summaryrefslogtreecommitdiffstats
path: root/demos/boxes/vector.h
diff options
context:
space:
mode:
authorAlexis Menard <alexis.menard@nokia.com>2009-04-17 14:06:06 (GMT)
committerAlexis Menard <alexis.menard@nokia.com>2009-04-17 14:06:06 (GMT)
commitf15b8a83e2e51955776a3f07cb85ebfc342dd8ef (patch)
treec5dc684986051654898db11ce73e03b9fec8db99 /demos/boxes/vector.h
downloadQt-f15b8a83e2e51955776a3f07cb85ebfc342dd8ef.zip
Qt-f15b8a83e2e51955776a3f07cb85ebfc342dd8ef.tar.gz
Qt-f15b8a83e2e51955776a3f07cb85ebfc342dd8ef.tar.bz2
Initial import of statemachine branch from the old kinetic repository
Diffstat (limited to 'demos/boxes/vector.h')
-rw-r--r--demos/boxes/vector.h602
1 files changed, 602 insertions, 0 deletions
diff --git a/demos/boxes/vector.h b/demos/boxes/vector.h
new file mode 100644
index 0000000..bb24531
--- /dev/null
+++ b/demos/boxes/vector.h
@@ -0,0 +1,602 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the demonstration applications of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the either Technology Preview License Agreement or the
+** Beta Release License Agreement.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain
+** additional rights. These rights are described in the Nokia Qt LGPL
+** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
+** package.
+**
+** GNU General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU
+** General Public License version 3.0 as published by the Free Software
+** Foundation and appearing in the file LICENSE.GPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU General Public License version 3.0 requirements will be
+** met: http://www.gnu.org/copyleft/gpl.html.
+**
+** If you are unsure which license is appropriate for your use, please
+** contact the sales department at qt-sales@nokia.com.
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#ifndef VECTOR_H
+#define VECTOR_H
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+namespace gfx
+{
+
+template<class T, int n>
+struct Vector
+{
+ // Keep the Vector struct a plain old data (POD) struct by avoiding constructors
+
+ static Vector vector(T x)
+ {
+ Vector result;
+ for (int i = 0; i < n; ++i)
+ result.v[i] = x;
+ return result;
+ }
+
+ // Use only for 2D vectors
+ static Vector vector(T x, T y)
+ {
+ assert(n == 2);
+ Vector result;
+ result.v[0] = x;
+ result.v[1] = y;
+ return result;
+ }
+
+ // Use only for 3D vectors
+ static Vector vector(T x, T y, T z)
+ {
+ assert(n == 3);
+ Vector result;
+ result.v[0] = x;
+ result.v[1] = y;
+ result.v[2] = z;
+ return result;
+ }
+
+ // Use only for 4D vectors
+ static Vector vector(T x, T y, T z, T w)
+ {
+ assert(n == 4);
+ Vector result;
+ result.v[0] = x;
+ result.v[1] = y;
+ result.v[2] = z;
+ result.v[3] = w;
+ return result;
+ }
+
+ // Pass 'n' arguments to this function.
+ static Vector vector(T *v)
+ {
+ Vector result;
+ for (int i = 0; i < n; ++i)
+ result.v[i] = v[i];
+ return result;
+ }
+
+ T &operator [] (int i) {return v[i];}
+ T operator [] (int i) const {return v[i];}
+
+#define VECTOR_BINARY_OP(op, arg, rhs) \
+ Vector operator op (arg) const \
+ { \
+ Vector result; \
+ for (int i = 0; i < n; ++i) \
+ result.v[i] = v[i] op rhs; \
+ return result; \
+ }
+
+ VECTOR_BINARY_OP(+, const Vector &u, u.v[i])
+ VECTOR_BINARY_OP(-, const Vector &u, u.v[i])
+ VECTOR_BINARY_OP(*, const Vector &u, u.v[i])
+ VECTOR_BINARY_OP(/, const Vector &u, u.v[i])
+ VECTOR_BINARY_OP(+, T s, s)
+ VECTOR_BINARY_OP(-, T s, s)
+ VECTOR_BINARY_OP(*, T s, s)
+ VECTOR_BINARY_OP(/, T s, s)
+#undef VECTOR_BINARY_OP
+
+ Vector operator - () const
+ {
+ Vector result;
+ for (int i = 0; i < n; ++i)
+ result.v[i] = -v[i];
+ return result;
+ }
+
+#define VECTOR_ASSIGN_OP(op, arg, rhs) \
+ Vector &operator op (arg) \
+ { \
+ for (int i = 0; i < n; ++i) \
+ v[i] op rhs; \
+ return *this; \
+ }
+
+ VECTOR_ASSIGN_OP(+=, const Vector &u, u.v[i])
+ VECTOR_ASSIGN_OP(-=, const Vector &u, u.v[i])
+ VECTOR_ASSIGN_OP(=, T s, s)
+ VECTOR_ASSIGN_OP(*=, T s, s)
+ VECTOR_ASSIGN_OP(/=, T s, s)
+#undef VECTOR_ASSIGN_OP
+
+ static T dot(const Vector &u, const Vector &v)
+ {
+ T sum(0);
+ for (int i = 0; i < n; ++i)
+ sum += u.v[i] * v.v[i];
+ return sum;
+ }
+
+ static Vector cross(const Vector &u, const Vector &v)
+ {
+ assert(n == 3);
+ return vector(u.v[1] * v.v[2] - u.v[2] * v.v[1],
+ u.v[2] * v.v[0] - u.v[0] * v.v[2],
+ u.v[0] * v.v[1] - u.v[1] * v.v[0]);
+ }
+
+ T sqrNorm() const
+ {
+ return dot(*this, *this);
+ }
+
+ // requires floating point type T
+ void normalize()
+ {
+ T s = sqrNorm();
+ if (s != 0)
+ *this /= sqrt(s);
+ }
+
+ // requires floating point type T
+ Vector normalized() const
+ {
+ T s = sqrNorm();
+ if (s == 0)
+ return *this;
+ return *this / sqrt(s);
+ }
+
+ T *bits() {return v;}
+ const T *bits() const {return v;}
+
+ T v[n];
+};
+
+#define SCALAR_VECTOR_BINARY_OP(op) \
+template<class T, int n> \
+Vector<T, n> operator op (T s, const Vector<T, n>& u) \
+{ \
+ Vector<T, n> result; \
+ for (int i = 0; i < n; ++i) \
+ result[i] = s op u[i]; \
+ return result; \
+}
+
+SCALAR_VECTOR_BINARY_OP(+)
+SCALAR_VECTOR_BINARY_OP(-)
+SCALAR_VECTOR_BINARY_OP(*)
+SCALAR_VECTOR_BINARY_OP(/)
+#undef SCALAR_VECTOR_BINARY_OP
+
+template<class T, int n>
+std::ostream &operator << (std::ostream &os, const Vector<T, n> &v)
+{
+ assert(n > 0);
+ os << "[" << v[0];
+ for (int i = 1; i < n; ++i)
+ os << ", " << v[i];
+ os << "]";
+ return os;
+}
+
+typedef Vector<float, 2> Vector2f;
+typedef Vector<float, 3> Vector3f;
+typedef Vector<float, 4> Vector4f;
+
+template<class T, int rows, int cols>
+struct Matrix
+{
+ // Keep the Matrix struct a plain old data (POD) struct by avoiding constructors
+
+ static Matrix matrix(T x)
+ {
+ Matrix result;
+ for (int i = 0; i < rows; ++i) {
+ for (int j = 0; j < cols; ++j)
+ result.v[i][j] = x;
+ }
+ return result;
+ }
+
+ static Matrix matrix(T *m)
+ {
+ Matrix result;
+ for (int i = 0; i < rows; ++i) {
+ for (int j = 0; j < cols; ++j) {
+ result.v[i][j] = *m;
+ ++m;
+ }
+ }
+ return result;
+ }
+
+ T &operator () (int i, int j) {return v[i][j];}
+ T operator () (int i, int j) const {return v[i][j];}
+ Vector<T, cols> &operator [] (int i) {return v[i];}
+ const Vector<T, cols> &operator [] (int i) const {return v[i];}
+
+ // TODO: operators, methods
+
+ Vector<T, rows> operator * (const Vector<T, cols> &u) const
+ {
+ Vector<T, rows> result;
+ for (int i = 0; i < rows; ++i)
+ result[i] = Vector<T, cols>::dot(v[i], u);
+ return result;
+ }
+
+ template<int k>
+ Matrix<T, rows, k> operator * (const Matrix<T, cols, k> &m)
+ {
+ Matrix<T, rows, k> result;
+ for (int i = 0; i < rows; ++i)
+ result[i] = v[i] * m;
+ return result;
+ }
+
+ T* bits() {return reinterpret_cast<T *>(this);}
+ const T* bits() const {return reinterpret_cast<const T *>(this);}
+
+ // Simple Gauss elimination.
+ // TODO: Optimize and improve stability.
+ Matrix inverse(bool *ok = 0) const
+ {
+ assert(rows == cols);
+ Matrix rhs = identity();
+ Matrix lhs(*this);
+ T temp;
+ // Down
+ for (int i = 0; i < rows; ++i) {
+ // Pivoting
+ int pivot = i;
+ for (int j = i; j < rows; ++j) {
+ if (qAbs(lhs(j, i)) > lhs(pivot, i))
+ pivot = j;
+ }
+ // TODO: fuzzy compare.
+ if (lhs(pivot, i) == T(0)) {
+ if (ok)
+ *ok = false;
+ return rhs;
+ }
+ if (pivot != i) {
+ for (int j = i; j < cols; ++j) {
+ temp = lhs(pivot, j);
+ lhs(pivot, j) = lhs(i, j);
+ lhs(i, j) = temp;
+ }
+ for (int j = 0; j < cols; ++j) {
+ temp = rhs(pivot, j);
+ rhs(pivot, j) = rhs(i, j);
+ rhs(i, j) = temp;
+ }
+ }
+
+ // Normalize i-th row
+ rhs[i] /= lhs(i, i);
+ for (int j = cols - 1; j > i; --j)
+ lhs(i, j) /= lhs(i, i);
+
+ // Eliminate non-zeros in i-th column below the i-th row.
+ for (int j = i + 1; j < rows; ++j) {
+ rhs[j] -= lhs(j, i) * rhs[i];
+ for (int k = i + 1; k < cols; ++k)
+ lhs(j, k) -= lhs(j, i) * lhs(i, k);
+ }
+ }
+ // Up
+ for (int i = rows - 1; i > 0; --i) {
+ for (int j = i - 1; j >= 0; --j)
+ rhs[j] -= lhs(j, i) * rhs[i];
+ }
+ if (ok)
+ *ok = true;
+ return rhs;
+ }
+
+ Matrix<T, cols, rows> transpose() const
+ {
+ Matrix<T, cols, rows> result;
+ for (int i = 0; i < rows; ++i) {
+ for (int j = 0; j < cols; ++j)
+ result.v[j][i] = v[i][j];
+ }
+ return result;
+ }
+
+ static Matrix identity()
+ {
+ Matrix result = matrix(T(0));
+ for (int i = 0; i < rows && i < cols; ++i)
+ result.v[i][i] = T(1);
+ return result;
+ }
+
+ Vector<T, cols> v[rows];
+};
+
+template<class T, int rows, int cols>
+Vector<T, cols> operator * (const Vector<T, rows> &u, const Matrix<T, rows, cols> &m)
+{
+ Vector<T, cols> result = Vector<T, cols>::vector(T(0));
+ for (int i = 0; i < rows; ++i)
+ result += m[i] * u[i];
+ return result;
+}
+
+template<class T, int rows, int cols>
+std::ostream &operator << (std::ostream &os, const Matrix<T, rows, cols> &m)
+{
+ assert(rows > 0);
+ os << "[" << m[0];
+ for (int i = 1; i < rows; ++i)
+ os << ", " << m[i];
+ os << "]";
+ return os;
+}
+
+
+typedef Matrix<float, 2, 2> Matrix2x2f;
+typedef Matrix<float, 3, 3> Matrix3x3f;
+typedef Matrix<float, 4, 4> Matrix4x4f;
+
+template<class T>
+struct Quaternion
+{
+ // Keep the Quaternion struct a plain old data (POD) struct by avoiding constructors
+
+ static Quaternion quaternion(T s, T x, T y, T z)
+ {
+ Quaternion result;
+ result.scalar = s;
+ result.vector[0] = x;
+ result.vector[1] = y;
+ result.vector[2] = z;
+ return result;
+ }
+
+ static Quaternion quaternion(T s, const Vector<T, 3> &v)
+ {
+ Quaternion result;
+ result.scalar = s;
+ result.vector = v;
+ return result;
+ }
+
+ static Quaternion identity()
+ {
+ return quaternion(T(1), T(0), T(0), T(0));
+ }
+
+ // assumes that all the elements are packed tightly
+ T& operator [] (int i) {return reinterpret_cast<T *>(this)[i];}
+ T operator [] (int i) const {return reinterpret_cast<const T *>(this)[i];}
+
+#define QUATERNION_BINARY_OP(op, arg, rhs) \
+ Quaternion operator op (arg) const \
+ { \
+ Quaternion result; \
+ for (int i = 0; i < 4; ++i) \
+ result[i] = (*this)[i] op rhs; \
+ return result; \
+ }
+
+ QUATERNION_BINARY_OP(+, const Quaternion &q, q[i])
+ QUATERNION_BINARY_OP(-, const Quaternion &q, q[i])
+ QUATERNION_BINARY_OP(*, T s, s)
+ QUATERNION_BINARY_OP(/, T s, s)
+#undef QUATERNION_BINARY_OP
+
+ Quaternion operator - () const
+ {
+ return Quaternion(-scalar, -vector);
+ }
+
+ Quaternion operator * (const Quaternion &q) const
+ {
+ Quaternion result;
+ result.scalar = scalar * q.scalar - Vector<T, 3>::dot(vector, q.vector);
+ result.vector = scalar * q.vector + vector * q.scalar + Vector<T, 3>::cross(vector, q.vector);
+ return result;
+ }
+
+ Quaternion operator * (const Vector<T, 3> &v) const
+ {
+ Quaternion result;
+ result.scalar = -Vector<T, 3>::dot(vector, v);
+ result.vector = scalar * v + Vector<T, 3>::cross(vector, v);
+ return result;
+ }
+
+ friend Quaternion operator * (const Vector<T, 3> &v, const Quaternion &q)
+ {
+ Quaternion result;
+ result.scalar = -Vector<T, 3>::dot(v, q.vector);
+ result.vector = v * q.scalar + Vector<T, 3>::cross(v, q.vector);
+ return result;
+ }
+
+#define QUATERNION_ASSIGN_OP(op, arg, rhs) \
+ Quaternion &operator op (arg) \
+ { \
+ for (int i = 0; i < 4; ++i) \
+ (*this)[i] op rhs; \
+ return *this; \
+ }
+
+ QUATERNION_ASSIGN_OP(+=, const Quaternion &q, q[i])
+ QUATERNION_ASSIGN_OP(-=, const Quaternion &q, q[i])
+ QUATERNION_ASSIGN_OP(=, T s, s)
+ QUATERNION_ASSIGN_OP(*=, T s, s)
+ QUATERNION_ASSIGN_OP(/=, T s, s)
+#undef QUATERNION_ASSIGN_OP
+
+ Quaternion& operator *= (const Quaternion &q)
+ {
+ Quaternion result;
+ result.scalar = scalar * q.scalar - Vector<T, 3>::dot(vector, q.vector);
+ result.vector = scalar * q.vector + vector * q.scalar + Vector<T, 3>::cross(vector, q.vector);
+ return (*this = result);
+ }
+
+ Quaternion& operator *= (const Vector<T, 3> &v)
+ {
+ Quaternion result;
+ result.scalar = -Vector<T, 3>::dot(vector, v);
+ result.vector = scalar * v + Vector<T, 3>::cross(vector, v);
+ return (*this = result);
+ }
+
+ Quaternion conjugate() const
+ {
+ return quaternion(scalar, -vector);
+ }
+
+ T sqrNorm() const
+ {
+ return scalar * scalar + vector.sqrNorm();
+ }
+
+ Quaternion inverse() const
+ {
+ return conjugate() / sqrNorm();
+ }
+
+ // requires floating point type T
+ Quaternion normalized() const
+ {
+ T s = sqrNorm();
+ if (s == 0)
+ return *this;
+ return *this / sqrt(s);
+ }
+
+ void matrix(Matrix<T, 3, 3>& m) const
+ {
+ T bb = vector[0] * vector[0];
+ T cc = vector[1] * vector[1];
+ T dd = vector[2] * vector[2];
+ T diag = scalar * scalar - bb - cc - dd;
+ T ab = scalar * vector[0];
+ T ac = scalar * vector[1];
+ T ad = scalar * vector[2];
+ T bc = vector[0] * vector[1];
+ T cd = vector[1] * vector[2];
+ T bd = vector[2] * vector[0];
+ m(0, 0) = diag + 2 * bb;
+ m(0, 1) = 2 * (bc - ad);
+ m(0, 2) = 2 * (ac + bd);
+ m(1, 0) = 2 * (ad + bc);
+ m(1, 1) = diag + 2 * cc;
+ m(1, 2) = 2 * (cd - ab);
+ m(2, 0) = 2 * (bd - ac);
+ m(2, 1) = 2 * (ab + cd);
+ m(2, 2) = diag + 2 * dd;
+ }
+
+ void matrix(Matrix<T, 4, 4>& m) const
+ {
+ T bb = vector[0] * vector[0];
+ T cc = vector[1] * vector[1];
+ T dd = vector[2] * vector[2];
+ T diag = scalar * scalar - bb - cc - dd;
+ T ab = scalar * vector[0];
+ T ac = scalar * vector[1];
+ T ad = scalar * vector[2];
+ T bc = vector[0] * vector[1];
+ T cd = vector[1] * vector[2];
+ T bd = vector[2] * vector[0];
+ m(0, 0) = diag + 2 * bb;
+ m(0, 1) = 2 * (bc - ad);
+ m(0, 2) = 2 * (ac + bd);
+ m(0, 3) = 0;
+ m(1, 0) = 2 * (ad + bc);
+ m(1, 1) = diag + 2 * cc;
+ m(1, 2) = 2 * (cd - ab);
+ m(1, 3) = 0;
+ m(2, 0) = 2 * (bd - ac);
+ m(2, 1) = 2 * (ab + cd);
+ m(2, 2) = diag + 2 * dd;
+ m(2, 3) = 0;
+ m(3, 0) = 0;
+ m(3, 1) = 0;
+ m(3, 2) = 0;
+ m(3, 3) = 1;
+ }
+
+ // assumes that 'this' is normalized
+ Vector<T, 3> transform(const Vector<T, 3> &v) const
+ {
+ Matrix<T, 3, 3> m;
+ matrix(m);
+ return v * m;
+ }
+
+ // assumes that all the elements are packed tightly
+ T* bits() {return reinterpret_cast<T *>(this);}
+ const T* bits() const {return reinterpret_cast<const T *>(this);}
+
+ // requires floating point type T
+ static Quaternion rotation(T angle, const Vector<T, 3> &unitAxis)
+ {
+ T s = sin(angle / 2);
+ T c = cos(angle / 2);
+ return quaternion(c, unitAxis * s);
+ }
+
+ T scalar;
+ Vector<T, 3> vector;
+};
+
+template<class T>
+Quaternion<T> operator * (T s, const Quaternion<T>& q)
+{
+ return Quaternion<T>::quaternion(s * q.scalar, s * q.vector);
+}
+
+typedef Quaternion<float> Quaternionf;
+
+} // end namespace gfx
+
+#endif