summaryrefslogtreecommitdiffstats
path: root/doc/src
diff options
context:
space:
mode:
authorSimon Hausmann <simon.hausmann@nokia.com>2009-11-23 11:02:50 (GMT)
committerSimon Hausmann <simon.hausmann@nokia.com>2009-11-23 11:02:56 (GMT)
commit9619f5e27cbed9b45188112c934733e9f069b8ca (patch)
tree3425eb3c78dd5ea13df579d4ee34dc4c2801ffd4 /doc/src
parent8759a330bd13174d79087fd16e4529ac44e4516f (diff)
parent01fec63b7b8f8cae94f92fca1d806fe8c6156299 (diff)
downloadQt-9619f5e27cbed9b45188112c934733e9f069b8ca.zip
Qt-9619f5e27cbed9b45188112c934733e9f069b8ca.tar.gz
Qt-9619f5e27cbed9b45188112c934733e9f069b8ca.tar.bz2
Merge commit '01fec63b7b8f8cae94f92fca1d806fe8c6156299' of oslo-staging-1 into 4.6
Diffstat (limited to 'doc/src')
-rw-r--r--doc/src/deployment/deployment.qdoc8
-rw-r--r--doc/src/getting-started/examples.qdoc1
-rw-r--r--doc/src/getting-started/known-issues.qdoc5
-rw-r--r--doc/src/howtos/HWacceleration.qdoc100
-rw-r--r--doc/src/platforms/emb-HwAcc-LinuxEmbedded.qdoc62
-rw-r--r--doc/src/platforms/emb-HwAcc-WinCE.qdoc1
-rw-r--r--doc/src/platforms/emb-hardwareacceleration.qdocinc269
7 files changed, 301 insertions, 145 deletions
diff --git a/doc/src/deployment/deployment.qdoc b/doc/src/deployment/deployment.qdoc
index ea841f9..6a1760e 100644
--- a/doc/src/deployment/deployment.qdoc
+++ b/doc/src/deployment/deployment.qdoc
@@ -1491,7 +1491,13 @@
\o Accessibility for Qt3Support is deployed if the application uses the Qt3Support module.
\endlist
- macdeployqt supports the following options:
+ \note If you want a 3rd party library to be included in your
+ application bundle, then you must add an excplicit lib entry for
+ that library to your application's .pro file. Otherwise, the
+ \c macdeployqt tool will not copy the 3rd party .dylib into the
+ bundle.
+
+ \c macdeployqt supports the following options:
\list
\o -no-plugins: Skip plugin deployment
\o -dmg : Create a .dmg disk image
diff --git a/doc/src/getting-started/examples.qdoc b/doc/src/getting-started/examples.qdoc
index b5dc03d..e951804 100644
--- a/doc/src/getting-started/examples.qdoc
+++ b/doc/src/getting-started/examples.qdoc
@@ -794,6 +794,7 @@
\o \l{opengl/framebufferobject2}{Framebuffer Object 2}
\o \l{opengl/grabber}{Grabber}
\o \l{opengl/hellogl}{Hello GL}\raisedaster
+ \o \l{opengl/hellogl_es}{Hello GL - ported to Windows CE}\raisedaster
\o \l{opengl/overpainting}{Overpainting}\raisedaster
\o \l{opengl/pbuffers}{Pixel Buffers}
\o \l{opengl/pbuffers2}{Pixel Buffers 2}
diff --git a/doc/src/getting-started/known-issues.qdoc b/doc/src/getting-started/known-issues.qdoc
index 3c92257..2752676 100644
--- a/doc/src/getting-started/known-issues.qdoc
+++ b/doc/src/getting-started/known-issues.qdoc
@@ -122,6 +122,11 @@
\o A bug in the Firebird database can cause an application to crash when
\c{fbembed.dll} is unloaded. The bug is fixed in version 2.5.
+ \o On Windows 7, resizing windows is slower than on Vista/Xp. This is because
+ the gesture initialization process (required for native gesture support)
+ currently calls winId() on widgets, which causes whole widget hierarchies
+ to use native window handles. This slows down resizing.
+
\endlist
\section2 Mac OS X
diff --git a/doc/src/howtos/HWacceleration.qdoc b/doc/src/howtos/HWacceleration.qdoc
new file mode 100644
index 0000000..80db740
--- /dev/null
+++ b/doc/src/howtos/HWacceleration.qdoc
@@ -0,0 +1,100 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the documentation of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+/*!
+ \page HWAcc_rendering.html
+ \title Using hardware acceleration on embedded platforms.
+
+ \ingroup best-practices
+
+ \section1 Abstract
+ This document describes how to use hardware acceleration for fast
+ rendering on embedded platforms supported by Qt. In short, it explains
+ how the graphics pipeline works. Since there might be differences to
+ how the APIs are being used on different embedded platforms, a table
+ links to documentation dedicated to platform specific documentation
+ for each supported hardware acceleration API.
+
+ \input platforms/emb-hardwareacceleration.qdocinc
+
+ \section1 Supported platforms
+ Since there might be differences to how the APIs are being used on
+ the different embedded platforms, this table provides you with links to
+ pages dedicated to platform specific documentation for each
+ supported hardware acceleration API. Click the API link for the
+ platform to go the correct documentation.
+
+ \table
+ \header
+ \o Operating System
+ \o {3,1} Hardware Acceleration Platform
+ \row
+ \o \bold {Windows CE}
+ \o \l {Qt for Windows CE and OpenGL ES}{OpenGL ES}
+ \o \l {Qt for Windows CE and OpenVG}{OpenVG}
+ \o
+ \row
+ \o \bold {Embedded Linux}
+ \o \l {Qt for Embedded Linux and OpenGL}{OpenGL ES}
+ \o \l {Qt for Embedded Linux and OpenVG}{OpenVG}
+ \o \l {Qt for Embedded Linux and DirectFB}{DirectFB}
+ \row
+ \o \bold {Symbian Platform}
+ \o {3,1} \e {There are currently no support for hardware
+ acceleration.}
+ \endtable
+\omit
+ \section1 Examples using hardware acceleration on embedded platforms.
+
+ \table
+ \header
+ \o Embedded Platform
+ \o Example
+ \row
+ \o Windows CE
+ \row
+ \o Embedded Linux
+ \endtable
+\endomit
+
+
+
+*/
diff --git a/doc/src/platforms/emb-HwAcc-LinuxEmbedded.qdoc b/doc/src/platforms/emb-HwAcc-LinuxEmbedded.qdoc
index 9c18d87..a9bd167 100644
--- a/doc/src/platforms/emb-HwAcc-LinuxEmbedded.qdoc
+++ b/doc/src/platforms/emb-HwAcc-LinuxEmbedded.qdoc
@@ -49,23 +49,57 @@
\ingroup qt-embedded-linux
- \input platforms/emb-hardwareacceleration.qdocinc
+ \input platforms/emb-hardwareacceleration.qdocinc
-\section1 Supported Hardware Accelerated Graphics APIs
+ \section1 Windowing on Embedded Linux with Hardware Accelerated Graphics
-This list shows which Hardware Accelerated Graphics APIs currently
-supported by Qt.
+ Qt for Embedded Linux includes its own windowing system, QWS. QWS was
+ designed in 1999, well before graphics acceleration was available for
+ embedded devices. It does a great job providing a lightweight window
+ manager including all the expected functionality such as arbitrary
+ windows that can be moved, resized, minimized, etc. Getting QWS to work
+ with GPUs is very challenging, particularly with OpenGL and OpenVG
+ because there is no standard way in Linux to share textures across
+ processes. Some silicon vendors provide private APIs to allow texture
+ sharing, others do not. These limitations are documented under the
+ sections describing each type of accelerated hardware APIs. The simplest
+ most generic support for accelerated graphics is a full screen single
+ process single window.
- \table
- \header
- \o Supported Hardware Accelerated Graphics APIs
- \row
- \o \l {Qt for Embedded Linux and OpenGL}{OpenGL ES}
- \row
- \o \l {Qt for Embedded Linux and OpenVG}{OpenVG}
- \row
- \o \l {Qt for Embedded Linux and DirectFB}{DirectFB}
- \endtable
+ \section2 General options
+ \list
+ \o QWS, not accelerated, allows arbitrary windowing with multiple
+ processes drawing on the screen.
+ \o X11 with an accelerated X11 driver provided by the silicon
+ vendor. Like QWS, this allows arbitrary windows with multiple
+ processes drawing on the screen. Our experience is that there is
+ some overhead from X11 which will adversely affect framerates.
+ Additionally, our experience is that the drivers from silicon
+ vendors are still maturing.
+ \o Full screen single process single window. This will always work.
+ Some additional capabilities are available and are documented in
+ the acceleration specific API sections.
+ \endlist
+
+ \section1 Supported Hardware Accelerated Graphics APIs
+
+ This table shows which Hardware Accelerated Graphics APIs currently
+ supported by Qt.
+
+ \table
+ \header
+ \o Supported APIs
+ \o API Version
+ \row
+ \o \l {Qt for Embedded Linux and OpenGL}{OpenGL ES}
+ \o 1.x and 2.x
+ \row
+ \o \l {Qt for Embedded Linux and OpenVG}{OpenVG }
+ \o 1.1
+ \row
+ \o \l {Qt for Embedded Linux and DirectFB}{DirectFB}
+ \o 2.0
+ \endtable
*/
diff --git a/doc/src/platforms/emb-HwAcc-WinCE.qdoc b/doc/src/platforms/emb-HwAcc-WinCE.qdoc
index 66b6948..b7789f1 100644
--- a/doc/src/platforms/emb-HwAcc-WinCE.qdoc
+++ b/doc/src/platforms/emb-HwAcc-WinCE.qdoc
@@ -47,7 +47,6 @@
\title Qt for Windows CE Hardware Accelerated Graphics
\ingroup qtce
-
\input platforms/emb-hardwareacceleration.qdocinc
\section1 Supported Hardware Accelerated Graphics APIs
diff --git a/doc/src/platforms/emb-hardwareacceleration.qdocinc b/doc/src/platforms/emb-hardwareacceleration.qdocinc
index 3851628..fb00e09 100644
--- a/doc/src/platforms/emb-hardwareacceleration.qdocinc
+++ b/doc/src/platforms/emb-hardwareacceleration.qdocinc
@@ -1,129 +1,140 @@
-
-\section1 Hardware Acceleration
-
-When designing applications for embedded devices the choice often stands
-between graphics effects and performance. On most devices, you cannot have
-both simply because the hardware needed for such operations just is not
-there. Still a growing number of devices use hardware dedicated to graphics
-operations to improve performance.
-
-Using graphics acceleration hardware is more power efficient than using the
-CPU. The reason for this is that the CPU might require a clock speed that
-is up to 20 times higher than the GPU, achieving the same results. E.g. a
-typical hardware accelerated mobile graphics unit can rasterize one or two
-bilinear texture fetches in one cycle, while a software implementation
-takes easily more than 20 cycles. Graphics hardware generally have a much
-lower clock speed and memory bandwidth and different level of acceleration
-than desktop GPUs. One example is that many GPUs leave out transformation
-and lighting from the graphics pipeline and only implements rasterization.
-
-So the key to write good applications for devices is therefore to limit the
-wow factor down to what the target hardware can handle, and to take
-advantage of any graphics dedicated hardware. Qt provides several ways to
-both render advanced effects on the screen and speed up your application
-using hardware accelerated graphics.
-
-\tableofcontents
-
-\section2 Qt for Embedded Graphics pipeline
-
-Qt uses QPainter for all graphics operations. By using the same API
-regardless of platform, the code can be reused on different devices.
-QPainter use different paint engines implemented in the QPaintEngine API to
-do the actual painting.
-
-The QPaintEngine API provides paint engines for each window system and
-painting framework supported by Qt. In regards to Qt for Embedded, this
-also includes implementations for OpenGL ES versions 1.1 and 2.0, as well
-as OpenVG and DirectFB(Embedded Linux only).
-
-By using one of these paint engines, you will be able to improve the
-graphics performance of your Qt application. However, if the graphics
-operations used are not supported, this might as well be a trap, slowing
-down your application significantly. This all depends on what kind of
-graphics operations that are supported by the target devices hardware
-configuration.
-
-\image platformHWAcc.png
-
-The paint engine will direct all graphics operations supported by the
-devices hardware to the GPU, and from there they are sent to the
-framebuffer. Unsupported graphics operations falls back to the
-QRasterPaintEngine and are handled by the CPU before sent to the
-framebuffer. In the end, the operating system sends the paint updates off
-to the screen/display. The fallback operation is quite expensive in regards
-to memory consumption, and should be avoided.
-
-\section2 Hardware configuration requirements
-
-Before implementing any application using hardware acceleration, it is wise
-to get an overview of what kind of hardware accelerated graphics operations
-that are available for the target device.
-
-\note On devices with no hardware acceleration, Qt will use
-QRasterPaintEngine, which handles the acceleration using software. On
-devices supporting OpenGL ES, OpenVG or DirectFB(not supported by Windows
-CE), Qt will use the
-respective paint engines to accelerate painting. However, hardware
-configurations that only support a limited set of hardware acceleration
-features, might slow the application graphics down rather than speeding it
-up when using unsupported operations that must fall back to the raster
-engine.
-
-\section3 Different architectures
-
-Based on the architecture used in a device we can make a recommendation on
-which hardware acceleration techniques to use. There are mainly two
-different architectures on embedded devices. These are devices with a
-Unified Memory Architecture (UMA), and devices with dedicated graphics
-memory. Generally, high-end devices will have dedicated graphics memory.
-Low-end devices will just use system memory, sometimes reserving a memory
-region and sometimes not.
-
-In addition to this, we can categorize the devices into five types based on
-the different graphics operations supported by their hardware.
-
-\list 1
- \o No support for graphics acceleration.
- \o Support for blitter and alpha blending.
- \o Support for path based 2D vector graphics.
- \o Support for fixed function 3D graphics.
- \o Support for programmable 3D graphics.
-\endlist
-
-Based on these characteristics the table below recommends which paint
-engines to use with the different types of hardware configurations.
-
-\section3 Recommended use of hardware acceleration based on hardware
-
- \table
- \header
- \o Type
- \o UMA
- \o Non-UMA
- \row
- \o \bold {None}
- \o Qt Raster Engine
- \o Qt Raster Engine
- \row
- \o \bold {Blitter}
- \o DirectFB
- \o DirectFB
- \row
- \o \bold {2D Vector}
- \o OpenVG
- \o OpenVG
- \row
- \o \bold {Fixed 3D}
- \o OpenGL (ES) 1.x
- \o OpenGL (ES) 1.x
- \row
- \o \bold {Programmable 3D}
- \o OpenGL (ES) 2.x
- \o OpenGL (ES) 2.x
-
- \endtable
-
-\note Since the DirectFB API is quite primitive, the raster paint engine
-handles most of the operations.
-\note Blitter and Alpha blending is currently not supported on Windows CE.
+ \section1 Hardware Acceleration
+
+ When designing applications for embedded devices there is often a
+ compromise between graphics effects and performance. On most
+ devices, you cannot have both simply because the hardware needed
+ for such operations just is not there. With a growing number of
+ devices that use hardware dedicated to graphics operations there is
+ less need to compromise.
+
+ In addition to enabling dynamic graphics effects, there are two
+ other benefits to using graphics acceleration. One is that graphics
+ acceleration hardware is more power efficient than using the CPU.
+ The reason for this is that the CPU might require a clock speed
+ that is up to 20 times higher than the GPU, achieving the same
+ results. E.g. a typical hardware accelerated mobile graphics unit
+ can rasterize one or two bilinear texture fetches in one cycle,
+ while a software implementation takes easily more than 20 cycles.
+ Typical \e {System-on-a-chip} (SoC) graphics hardware generally have
+ a much lower clock speed and memory bandwidth, and different level
+ of acceleration than desktop GPUs. One example is that many GPUs
+ leave out transformation and lighting from the graphics pipeline
+ and only implements rasterization.
+
+ Another reason to use a GPU is to offload the main CPU, either for
+ power saving or to perform other operations in parallel. Often
+ drawing speed with a GPU is not that much faster than a CPU but
+ the clear benefit of using the GPU is to free up the CPU to perform
+ other tasks which can be used to create a more responsive use
+ experience.
+
+ The key to writing good applications for devices is therefore to
+ limit the wow factor down to what the target hardware can handle,
+ and to take advantage of any graphics dedicated hardware. Qt
+ provides several ways to both render advanced effects on the screen
+ and speed up your application using hardware accelerated graphics.
+
+ \tableofcontents
+
+ \section2 Qt for Embedded Graphics pipeline
+
+ Qt uses QPainter for all graphics operations. By using the same API
+ regardless of platform, the code can be reused on different devices.
+ QPainter use different paint engines implemented in the QPaintEngine API to
+ do the actual painting.
+
+ The QPaintEngine API provides paint engines for each window system and
+ painting framework supported by Qt. In regards to Qt for Embedded, this
+ also includes implementations for OpenGL ES versions 1.1 and 2.0, as well
+ as OpenVG and DirectFB(Embedded Linux only).
+
+ By using one of these paint engines, you will be able to improve the
+ graphics performance of your Qt application. However, if the graphics
+ operations used are not supported, this might as well be a trap, slowing
+ down your application significantly. This all depends on what kind of
+ graphics operations that are supported by the target devices hardware
+ configuration.
+
+ \image platformHWAcc.png
+
+ The paint engine will direct all graphics operations supported by the
+ devices hardware to the GPU, and from there they are sent to the
+ framebuffer. Unsupported graphics operations falls back to the
+ QRasterPaintEngine and are handled by the CPU before sent to the
+ framebuffer. In the end, the operating system sends the paint updates off
+ to the screen/display. The fallback operation is quite expensive in regards
+ to memory consumption, and should be avoided.
+
+ \section2 Hardware configuration requirements
+
+ Before implementing any application using hardware acceleration, it is wise
+ to get an overview of what kind of hardware accelerated graphics operations
+ that are available for the target device.
+
+ \note On devices with no hardware acceleration, Qt will use
+ QRasterPaintEngine, which handles the acceleration using software. On
+ devices supporting OpenGL ES, OpenVG or DirectFB(not supported by Windows
+ CE), Qt will use the
+ respective paint engines to accelerate painting. However, hardware
+ configurations that only support a limited set of hardware acceleration
+ features, might slow the application graphics down rather than speeding it
+ up when using unsupported operations that must fall back to the raster
+ engine.
+
+ \section3 Different architectures
+
+ Based on the architecture used in a device we can make a recommendation on
+ which hardware acceleration techniques to use. There are mainly two
+ different architectures on embedded devices. These are devices with a
+ Unified Memory Architecture (UMA), and devices with dedicated graphics
+ memory. Generally, high-end devices will have dedicated graphics memory.
+ Low-end devices will just use system memory, sometimes reserving a memory
+ region and sometimes not.
+
+ In addition to this, we can categorize the devices into five types based on
+ the different graphics operations supported by their hardware.
+
+ \list 1
+ \o No support for graphics acceleration.
+ \o Support for blitter and alpha blending.
+ \o Support for path based 2D vector graphics.
+ \o Support for fixed function 3D graphics.
+ \o Support for programmable 3D graphics.
+ \endlist
+
+ Based on these characteristics the table below recommends which paint
+ engines to use with the different types of hardware configurations.
+
+ \section3 Recommended use of hardware acceleration based on hardware
+
+ \table
+ \header
+ \o Type
+ \o UMA
+ \o Non-UMA
+ \row
+ \o \bold {None}
+ \o Qt Raster Engine
+ \o Qt Raster Engine
+ \row
+ \o \bold {Blitter}
+ \o DirectFB
+ \o DirectFB
+ \row
+ \o \bold {2D Vector}
+ \o OpenVG
+ \o OpenVG
+ \row
+ \o \bold {Fixed 3D}
+ \o OpenGL (ES) 1.x
+ \o OpenGL (ES) 1.x
+ \row
+ \o \bold {Programmable 3D}
+ \o OpenGL (ES) 2.x
+ \o OpenGL (ES) 2.x
+ \endtable
+
+ \note Since the DirectFB API is quite primitive, the raster paint engine
+ handles most of the operations.
+
+ \note Blitter and Alpha blending is currently not supported on Windows CE.