blob: 3924f67c6cce4313d19e871887b0983ba4417e47 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
#include <iostream>
static __global__ void file1_kernel(int in, int* out)
{
*out = in * in;
}
int choose_cuda_device()
{
int nDevices = 0;
cudaError_t err = cudaGetDeviceCount(&nDevices);
if (err != cudaSuccess) {
std::cerr << "Failed to retrieve the number of CUDA enabled devices"
<< std::endl;
return 1;
}
for (int i = 0; i < nDevices; ++i) {
cudaDeviceProp prop;
cudaError_t err = cudaGetDeviceProperties(&prop, i);
if (err != cudaSuccess) {
std::cerr << "Could not retrieve properties from CUDA device " << i
<< std::endl;
return 1;
}
std::cout << "prop.major: " << prop.major << std::endl;
if (prop.major >= 3) {
err = cudaSetDevice(i);
if (err != cudaSuccess) {
std::cout << "Could not select CUDA device " << i << std::endl;
} else {
return 0;
}
}
}
std::cout << "Could not find a CUDA enabled card supporting compute >=3.0"
<< std::endl;
return 1;
}
int file1_launch_kernel()
{
int ret = choose_cuda_device();
if (ret) {
return 0;
}
int input = 4;
int* output;
cudaError_t err = cudaMallocManaged(&output, sizeof(int));
cudaDeviceSynchronize();
if (err != cudaSuccess) {
return 1;
}
file1_kernel<<<1, 1>>>(input, output);
cudaDeviceSynchronize();
err = cudaGetLastError();
std::cout << err << " " << cudaGetErrorString(err) << std::endl;
if (err == cudaSuccess) {
// This kernel launch should failed as the device linking never occured
std::cerr << "file1_kernel: kernel launch should have failed" << std::endl;
return 1;
}
return 0;
}
|