0000ff00) >> 8),
       ((SerialNumber[0] & 0x000000ff) >> 0),
       ((SerialNumber[1] & 0xff000000) >> 24),
       ((SerialNumber[1] & 0x00ff0000) >> 16),
       ((SerialNumber[1] & 0x0000ff00) >> 8),
       ((SerialNumber[1] & 0x000000ff) >> 0),
       ((SerialNumber[2] & 0xff000000) >> 24),
       ((SerialNumber[2] & 0x00ff0000) >> 16),
       ((SerialNumber[2] & 0x0000ff00) >> 8),
       ((SerialNumber[2] & 0x000000ff) >> 0));
  this->ChipID.SerialNumber = sn;
  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUPowerManagement()
{
  // Check to see if what we are about to do is supported...
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000007)))
    {
    this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false;
    this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false;
    this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false;
    return false;
    }

#if USE_ASM_INSTRUCTIONS
  int localCPUPowerManagement = 0;


  // Use assembly to detect CPUID information...
  __try {
    _asm {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>> 
      ; eax = 0x80000007 --> edx: get processor power management
      mov eax,0x80000007
      CPUID_INSTRUCTION
      mov localCPUPowerManagement, edx
      
#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
    }
  }
  __except(1) 
    {
    return false;
    }

  // Check for the power management capabilities of the CPU.
  this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode =  ((localCPUPowerManagement & 0x00000001) != 0);
  this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID =    ((localCPUPowerManagement & 0x00000002) != 0);
  this->Features.ExtendedFeatures.PowerManagement.HasVoltageID =    ((localCPUPowerManagement & 0x00000004) != 0);

  return true;

#else
  return false;
#endif
}

void SystemInformationStripLeadingSpace(kwsys_stl::string& str)
{
  // Because some manufacturers have leading white space - we have to post-process the name.
  kwsys_stl::string::size_type pos = str.find_first_not_of(" ");
  if(pos != kwsys_stl::string::npos)
    {
    str = str.substr(pos);
    }
}

/** */
bool SystemInformationImplementation::RetrieveExtendedCPUIdentity()
{
  // Check to see if what we are about to do is supported...
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000002)))
    return false;
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000003)))
    return false;
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000004)))
    return false;

#if USE_ASM_INSTRUCTIONS
  int CPUExtendedIdentity[12];

  // Use assembly to detect CPUID information...
  __try {
    _asm {
#ifdef CPUID_AWARE_COMPILER
       ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser doesn't know about <<CPUID>>, and so doesn't expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>> 
      ; eax = 0x80000002 --> eax, ebx, ecx, edx: get processor name string (part 1)
      mov eax,0x80000002
      CPUID_INSTRUCTION
      mov CPUExtendedIdentity[0 * TYPE int], eax
      mov CPUExtendedIdentity[1 * TYPE int], ebx
      mov CPUExtendedIdentity[2 * TYPE int], ecx
      mov CPUExtendedIdentity[3 * TYPE int], edx

      ; <<CPUID>> 
      ; eax = 0x80000003 --> eax, ebx, ecx, edx: get processor name string (part 2)
      mov eax,0x80000003
      CPUID_INSTRUCTION
      mov CPUExtendedIdentity[4 * TYPE int], eax
      mov CPUExtendedIdentity[5 * TYPE int], ebx
      mov CPUExtendedIdentity[6 * TYPE int], ecx
      mov CPUExtendedIdentity[7 * TYPE int], edx

      ; <<CPUID>> 
      ; eax = 0x80000004 --> eax, ebx, ecx, edx: get processor name string (part 3)
      mov eax,0x80000004
      CPUID_INSTRUCTION
      mov CPUExtendedIdentity[8 * TYPE int], eax
      mov CPUExtendedIdentity[9 * TYPE int], ebx
      mov CPUExtendedIdentity[10 * TYPE int], ecx
      mov CPUExtendedIdentity[11 * TYPE int], edx

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
    }
  }
  __except(1) 
    {
    return false;
    }

  // Process the returned information.
  char nbuf[49];
  memcpy (&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof (int));
  memcpy (&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof (int));
  memcpy (&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof (int));
  memcpy (&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof (int));
  memcpy (&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof (int));
  memcpy (&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof (int));
  memcpy (&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof (int));
  memcpy (&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof (int));
  memcpy (&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof (int));
  memcpy (&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof (int));
  memcpy (&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof (int));
  memcpy (&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof (int));
  nbuf[48] = '\0';
  this->ChipID.ProcessorName = nbuf;

  // Because some manufacturers have leading white space - we have to post-process the name.
  SystemInformationStripLeadingSpace(this->ChipID.ProcessorName);
  return true;
#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveClassicalCPUIdentity()
{
  // Start by decided which manufacturer we are using....
  switch (this->ChipManufacturer) 
    {
    case Intel:
      // Check the family / model / revision to determine the CPU ID.
      switch (this->ChipID.Family) {
        case 3:
          this->ChipID.ProcessorName =  "Newer i80386 family"; 
          break;
        case 4:
          switch (this->ChipID.Model) {
            case 0: this->ChipID.ProcessorName = "i80486DX-25/33"; break;
            case 1: this->ChipID.ProcessorName = "i80486DX-50"; break;
            case 2: this->ChipID.ProcessorName = "i80486SX"; break;
            case 3: this->ChipID.ProcessorName = "i80486DX2"; break;
            case 4: this->ChipID.ProcessorName = "i80486SL"; break;
            case 5: this->ChipID.ProcessorName = "i80486SX2"; break;
            case 7: this->ChipID.ProcessorName = "i80486DX2 WriteBack"; break;
            case 8: this->ChipID.ProcessorName = "i80486DX4"; break;
            case 9: this->ChipID.ProcessorName = "i80486DX4 WriteBack"; break;
            default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false;
            }
          break;
        case 5:
          switch (this->ChipID.Model) 
            {
            case 0: this->ChipID.ProcessorName = "P5 A-Step"; break;
            case 1: this->ChipID.ProcessorName = "P5"; break;
            case 2: this->ChipID.ProcessorName = "P54C"; break;
            case 3: this->ChipID.ProcessorName = "P24T OverDrive"; break;
            case 4: this->ChipID.ProcessorName = "P55C"; break;
            case 7: this->ChipID.ProcessorName = "P54C"; break;
            case 8: this->ChipID.ProcessorName = "P55C (0.25micron)"; break;
            default: this->ChipID.ProcessorName = "Unknown Pentium family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model) 
            {
            case 0: this->ChipID.ProcessorName = "P6 A-Step"; break;
            case 1: this->ChipID.ProcessorName = "P6"; break;
            case 3: this->ChipID.ProcessorName = "Pentium II (0.28 micron)"; break;
            case 5: this->ChipID.ProcessorName = "Pentium II (0.25 micron)"; break;
            case 6: this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache"; break;
            case 7: this->ChipID.ProcessorName = "Pentium III (0.25 micron)"; break;
            case 8: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "; break;
            case 0xa: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "; break;
            case 0xb: this->ChipID.ProcessorName = "Pentium III (0.13 micron) With 256 Or 512 KB On-Die L2 Cache "; break;
            case 23: this->ChipID.ProcessorName =  "Intel(R) Core(TM)2 Duo CPU     T9500  @ 2.60GHz"; break;
            default: this->ChipID.ProcessorName = "Unknown P6 family"; return false;
            }
          break;
        case 7:
          this->ChipID.ProcessorName = "Intel Merced (IA-64)";
          break;
        case 0xf:
          // Check the extended family bits...
          switch (this->ChipID.ExtendedFamily) 
            {
            case 0:
              switch (this->ChipID.Model) 
                {
                case 0: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break;
                case 1: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break;
                case 2: this->ChipID.ProcessorName = "Pentium IV (0.13 micron)"; break;
                default: this->ChipID.ProcessorName = "Unknown Pentium 4 family"; return false;
                }
              break;
            case 1:
              this->ChipID.ProcessorName = "Intel McKinley (IA-64)";
              break;
            default:
              this->ChipID.ProcessorName = "Pentium";
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Intel family";
          return false;
        }
      break;

    case AMD:
      // Check the family / model / revision to determine the CPU ID.
      switch (this->ChipID.Family) 
        {
        case 4:
          switch (this->ChipID.Model) 
            {
            case 3: this->ChipID.ProcessorName = "80486DX2"; break;
            case 7: this->ChipID.ProcessorName = "80486DX2 WriteBack"; break;
            case 8: this->ChipID.ProcessorName = "80486DX4"; break;
            case 9: this->ChipID.ProcessorName = "80486DX4 WriteBack"; break;
            case 0xe: this->ChipID.ProcessorName = "5x86"; break;
            case 0xf: this->ChipID.ProcessorName = "5x86WB"; break;
            default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false;
            }
          break;
        case 5:
          switch (this->ChipID.Model) 
            {
            case 0: this->ChipID.ProcessorName = "SSA5 (PR75, PR90 =  PR100)"; break;
            case 1: this->ChipID.ProcessorName = "5k86 (PR120 =  PR133)"; break;
            case 2: this->ChipID.ProcessorName = "5k86 (PR166)"; break;
            case 3: this->ChipID.ProcessorName = "5k86 (PR200)"; break;
            case 6: this->ChipID.ProcessorName = "K6 (0.30 micron)"; break;
            case 7: this->ChipID.ProcessorName = "K6 (0.25 micron)"; break;
            case 8: this->ChipID.ProcessorName = "K6-2"; break;
            case 9: this->ChipID.ProcessorName = "K6-III"; break;
            case 0xd: this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)"; break;
            default: this->ChipID.ProcessorName = "Unknown 80586 family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model) 
            {
            case 1: this->ChipID.ProcessorName = "Athlon- (0.25 micron)"; break;
            case 2: this->ChipID.ProcessorName = "Athlon- (0.18 micron)"; break;
            case 3: this->ChipID.ProcessorName = "Duron- (SF core)"; break;
            case 4: this->ChipID.ProcessorName = "Athlon- (Thunderbird core)"; break;
            case 6: this->ChipID.ProcessorName = "Athlon- (Palomino core)"; break;
            case 7: this->ChipID.ProcessorName = "Duron- (Morgan core)"; break;
            case 8: 
              if (this->Features.ExtendedFeatures.SupportsMP)
                this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)"; 
              else this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)";
              break;
            default: this->ChipID.ProcessorName = "Unknown K7 family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown AMD family";
          return false;
        }
      break;

    case Transmeta:
      switch (this->ChipID.Family) 
        {  
        case 5:
          switch (this->ChipID.Model) 
            {
            case 4: this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00"; break;
            default: this->ChipID.ProcessorName = "Unknown Crusoe family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Transmeta family";
          return false;
        }
      break;

    case Rise:
      switch (this->ChipID.Family) 
        {  
        case 5:
          switch (this->ChipID.Model) 
            {
            case 0: this->ChipID.ProcessorName = "mP6 (0.25 micron)"; break;
            case 2: this->ChipID.ProcessorName = "mP6 (0.18 micron)"; break;
            default: this->ChipID.ProcessorName = "Unknown Rise family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Rise family";
          return false;
        }
      break;

    case UMC:
      switch (this->ChipID.Family) 
        {  
        case 4:
          switch (this->ChipID.Model) 
            {
            case 1: this->ChipID.ProcessorName = "U5D"; break;
            case 2: this->ChipID.ProcessorName = "U5S"; break;
            default: this->ChipID.ProcessorName = "Unknown UMC family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown UMC family";
          return false;
        }
      break;

    case IDT:
      switch (this->ChipID.Family) 
        {  
        case 5:
          switch (this->ChipID.Model) 
            {
            case 4: this->ChipID.ProcessorName = "C6"; break;
            case 8: this->ChipID.ProcessorName = "C2"; break;
            case 9: this->ChipID.ProcessorName = "C3"; break;
            default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model) 
            {
            case 6: this->ChipID.ProcessorName = "VIA Cyrix III - Samuel"; break;
            default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown IDT\\Centaur family";
          return false;
        }
      break;

    case Cyrix:
      switch (this->ChipID.Family) 
        {  
        case 4:
          switch (this->ChipID.Model) 
            {
            case 4: this->ChipID.ProcessorName = "MediaGX GX =  GXm"; break;
            case 9: this->ChipID.ProcessorName = "5x86"; break;
            default: this->ChipID.ProcessorName = "Unknown Cx5x86 family"; return false;
            }
          break;
        case 5:
          switch (this->ChipID.Model) 
            {
            case 2: this->ChipID.ProcessorName = "Cx6x86"; break;
            case 4: this->ChipID.ProcessorName = "MediaGX GXm"; break;
            default: this->ChipID.ProcessorName = "Unknown Cx6x86 family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model) 
            {
            case 0: this->ChipID.ProcessorName = "6x86MX"; break;
            case 5: this->ChipID.ProcessorName = "Cyrix M2 Core"; break;
            case 6: this->ChipID.ProcessorName = "WinChip C5A Core"; break;
            case 7: this->ChipID.ProcessorName = "WinChip C5B\\C5C Core"; break;
            case 8: this->ChipID.ProcessorName = "WinChip C5C-T Core"; break;
            default: this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Cyrix family";
          return false;
        }
      break;

    case NexGen:
      switch (this->ChipID.Family) 
        {  
        case 5:
          switch (this->ChipID.Model) 
            {
            case 0: this->ChipID.ProcessorName = "Nx586 or Nx586FPU"; break;
            default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown NexGen family";
          return false;
        }
      break;

    case NSC:
      this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step";
      break;
    default:
      this->ChipID.ProcessorName = "Unknown family"; // We cannot identify the processor.
      return false;
    }

  return true;
}


/** Extract a value from the CPUInfo file */
kwsys_stl::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,const char* word,size_t init)
{
  size_t pos = buffer.find(word,init);
  if(pos != buffer.npos)
    {
    this->CurrentPositionInFile = pos;
    pos = buffer.find(":",pos);
    size_t pos2 = buffer.find("\n",pos);
    if(pos!=buffer.npos && pos2!=buffer.npos)
      {
      return buffer.substr(pos+2,pos2-pos-2);
      }
    }
  this->CurrentPositionInFile = buffer.npos;
  return "";
}

/** Query for the cpu status */
int SystemInformationImplementation::RetreiveInformationFromCpuInfoFile()
{
  this->NumberOfLogicalCPU = 0;
  this->NumberOfPhysicalCPU = 0;
  kwsys_stl::string buffer;

  FILE *fd = fopen("/proc/cpuinfo", "r" );
  if ( !fd ) 
    {
    kwsys_ios::cout << "Problem opening /proc/cpuinfo" << kwsys_ios::endl;
    return 0;
    }
  
  size_t fileSize = 0;
  while(!feof(fd))
    {
    buffer += static_cast<char>(fgetc(fd));
    fileSize++;
    }
  fclose( fd );
  buffer.resize(fileSize-2);
  // Number of logical CPUs (combination of multiple processors, multi-core
  // and hyperthreading)
  size_t pos = buffer.find("processor\t");
  while(pos != buffer.npos)
    {
    this->NumberOfLogicalCPU++;
    pos = buffer.find("processor\t",pos+1);
    }

#ifdef __linux
  // Find the largest physical id.
  int maxId = -1;
  kwsys_stl::string idc =
                       this->ExtractValueFromCpuInfoFile(buffer,"physical id");
  while(this->CurrentPositionInFile != buffer.npos)
    {
      int id = atoi(idc.c_str());
      if(id > maxId)
      {
       maxId=id;
      }
    idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id",
                                            this->CurrentPositionInFile+1);
    }
  // Physical ids returned by Linux don't distinguish cores.
  // We want to record the total number of cores in this->NumberOfPhysicalCPU
  // (checking only the first proc)
  kwsys_stl::string cores =
                        this->ExtractValueFromCpuInfoFile(buffer,"cpu cores");
  int numberOfCoresPerCPU=atoi(cores.c_str());
  this->NumberOfPhysicalCPU=static_cast<unsigned int>(
    numberOfCoresPerCPU*(maxId+1));

#else // __CYGWIN__
  // does not have "physical id" entries, neither "cpu cores"
  // this has to be fixed for hyper-threading.  
  kwsys_stl::string cpucount =
    this->ExtractValueFromCpuInfoFile(buffer,"cpu count");
  this->NumberOfPhysicalCPU=
    this->NumberOfLogicalCPU = atoi(cpucount.c_str());
#endif
  // gotta have one, and if this is 0 then we get a / by 0n 
  // beter to have a bad answer than a crash
  if(this->NumberOfPhysicalCPU <= 0)
    {
    this->NumberOfPhysicalCPU = 1;
    }
  // LogicalProcessorsPerPhysical>1 => hyperthreading.
  this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical=
      this->NumberOfLogicalCPU/this->NumberOfPhysicalCPU;

  // CPU speed (checking only the first proc
  kwsys_stl::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"cpu MHz");
  this->CPUSpeedInMHz = static_cast<float>(atof(CPUSpeed.c_str()));

  // Chip family
  this->ChipID.Family = atoi(this->ExtractValueFromCpuInfoFile(buffer,"cpu family").c_str());
 
  // Chip Vendor
  this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer,"vendor_id");
  this->FindManufacturer();
  
  // Chip Model
  this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer,"model").c_str());
  this->RetrieveClassicalCPUIdentity();

  // L1 Cache size
  kwsys_stl::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer,"cache size");
  pos = cacheSize.find(" KB");
  if(pos!=cacheSize.npos)
    {
    cacheSize = cacheSize.substr(0,pos);
    }
  this->Features.L1CacheSize = atoi(cacheSize.c_str());
  return 1;
}

/** Query for the memory status */
int SystemInformationImplementation::QueryMemory()
{
  this->TotalVirtualMemory = 0;
  this->TotalPhysicalMemory = 0;
  this->AvailableVirtualMemory = 0;
  this->AvailablePhysicalMemory = 0;
#ifdef __CYGWIN__
  return 0;
#elif _WIN32
#if  _MSC_VER < 1300
  MEMORYSTATUS ms;
  unsigned long tv, tp, av, ap;
  ms.dwLength = sizeof(ms);
  GlobalMemoryStatus(&ms);
  #define MEM_VAL(value) dw##value
#else
  MEMORYSTATUSEX ms;
  DWORDLONG tv, tp, av, ap;
  ms.dwLength = sizeof(ms);
  if (0 == GlobalMemoryStatusEx(&ms))
  {
    return 0;
  }
#define MEM_VAL(value) ull##value
#endif
  tv = ms.MEM_VAL(TotalVirtual);
  tp = ms.MEM_VAL(TotalPhys);
  av = ms.MEM_VAL(AvailVirtual);
  ap = ms.MEM_VAL(AvailPhys);
  this->TotalVirtualMemory = tv>>10>>10;
  this->TotalPhysicalMemory = tp>>10>>10;
  this->AvailableVirtualMemory = av>>10>>10;
  this->AvailablePhysicalMemory = ap>>10>>10;
  return 1;
#elif __linux
  unsigned long tv=0;
  unsigned long tp=0;
  unsigned long av=0;
  unsigned long ap=0;
  
  char buffer[1024]; // for reading lines
  
  int linuxMajor = 0;
  int linuxMinor = 0;
  
  // Find the Linux kernel version first
  struct utsname unameInfo;
  int errorFlag = uname(&unameInfo);
  if( errorFlag!=0 )
    {
    kwsys_ios::cout << "Problem calling uname(): " << strerror(errno) << kwsys_ios::endl;
    return 0;
    }
 
  if( unameInfo.release!=0 && strlen(unameInfo.release)>=3 )
    {
    // release looks like "2.6.3-15mdk-i686-up-4GB"
    char majorChar=unameInfo.release[0];
    char minorChar=unameInfo.release[2];
    
    if( isdigit(majorChar) )
      {
      linuxMajor=majorChar-'0';
      }
    
    if( isdigit(minorChar) )
      {
      linuxMinor=minorChar-'0';
      }
    }
  
  FILE *fd = fopen("/proc/meminfo", "r" );
  if ( !fd ) 
    {
    kwsys_ios::cout << "Problem opening /proc/meminfo" << kwsys_ios::endl;
    return 0;
    }
  
  if( linuxMajor>=3 || ( (linuxMajor>=2) && (linuxMinor>=6) ) )
    {
    // new /proc/meminfo format since kernel 2.6.x
    // Rigorously, this test should check from the developping version 2.5.x
    // that introduced the new format...

    enum { mMemTotal, mMemFree, mBuffers, mCached, mSwapTotal, mSwapFree };
    const char* format[6] =
      { "MemTotal:%lu kB", "MemFree:%lu kB", "Buffers:%lu kB",
        "Cached:%lu kB", "SwapTotal:%lu kB", "SwapFree:%lu kB" };
    bool have[6] = { false, false, false, false, false, false };
    unsigned long value[6];
    int count = 0;
    while(fgets(buffer, sizeof(buffer), fd))
      {
      for(int i=0; i < 6; ++i)
        {
        if(!have[i] && sscanf(buffer, format[i], &value[i]) == 1)
          {
          have[i] = true;
          ++count;
          }
        }
      }
    if(count == 6)
      {
      this->TotalPhysicalMemory = value[mMemTotal] / 1024;
      this->AvailablePhysicalMemory =
        (value[mMemFree] + value[mBuffers] + value[mCached]) / 1024;
      this->TotalVirtualMemory = value[mSwapTotal] / 1024;
      this->AvailableVirtualMemory = value[mSwapFree] / 1024;
      }
    else
      {
      kwsys_ios::cout << "Problem parsing /proc/meminfo" << kwsys_ios::endl;
      fclose(fd);
      return 0;
      }
    }
  else
    {
    // /proc/meminfo format for kernel older than 2.6.x
    
    unsigned long temp;
    unsigned long cachedMem;
    unsigned long buffersMem;
    char *r=fgets(buffer, sizeof(buffer), fd); // Skip "total: used:..."
    int status=0;
    if(r==buffer)
      {
      status+=fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n",
                     &tp, &temp, &ap, &temp, &buffersMem, &cachedMem);
      }
    if(status==6)
      {
      status+=fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av);
      }
    if(status==9)
      {
      this->TotalVirtualMemory = tv>>10>>10;
      this->TotalPhysicalMemory = tp>>10>>10;
      this->AvailableVirtualMemory = av>>10>>10;
      this->AvailablePhysicalMemory = (ap+buffersMem+cachedMem)>>10>>10;
      }
    else
      {
      kwsys_ios::cout << "Problem parsing /proc/meminfo" << kwsys_ios::endl;
      fclose(fd);
      return 0;
      }
    }
  fclose( fd );
  return 1;
#elif __hpux
  unsigned long tv=0;
  unsigned long tp=0;
  unsigned long av=0;
  unsigned long ap=0;
  struct pst_static pst;
  struct pst_dynamic pdy;
     
  unsigned long ps = 0;
  if (pstat_getstatic(&pst, sizeof(pst), (size_t) 1, 0) != -1)
    {
    ps = pst.page_size;
    tp =  pst.physical_memory *ps;
    tv = (pst.physical_memory + pst.pst_maxmem) * ps;
    if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t) 1, 0) != -1)
      {
      ap = tp - pdy.psd_rm * ps;
      av = tv - pdy.psd_vm;
      this->TotalVirtualMemory = tv>>10>>10;
      this->TotalPhysicalMemory = tp>>10>>10;
      this->AvailableVirtualMemory = av>>10>>10;
      this->AvailablePhysicalMemory = ap>>10>>10;
      return 1;
      }
    }
  return 0;
#else
  return 0;
#endif


}

/** */
size_t SystemInformationImplementation::GetTotalVirtualMemory() 
{ 
  return this->TotalVirtualMemory; 
}

/** */
size_t SystemInformationImplementation::GetAvailableVirtualMemory() 
{ 
  return this->AvailableVirtualMemory; 
}

size_t SystemInformationImplementation::GetTotalPhysicalMemory() 
{ 
  return this->TotalPhysicalMemory; 
}

/** */
size_t SystemInformationImplementation::GetAvailablePhysicalMemory() 
{ 
  return this->AvailablePhysicalMemory; 
}

/** Get Cycle differences */
LongLong SystemInformationImplementation::GetCyclesDifference (DELAY_FUNC DelayFunction,
                                                  unsigned int uiParameter)
{
#if USE_ASM_INSTRUCTIONS

  unsigned int edx1, eax1;
  unsigned int edx2, eax2;

  // Calculate the frequency of the CPU instructions.
  __try {
    _asm {
      push uiParameter ; push parameter param
      mov ebx, DelayFunction ; store func in ebx

      RDTSC_INSTRUCTION

      mov esi, eax ; esi = eax
      mov edi, edx ; edi = edx

      call ebx ; call the delay functions

      RDTSC_INSTRUCTION

      pop ebx

      mov edx2, edx      ; edx2 = edx
      mov eax2, eax      ; eax2 = eax

      mov edx1, edi      ; edx2 = edi
      mov eax1, esi      ; eax2 = esi
    }
  }
  __except(1) 
    {
    return -1;
    }

  return ((((__int64) edx2 << 32) + eax2) - (((__int64) edx1 << 32) + eax1));

#else
  (void)DelayFunction;
  (void)uiParameter;
  return -1;
#endif
}


/** Compute the delay overhead */
void SystemInformationImplementation::DelayOverhead(unsigned int uiMS)
{
#if _WIN32
  LARGE_INTEGER Frequency, StartCounter, EndCounter;
  __int64 x;

  // Get the frequency of the high performance counter.
  if(!QueryPerformanceFrequency (&Frequency)) 
    {
    return;
    }
  x = Frequency.QuadPart / 1000 * uiMS;

  // Get the starting position of the counter.
  QueryPerformanceCounter (&StartCounter);
  
  do {
    // Get the ending position of the counter.  
    QueryPerformanceCounter (&EndCounter);
  } while (EndCounter.QuadPart - StartCounter.QuadPart == x);
#endif
  (void)uiMS;
}

/** Return the number of logical CPU per physical CPUs Works only for windows */
unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void)
{
  unsigned int Regebx = 0;

#if USE_ASM_INSTRUCTIONS
  if (!this->IsHyperThreadingSupported()) 
    {
    return static_cast<unsigned char>(1);  // HT not supported
    }
  __asm
    {
    mov eax, 1
    cpuid
    mov Regebx, ebx
    }
#endif

#ifdef __APPLE__
    size_t len = 4;
    int cores_per_package = 0;
    int err = sysctlbyname("machdep.cpu.cores_per_package", &cores_per_package, &len, NULL, 0);
    if (err != 0)
    {
      return 1; // That name was not found, default to 1
    }
    else
    {
      return static_cast<unsigned char>(cores_per_package);
    }
#endif

  return static_cast<unsigned char> ((Regebx & NUM_LOGICAL_BITS) >> 16);
}


/** Works only for windows */
unsigned int SystemInformationImplementation::IsHyperThreadingSupported()
{
#if USE_ASM_INSTRUCTIONS
  unsigned int Regedx    = 0,
             Regeax      = 0,
             VendorId[3] = {0, 0, 0};
  __try    // Verify cpuid instruction is supported
    {
      __asm
      {
        xor eax, eax          // call cpuid with eax = 0
            cpuid                 // Get vendor id string
        mov VendorId, ebx
        mov VendorId + 4, edx
        mov VendorId + 8, ecx
        
        mov eax, 1            // call cpuid with eax = 1
        cpuid
        mov Regeax, eax      // eax contains family processor type
        mov Regedx, edx      // edx has info about the availability of hyper-Threading
      }
    }
  __except (EXCEPTION_EXECUTE_HANDLER)
    {
    return(0);                   // cpuid is unavailable
    }

  if (((Regeax & FAMILY_ID) == PENTIUM4_ID) || (Regeax & EXT_FAMILY_ID))
    {
    if (VendorId[0] == 'uneG')
      {
      if (VendorId[1] == 'Ieni')
        {
        if (VendorId[2] == 'letn')
          {
          return(Regedx & HT_BIT);    // Genuine Intel with hyper-Threading technology
          }
        }
      }
    }
#endif

  return 0;    // Not genuine Intel processor
}


/** Return the APIC Id. Works only for windows. */
unsigned char SystemInformationImplementation::GetAPICId()
{
  unsigned int Regebx = 0;

#if USE_ASM_INSTRUCTIONS
  if (!this->IsHyperThreadingSupported()) 
    {
    return static_cast<unsigned char>(-1);  // HT not supported
    } // Logical processor = 1
  __asm
    {
    mov eax, 1
    cpuid
    mov Regebx, ebx
    }
#endif

  return static_cast<unsigned char>((Regebx & INITIAL_APIC_ID_BITS) >> 24);
}


/** Count the number of CPUs. Works only on windows. */
int SystemInformationImplementation::CPUCount()
{
#if _WIN32
  unsigned char StatusFlag  = 0;
  SYSTEM_INFO info;

  this->NumberOfPhysicalCPU = 0;
  this->NumberOfLogicalCPU = 0;
  info.dwNumberOfProcessors = 0;
  GetSystemInfo (&info);

  // Number of physical processors in a non-Intel system
  // or in a 32-bit Intel system with Hyper-Threading technology disabled
  this->NumberOfPhysicalCPU = (unsigned char) info.dwNumberOfProcessors;  

  if (this->IsHyperThreadingSupported())
    {
    unsigned char HT_Enabled = 0;
    this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU();
    if (this->NumberOfLogicalCPU >= 1)    // >1 Doesn't mean HT is enabled in the BIOS
      {
      HANDLE hCurrentProcessHandle;
#ifndef _WIN64
# define DWORD_PTR DWORD
#endif
      DWORD_PTR  dwProcessAffinity;
      DWORD_PTR  dwSystemAffinity;
      DWORD  dwAffinityMask;

      // Calculate the appropriate  shifts and mask based on the 
      // number of logical processors.
      unsigned int i = 1;
      unsigned char PHY_ID_MASK  = 0xFF;
      //unsigned char PHY_ID_SHIFT = 0;

      while (i < this->NumberOfLogicalCPU)
        {
        i *= 2;
         PHY_ID_MASK  <<= 1;
         // PHY_ID_SHIFT++;
        }
      
      hCurrentProcessHandle = GetCurrentProcess();
      GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity,
                                                  &dwSystemAffinity);

      // Check if available process affinity mask is equal to the
      // available system affinity mask
      if (dwProcessAffinity != dwSystemAffinity)
        {
        StatusFlag = HT_CANNOT_DETECT;
        this->NumberOfPhysicalCPU = (unsigned char)-1;
        return StatusFlag;
        }

      dwAffinityMask = 1;
      while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity)
        {
        // Check if this CPU is available
        if (dwAffinityMask & dwProcessAffinity)
          {
          if (SetProcessAffinityMask(hCurrentProcessHandle,
                                     dwAffinityMask))
            {
            unsigned char APIC_ID, LOG_ID;
            Sleep(0); // Give OS time to switch CPU

            APIC_ID = GetAPICId();
            LOG_ID  = APIC_ID & ~PHY_ID_MASK;
 
            if (LOG_ID != 0) 
              {
              HT_Enabled = 1;
              }
            }
          }
        dwAffinityMask = dwAffinityMask << 1;
        }
      // Reset the processor affinity
      SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity);
            
      if (this->NumberOfLogicalCPU == 1)  // Normal P4 : HT is disabled in hardware
        {
        StatusFlag = HT_DISABLED;
        }
      else
        {
        if (HT_Enabled)
          {
          // Total physical processors in a Hyper-Threading enabled system.
          this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU);
          StatusFlag = HT_ENABLED;
          }
        else 
          {
          StatusFlag = HT_SUPPORTED_NOT_ENABLED;
          }
        }
      }
    }
  else
    {
    // Processors do not have Hyper-Threading technology
    StatusFlag = HT_NOT_CAPABLE;
    this->NumberOfLogicalCPU = 1;
    }
  return StatusFlag;
#else
  return 0;
#endif
}


/** Return the number of logical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU()
{
  return this->NumberOfLogicalCPU;
}


/** Return the number of physical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU()
{
  return this->NumberOfPhysicalCPU;
}


/** For Mac use sysctlbyname calls to find system info */
bool SystemInformationImplementation::ParseSysCtl()
{
#if defined(__APPLE__)
  int err = 0;
  uint64_t value = 0;
  size_t len = sizeof(value);
  sysctlbyname("hw.memsize", &value, &len, NULL, 0);
  this->TotalPhysicalMemory = static_cast< size_t >( value/1048576 );

  // Parse values for Mac
  this->AvailablePhysicalMemory = 0;
  vm_statistics_data_t  vmstat;
  mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
  if ( host_statistics(mach_host_self(), HOST_VM_INFO, 
                       (host_info_t) &vmstat, &count) == KERN_SUCCESS )
    {
    err = sysctlbyname("hw.pagesize", &value, &len, NULL, 0);
    int64_t available_memory = vmstat.free_count * value;
    this->AvailablePhysicalMemory = static_cast< size_t >( available_memory / 1048576 );
    }

#ifdef VM_SWAPUSAGE
  // Virtual memory.
  int mib[2] = { CTL_VM, VM_SWAPUSAGE };
  size_t miblen = sizeof(mib) / sizeof(mib[0]);
  struct xsw_usage swap;
  len = sizeof(struct xsw_usage);
  err = sysctl(mib, miblen, &swap, &len, NULL, 0);
  if (err == 0)
    {
    this->AvailableVirtualMemory = static_cast< size_t >( swap.xsu_avail/1048576 );
    this->TotalVirtualMemory = static_cast< size_t >( swap.xsu_total/1048576 );
    }
#else
   this->AvailableVirtualMemory = 0;
   this->TotalVirtualMemory = 0;
#endif

// CPU Info
  len = sizeof(this->NumberOfPhysicalCPU);
  sysctlbyname("hw.physicalcpu", &this->NumberOfPhysicalCPU, &len, NULL, 0);
  sysctlbyname("hw.logicalcpu", &this->NumberOfLogicalCPU, &len, NULL, 0);
  this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = 
    this->LogicalCPUPerPhysicalCPU();

  len = sizeof(value);
  sysctlbyname("hw.cpufrequency", &value, &len, NULL, 0);
  this->CPUSpeedInMHz = static_cast< float >( value )/ 1000000;


  // Chip family
  len = sizeof(this->ChipID.Family);
  //Seems only the intel chips will have this name so if this fails it is
  //probably a PPC machine
  err = sysctlbyname("machdep.cpu.family",
                     &this->ChipID.Family, &len, NULL, 0);
  if (err != 0) // Go back to names we know but are less descriptive
    {
    this->ChipID.Family = 0;
    char retBuf[32];
    ::memset(retBuf, 0, 32);
    len = 32;
    err = sysctlbyname("hw.machine", &retBuf, &len, NULL, 0); 
    kwsys_stl::string machineBuf(retBuf);
    if (machineBuf.find_first_of("Power") != kwsys_stl::string::npos)
      {
      this->ChipID.Vendor = "IBM";
      len = 4;
      err = sysctlbyname("hw.cputype", &this->ChipID.Family, &len, NULL, 0);
      err = sysctlbyname("hw.cpusubtype", &this->ChipID.Model, &len, NULL, 0);
      this->FindManufacturer();
      }
    }
  else  // Should be an Intel Chip.
    {
    len = sizeof(this->ChipID.Family);
    err = 
      sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0);
    
    char retBuf[128];
    ::memset(retBuf, 0, 128);
    len = 128;
    err = sysctlbyname("machdep.cpu.vendor", retBuf, &len, NULL, 0);
    // Chip Vendor
    this->ChipID.Vendor = retBuf;
    this->FindManufacturer();
    
    ::memset(retBuf, 0, 128);
    err = 
      sysctlbyname("machdep.cpu.brand_string", 
                   retBuf, &len, NULL, 0);
    this->ChipID.ProcessorName = retBuf;

    // Chip Model
    len = sizeof(value);
    err = sysctlbyname("machdep.cpu.model", &value, &len, NULL, 0);
    this->ChipID.Model = static_cast< int >( value );
    }
  // Cache size
  len = sizeof(value);
  err = sysctlbyname("hw.l1icachesize", &value, &len, NULL, 0);
  this->Features.L1CacheSize = static_cast< int >( value );
  err = sysctlbyname("hw.l2cachesize", &value, &len, NULL, 0);
  this->Features.L2CacheSize = static_cast< int >( value );
  
  return true;
#else
  return false;
#endif
}


/** Extract a value from sysctl command */
kwsys_stl::string SystemInformationImplementation::ExtractValueFromSysCtl(const char* word)
{
  size_t pos = this->SysCtlBuffer.find(word);
  if(pos != this->SysCtlBuffer.npos)
    {
    pos = this->SysCtlBuffer.find(": ",pos);
    size_t pos2 = this->SysCtlBuffer.find("\n",pos);
    if(pos!=this->SysCtlBuffer.npos && pos2!=this->SysCtlBuffer.npos)
      {
      return this->SysCtlBuffer.substr(pos+2,pos2-pos-2);
      }
    }
  return "";
}


/** Run a given process */
kwsys_stl::string SystemInformationImplementation::RunProcess(kwsys_stl::vector<const char*> args)
{ 
  kwsys_stl::string buffer = "";

  // Run the application
  kwsysProcess* gp = kwsysProcess_New();
  kwsysProcess_SetCommand(gp, &*args.begin());
  kwsysProcess_SetOption(gp,kwsysProcess_Option_HideWindow,1);

  kwsysProcess_Execute(gp);

  char* data = NULL;
  int length;
  double timeout = 255;

  while(kwsysProcess_WaitForData(gp,&data,&length,&timeout)) // wait for 1s
    {
    for(int i=0;i<length;i++)
      {
      buffer += data[i];
      }
    }
  kwsysProcess_WaitForExit(gp, 0);

  int result = 0;
  switch(kwsysProcess_GetState(gp))
    {
    case kwsysProcess_State_Exited:
      {
      result = kwsysProcess_GetExitValue(gp);
      } break;
    case kwsysProcess_State_Error:
      {
      kwsys_ios::cerr << "Error: Could not run " << args[0] << ":\n";
      kwsys_ios::cerr << kwsysProcess_GetErrorString(gp) << "\n";
      } break;
    case kwsysProcess_State_Exception:
      {
      kwsys_ios::cerr << "Error: " << args[0]
                << " terminated with an exception: "
                << kwsysProcess_GetExceptionString(gp) << "\n";
      } break;
    case kwsysProcess_State_Starting:
    case kwsysProcess_State_Executing:
    case kwsysProcess_State_Expired:
    case kwsysProcess_State_Killed:
      {
      // Should not get here.
      kwsys_ios::cerr << "Unexpected ending state after running " << args[0]
                << kwsys_ios::endl;
      } break;
    }
  kwsysProcess_Delete(gp);
  if(result)
    {
    kwsys_ios::cerr << "Error " << args[0] << " returned :" << result << "\n";
    }
  return buffer;
}


kwsys_stl::string SystemInformationImplementation::ParseValueFromKStat(const char* arguments)
{
  kwsys_stl::vector<const char*> args;
  args.clear();
  args.push_back("kstat");
  args.push_back("-p");
  
  kwsys_stl::string command = arguments;
  size_t start = command.npos;
  size_t pos = command.find(' ',0);
  while(pos!=command.npos)
    {
    bool inQuotes = false;
    // Check if we are between quotes
    size_t b0 = command.find('"',0);
    size_t b1 = command.find('"',b0+1);
    while(b0 != command.npos && b1 != command.npos && b1>b0)
      {
      if(pos>b0 && pos<b1)
        {
        inQuotes = true;
        break;
        }
      b0 = command.find('"',b1+1);
      b1 = command.find('"',b0+1);
      }
    
    if(!inQuotes)
      {
      kwsys_stl::string arg = command.substr(start+1,pos-start-1);

      // Remove the quotes if any
      size_t quotes = arg.find('"');
      while(quotes != arg.npos)
        {
        arg.erase(quotes,1);
        quotes = arg.find('"');
        }
      args.push_back(arg.c_str());  
      start = pos;
      }
    pos = command.find(' ',pos+1);
    }
  kwsys_stl::string lastArg = command.substr(start+1,command.size()-start-1);
  args.push_back(lastArg.c_str());

  args.push_back(0);

  kwsys_stl::string buffer = this->RunProcess(args);

  kwsys_stl::string value = "";
  for(size_t i=buffer.size()-1;i>0;i--)
    {
    if(buffer[i] == ' ' || buffer[i] == '\t')
      {
      break;
      }
    if(buffer[i] != '\n' && buffer[i] != '\r')
      {
      kwsys_stl::string val = value;
      value = buffer[i];
      value += val;
      }
    }
  return value;
}


/** Querying for system information from Solaris */
bool SystemInformationImplementation::QuerySolarisInfo()
{
  // Parse values
  this->NumberOfPhysicalCPU = static_cast<unsigned int>(
    atoi(this->ParseValueFromKStat("-n syste_misc -s ncpus").c_str()));
  this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
  
  if(this->NumberOfPhysicalCPU!=0)
    {
    this->NumberOfLogicalCPU /= this->NumberOfPhysicalCPU;
    }

  this->CPUSpeedInMHz = static_cast<float>(atoi(this->ParseValueFromKStat("-s clock_MHz").c_str()));

  // Chip family
  this->ChipID.Family = 0; 
 
  // Chip Vendor
  this->ChipID.Vendor = "Sun";
  this->FindManufacturer();
  
  // Chip Model
  this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type");
  this->ChipID.Model = 0;

  // Cache size
  this->Features.L1CacheSize = 0; 
  this->Features.L2CacheSize = 0;  

  char* tail;
  unsigned long totalMemory =
       strtoul(this->ParseValueFromKStat("-s physmem").c_str(),&tail,0);
  this->TotalPhysicalMemory = totalMemory/1024;
  this->TotalPhysicalMemory *= 8192;
  this->TotalPhysicalMemory /= 1024;

  // Undefined values (for now at least)
  this->TotalVirtualMemory = 0;
  this->AvailablePhysicalMemory = 0;
  this->AvailableVirtualMemory = 0;

  return true;
}


/** Querying for system information from Haiku OS */
bool SystemInformationImplementation::QueryHaikuInfo()
{
#if defined(__HAIKU__)

  system_info info;
  get_system_info(&info);
  
  this->NumberOfPhysicalCPU = info.cpu_count;
  this->CPUSpeedInMHz = info.cpu_clock_speed / 1000000.0F;

  // Physical Memory
  this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024) ;
  this->AvailablePhysicalMemory = this->TotalPhysicalMemory - 
    ((info.used_pages * B_PAGE_SIZE) / (1024 * 1024));

  
  // NOTE: get_system_info_etc is currently a private call so just set to 0
  // until it becomes public
  this->TotalVirtualMemory = 0;
  this->AvailableVirtualMemory = 0;

  // Retrieve cpuid_info union for cpu 0
  cpuid_info cpu_info;
  get_cpuid(&cpu_info, 0, 0);

  // Chip Vendor
  // Use a temporary buffer so that we can add NULL termination to the string
  char vbuf[13];
  strncpy(vbuf, cpu_info.eax_0.vendor_id, 12);
  vbuf[12] = '\0';
  this->ChipID.Vendor = vbuf;

  this->FindManufacturer();

  // Retrieve cpuid_info union for cpu 0 this time using a register value of 1
  get_cpuid(&cpu_info, 1, 0);

  this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus;

  // Chip type
  this->ChipID.Type = cpu_info.eax_1.type;

  // Chip family
  this->ChipID.Family = cpu_info.eax_1.family; 
  
  // Chip Model
  this->ChipID.Model = cpu_info.eax_1.model;

  // Chip Revision
  this->ChipID.Revision = cpu_info.eax_1.stepping;

  // Chip Extended Family
  this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family;

  // Chip Extended Model
  this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model;

  // Get ChipID.ProcessorName from other information already gathered
  this->RetrieveClassicalCPUIdentity();

  // Cache size
  this->Features.L1CacheSize = 0;
  this->Features.L2CacheSize = 0;

  return true;

#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryQNXMemory()
{
#if defined(__QNX__)
  kwsys_stl::string buffer;
  kwsys_stl::vector<const char*> args;
  args.clear();

  args.push_back("showmem");
  args.push_back("-S");
  args.push_back(0);
  buffer = this->RunProcess(args);
  args.clear();

  size_t pos = buffer.find("System RAM:");
  if (pos == buffer.npos)
    return false;
  pos = buffer.find(":", pos);
  size_t pos2 = buffer.find("M (", pos);
  if (pos2 == buffer.npos)
    return false;

  pos++;
  while (buffer[pos] == ' ')
    pos++;

  this->TotalPhysicalMemory = atoi(buffer.substr(pos, pos2 - pos).c_str());
  return true;
#endif
  return false;
}

bool SystemInformationImplementation::QueryQNXProcessor()
{
#if defined(__QNX__)
  // the output on my QNX 6.4.1 looks like this:
  // Processor1: 686 Pentium II Stepping 3 2175MHz FPU
  kwsys_stl::string buffer;
  kwsys_stl::vector<const char*> args;
  args.clear();

  args.push_back("pidin");
  args.push_back("info");
  args.push_back(0);
  buffer = this->RunProcess(args);
  args.clear();

  size_t pos = buffer.find("Processor1:");
  if (pos == buffer.npos)
    return false;

  size_t pos2 = buffer.find("MHz", pos);
  if (pos2 == buffer.npos)
    return false;

  size_t pos3 = pos2;
  while (buffer[pos3] != ' ')
    --pos3;

  this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str());

  pos2 = buffer.find(" Stepping", pos);
  if (pos2 != buffer.npos)
    {
    pos2 = buffer.find(" ", pos2 + 1);
    if (pos2 != buffer.npos && pos2 < pos3)
      {
      this->ChipID.Revision = atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str());
      }
    }

  this->NumberOfPhysicalCPU = 0;
  do
    {
    pos = buffer.find("\nProcessor", pos + 1);
    ++this->NumberOfPhysicalCPU;
    } while (pos != buffer.npos);
  this->NumberOfLogicalCPU = 1;

  return true;
#else
  return false;
#endif
}

/** Query the operating system information */
bool SystemInformationImplementation::QueryOSInformation()
{
#if _WIN32

  this->OSName = "Windows";

  OSVERSIONINFOEX osvi;
  BOOL bIsWindows64Bit;
  BOOL bOsVersionInfoEx;
  char operatingSystem[256];

  // Try calling GetVersionEx using the OSVERSIONINFOEX structure.
  ZeroMemory (&osvi, sizeof (OSVERSIONINFOEX));
  osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOEX);
  bOsVersionInfoEx = GetVersionEx ((OSVERSIONINFO *) &osvi);
  if (!bOsVersionInfoEx) 
    {
    osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO);
    if (!GetVersionEx ((OSVERSIONINFO *) &osvi)) 
      {
      return false;
      }
    }

  switch (osvi.dwPlatformId) 
    {
    case VER_PLATFORM_WIN32_NT:
      // Test for the product.
      if (osvi.dwMajorVersion <= 4)
        {
        this->OSRelease = "NT";
        }
      if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0)
        {
        this->OSRelease = "2000";
        }
      if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
        {
        this->OSRelease = "XP";
        }
      // XP Professional x64
      if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2)
        {
        this->OSRelease = "XP";
        }
#ifdef VER_NT_WORKSTATION
      // Test for product type.
      if (bOsVersionInfoEx)
        {
        if (osvi.wProductType == VER_NT_WORKSTATION)
          {
          if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0)
            {
            this->OSRelease = "Vista";
            }
          if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease = "7";
            }
// VER_SUITE_PERSONAL may not be defined
#ifdef VER_SUITE_PERSONAL
          else
            {
            if (osvi.wSuiteMask & VER_SUITE_PERSONAL)
              {
              this->OSRelease += " Personal";
              }
            else 
              {
              this->OSRelease += " Professional";
              }
            }
#endif
          } 
        else if (osvi.wProductType == VER_NT_SERVER)
          {
          // Check for .NET Server instead of Windows XP.
          if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) 
            {
            this->OSRelease = ".NET";
            }

          // Continue with the type detection.
          if (osvi.wSuiteMask & VER_SUITE_DATACENTER) 
            {
            this->OSRelease += " DataCenter Server";
            }
          else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE) 
            {
            this->OSRelease += " Advanced Server";
            }
          else 
            {
            this->OSRelease += " Server";
            }
          }

        sprintf (operatingSystem, "%s (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
        this->OSVersion = operatingSystem; 
        }
      else 
#endif        // VER_NT_WORKSTATION
        {
        HKEY hKey;
        char szProductType[80];
        DWORD dwBufLen;

        // Query the registry to retrieve information.
        RegOpenKeyEx (HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey);
        RegQueryValueEx (hKey, "ProductType", NULL, NULL, (LPBYTE) szProductType, &dwBufLen);
        RegCloseKey (hKey);

        if (lstrcmpi ("WINNT", szProductType) == 0)
          {
          this->OSRelease += " Professional";
          }
        if (lstrcmpi ("LANMANNT", szProductType) == 0)
          {
          // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
          if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease += " Standard Server";
            }
          else 
            {
            this->OSRelease += " Server";
            }
          }
        if (lstrcmpi ("SERVERNT", szProductType) == 0)
          {
          // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
          if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease += " Enterprise Server";
            }
          else 
            {
            this->OSRelease += " Advanced Server";
            }
          }
         }

      // Display version, service pack (if any), and build number.
      if (osvi.dwMajorVersion <= 4) 
        {
        // NB: NT 4.0 and earlier.
        sprintf (operatingSystem, "version %ld.%ld %s (Build %ld)",
                 osvi.dwMajorVersion,
                 osvi.dwMinorVersion,
                 osvi.szCSDVersion,
                 osvi.dwBuildNumber & 0xFFFF);
        this->OSVersion = operatingSystem;
        } 
      else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) 
        {
        // Windows XP and .NET server.
        typedef BOOL (CALLBACK* LPFNPROC) (HANDLE, BOOL *);
        HINSTANCE hKernelDLL; 
        LPFNPROC DLLProc;
        
        // Load the Kernel32 DLL.
        hKernelDLL = LoadLibrary ("kernel32");
        if (hKernelDLL != NULL)  { 
          // Only XP and .NET Server support IsWOW64Process so... Load dynamically!
          DLLProc = (LPFNPROC) GetProcAddress (hKernelDLL, "IsWow64Process"); 
         
          // If the function address is valid, call the function.
          if (DLLProc != NULL) (DLLProc) (GetCurrentProcess (), &bIsWindows64Bit);
          else bIsWindows64Bit = false;
         
          // Free the DLL module.
          FreeLibrary (hKernelDLL); 
          } 
        } 
      else 
        { 
        // Windows 2000 and everything else.
        sprintf (operatingSystem,"%s (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
        this->OSVersion = operatingSystem;
        }
      break;

    case VER_PLATFORM_WIN32_WINDOWS:
      // Test for the product.
      if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0) 
        {
        this->OSRelease = "95";
        if(osvi.szCSDVersion[1] == 'C') 
          {
          this->OSRelease += "OSR 2.5";
          }
        else if(osvi.szCSDVersion[1] == 'B') 
          {
          this->OSRelease += "OSR 2";
          }
      } 

      if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10) 
        {
        this->OSRelease = "98";
        if (osvi.szCSDVersion[1] == 'A' ) 
          {
          this->OSRelease += "SE";
          }
        } 

      if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90) 
        {
        this->OSRelease = "Me";
        } 
      break;

    case VER_PLATFORM_WIN32s:
      this->OSRelease = "Win32s";
      break;

    default:
      this->OSRelease = "Unknown";
      break;
  }

  // Get the hostname
  WORD wVersionRequested;
  WSADATA wsaData;
  char name[255];
  wVersionRequested = MAKEWORD(2,0);

  if ( WSAStartup( wVersionRequested, &wsaData ) == 0 )
    {
    gethostname(name,sizeof(name));