summaryrefslogtreecommitdiffstats
path: root/doc/src/snippets/code/src_gui_image_qimage.cpp
diff options
context:
space:
mode:
authorQt Continuous Integration System <qt-info@nokia.com>2011-10-10 13:38:02 (GMT)
committerQt Continuous Integration System <qt-info@nokia.com>2011-10-10 13:38:02 (GMT)
commit22d7b6c1afb3e8558941052b09f755cceb0a46fd (patch)
tree9e9a09f2fdbce16500f99a09ee286c82785d3aa3 /doc/src/snippets/code/src_gui_image_qimage.cpp
parent95e5e8ff45d2aa8acda595186136b54f695bb9cb (diff)
parente9712d60c6e40c2b81b10611a3573c4638121a85 (diff)
downloadQt-22d7b6c1afb3e8558941052b09f755cceb0a46fd.zip
Qt-22d7b6c1afb3e8558941052b09f755cceb0a46fd.tar.gz
Qt-22d7b6c1afb3e8558941052b09f755cceb0a46fd.tar.bz2
Merge branch 'master' of scm.dev.nokia.troll.no:qt/qt-fire-staging into master-integration
* 'master' of scm.dev.nokia.troll.no:qt/qt-fire-staging: Fixes: libpng symbols exported from QtGui.dll on Windows omit unassigned (and too recent codepoints) from the text Normalization process Fixed broken window surface flush when depth is 24 and bpp is not 32.
Diffstat (limited to 'doc/src/snippets/code/src_gui_image_qimage.cpp')
0 files changed, 0 insertions, 0 deletions
a id='n176' href='#n176'>176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#include "Python.h"

#ifndef HAVE_HYPOT
double hypot(double x, double y)
{
	double yx;

	x = fabs(x);
	y = fabs(y);
	if (x < y) {
		double temp = x;
		x = y;
		y = temp;
	}
	if (x == 0.)
		return 0.;
	else {
		yx = y/x;
		return x*sqrt(1.+yx*yx);
	}
}
#endif /* HAVE_HYPOT */

#ifndef HAVE_COPYSIGN
static double
copysign(double x, double y)
{
	/* use atan2 to distinguish -0. from 0. */
	if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
		return fabs(x);
	} else {
		return -fabs(x);
	}
}
#endif /* HAVE_COPYSIGN */

#ifndef HAVE_LOG1P
double
log1p(double x)
{
	/* For x small, we use the following approach.  Let y be the nearest
	   float to 1+x, then

	     1+x = y * (1 - (y-1-x)/y)

	   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
	   the second term is well approximated by (y-1-x)/y.  If abs(x) >=
	   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
	   then y-1-x will be exactly representable, and is computed exactly
	   by (y-1)-x.

	   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
	   round-to-nearest then this method is slightly dangerous: 1+x could
	   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
	   case y-1-x will not be exactly representable any more and the
	   result can be off by many ulps.  But this is easily fixed: for a
	   floating-point number |x| < DBL_EPSILON/2., the closest
	   floating-point number to log(1+x) is exactly x.
	*/

	double y;
	if (fabs(x) < DBL_EPSILON/2.) {
		return x;
	} else if (-0.5 <= x && x <= 1.) {
		/* WARNING: it's possible than an overeager compiler
		   will incorrectly optimize the following two lines
		   to the equivalent of "return log(1.+x)". If this
		   happens, then results from log1p will be inaccurate
		   for small x. */
		y = 1.+x;
		return log(y)-((y-1.)-x)/y;
	} else {
		/* NaNs and infinities should end up here */
		return log(1.+x);
	}
}
#endif /* HAVE_LOG1P */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

static const double ln2 = 6.93147180559945286227E-01;
static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
static const double two_pow_p28 = 268435456.0; /* 2**28 */
static const double zero = 0.0;

/* asinh(x)
 * Method :
 *	Based on 
 *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 *	we have
 *	asinh(x) := x  if  1+x*x=1,
 *		 := sign(x)*(log(x)+ln2)) for large |x|, else
 *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
 */

#ifndef HAVE_ASINH
double
asinh(double x)
{	
	double w;
	double absx = fabs(x);

	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
		return x+x;
	}
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
		return x;	/* return x inexact except 0 */
	} 
	if (absx > two_pow_p28) {	/* |x| > 2**28 */
		w = log(absx)+ln2;
	}
	else if (absx > 2.0) {		/* 2 < |x| < 2**28 */
		w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
	}
	else {				/* 2**-28 <= |x| < 2= */
		double t = x*x;
		w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
	}
	return copysign(w, x);
	
}
#endif /* HAVE_ASINH */

/* acosh(x)
 * Method :
 *      Based on
 *	      acosh(x) = log [ x + sqrt(x*x-1) ]
 *      we have
 *	      acosh(x) := log(x)+ln2, if x is large; else
 *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 *
 * Special cases:
 *      acosh(x) is NaN with signal if x<1.
 *      acosh(NaN) is NaN without signal.
 */

#ifndef HAVE_ACOSH
double
acosh(double x)
{
	if (Py_IS_NAN(x)) {
		return x+x;
	}
	if (x < 1.) {			/* x < 1;  return a signaling NaN */
		errno = EDOM;
#ifdef Py_NAN
		return Py_NAN;
#else
		return (x-x)/(x-x);
#endif
	}
	else if (x >= two_pow_p28) {	/* x > 2**28 */
		if (Py_IS_INFINITY(x)) {
			return x+x;
		} else {
			return log(x)+ln2;	/* acosh(huge)=log(2x) */
		}
	}
	else if (x == 1.) {
		return 0.0;			/* acosh(1) = 0 */
	}
	else if (x > 2.) {			/* 2 < x < 2**28 */
		double t = x*x;
		return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
	}
	else {				/* 1 < x <= 2 */
		double t = x - 1.0;
		return log1p(t + sqrt(2.0*t + t*t));
	}
}
#endif /* HAVE_ACOSH */

/* atanh(x)
 * Method :
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 *    2.For x>=0.5
 *		  1	      2x			  x
 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 *		  2	     1 - x		      1 - x
 *
 *      For x<0.5
 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 *
 * Special cases:
 *      atanh(x) is NaN if |x| >= 1 with signal;
 *      atanh(NaN) is that NaN with no signal;
 *
 */

#ifndef HAVE_ATANH
double
atanh(double x)
{
	double absx;
	double t;

	if (Py_IS_NAN(x)) {
		return x+x;
	}
	absx = fabs(x);
	if (absx >= 1.) {		/* |x| >= 1 */
		errno = EDOM;
#ifdef Py_NAN
		return Py_NAN;
#else
		return x/zero;
#endif
	}
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
		return x;
	}
	if (absx < 0.5) {		/* |x| < 0.5 */
		t = absx+absx;
		t = 0.5 * log1p(t + t*absx / (1.0 - absx));
	} 
	else {				/* 0.5 <= |x| <= 1.0 */
		t = 0.5 * log1p((absx + absx) / (1.0 - absx));
	}
	return copysign(t, x);
}
#endif /* HAVE_ATANH */