summaryrefslogtreecommitdiffstats
path: root/Utilities/cmliblzma/liblzma/common/index.c
blob: 26e4e519bc800627089297a73ae6df0d9921f901 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
///////////////////////////////////////////////////////////////////////////////
//
/// \file       index.c
/// \brief      Handling of .xz Indexes and some other Stream information
//
//  Author:     Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "index.h"
#include "stream_flags_common.h"


/// \brief      How many Records to allocate at once
///
/// This should be big enough to avoid making lots of tiny allocations
/// but small enough to avoid too much unused memory at once.
#define INDEX_GROUP_SIZE 512


/// \brief      How many Records can be allocated at once at maximum
#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))


/// \brief      Base structure for index_stream and index_group structures
typedef struct index_tree_node_s index_tree_node;
struct index_tree_node_s {
	/// Uncompressed start offset of this Stream (relative to the
	/// beginning of the file) or Block (relative to the beginning
	/// of the Stream)
	lzma_vli uncompressed_base;

	/// Compressed start offset of this Stream or Block
	lzma_vli compressed_base;

	index_tree_node *parent;
	index_tree_node *left;
	index_tree_node *right;
};


/// \brief      AVL tree to hold index_stream or index_group structures
typedef struct {
	/// Root node
	index_tree_node *root;

	/// Leftmost node. Since the tree will be filled sequentially,
	/// this won't change after the first node has been added to
	/// the tree.
	index_tree_node *leftmost;

	/// The rightmost node in the tree. Since the tree is filled
	/// sequentially, this is always the node where to add the new data.
	index_tree_node *rightmost;

	/// Number of nodes in the tree
	uint32_t count;

} index_tree;


typedef struct {
	lzma_vli uncompressed_sum;
	lzma_vli unpadded_sum;
} index_record;


typedef struct {
	/// Every Record group is part of index_stream.groups tree.
	index_tree_node node;

	/// Number of Blocks in this Stream before this group.
	lzma_vli number_base;

	/// Number of Records that can be put in records[].
	size_t allocated;

	/// Index of the last Record in use.
	size_t last;

	/// The sizes in this array are stored as cumulative sums relative
	/// to the beginning of the Stream. This makes it possible to
	/// use binary search in lzma_index_locate().
	///
	/// Note that the cumulative summing is done specially for
	/// unpadded_sum: The previous value is rounded up to the next
	/// multiple of four before adding the Unpadded Size of the new
	/// Block. The total encoded size of the Blocks in the Stream
	/// is records[last].unpadded_sum in the last Record group of
	/// the Stream.
	///
	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
	/// The total encoded size of these Blocks is 184.
	///
	/// This is a flexible array, because it makes easy to optimize
	/// memory usage in case someone concatenates many Streams that
	/// have only one or few Blocks.
	index_record records[];

} index_group;


typedef struct {
	/// Every index_stream is a node in the tree of Sreams.
	index_tree_node node;

	/// Number of this Stream (first one is 1)
	uint32_t number;

	/// Total number of Blocks before this Stream
	lzma_vli block_number_base;

	/// Record groups of this Stream are stored in a tree.
	/// It's a T-tree with AVL-tree balancing. There are
	/// INDEX_GROUP_SIZE Records per node by default.
	/// This keeps the number of memory allocations reasonable
	/// and finding a Record is fast.
	index_tree groups;

	/// Number of Records in this Stream
	lzma_vli record_count;

	/// Size of the List of Records field in this Stream. This is used
	/// together with record_count to calculate the size of the Index
	/// field and thus the total size of the Stream.
	lzma_vli index_list_size;

	/// Stream Flags of this Stream. This is meaningful only if
	/// the Stream Flags have been told us with lzma_index_stream_flags().
	/// Initially stream_flags.version is set to UINT32_MAX to indicate
	/// that the Stream Flags are unknown.
	lzma_stream_flags stream_flags;

	/// Amount of Stream Padding after this Stream. This defaults to
	/// zero and can be set with lzma_index_stream_padding().
	lzma_vli stream_padding;

} index_stream;


struct lzma_index_s {
	/// AVL-tree containing the Stream(s). Often there is just one
	/// Stream, but using a tree keeps lookups fast even when there
	/// are many concatenated Streams.
	index_tree streams;

	/// Uncompressed size of all the Blocks in the Stream(s)
	lzma_vli uncompressed_size;

	/// Total size of all the Blocks in the Stream(s)
	lzma_vli total_size;

	/// Total number of Records in all Streams in this lzma_index
	lzma_vli record_count;

	/// Size of the List of Records field if all the Streams in this
	/// lzma_index were packed into a single Stream (makes it simpler to
	/// take many .xz files and combine them into a single Stream).
	///
	/// This value together with record_count is needed to calculate
	/// Backward Size that is stored into Stream Footer.
	lzma_vli index_list_size;

	/// How many Records to allocate at once in lzma_index_append().
	/// This defaults to INDEX_GROUP_SIZE but can be overriden with
	/// lzma_index_prealloc().
	size_t prealloc;

	/// Bitmask indicating what integrity check types have been used
	/// as set by lzma_index_stream_flags(). The bit of the last Stream
	/// is not included here, since it is possible to change it by
	/// calling lzma_index_stream_flags() again.
	uint32_t checks;
};


static void
index_tree_init(index_tree *tree)
{
	tree->root = NULL;
	tree->leftmost = NULL;
	tree->rightmost = NULL;
	tree->count = 0;
	return;
}


/// Helper for index_tree_end()
static void
index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
		void (*free_func)(void *node, const lzma_allocator *allocator))
{
	// The tree won't ever be very huge, so recursion should be fine.
	// 20 levels in the tree is likely quite a lot already in practice.
	if (node->left != NULL)
		index_tree_node_end(node->left, allocator, free_func);

	if (node->right != NULL)
		index_tree_node_end(node->right, allocator, free_func);

	free_func(node, allocator);
	return;
}


/// Free the memory allocated for a tree. Each node is freed using the
/// given free_func which is either &lzma_free or &index_stream_end.
/// The latter is used to free the Record groups from each index_stream
/// before freeing the index_stream itself.
static void
index_tree_end(index_tree *tree, const lzma_allocator *allocator,
		void (*free_func)(void *node, const lzma_allocator *allocator))
{
	assert(free_func != NULL);

	if (tree->root != NULL)
		index_tree_node_end(tree->root, allocator, free_func);

	return;
}


/// Add a new node to the tree. node->uncompressed_base and
/// node->compressed_base must have been set by the caller already.
static void
index_tree_append(index_tree *tree, index_tree_node *node)
{
	node->parent = tree->rightmost;
	node->left = NULL;
	node->right = NULL;

	++tree->count;

	// Handle the special case of adding the first node.
	if (tree->root == NULL) {
		tree->root = node;
		tree->leftmost = node;
		tree->rightmost = node;
		return;
	}

	// The tree is always filled sequentially.
	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
	assert(tree->rightmost->compressed_base < node->compressed_base);

	// Add the new node after the rightmost node. It's the correct
	// place due to the reason above.
	tree->rightmost->right = node;
	tree->rightmost = node;

	// Balance the AVL-tree if needed. We don't need to keep the balance
	// factors in nodes, because we always fill the tree sequentially,
	// and thus know the state of the tree just by looking at the node
	// count. From the node count we can calculate how many steps to go
	// up in the tree to find the rotation root.
	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
	if (up != 0) {
		// Locate the root node for the rotation.
		up = ctz32(tree->count) + 2;
		do {
			node = node->parent;
		} while (--up > 0);

		// Rotate left using node as the rotation root.
		index_tree_node *pivot = node->right;

		if (node->parent == NULL) {
			tree->root = pivot;
		} else {
			assert(node->parent->right == node);
			node->parent->right = pivot;
		}

		pivot->parent = node->parent;

		node->right = pivot->left;
		if (node->right != NULL)
			node->right->parent = node;

		pivot->left = node;
		node->parent = pivot;
	}

	return;
}


/// Get the next node in the tree. Return NULL if there are no more nodes.
static void *
index_tree_next(const index_tree_node *node)
{
	if (node->right != NULL) {
		node = node->right;
		while (node->left != NULL)
			node = node->left;

		return (void *)(node);
	}

	while (node->parent != NULL && node->parent->right == node)
		node = node->parent;

	return (void *)(node->parent);
}


/// Locate a node that contains the given uncompressed offset. It is
/// caller's job to check that target is not bigger than the uncompressed
/// size of the tree (the last node would be returned in that case still).
static void *
index_tree_locate(const index_tree *tree, lzma_vli target)
{
	const index_tree_node *result = NULL;
	const index_tree_node *node = tree->root;

	assert(tree->leftmost == NULL
			|| tree->leftmost->uncompressed_base == 0);

	// Consecutive nodes may have the same uncompressed_base.
	// We must pick the rightmost one.
	while (node != NULL) {
		if (node->uncompressed_base > target) {
			node = node->left;
		} else {
			result = node;
			node = node->right;
		}
	}

	return (void *)(result);
}


/// Allocate and initialize a new Stream using the given base offsets.
static index_stream *
index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
		uint32_t stream_number, lzma_vli block_number_base,
		const lzma_allocator *allocator)
{
	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
	if (s == NULL)
		return NULL;

	s->node.uncompressed_base = uncompressed_base;
	s->node.compressed_base = compressed_base;
	s->node.parent = NULL;
	s->node.left = NULL;
	s->node.right = NULL;

	s->number = stream_number;
	s->block_number_base = block_number_base;

	index_tree_init(&s->groups);

	s->record_count = 0;
	s->index_list_size = 0;
	s->stream_flags.version = UINT32_MAX;
	s->stream_padding = 0;

	return s;
}


/// Free the memory allocated for a Stream and its Record groups.
static void
index_stream_end(void *node, const lzma_allocator *allocator)
{
	index_stream *s = node;
	index_tree_end(&s->groups, allocator, &lzma_free);
	lzma_free(s, allocator);
	return;
}


static lzma_index *
index_init_plain(const lzma_allocator *allocator)
{
	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
	if (i != NULL) {
		index_tree_init(&i->streams);
		i->uncompressed_size = 0;
		i->total_size = 0;
		i->record_count = 0;
		i->index_list_size = 0;
		i->prealloc = INDEX_GROUP_SIZE;
		i->checks = 0;
	}

	return i;
}


extern LZMA_API(lzma_index *)
lzma_index_init(const lzma_allocator *allocator)
{
	lzma_index *i = index_init_plain(allocator);
	if (i == NULL)
		return NULL;

	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
	if (s == NULL) {
		lzma_free(i, allocator);
		return NULL;
	}

	index_tree_append(&i->streams, &s->node);

	return i;
}


extern LZMA_API(void)
lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
{
	// NOTE: If you modify this function, check also the bottom
	// of lzma_index_cat().
	if (i != NULL) {
		index_tree_end(&i->streams, allocator, &index_stream_end);
		lzma_free(i, allocator);
	}

	return;
}


extern void
lzma_index_prealloc(lzma_index *i, lzma_vli records)
{
	if (records > PREALLOC_MAX)
		records = PREALLOC_MAX;

	i->prealloc = (size_t)(records);
	return;
}


extern LZMA_API(uint64_t)
lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
{
	// This calculates an upper bound that is only a little bit
	// bigger than the exact maximum memory usage with the given
	// parameters.

	// Typical malloc() overhead is 2 * sizeof(void *) but we take
	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
	// instead would give too inaccurate estimate.
	const size_t alloc_overhead = 4 * sizeof(void *);

	// Amount of memory needed for each Stream base structures.
	// We assume that every Stream has at least one Block and
	// thus at least one group.
	const size_t stream_base = sizeof(index_stream)
			+ sizeof(index_group) + 2 * alloc_overhead;

	// Amount of memory needed per group.
	const size_t group_base = sizeof(index_group)
			+ INDEX_GROUP_SIZE * sizeof(index_record)
			+ alloc_overhead;

	// Number of groups. There may actually be more, but that overhead
	// has been taken into account in stream_base already.
	const lzma_vli groups
			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;

	// Memory used by index_stream and index_group structures.
	const uint64_t streams_mem = streams * stream_base;
	const uint64_t groups_mem = groups * group_base;

	// Memory used by the base structure.
	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;

	// Validate the arguments and catch integer overflows.
	// Maximum number of Streams is "only" UINT32_MAX, because
	// that limit is used by the tree containing the Streams.
	const uint64_t limit = UINT64_MAX - index_base;
	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
			|| streams > limit / stream_base
			|| groups > limit / group_base
			|| limit - streams_mem < groups_mem)
		return UINT64_MAX;

	return index_base + streams_mem + groups_mem;
}


extern LZMA_API(uint64_t)
lzma_index_memused(const lzma_index *i)
{
	return lzma_index_memusage(i->streams.count, i->record_count);
}


extern LZMA_API(lzma_vli)
lzma_index_block_count(const lzma_index *i)
{
	return i->record_count;
}


extern LZMA_API(lzma_vli)
lzma_index_stream_count(const lzma_index *i)
{
	return i->streams.count;
}


extern LZMA_API(lzma_vli)
lzma_index_size(const lzma_index *i)
{
	return index_size(i->record_count, i->index_list_size);
}


extern LZMA_API(lzma_vli)
lzma_index_total_size(const lzma_index *i)
{
	return i->total_size;
}


extern LZMA_API(lzma_vli)
lzma_index_stream_size(const lzma_index *i)
{
	// Stream Header + Blocks + Index + Stream Footer
	return LZMA_STREAM_HEADER_SIZE + i->total_size
			+ index_size(i->record_count, i->index_list_size)
			+ LZMA_STREAM_HEADER_SIZE;
}


static lzma_vli
index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
		lzma_vli record_count, lzma_vli index_list_size,
		lzma_vli stream_padding)
{
	// Earlier Streams and Stream Paddings + Stream Header
	// + Blocks + Index + Stream Footer + Stream Padding
	//
	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
	// when this function is used in lzma_index_append().
	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
			+ stream_padding + vli_ceil4(unpadded_sum);
	if (file_size > LZMA_VLI_MAX)
		return LZMA_VLI_UNKNOWN;

	// The same applies here.
	file_size += index_size(record_count, index_list_size);
	if (file_size > LZMA_VLI_MAX)
		return LZMA_VLI_UNKNOWN;

	return file_size;
}


extern LZMA_API(lzma_vli)
lzma_index_file_size(const lzma_index *i)
{
	const index_stream *s = (const index_stream *)(i->streams.rightmost);
	const index_group *g = (const index_group *)(s->groups.rightmost);
	return index_file_size(s->node.compressed_base,
			g == NULL ? 0 : g->records[g->last].unpadded_sum,
			s->record_count, s->index_list_size,
			s->stream_padding);
}


extern LZMA_API(lzma_vli)
lzma_index_uncompressed_size(const lzma_index *i)
{
	return i->uncompressed_size;
}


extern LZMA_API(uint32_t)
lzma_index_checks(const lzma_index *i)
{
	uint32_t checks = i->checks;

	// Get the type of the Check of the last Stream too.
	const index_stream *s = (const index_stream *)(i->streams.rightmost);
	if (s->stream_flags.version != UINT32_MAX)
		checks |= UINT32_C(1) << s->stream_flags.check;

	return checks;
}


extern uint32_t
lzma_index_padding_size(const lzma_index *i)
{
	return (LZMA_VLI_C(4) - index_size_unpadded(
			i->record_count, i->index_list_size)) & 3;
}


extern LZMA_API(lzma_ret)
lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
{
	if (i == NULL || stream_flags == NULL)
		return LZMA_PROG_ERROR;

	// Validate the Stream Flags.
	return_if_error(lzma_stream_flags_compare(
			stream_flags, stream_flags));

	index_stream *s = (index_stream *)(i->streams.rightmost);
	s->stream_flags = *stream_flags;

	return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
{
	if (i == NULL || stream_padding > LZMA_VLI_MAX
			|| (stream_padding & 3) != 0)
		return LZMA_PROG_ERROR;

	index_stream *s = (index_stream *)(i->streams.rightmost);

	// Check that the new value won't make the file grow too big.
	const lzma_vli old_stream_padding = s->stream_padding;
	s->stream_padding = 0;
	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
		s->stream_padding = old_stream_padding;
		return LZMA_DATA_ERROR;
	}

	s->stream_padding = stream_padding;
	return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
		lzma_vli unpadded_size, lzma_vli uncompressed_size)
{
	// Validate.
	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
			|| unpadded_size > UNPADDED_SIZE_MAX
			|| uncompressed_size > LZMA_VLI_MAX)
		return LZMA_PROG_ERROR;

	index_stream *s = (index_stream *)(i->streams.rightmost);
	index_group *g = (index_group *)(s->groups.rightmost);

	const lzma_vli compressed_base = g == NULL ? 0
			: vli_ceil4(g->records[g->last].unpadded_sum);
	const lzma_vli uncompressed_base = g == NULL ? 0
			: g->records[g->last].uncompressed_sum;
	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
			+ lzma_vli_size(uncompressed_size);

	// Check that the file size will stay within limits.
	if (index_file_size(s->node.compressed_base,
			compressed_base + unpadded_size, s->record_count + 1,
			s->index_list_size + index_list_size_add,
			s->stream_padding) == LZMA_VLI_UNKNOWN)
		return LZMA_DATA_ERROR;

	// The size of the Index field must not exceed the maximum value
	// that can be stored in the Backward Size field.
	if (index_size(i->record_count + 1,
			i->index_list_size + index_list_size_add)
			> LZMA_BACKWARD_SIZE_MAX)
		return LZMA_DATA_ERROR;

	if (g != NULL && g->last + 1 < g->allocated) {
		// There is space in the last group at least for one Record.
		++g->last;
	} else {
		// We need to allocate a new group.
		g = lzma_alloc(sizeof(index_group)
				+ i->prealloc * sizeof(index_record),
				allocator);
		if (g == NULL)
			return LZMA_MEM_ERROR;

		g->last = 0;
		g->allocated = i->prealloc;

		// Reset prealloc so that if the application happens to
		// add new Records, the allocation size will be sane.
		i->prealloc = INDEX_GROUP_SIZE;

		// Set the start offsets of this group.
		g->node.uncompressed_base = uncompressed_base;
		g->node.compressed_base = compressed_base;
		g->number_base = s->record_count + 1;

		// Add the new group to the Stream.
		index_tree_append(&s->groups, &g->node);
	}

	// Add the new Record to the group.
	g->records[g->last].uncompressed_sum
			= uncompressed_base + uncompressed_size;
	g->records[g->last].unpadded_sum
			= compressed_base + unpadded_size;

	// Update the totals.
	++s->record_count;
	s->index_list_size += index_list_size_add;

	i->total_size += vli_ceil4(unpadded_size);
	i->uncompressed_size += uncompressed_size;
	++i->record_count;
	i->index_list_size += index_list_size_add;

	return LZMA_OK;
}


/// Structure to pass info to index_cat_helper()
typedef struct {
	/// Uncompressed size of the destination
	lzma_vli uncompressed_size;

	/// Compressed file size of the destination
	lzma_vli file_size;

	/// Same as above but for Block numbers
	lzma_vli block_number_add;

	/// Number of Streams that were in the destination index before we
	/// started appending new Streams from the source index. This is
	/// used to fix the Stream numbering.
	uint32_t stream_number_add;

	/// Destination index' Stream tree
	index_tree *streams;

} index_cat_info;


/// Add the Stream nodes from the source index to dest using recursion.
/// Simplest iterative traversal of the source tree wouldn't work, because
/// we update the pointers in nodes when moving them to the destination tree.
static void
index_cat_helper(const index_cat_info *info, index_stream *this)
{
	index_stream *left = (index_stream *)(this->node.left);
	index_stream *right = (index_stream *)(this->node.right);

	if (left != NULL)
		index_cat_helper(info, left);

	this->node.uncompressed_base += info->uncompressed_size;
	this->node.compressed_base += info->file_size;
	this->number += info->stream_number_add;
	this->block_number_base += info->block_number_add;
	index_tree_append(info->streams, &this->node);

	if (right != NULL)
		index_cat_helper(info, right);

	return;
}


extern LZMA_API(lzma_ret)
lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
		const lzma_allocator *allocator)
{
	const lzma_vli dest_file_size = lzma_index_file_size(dest);

	// Check that we don't exceed the file size limits.
	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
			|| dest->uncompressed_size + src->uncompressed_size
				> LZMA_VLI_MAX)
		return LZMA_DATA_ERROR;

	// Check that the encoded size of the combined lzma_indexes stays
	// within limits. In theory, this should be done only if we know
	// that the user plans to actually combine the Streams and thus
	// construct a single Index (probably rare). However, exceeding
	// this limit is quite theoretical, so we do this check always
	// to simplify things elsewhere.
	{
		const lzma_vli dest_size = index_size_unpadded(
				dest->record_count, dest->index_list_size);
		const lzma_vli src_size = index_size_unpadded(
				src->record_count, src->index_list_size);
		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
			return LZMA_DATA_ERROR;
	}

	// Optimize the last group to minimize memory usage. Allocation has
	// to be done before modifying dest or src.
	{
		index_stream *s = (index_stream *)(dest->streams.rightmost);
		index_group *g = (index_group *)(s->groups.rightmost);
		if (g != NULL && g->last + 1 < g->allocated) {
			assert(g->node.left == NULL);
			assert(g->node.right == NULL);

			index_group *newg = lzma_alloc(sizeof(index_group)
					+ (g->last + 1)
					* sizeof(index_record),
					allocator);
			if (newg == NULL)
				return LZMA_MEM_ERROR;

			newg->node = g->node;
			newg->allocated = g->last + 1;
			newg->last = g->last;
			newg->number_base = g->number_base;

			memcpy(newg->records, g->records, newg->allocated
					* sizeof(index_record));

			if (g->node.parent != NULL) {
				assert(g->node.parent->right == &g->node);
				g->node.parent->right = &newg->node;
			}

			if (s->groups.leftmost == &g->node) {
				assert(s->groups.root == &g->node);
				s->groups.leftmost = &newg->node;
				s->groups.root = &newg->node;
			}

			if (s->groups.rightmost == &g->node)
				s->groups.rightmost = &newg->node;

			lzma_free(g, allocator);

			// NOTE: newg isn't leaked here because
			// newg == (void *)&newg->node.
		}
	}

	// Add all the Streams from src to dest. Update the base offsets
	// of each Stream from src.
	const index_cat_info info = {
		.uncompressed_size = dest->uncompressed_size,
		.file_size = dest_file_size,
		.stream_number_add = dest->streams.count,
		.block_number_add = dest->record_count,
		.streams = &dest->streams,
	};
	index_cat_helper(&info, (index_stream *)(src->streams.root));

	// Update info about all the combined Streams.
	dest->uncompressed_size += src->uncompressed_size;
	dest->total_size += src->total_size;
	dest->record_count += src->record_count;
	dest->index_list_size += src->index_list_size;
	dest->checks = lzma_index_checks(dest) | src->checks;

	// There's nothing else left in src than the base structure.
	lzma_free(src, allocator);

	return LZMA_OK;
}


/// Duplicate an index_stream.
static index_stream *
index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
{
	// Catch a somewhat theoretical integer overflow.
	if (src->record_count > PREALLOC_MAX)
		return NULL;

	// Allocate and initialize a new Stream.
	index_stream *dest = index_stream_init(src->node.compressed_base,
			src->node.uncompressed_base, src->number,
			src->block_number_base, allocator);
	if (dest == NULL)
		return NULL;

	// Copy the overall information.
	dest->record_count = src->record_count;
	dest->index_list_size = src->index_list_size;
	dest->stream_flags = src->stream_flags;
	dest->stream_padding = src->stream_padding;

	// Return if there are no groups to duplicate.
	if (src->groups.leftmost == NULL)
		return dest;

	// Allocate memory for the Records. We put all the Records into
	// a single group. It's simplest and also tends to make
	// lzma_index_locate() a little bit faster with very big Indexes.
	index_group *destg = lzma_alloc(sizeof(index_group)
			+ src->record_count * sizeof(index_record),
			allocator);
	if (destg == NULL) {
		index_stream_end(dest, allocator);
		return NULL;
	}

	// Initialize destg.
	destg->node.uncompressed_base = 0;
	destg->node.compressed_base = 0;
	destg->number_base = 1;
	destg->allocated = src->record_count;
	destg->last = src->record_count - 1;

	// Go through all the groups in src and copy the Records into destg.
	const index_group *srcg = (const index_group *)(src->groups.leftmost);
	size_t i = 0;
	do {
		memcpy(destg->records + i, srcg->records,
				(srcg->last + 1) * sizeof(index_record));
		i += srcg->last + 1;
		srcg = index_tree_next(&srcg->node);
	} while (srcg != NULL);

	assert(i == destg->allocated);

	// Add the group to the new Stream.
	index_tree_append(&dest->groups, &destg->node);

	return dest;
}


extern LZMA_API(lzma_index *)
lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
{
	// Allocate the base structure (no initial Stream).
	lzma_index *dest = index_init_plain(allocator);
	if (dest == NULL)
		return NULL;

	// Copy the totals.
	dest->uncompressed_size = src->uncompressed_size;
	dest->total_size = src->total_size;
	dest->record_count = src->record_count;
	dest->index_list_size = src->index_list_size;

	// Copy the Streams and the groups in them.
	const index_stream *srcstream
			= (const index_stream *)(src->streams.leftmost);
	do {
		index_stream *deststream = index_dup_stream(
				srcstream, allocator);
		if (deststream == NULL) {
			lzma_index_end(dest, allocator);
			return NULL;
		}

		index_tree_append(&dest->streams, &deststream->node);

		srcstream = index_tree_next(&srcstream->node);
	} while (srcstream != NULL);

	return dest;
}


/// Indexing for lzma_index_iter.internal[]
enum {
	ITER_INDEX,
	ITER_STREAM,
	ITER_GROUP,
	ITER_RECORD,
	ITER_METHOD,
};


/// Values for lzma_index_iter.internal[ITER_METHOD].s
enum {
	ITER_METHOD_NORMAL,
	ITER_METHOD_NEXT,
	ITER_METHOD_LEFTMOST,
};


static void
iter_set_info(lzma_index_iter *iter)
{
	const lzma_index *i = iter->internal[ITER_INDEX].p;
	const index_stream *stream = iter->internal[ITER_STREAM].p;
	const index_group *group = iter->internal[ITER_GROUP].p;
	const size_t record = iter->internal[ITER_RECORD].s;

	// lzma_index_iter.internal must not contain a pointer to the last
	// group in the index, because that may be reallocated by
	// lzma_index_cat().
	if (group == NULL) {
		// There are no groups.
		assert(stream->groups.root == NULL);
		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;

	} else if (i->streams.rightmost != &stream->node
			|| stream->groups.rightmost != &group->node) {
		// The group is not not the last group in the index.
		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;

	} else if (stream->groups.leftmost != &group->node) {
		// The group isn't the only group in the Stream, thus we
		// know that it must have a parent group i.e. it's not
		// the root node.
		assert(stream->groups.root != &group->node);
		assert(group->node.parent->right == &group->node);
		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
		iter->internal[ITER_GROUP].p = group->node.parent;

	} else {
		// The Stream has only one group.
		assert(stream->groups.root == &group->node);
		assert(group->node.parent == NULL);
		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
		iter->internal[ITER_GROUP].p = NULL;
	}

	// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
	// internally.
	iter->stream.number = stream->number;
	iter->stream.block_count = stream->record_count;
	iter->stream.compressed_offset = stream->node.compressed_base;
	iter->stream.uncompressed_offset = stream->node.uncompressed_base;

	// iter->stream.flags will be NULL if the Stream Flags haven't been
	// set with lzma_index_stream_flags().
	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
			? NULL : &stream->stream_flags;
	iter->stream.padding = stream->stream_padding;

	if (stream->groups.rightmost == NULL) {
		// Stream has no Blocks.
		iter->stream.compressed_size = index_size(0, 0)
				+ 2 * LZMA_STREAM_HEADER_SIZE;
		iter->stream.uncompressed_size = 0;
	} else {
		const index_group *g = (const index_group *)(
				stream->groups.rightmost);

		// Stream Header + Stream Footer + Index + Blocks
		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
				+ index_size(stream->record_count,
					stream->index_list_size)
				+ vli_ceil4(g->records[g->last].unpadded_sum);
		iter->stream.uncompressed_size
				= g->records[g->last].uncompressed_sum;
	}

	if (group != NULL) {
		iter->block.number_in_stream = group->number_base + record;
		iter->block.number_in_file = iter->block.number_in_stream
				+ stream->block_number_base;

		iter->block.compressed_stream_offset
				= record == 0 ? group->node.compressed_base
				: vli_ceil4(group->records[
					record - 1].unpadded_sum);
		iter->block.uncompressed_stream_offset
				= record == 0 ? group->node.uncompressed_base
				: group->records[record - 1].uncompressed_sum;

		iter->block.uncompressed_size
				= group->records[record].uncompressed_sum
				- iter->block.uncompressed_stream_offset;
		iter->block.unpadded_size
				= group->records[record].unpadded_sum
				- iter->block.compressed_stream_offset;
		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);

		iter->block.compressed_stream_offset
				+= LZMA_STREAM_HEADER_SIZE;

		iter->block.compressed_file_offset
				= iter->block.compressed_stream_offset
				+ iter->stream.compressed_offset;
		iter->block.uncompressed_file_offset
				= iter->block.uncompressed_stream_offset
				+ iter->stream.uncompressed_offset;
	}

	return;
}


extern LZMA_API(void)
lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
{
	iter->internal[ITER_INDEX].p = i;
	lzma_index_iter_rewind(iter);
	return;
}


extern LZMA_API(void)
lzma_index_iter_rewind(lzma_index_iter *iter)
{
	iter->internal[ITER_STREAM].p = NULL;
	iter->internal[ITER_GROUP].p = NULL;
	iter->internal[ITER_RECORD].s = 0;
	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
	return;
}


extern LZMA_API(lzma_bool)
lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
{
	// Catch unsupported mode values.
	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
		return true;

	const lzma_index *i = iter->internal[ITER_INDEX].p;
	const index_stream *stream = iter->internal[ITER_STREAM].p;
	const index_group *group = NULL;
	size_t record = iter->internal[ITER_RECORD].s;

	// If we are being asked for the next Stream, leave group to NULL
	// so that the rest of the this function thinks that this Stream
	// has no groups and will thus go to the next Stream.
	if (mode != LZMA_INDEX_ITER_STREAM) {
		// Get the pointer to the current group. See iter_set_inf()
		// for explanation.
		switch (iter->internal[ITER_METHOD].s) {
		case ITER_METHOD_NORMAL:
			group = iter->internal[ITER_GROUP].p;
			break;

		case ITER_METHOD_NEXT:
			group = index_tree_next(iter->internal[ITER_GROUP].p);
			break;

		case ITER_METHOD_LEFTMOST:
			group = (const index_group *)(
					stream->groups.leftmost);
			break;
		}
	}

again:
	if (stream == NULL) {
		// We at the beginning of the lzma_index.
		// Locate the first Stream.
		stream = (const index_stream *)(i->streams.leftmost);
		if (mode >= LZMA_INDEX_ITER_BLOCK) {
			// Since we are being asked to return information
			// about the first a Block, skip Streams that have
			// no Blocks.
			while (stream->groups.leftmost == NULL) {
				stream = index_tree_next(&stream->node);
				if (stream == NULL)
					return true;
			}
		}

		// Start from the first Record in the Stream.
		group = (const index_group *)(stream->groups.leftmost);
		record = 0;

	} else if (group != NULL && record < group->last) {
		// The next Record is in the same group.
		++record;

	} else {
		// This group has no more Records or this Stream has
		// no Blocks at all.
		record = 0;

		// If group is not NULL, this Stream has at least one Block
		// and thus at least one group. Find the next group.
		if (group != NULL)
			group = index_tree_next(&group->node);

		if (group == NULL) {
			// This Stream has no more Records. Find the next
			// Stream. If we are being asked to return information
			// about a Block, we skip empty Streams.
			do {
				stream = index_tree_next(&stream->node);
				if (stream == NULL)
					return true;
			} while (mode >= LZMA_INDEX_ITER_BLOCK
					&& stream->groups.leftmost == NULL);

			group = (const index_group *)(
					stream->groups.leftmost);
		}
	}

	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
		// We need to look for the next Block again if this Block
		// is empty.
		if (record == 0) {
			if (group->node.uncompressed_base
					== group->records[0].uncompressed_sum)
				goto again;
		} else if (group->records[record - 1].uncompressed_sum
				== group->records[record].uncompressed_sum) {
			goto again;
		}
	}

	iter->internal[ITER_STREAM].p = stream;
	iter->internal[ITER_GROUP].p = group;
	iter->internal[ITER_RECORD].s = record;

	iter_set_info(iter);

	return false;
}


extern LZMA_API(lzma_bool)
lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
{
	const lzma_index *i = iter->internal[ITER_INDEX].p;

	// If the target is past the end of the file, return immediately.
	if (i->uncompressed_size <= target)
		return true;

	// Locate the Stream containing the target offset.
	const index_stream *stream = index_tree_locate(&i->streams, target);
	assert(stream != NULL);
	target -= stream->node.uncompressed_base;

	// Locate the group containing the target offset.
	const index_group *group = index_tree_locate(&stream->groups, target);
	assert(group != NULL);

	// Use binary search to locate the exact Record. It is the first
	// Record whose uncompressed_sum is greater than target.
	// This is because we want the rightmost Record that fullfills the
	// search criterion. It is possible that there are empty Blocks;
	// we don't want to return them.
	size_t left = 0;
	size_t right = group->last;

	while (left < right) {
		const size_t pos = left + (right - left) / 2;
		if (group->records[pos].uncompressed_sum <= target)
			left = pos + 1;
		else
			right = pos;
	}

	iter->internal[ITER_STREAM].p = stream;
	iter->internal[ITER_GROUP].p = group;
	iter->internal[ITER_RECORD].s = left;

	iter_set_info(iter);

	return false;
}