summaryrefslogtreecommitdiffstats
path: root/doc/src
diff options
context:
space:
mode:
authorEskil Abrahamsen Blomfeldt <eblomfel@trolltech.com>2009-05-12 12:32:04 (GMT)
committerEskil Abrahamsen Blomfeldt <eblomfel@trolltech.com>2009-05-12 12:40:08 (GMT)
commitc6add575d50ee30b19580fc2c1ebda5316a2f51b (patch)
treed54a9dbfe72a8e5c2daa1e22be86592e7669fa9f /doc/src
parent5d6f17acc0995558f919ea4c2e974530df7b8a08 (diff)
downloadQt-c6add575d50ee30b19580fc2c1ebda5316a2f51b.zip
Qt-c6add575d50ee30b19580fc2c1ebda5316a2f51b.tar.gz
Qt-c6add575d50ee30b19580fc2c1ebda5316a2f51b.tar.bz2
doc: Add documentation for animations, restore policy and polished signal
Diffstat (limited to 'doc/src')
-rw-r--r--doc/src/statemachine.qdoc182
1 files changed, 182 insertions, 0 deletions
diff --git a/doc/src/statemachine.qdoc b/doc/src/statemachine.qdoc
index 18c5307..27bd4f8 100644
--- a/doc/src/statemachine.qdoc
+++ b/doc/src/statemachine.qdoc
@@ -425,4 +425,186 @@
machine.postEvent(new StringEvent("Hello"));
machine.postEvent(new StringEvent("world"));
\endcode
+
+ \section1 Using Restore Policy To Automatically Restore Properties
+
+ In some state machines it can be useful to focus the attention on assigning properties in states,
+ not on restoring them when the state is no longer active. If you know that a property should
+ always be restored to its initial value when the machine enters a state that does not explicitly
+ give the property a value, you can set the global restore policy to
+ QStateMachine::RestoreProperties.
+
+ \code
+ QStateMachine machine;
+ machine.setGlobalRestorePolicy(QStateMachine::RestoreProperties);
+ \endcode
+
+ When this restore policy is set, the machine will automatically restore all properties. If it
+ enters a state where a given property is not set, it will first search the hierarchy of ancestors
+ to see if the property is defined there. If it is, the property will be restored to the value
+ defined by the closest ancestor. If not, it will be restored to its initial value (i.e. the
+ value of the property before any property assignments in states were executed.)
+
+ Take the following code:
+ \code
+ QStateMachine machine;
+ machine.setGlobalRestorePolicy(QStateMachine::RestoreProperties);
+
+ QState *s1 = new QState();
+ s1->assignProperty(object, "fooBar", 1.0);
+ machine.addState(s1);
+ machine.setInitialState(s1);
+
+ QState *s2 = new QState();
+ machine.addState(s2);
+ \endcode
+
+ Lets say the property \c fooBar is 0.0 when the machine starts. When the machine is in state
+ \c s1, the property will be 1.0, since the state explicitly assigns this value to it. When the
+ machine is in state \c s2, no value is explicitly defined for the property, so it will implicitly
+ be restored to 0.0.
+
+ If we are using nested states, the parent defines a value for the property which is inherited by
+ all descendants that do not explicitly assign a value to the property.
+ \code
+ QStateMachine machine;
+ machine.setGlobalRestorePolicy(QStateMachine::RestoreProperties);
+
+ QState *s1 = new QState();
+ s1->assignProperty(object, "fooBar", 1.0);
+ machine.addState(s1);
+ machine.setInitialState(s1);
+
+ QState *s2 = new QState(s1);
+ s2->assignProperty(object, "fooBar", 2.0);
+ s1->setInitialState(s2);
+
+ QState *s3 = new QState(s1);
+ \endcode
+
+ Here \c s1 has two children: \c s2 and \c s3. When \c s2 is entered, the property \c fooBar
+ will have the value 2.0, since this is explicitly defined for the state. When the machine is in
+ state \c s3, no value is defined for the state, but \c s1 defines the property to be 1.0, so this
+ is the value that will be assigned to \c fooBar.
+
+ \section1 Animating Property Assignments
+
+ The State Machine API connects with the Animation API in Qt to allow automatically animating
+ properties as they are assigned in states.
+
+ Say we have the following code:
+ \code
+ QState *s1 = new QState();
+ QState *s2 = new QState();
+
+ s1->assignProperty(button, "geometry", QRectF(0, 0, 50, 50));
+ s2->assignProperty(button, "geometry", QRectF(0, 0, 100, 100));
+
+ s1->addTransition(button, SIGNAL(clicked()), s2);
+ \endcode
+
+ Here we define two states of a user interface. In \c s1 the \c button is small, and in \c s2
+ it is bigger. If we click the button to transition from \c s1 to \c s2, the geometry of the button
+ will be set immediately when a given state has been entered. If we want the transition to be
+ smooth, however, all we need to do is make a QPropertyAnimation and add this to the transition
+ object.
+
+ \code
+ QState *s1 = new QState();
+ QState *s2 = new QState();
+
+ s1->assignProperty(button, "geometry", QRectF(0, 0, 50, 50));
+ s2->assignProperty(button, "geometry", QRectF(0, 0, 100, 100));
+
+ QSignalTransition *transition = s1->addTransition(button, SIGNAL(clicked()), s2);
+ transition->addAnimation(new QPropertyAnimation(button, "geometry"));
+ \endcode
+
+ Adding an animation for the property in question means that the property assignment will no
+ longer take immediate effect when the state has been entered. Instead, the animation will start
+ playing when the state has been entered and smoothly animate the property assignment. Since we
+ do not set the start value or end value of the animation, these will be set implicitly. The
+ start value of the animation will be the property's current value when the animation starts, and
+ the end value will be set based on the property assignments defined for the state.
+
+ If the global restore policy of the state machine is set to QStateMachine::RestoreProperties,
+ it is possible to also add animations for the property restorations.
+
+ \section1 Detecting That All Properties Have Been Set In A State
+
+ When animations are used to assign properties, a state no longer defines the exact values that a
+ property will have when the machine is in the given state. While the animation is running, the
+ property can potentially have any value, depending on the animation.
+
+ In some cases, it can be useful to be able to detect when the property has actually been assigned
+ the value defined by a state. For this, we can use the state's polished() signal.
+ \code
+ QState *s1 = new QState();
+ s1->assignProperty(button, "geometry", QRectF(0, 0, 50, 50));
+
+ QState *s2 = new QState();
+
+ s1->addTransition(s1, SIGNAL(polished()), s2);
+ \endcode
+
+ The machine will be in state \c s1 until the \c geometry property has been set. Then it will
+ immediately transition into \c s2. If the transition into \c s1 has an animation for the \c
+ geometry property, then the machine will stay in \c s1 until the animation has finished. If there
+ is no animation, it will simply set the property and immediately enter state \c s2.
+
+ Either way, when the machine is in state \c s2, the property \c geometry has been assigned the
+ defined value.
+
+ If the global restore policy is set to QStateMachine::RestoreProperties, the state will not emit
+ the polished() signal until these have been executed as well.
+
+ \section1 What happens if a state is exited before the animation has finished
+
+ If a state has property assignments, and the transition into the state has animations for the
+ properties, the state can potentially be exited before the properties have been assigned to the
+ values defines by the state. This is true in particular when there are transitions out from the
+ state that do not depend on the state being polished, as described in the previous section.
+
+ The State Machine API guarantees that a property assigned by the state machine either:
+ \list
+ \o Has a value explicitly assigned to the property.
+ \o Is currently being animated into a value explicitly assigned to the property.
+ \endlist
+
+ When a state is exited prior to the animation finishing, the behavior of the state machine depends
+ on the target state of the transition. If the target state explicitly assigns a value to the
+ property, no additional action will be taken. The property will be assigned the value defined by
+ the target state.
+
+ If the target state does not assign any value to the property, there are two
+ options: By default, the property will be assigned the value defined by the state it is leaving
+ (the value it would have been assigned if the animation had been permitted to finish playing.) If
+ a global restore policy is set, however, this will take precedence, and the property will be
+ restored as usual.
+
+ \section1 Default Animations
+
+ As described earlier, you can add animations to transitions to make sure property assignments
+ in the target state are animated. If you want a specific animation to be used for a given property
+ regardless of which transition is taken, you can add it as a default animation to the state
+ machine. This is in particular useful when the properties assigned (or restored) by specific
+ states is not known when the machine is constructed.
+
+ \code
+ QState *s1 = new QState();
+ QState *s2 = new QState();
+
+ s2->assignProperty(object, "fooBar", 2.0);
+ s1->addTransition(s2);
+
+ QStateMachine machine;
+ machine.setInitialState(s1);
+ machine.addDefaultAnimation(new QPropertyAnimation(object, "fooBar"));
+ \endcode
+
+ When the machine is in state \c s2, the machine will play the default animation for the
+ property \c fooBar since this property is assigned by \c s2.
+
+ Note that animations explicitly set on transitions will take precedence over any default
+ animation for the given property.
*/