summaryrefslogtreecommitdiffstats
path: root/src/corelib/arch/symbian
diff options
context:
space:
mode:
authorShane Kearns <shane.kearns@sosco.com>2009-10-28 09:41:17 (GMT)
committermread <qt-info@nokia.com>2010-09-30 14:48:22 (GMT)
commit6dc208237977886056622b307941900658288e13 (patch)
treed1c8c6fa652b03a9cae45b7327f658ef26151146 /src/corelib/arch/symbian
parent6d5309c2fbdbf15948b430de103f393c5af5b7cd (diff)
downloadQt-6dc208237977886056622b307941900658288e13.zip
Qt-6dc208237977886056622b307941900658288e13.tar.gz
Qt-6dc208237977886056622b307941900658288e13.tar.bz2
Add the new allocator to corelib
New export in corelib that is called from the qtmain wrapper to setup the thread heap. This allows 7k of code to be shared, and makes it easier to disable or upgrade the allocator in future releases Task-number: QTBUG-4895 Enable new allocator by default Rename of headers as _p.h to avoid syncqt adding them to applications move inline functions from .inl -> .h, document & rename macros remove #if 0 from the dla header, implement getpagesize properly squashed after sanitisation Task-number: QT-3967 Reviewed-by: mread
Diffstat (limited to 'src/corelib/arch/symbian')
-rw-r--r--src/corelib/arch/symbian/arch.pri7
-rw-r--r--src/corelib/arch/symbian/dla_p.h1060
-rw-r--r--src/corelib/arch/symbian/newallocator.cpp2898
-rw-r--r--src/corelib/arch/symbian/newallocator_p.h336
4 files changed, 4300 insertions, 1 deletions
diff --git a/src/corelib/arch/symbian/arch.pri b/src/corelib/arch/symbian/arch.pri
index 3ef1c9e..0a1b9a6 100644
--- a/src/corelib/arch/symbian/arch.pri
+++ b/src/corelib/arch/symbian/arch.pri
@@ -2,4 +2,9 @@
# Symbian architecture
#
SOURCES += $$QT_ARCH_CPP/qatomic_symbian.cpp \
- $$QT_ARCH_CPP/../armv6/qatomic_generic_armv6.cpp
+ $$QT_ARCH_CPP/newallocator.cpp \
+ $$QT_ARCH_CPP/../generic/qatomic_generic_armv6.cpp
+
+HEADERS += $$QT_ARCH_CPP/dla_p.h \
+ $$QT_ARCH_CPP/newallocator_p.h \
+ $$QT_ARCH_CPP/newallocator.inl
diff --git a/src/corelib/arch/symbian/dla_p.h b/src/corelib/arch/symbian/dla_p.h
new file mode 100644
index 0000000..5bffcf5
--- /dev/null
+++ b/src/corelib/arch/symbian/dla_p.h
@@ -0,0 +1,1060 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the Symbian application wrapper of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+#ifndef __DLA__
+#define __DLA__
+
+#define DEFAULT_TRIM_THRESHOLD ((size_t)4U * (size_t)1024U)
+
+#define __SYMBIAN__
+#define MSPACES 0
+#define HAVE_MORECORE 1
+#define MORECORE_CONTIGUOUS 1
+#define HAVE_MMAP 0
+#define HAVE_MREMAP 0
+#define DEFAULT_GRANULARITY (4096U)
+#define FOOTERS 0
+#define USE_LOCKS 0
+#define INSECURE 1
+#define NO_MALLINFO 0
+#define HAVE_GETPAGESIZE
+
+#define LACKS_SYS_TYPES_H
+#ifndef LACKS_SYS_TYPES_H
+#include <sys/types.h> /* For size_t */
+#else
+#ifndef _SIZE_T_DECLARED
+typedef unsigned int size_t;
+#define _SIZE_T_DECLARED
+#endif
+#endif /* LACKS_SYS_TYPES_H */
+
+/* The maximum possible size_t value has all bits set */
+#define MAX_SIZE_T (~(size_t)0)
+
+#ifndef ONLY_MSPACES
+ #define ONLY_MSPACES 0
+#endif /* ONLY_MSPACES */
+
+#ifndef MSPACES
+ #if ONLY_MSPACES
+ #define MSPACES 1
+ #else /* ONLY_MSPACES */
+ #define MSPACES 0
+ #endif /* ONLY_MSPACES */
+#endif /* MSPACES */
+
+#ifndef MALLOC_ALIGNMENT
+ #define MALLOC_ALIGNMENT ((size_t)8U)
+#endif /* MALLOC_ALIGNMENT */
+
+#ifndef FOOTERS
+ #define FOOTERS 0
+#endif /* FOOTERS */
+
+#ifndef ABORT
+// #define ABORT abort()
+ #define ABORT User::Invariant()// redefined so euser isn't dependant on oe
+#endif /* ABORT */
+
+#ifndef ABORT_ON_ASSERT_FAILURE
+ #define ABORT_ON_ASSERT_FAILURE 1
+#endif /* ABORT_ON_ASSERT_FAILURE */
+
+#ifndef PROCEED_ON_ERROR
+ #define PROCEED_ON_ERROR 0
+#endif /* PROCEED_ON_ERROR */
+
+#ifndef USE_LOCKS
+ #define USE_LOCKS 0
+#endif /* USE_LOCKS */
+
+#ifndef INSECURE
+ #define INSECURE 0
+#endif /* INSECURE */
+
+#ifndef HAVE_MMAP
+ #define HAVE_MMAP 1
+#endif /* HAVE_MMAP */
+
+#ifndef MMAP_CLEARS
+ #define MMAP_CLEARS 1
+#endif /* MMAP_CLEARS */
+
+#ifndef HAVE_MREMAP
+ #ifdef linux
+ #define HAVE_MREMAP 1
+ #else /* linux */
+ #define HAVE_MREMAP 0
+ #endif /* linux */
+#endif /* HAVE_MREMAP */
+
+#ifndef MALLOC_FAILURE_ACTION
+ //#define MALLOC_FAILURE_ACTION errno = ENOMEM;
+ #define MALLOC_FAILURE_ACTION ;
+#endif /* MALLOC_FAILURE_ACTION */
+
+#ifndef HAVE_MORECORE
+ #if ONLY_MSPACES
+ #define HAVE_MORECORE 1 /*AMOD: has changed */
+ #else /* ONLY_MSPACES */
+ #define HAVE_MORECORE 1
+ #endif /* ONLY_MSPACES */
+#endif /* HAVE_MORECORE */
+
+#if !HAVE_MORECORE
+ #define MORECORE_CONTIGUOUS 0
+#else /* !HAVE_MORECORE */
+ #ifndef MORECORE
+ #define MORECORE DLAdjust
+ #endif /* MORECORE */
+ #ifndef MORECORE_CONTIGUOUS
+ #define MORECORE_CONTIGUOUS 0
+ #endif /* MORECORE_CONTIGUOUS */
+#endif /* !HAVE_MORECORE */
+
+#ifndef DEFAULT_GRANULARITY
+ #if MORECORE_CONTIGUOUS
+ #define DEFAULT_GRANULARITY 4096 /* 0 means to compute in init_mparams */
+ #else /* MORECORE_CONTIGUOUS */
+ #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
+ #endif /* MORECORE_CONTIGUOUS */
+#endif /* DEFAULT_GRANULARITY */
+
+#ifndef DEFAULT_TRIM_THRESHOLD
+ #ifndef MORECORE_CANNOT_TRIM
+ #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
+ #else /* MORECORE_CANNOT_TRIM */
+ #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
+ #endif /* MORECORE_CANNOT_TRIM */
+#endif /* DEFAULT_TRIM_THRESHOLD */
+
+#ifndef DEFAULT_MMAP_THRESHOLD
+ #if HAVE_MMAP
+ #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
+ #else /* HAVE_MMAP */
+ #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
+ #endif /* HAVE_MMAP */
+#endif /* DEFAULT_MMAP_THRESHOLD */
+
+#ifndef USE_BUILTIN_FFS
+ #define USE_BUILTIN_FFS 0
+#endif /* USE_BUILTIN_FFS */
+
+#ifndef USE_DEV_RANDOM
+ #define USE_DEV_RANDOM 0
+#endif /* USE_DEV_RANDOM */
+
+#ifndef NO_MALLINFO
+ #define NO_MALLINFO 0
+#endif /* NO_MALLINFO */
+#ifndef MALLINFO_FIELD_TYPE
+ #define MALLINFO_FIELD_TYPE size_t
+#endif /* MALLINFO_FIELD_TYPE */
+
+/*
+ mallopt tuning options. SVID/XPG defines four standard parameter
+ numbers for mallopt, normally defined in malloc.h. None of these
+ are used in this malloc, so setting them has no effect. But this
+ malloc does support the following options.
+*/
+
+#define M_TRIM_THRESHOLD (-1)
+#define M_GRANULARITY (-2)
+#define M_MMAP_THRESHOLD (-3)
+
+#if !NO_MALLINFO
+/*
+ This version of malloc supports the standard SVID/XPG mallinfo
+ routine that returns a struct containing usage properties and
+ statistics. It should work on any system that has a
+ /usr/include/malloc.h defining struct mallinfo. The main
+ declaration needed is the mallinfo struct that is returned (by-copy)
+ by mallinfo(). The malloinfo struct contains a bunch of fields that
+ are not even meaningful in this version of malloc. These fields are
+ are instead filled by mallinfo() with other numbers that might be of
+ interest.
+
+ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+ /usr/include/malloc.h file that includes a declaration of struct
+ mallinfo. If so, it is included; else a compliant version is
+ declared below. These must be precisely the same for mallinfo() to
+ work. The original SVID version of this struct, defined on most
+ systems with mallinfo, declares all fields as ints. But some others
+ define as unsigned long. If your system defines the fields using a
+ type of different width than listed here, you MUST #include your
+ system version and #define HAVE_USR_INCLUDE_MALLOC_H.
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+#ifdef HAVE_USR_INCLUDE_MALLOC_H
+#include "/usr/include/malloc.h"
+#else /* HAVE_USR_INCLUDE_MALLOC_H */
+
+struct mallinfo {
+ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
+ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
+ MALLINFO_FIELD_TYPE smblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
+ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
+ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
+ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
+ MALLINFO_FIELD_TYPE fordblks; /* total free space */
+ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
+ MALLINFO_FIELD_TYPE cellCount;/* Number of chunks allocated*/
+};
+
+#endif /* HAVE_USR_INCLUDE_MALLOC_H */
+#endif /* NO_MALLINFO */
+
+#if MSPACES
+ typedef void* mspace;
+#endif /* MSPACES */
+
+#ifndef __SYMBIAN__
+
+#include <stdio.h>/* for printing in malloc_stats */
+
+#ifndef LACKS_ERRNO_H
+ #include <errno.h> /* for MALLOC_FAILURE_ACTION */
+#endif /* LACKS_ERRNO_H */
+
+#if FOOTERS
+ #include <time.h> /* for magic initialization */
+#endif /* FOOTERS */
+
+#ifndef LACKS_STDLIB_H
+ #include <stdlib.h> /* for abort() */
+#endif /* LACKS_STDLIB_H */
+
+#ifdef DEBUG
+ #if ABORT_ON_ASSERT_FAILURE
+ #define assert(x) if(!(x)) ABORT
+ #else /* ABORT_ON_ASSERT_FAILURE */
+ #include <assert.h>
+ #endif /* ABORT_ON_ASSERT_FAILURE */
+#else /* DEBUG */
+ #define assert(x)
+#endif /* DEBUG */
+
+#ifndef LACKS_STRING_H
+ #include <string.h> /* for memset etc */
+#endif /* LACKS_STRING_H */
+
+#if USE_BUILTIN_FFS
+ #ifndef LACKS_STRINGS_H
+ #include <strings.h> /* for ffs */
+ #endif /* LACKS_STRINGS_H */
+#endif /* USE_BUILTIN_FFS */
+
+#if HAVE_MMAP
+ #ifndef LACKS_SYS_MMAN_H
+ #include <sys/mman.h> /* for mmap */
+ #endif /* LACKS_SYS_MMAN_H */
+ #ifndef LACKS_FCNTL_H
+ #include <fcntl.h>
+ #endif /* LACKS_FCNTL_H */
+#endif /* HAVE_MMAP */
+
+#if HAVE_MORECORE
+ #ifndef LACKS_UNISTD_H
+ #include <unistd.h> /* for sbrk */
+ extern void* sbrk(size_t);
+ #else /* LACKS_UNISTD_H */
+ #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+ extern void* sbrk(ptrdiff_t);
+ /*Amod sbrk is not defined in WIN32 need to check in symbian*/
+ #endif /* FreeBSD etc */
+ #endif /* LACKS_UNISTD_H */
+#endif /* HAVE_MORECORE */
+
+#endif
+
+#define assert(x) ASSERT(x)
+
+#ifndef WIN32
+ #ifndef malloc_getpagesize
+ #ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
+ #ifndef _SC_PAGE_SIZE
+ #define _SC_PAGE_SIZE _SC_PAGESIZE
+ #endif
+ #endif
+ #ifdef _SC_PAGE_SIZE
+ #define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
+ #else
+ #if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
+ extern size_t getpagesize();
+ #define malloc_getpagesize getpagesize()
+ #else
+ #ifdef WIN32 /* use supplied emulation of getpagesize */
+ #define malloc_getpagesize getpagesize()
+ #else
+ #ifndef LACKS_SYS_PARAM_H
+ #include <sys/param.h>
+ #endif
+ #ifdef EXEC_PAGESIZE
+ #define malloc_getpagesize EXEC_PAGESIZE
+ #else
+ #ifdef NBPG
+ #ifndef CLSIZE
+ #define malloc_getpagesize NBPG
+ #else
+ #define malloc_getpagesize (NBPG * CLSIZE)
+ #endif
+ #else
+ #ifdef NBPC
+ #define malloc_getpagesize NBPC
+ #else
+ #ifdef PAGESIZE
+ #define malloc_getpagesize PAGESIZE
+ #else /* just guess */
+ #define malloc_getpagesize ((size_t)4096U)
+ #endif
+ #endif
+ #endif
+ #endif
+ #endif
+ #endif
+ #endif
+ #endif
+#endif
+
+/* ------------------- size_t and alignment properties -------------------- */
+
+/* The byte and bit size of a size_t */
+#define SIZE_T_SIZE (sizeof(size_t))
+#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
+
+/* Some constants coerced to size_t */
+/* Annoying but necessary to avoid errors on some plaftorms */
+#define SIZE_T_ZERO ((size_t)0)
+#define SIZE_T_ONE ((size_t)1)
+#define SIZE_T_TWO ((size_t)2)
+#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
+#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
+#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
+#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
+
+/* The bit mask value corresponding to MALLOC_ALIGNMENT */
+#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
+
+/* True if address a has acceptable alignment */
+//#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
+#define is_aligned(A) (((unsigned int)((A)) & (CHUNK_ALIGN_MASK)) == 0)
+
+/* the number of bytes to offset an address to align it */
+#define align_offset(A)\
+ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
+ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
+
+/* -------------------------- MMAP preliminaries ------------------------- */
+
+/*
+ If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
+ checks to fail so compiler optimizer can delete code rather than
+ using so many "#if"s.
+*/
+
+
+/* MORECORE and MMAP must return MFAIL on failure */
+#define MFAIL ((void*)(MAX_SIZE_T))
+#define CMFAIL ((TUint8*)(MFAIL)) /* defined for convenience */
+
+#if !HAVE_MMAP
+ #define IS_MMAPPED_BIT (SIZE_T_ZERO)
+ #define USE_MMAP_BIT (SIZE_T_ZERO)
+ #define CALL_MMAP(s) MFAIL
+ #define CALL_MUNMAP(a, s) (-1)
+ #define DIRECT_MMAP(s) MFAIL
+#else /* !HAVE_MMAP */
+ #define IS_MMAPPED_BIT (SIZE_T_ONE)
+ #define USE_MMAP_BIT (SIZE_T_ONE)
+ #ifndef WIN32
+ #define CALL_MUNMAP(a, s) DLUMMAP((a),(s)) /*munmap((a), (s))*/
+ #define MMAP_PROT (PROT_READ|PROT_WRITE)
+ #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
+ #define MAP_ANONYMOUS MAP_ANON
+ #endif /* MAP_ANON */
+ #ifdef MAP_ANONYMOUS
+ #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
+ #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, (int)MMAP_FLAGS, -1, 0)
+ #else /* MAP_ANONYMOUS */
+ /*
+ Nearly all versions of mmap support MAP_ANONYMOUS, so the following
+ is unlikely to be needed, but is supplied just in case.
+ */
+ #define MMAP_FLAGS (MAP_PRIVATE)
+ //static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
+ #define CALL_MMAP(s) DLMMAP(s)
+ /*#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
+ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
+ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
+ */
+ #define CALL_REMAP(a, s, d) DLREMAP((a),(s),(d))
+ #endif /* MAP_ANONYMOUS */
+ #define DIRECT_MMAP(s) CALL_MMAP(s)
+ #else /* WIN32 */
+ #define CALL_MMAP(s) win32mmap(s)
+ #define CALL_MUNMAP(a, s) win32munmap((a), (s))
+ #define DIRECT_MMAP(s) win32direct_mmap(s)
+ #endif /* WIN32 */
+#endif /* HAVE_MMAP */
+
+#if HAVE_MMAP && HAVE_MREMAP
+ #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
+#else /* HAVE_MMAP && HAVE_MREMAP */
+ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
+#endif /* HAVE_MMAP && HAVE_MREMAP */
+
+#if HAVE_MORECORE
+ #define CALL_MORECORE(S) SetBrk(S)
+#else /* HAVE_MORECORE */
+ #define CALL_MORECORE(S) MFAIL
+#endif /* HAVE_MORECORE */
+
+/* mstate bit set if continguous morecore disabled or failed */
+#define USE_NONCONTIGUOUS_BIT (4U)
+
+/* segment bit set in create_mspace_with_base */
+#define EXTERN_BIT (8U)
+
+
+#if USE_LOCKS
+/*
+ When locks are defined, there are up to two global locks:
+ * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
+ MORECORE. In many cases sys_alloc requires two calls, that should
+ not be interleaved with calls by other threads. This does not
+ protect against direct calls to MORECORE by other threads not
+ using this lock, so there is still code to cope the best we can on
+ interference.
+ * magic_init_mutex ensures that mparams.magic and other
+ unique mparams values are initialized only once.
+*/
+ #ifndef WIN32
+ /* By default use posix locks */
+ #include <pthread.h>
+ #define MLOCK_T pthread_mutex_t
+ #define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
+ #define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
+ #define RELEASE_LOCK(l) pthread_mutex_unlock(l)
+
+ #if HAVE_MORECORE
+ //static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
+ #endif /* HAVE_MORECORE */
+ //static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
+ #else /* WIN32 */
+ #define MLOCK_T long
+ #define INITIAL_LOCK(l) *(l)=0
+ #define ACQUIRE_LOCK(l) win32_acquire_lock(l)
+ #define RELEASE_LOCK(l) win32_release_lock(l)
+ #if HAVE_MORECORE
+ static MLOCK_T morecore_mutex;
+ #endif /* HAVE_MORECORE */
+ static MLOCK_T magic_init_mutex;
+ #endif /* WIN32 */
+ #define USE_LOCK_BIT (2U)
+#else /* USE_LOCKS */
+ #define USE_LOCK_BIT (0U)
+ #define INITIAL_LOCK(l)
+#endif /* USE_LOCKS */
+
+#if USE_LOCKS && HAVE_MORECORE
+ #define ACQUIRE_MORECORE_LOCK(M) ACQUIRE_LOCK((M->morecore_mutex)/*&morecore_mutex*/);
+ #define RELEASE_MORECORE_LOCK(M) RELEASE_LOCK((M->morecore_mutex)/*&morecore_mutex*/);
+#else /* USE_LOCKS && HAVE_MORECORE */
+ #define ACQUIRE_MORECORE_LOCK(M)
+ #define RELEASE_MORECORE_LOCK(M)
+#endif /* USE_LOCKS && HAVE_MORECORE */
+
+#if USE_LOCKS
+ /*Currently not suporting this*/
+ #define ACQUIRE_MAGIC_INIT_LOCK(M) ACQUIRE_LOCK(((M)->magic_init_mutex));
+ //AMOD: changed #define ACQUIRE_MAGIC_INIT_LOCK()
+ //#define RELEASE_MAGIC_INIT_LOCK()
+ #define RELEASE_MAGIC_INIT_LOCK(M) RELEASE_LOCK(((M)->magic_init_mutex));
+#else /* USE_LOCKS */
+ #define ACQUIRE_MAGIC_INIT_LOCK(M)
+ #define RELEASE_MAGIC_INIT_LOCK(M)
+#endif /* USE_LOCKS */
+
+/*CHUNK representation*/
+struct malloc_chunk {
+ size_t prev_foot; /* Size of previous chunk (if free). */
+ size_t head; /* Size and inuse bits. */
+ struct malloc_chunk* fd; /* double links -- used only if free. */
+ struct malloc_chunk* bk;
+};
+
+typedef struct malloc_chunk mchunk;
+typedef struct malloc_chunk* mchunkptr;
+typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
+typedef unsigned int bindex_t; /* Described below */
+typedef unsigned int binmap_t; /* Described below */
+typedef unsigned int flag_t; /* The type of various bit flag sets */
+
+
+/* ------------------- Chunks sizes and alignments ----------------------- */
+#define MCHUNK_SIZE (sizeof(mchunk))
+
+#if FOOTERS
+ #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+#else /* FOOTERS */
+ #define CHUNK_OVERHEAD (SIZE_T_SIZE)
+#endif /* FOOTERS */
+
+/* MMapped chunks need a second word of overhead ... */
+#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+/* ... and additional padding for fake next-chunk at foot */
+#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
+
+/* The smallest size we can malloc is an aligned minimal chunk */
+#define MIN_CHUNK_SIZE ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* conversion from malloc headers to user pointers, and back */
+#define chunk2mem(p) ((void*)((TUint8*)(p) + TWO_SIZE_T_SIZES))
+#define mem2chunk(mem) ((mchunkptr)((TUint8*)(mem) - TWO_SIZE_T_SIZES))
+/* chunk associated with aligned address A */
+#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
+
+/* Bounds on request (not chunk) sizes. */
+#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
+#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
+
+/* pad request bytes into a usable size */
+#define pad_request(req) (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* pad request, checking for minimum (but not maximum) */
+#define request2size(req) (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
+
+/* ------------------ Operations on head and foot fields ----------------- */
+
+/*
+ The head field of a chunk is or'ed with PINUSE_BIT when previous
+ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
+ use. If the chunk was obtained with mmap, the prev_foot field has
+ IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
+ mmapped region to the base of the chunk.
+*/
+#define PINUSE_BIT (SIZE_T_ONE)
+#define CINUSE_BIT (SIZE_T_TWO)
+#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
+
+/* Head value for fenceposts */
+#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
+
+/* extraction of fields from head words */
+#define cinuse(p) ((p)->head & CINUSE_BIT)
+#define pinuse(p) ((p)->head & PINUSE_BIT)
+#define chunksize(p) ((p)->head & ~(INUSE_BITS))
+
+#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
+#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
+
+/* Treat space at ptr +/- offset as a chunk */
+#define chunk_plus_offset(p, s) ((mchunkptr)(((TUint8*)(p)) + (s)))
+#define chunk_minus_offset(p, s) ((mchunkptr)(((TUint8*)(p)) - (s)))
+
+/* Ptr to next or previous physical malloc_chunk. */
+#define next_chunk(p) ((mchunkptr)( ((TUint8*)(p)) + ((p)->head & ~INUSE_BITS)))
+#define prev_chunk(p) ((mchunkptr)( ((TUint8*)(p)) - ((p)->prev_foot) ))
+
+/* extract next chunk's pinuse bit */
+#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
+
+/* Get/set size at footer */
+#define get_foot(p, s) (((mchunkptr)((TUint8*)(p) + (s)))->prev_foot)
+#define set_foot(p, s) (((mchunkptr)((TUint8*)(p) + (s)))->prev_foot = (s))
+
+/* Set size, pinuse bit, and foot */
+#define set_size_and_pinuse_of_free_chunk(p, s) ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
+
+/* Set size, pinuse bit, foot, and clear next pinuse */
+#define set_free_with_pinuse(p, s, n) (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
+
+#define is_mmapped(p) (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
+
+/* Get the internal overhead associated with chunk p */
+#define overhead_for(p) (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
+
+/* Return true if malloced space is not necessarily cleared */
+#if MMAP_CLEARS
+ #define calloc_must_clear(p) (!is_mmapped(p))
+#else /* MMAP_CLEARS */
+ #define calloc_must_clear(p) (1)
+#endif /* MMAP_CLEARS */
+
+/* ---------------------- Overlaid data structures ----------------------- */
+struct malloc_tree_chunk {
+ /* The first four fields must be compatible with malloc_chunk */
+ size_t prev_foot;
+ size_t head;
+ struct malloc_tree_chunk* fd;
+ struct malloc_tree_chunk* bk;
+
+ struct malloc_tree_chunk* child[2];
+ struct malloc_tree_chunk* parent;
+ bindex_t index;
+};
+
+typedef struct malloc_tree_chunk tchunk;
+typedef struct malloc_tree_chunk* tchunkptr;
+typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
+
+/* A little helper macro for trees */
+#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
+/*Segment structur*/
+struct malloc_segment {
+ TUint8* base; /* base address */
+ size_t size; /* allocated size */
+ struct malloc_segment* next; /* ptr to next segment */
+ flag_t sflags; /* mmap and extern flag */
+};
+
+#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
+#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
+
+typedef struct malloc_segment msegment;
+typedef struct malloc_segment* msegmentptr;
+
+/*Malloc State data structur*/
+
+#define NSMALLBINS (32U)
+#define NTREEBINS (32U)
+#define SMALLBIN_SHIFT (3U)
+#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
+#define TREEBIN_SHIFT (8U)
+#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
+#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
+#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
+
+struct malloc_state {
+ binmap_t smallmap;
+ binmap_t treemap;
+ size_t dvsize;
+ size_t topsize;
+ TUint8* least_addr;
+ mchunkptr dv;
+ mchunkptr top;
+ size_t trim_check;
+ size_t magic;
+ mchunkptr smallbins[(NSMALLBINS+1)*2];
+ tbinptr treebins[NTREEBINS];
+ size_t footprint;
+ size_t max_footprint;
+ flag_t mflags;
+#if USE_LOCKS
+ MLOCK_T mutex; /* locate lock among fields that rarely change */
+ MLOCK_T magic_init_mutex;
+ MLOCK_T morecore_mutex;
+#endif /* USE_LOCKS */
+ msegment seg;
+};
+
+typedef struct malloc_state* mstate;
+
+/* ------------- Global malloc_state and malloc_params ------------------- */
+
+/*
+ malloc_params holds global properties, including those that can be
+ dynamically set using mallopt. There is a single instance, mparams,
+ initialized in init_mparams.
+*/
+
+struct malloc_params {
+ size_t magic;
+ size_t page_size;
+ size_t granularity;
+ size_t mmap_threshold;
+ size_t trim_threshold;
+ flag_t default_mflags;
+#if USE_LOCKS
+ MLOCK_T magic_init_mutex;
+#endif /* USE_LOCKS */
+};
+
+/* The global malloc_state used for all non-"mspace" calls */
+/*AMOD: Need to check this as this will be the member of the class*/
+
+//static struct malloc_state _gm_;
+//#define gm (&_gm_)
+
+//#define is_global(M) ((M) == &_gm_)
+/*AMOD: has changed*/
+#define is_global(M) ((M) == gm)
+#define is_initialized(M) ((M)->top != 0)
+
+/* -------------------------- system alloc setup ------------------------- */
+
+/* Operations on mflags */
+
+#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
+#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
+#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
+
+#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
+#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
+#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
+
+#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
+#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
+
+#define set_lock(M,L) ((M)->mflags = (L)? ((M)->mflags | USE_LOCK_BIT) : ((M)->mflags & ~USE_LOCK_BIT))
+
+/* page-align a size */
+#define page_align(S) (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
+
+/* granularity-align a size */
+#define granularity_align(S) (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
+
+#define is_page_aligned(S) (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
+#define is_granularity_aligned(S) (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
+
+/* True if segment S holds address A */
+#define segment_holds(S, A) ((TUint8*)(A) >= S->base && (TUint8*)(A) < S->base + S->size)
+
+#ifndef MORECORE_CANNOT_TRIM
+ #define should_trim(M,s) ((s) > (M)->trim_check)
+#else /* MORECORE_CANNOT_TRIM */
+ #define should_trim(M,s) (0)
+#endif /* MORECORE_CANNOT_TRIM */
+
+/*
+ TOP_FOOT_SIZE is padding at the end of a segment, including space
+ that may be needed to place segment records and fenceposts when new
+ noncontiguous segments are added.
+*/
+#define TOP_FOOT_SIZE (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
+
+/* ------------------------------- Hooks -------------------------------- */
+
+/*
+ PREACTION should be defined to return 0 on success, and nonzero on
+ failure. If you are not using locking, you can redefine these to do
+ anything you like.
+*/
+
+#if USE_LOCKS
+ /* Ensure locks are initialized */
+ #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
+ #define PREACTION(M) (use_lock((M))?(ACQUIRE_LOCK((M)->mutex),0):0) /*Action to take like lock before alloc*/
+ #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK((M)->mutex); }
+
+#else /* USE_LOCKS */
+ #ifndef PREACTION
+ #define PREACTION(M) (0)
+ #endif /* PREACTION */
+ #ifndef POSTACTION
+ #define POSTACTION(M)
+ #endif /* POSTACTION */
+#endif /* USE_LOCKS */
+
+/*
+ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
+ USAGE_ERROR_ACTION is triggered on detected bad frees and
+ reallocs. The argument p is an address that might have triggered the
+ fault. It is ignored by the two predefined actions, but might be
+ useful in custom actions that try to help diagnose errors.
+*/
+
+#if PROCEED_ON_ERROR
+ /* A count of the number of corruption errors causing resets */
+ int malloc_corruption_error_count;
+ /* default corruption action */
+ static void reset_on_error(mstate m);
+ #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
+ #define USAGE_ERROR_ACTION(m, p)
+#else /* PROCEED_ON_ERROR */
+ #ifndef CORRUPTION_ERROR_ACTION
+ #define CORRUPTION_ERROR_ACTION(m) ABORT
+ #endif /* CORRUPTION_ERROR_ACTION */
+ #ifndef USAGE_ERROR_ACTION
+ #define USAGE_ERROR_ACTION(m,p) ABORT
+ #endif /* USAGE_ERROR_ACTION */
+#endif /* PROCEED_ON_ERROR */
+
+ /* -------------------------- Debugging setup ---------------------------- */
+
+#if ! DEBUG
+ #define check_free_chunk(M,P)
+ #define check_inuse_chunk(M,P)
+ #define check_malloced_chunk(M,P,N)
+ #define check_mmapped_chunk(M,P)
+ #define check_malloc_state(M)
+ #define check_top_chunk(M,P)
+#else /* DEBUG */
+ #define check_free_chunk(M,P) do_check_free_chunk(M,P)
+ #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
+ #define check_top_chunk(M,P) do_check_top_chunk(M,P)
+ #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
+ #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
+ #define check_malloc_state(M) do_check_malloc_state(M)
+ static void do_check_any_chunk(mstate m, mchunkptr p);
+ static void do_check_top_chunk(mstate m, mchunkptr p);
+ static void do_check_mmapped_chunk(mstate m, mchunkptr p);
+ static void do_check_inuse_chunk(mstate m, mchunkptr p);
+ static void do_check_free_chunk(mstate m, mchunkptr p);
+ static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
+ static void do_check_tree(mstate m, tchunkptr t);
+ static void do_check_treebin(mstate m, bindex_t i);
+ static void do_check_smallbin(mstate m, bindex_t i);
+ static void do_check_malloc_state(mstate m);
+ static int bin_find(mstate m, mchunkptr x);
+ static size_t traverse_and_check(mstate m);
+#endif /* DEBUG */
+
+/* ---------------------------- Indexing Bins ---------------------------- */
+
+#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
+#define small_index(s) ((s) >> SMALLBIN_SHIFT)
+#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
+#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
+
+/* addressing by index. See above about smallbin repositioning */
+#define smallbin_at(M, i) ((sbinptr)((TUint8*)&((M)->smallbins[(i)<<1])))
+#define treebin_at(M,i) (&((M)->treebins[i]))
+
+
+/* Bit representing maximum resolved size in a treebin at i */
+#define bit_for_tree_index(i) (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
+
+/* Shift placing maximum resolved bit in a treebin at i as sign bit */
+#define leftshift_for_tree_index(i) ((i == NTREEBINS-1)? 0 : ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
+
+/* The size of the smallest chunk held in bin with index i */
+#define minsize_for_tree_index(i) ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
+
+
+/* ------------------------ Operations on bin maps ----------------------- */
+/* bit corresponding to given index */
+#define idx2bit(i) ((binmap_t)(1) << (i))
+/* Mark/Clear bits with given index */
+#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
+#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
+#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
+#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
+#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
+#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
+
+/* isolate the least set bit of a bitmap */
+#define least_bit(x) ((x) & -(x))
+
+/* mask with all bits to left of least bit of x on */
+#define left_bits(x) ((x<<1) | -(x<<1))
+
+/* mask with all bits to left of or equal to least bit of x on */
+#define same_or_left_bits(x) ((x) | -(x))
+
+ /* isolate the least set bit of a bitmap */
+#define least_bit(x) ((x) & -(x))
+
+/* mask with all bits to left of least bit of x on */
+#define left_bits(x) ((x<<1) | -(x<<1))
+
+/* mask with all bits to left of or equal to least bit of x on */
+#define same_or_left_bits(x) ((x) | -(x))
+
+#if !INSECURE
+ /* Check if address a is at least as high as any from MORECORE or MMAP */
+ #define ok_address(M, a) ((TUint8*)(a) >= (M)->least_addr)
+ /* Check if address of next chunk n is higher than base chunk p */
+ #define ok_next(p, n) ((TUint8*)(p) < (TUint8*)(n))
+ /* Check if p has its cinuse bit on */
+ #define ok_cinuse(p) cinuse(p)
+ /* Check if p has its pinuse bit on */
+ #define ok_pinuse(p) pinuse(p)
+#else /* !INSECURE */
+ #define ok_address(M, a) (1)
+ #define ok_next(b, n) (1)
+ #define ok_cinuse(p) (1)
+ #define ok_pinuse(p) (1)
+#endif /* !INSECURE */
+
+#if (FOOTERS && !INSECURE)
+ /* Check if (alleged) mstate m has expected magic field */
+ #define ok_magic(M) ((M)->magic == mparams.magic)
+#else /* (FOOTERS && !INSECURE) */
+ #define ok_magic(M) (1)
+#endif /* (FOOTERS && !INSECURE) */
+
+/* In gcc, use __builtin_expect to minimize impact of checks */
+#if !INSECURE
+ #if defined(__GNUC__) && __GNUC__ >= 3
+ #define RTCHECK(e) __builtin_expect(e, 1)
+ #else /* GNUC */
+ #define RTCHECK(e) (e)
+ #endif /* GNUC */
+
+#else /* !INSECURE */
+ #define RTCHECK(e) (1)
+#endif /* !INSECURE */
+/* macros to set up inuse chunks with or without footers */
+#if !FOOTERS
+ #define mark_inuse_foot(M,p,s)
+ /* Set cinuse bit and pinuse bit of next chunk */
+ #define set_inuse(M,p,s) ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),((mchunkptr)(((TUint8*)(p)) + (s)))->head |= PINUSE_BIT)
+ /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
+ #define set_inuse_and_pinuse(M,p,s) ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),((mchunkptr)(((TUint8*)(p)) + (s)))->head |= PINUSE_BIT)
+ /* Set size, cinuse and pinuse bit of this chunk */
+ #define set_size_and_pinuse_of_inuse_chunk(M, p, s) ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
+#else /* FOOTERS */
+ /* Set foot of inuse chunk to be xor of mstate and seed */
+ #define mark_inuse_foot(M,p,s) (((mchunkptr)((TUint8*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
+ #define get_mstate_for(p) ((mstate)(((mchunkptr)((TUint8*)(p)+(chunksize(p))))->prev_foot ^ mparams.magic))
+ #define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ (((mchunkptr)(((TUint8*)(p)) + (s)))->head |= PINUSE_BIT), \
+ mark_inuse_foot(M,p,s))
+ #define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ (((mchunkptr)(((TUint8*)(p)) + (s)))->head |= PINUSE_BIT),\
+ mark_inuse_foot(M,p,s))
+ #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ mark_inuse_foot(M, p, s))
+#endif /* !FOOTERS */
+
+
+#if ONLY_MSPACES
+#define internal_malloc(m, b) mspace_malloc(m, b)
+#define internal_free(m, mem) mspace_free(m,mem);
+#else /* ONLY_MSPACES */
+ #if MSPACES
+ #define internal_malloc(m, b) (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
+ #define internal_free(m, mem) if (m == gm) dlfree(mem); else mspace_free(m,mem);
+ #else /* MSPACES */
+ #define internal_malloc(m, b) dlmalloc(b)
+ #define internal_free(m, mem) dlfree(mem)
+ #endif /* MSPACES */
+#endif /* ONLY_MSPACES */
+/******CODE TO SUPORT SLAB ALLOCATOR******/
+
+ #ifndef NDEBUG
+ #define CHECKING 1
+ #endif
+
+ #if CHECKING
+ //#define ASSERT(x) {if (!(x)) abort();}
+ #define CHECK(x) x
+ #else
+ #define ASSERT(x) (void)0
+ #define CHECK(x) (void)0
+ #endif
+
+ class slab;
+ class slabhdr;
+ #define maxslabsize 56
+ #define pageshift 12
+ #define pagesize (1<<pageshift)
+ #define slabshift 10
+ #define slabsize (1 << slabshift)
+ #define cellalign 8
+ const unsigned slabfull = 0;
+ const TInt slabsperpage = (int)(pagesize/slabsize);
+ #define hibit(bits) (((unsigned)bits & 0xc) ? 2 + ((unsigned)bits>>3) : ((unsigned) bits>>1))
+
+ #define lowbit(bits) (((unsigned) bits&3) ? 1 - ((unsigned)bits&1) : 3 - (((unsigned)bits>>2)&1))
+ #define minpagepower pageshift+2
+ #define cellalign 8
+ class slabhdr
+ {
+ public:
+ unsigned header;
+ // made up of
+ // bits | 31 | 30..28 | 27..18 | 17..12 | 11..8 | 7..0 |
+ // +----------+--------+--------+--------+---------+----------+
+ // field | floating | zero | used-4 | size | pagemap | free pos |
+ //
+ slab** parent; // reference to parent's pointer to this slab in tree
+ slab* child1; // 1st child in tree
+ slab* child2; // 2nd child in tree
+ };
+
+ inline unsigned header_floating(unsigned h)
+ {return (h&0x80000000);}
+ const unsigned maxuse = (slabsize - sizeof(slabhdr))>>2;
+ const unsigned firstpos = sizeof(slabhdr)>>2;
+ #define checktree(x) (void)0
+ template <class T> inline T floor(const T addr, unsigned aln)
+ {return T((unsigned(addr))&~(aln-1));}
+ template <class T> inline T ceiling(T addr, unsigned aln)
+ {return T((unsigned(addr)+(aln-1))&~(aln-1));}
+ template <class T> inline unsigned lowbits(T addr, unsigned aln)
+ {return unsigned(addr)&(aln-1);}
+ template <class T1, class T2> inline int ptrdiff(const T1* a1, const T2* a2)
+ {return reinterpret_cast<const unsigned char*>(a1) - reinterpret_cast<const unsigned char*>(a2);}
+ template <class T> inline T offset(T addr, unsigned ofs)
+ {return T(unsigned(addr)+ofs);}
+ class slabset
+ {
+ public:
+ slab* partial;
+ };
+
+ class slab : public slabhdr
+ {
+ public:
+ void init(unsigned clz);
+ //static slab* slabfor( void* p);
+ static slab* slabfor(const void* p) ;
+ private:
+ unsigned char payload[slabsize-sizeof(slabhdr)];
+ };
+ class page
+ {
+ public:
+ inline static page* pagefor(slab* s);
+ //slab slabs;
+ slab slabs[slabsperpage];
+ };
+
+
+ inline page* page::pagefor(slab* s)
+ {return reinterpret_cast<page*>(floor(s, pagesize));}
+ struct pagecell
+ {
+ void* page;
+ unsigned size;
+ };
+ /******CODE TO SUPORT SLAB ALLOCATOR******/
+#endif/*__DLA__*/
diff --git a/src/corelib/arch/symbian/newallocator.cpp b/src/corelib/arch/symbian/newallocator.cpp
new file mode 100644
index 0000000..17f76f9
--- /dev/null
+++ b/src/corelib/arch/symbian/newallocator.cpp
@@ -0,0 +1,2898 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the Symbian application wrapper of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+** The memory allocator is backported from Symbian OS, and can eventually
+** be removed from Qt once it is built in to all supported OS versions.
+** The allocator is a composite of three allocators:
+** - A page allocator, for large allocations
+** - A slab allocator, for small allocations
+** - Doug Lea's allocator, for medium size allocations
+****************************************************************************/
+#include <e32std.h>
+#include <e32cmn.h>
+#include <hal.h>
+#include <e32panic.h>
+#ifndef RND_SDK
+struct SThreadCreateInfo
+ {
+ TAny* iHandle;
+ TInt iType;
+ TThreadFunction iFunction;
+ TAny* iPtr;
+ TAny* iSupervisorStack;
+ TInt iSupervisorStackSize;
+ TAny* iUserStack;
+ TInt iUserStackSize;
+ TInt iInitialThreadPriority;
+ TPtrC iName;
+ TInt iTotalSize; // Size including any extras (must be a multiple of 8 bytes)
+ };
+
+struct SStdEpocThreadCreateInfo : public SThreadCreateInfo
+ {
+ RAllocator* iAllocator;
+ TInt iHeapInitialSize;
+ TInt iHeapMaxSize;
+ TInt iPadding; // Make structure size a multiple of 8 bytes
+ };
+#else
+#include <u32std.h>
+#endif
+#include <e32svr.h>
+#include <qglobal.h>
+
+//Named local chunks require support from the kernel, which depends on Symbian^3
+#define NO_NAMED_LOCAL_CHUNKS
+//Reserving a minimum heap size is not supported, because the implementation does not know what type of
+//memory to use. DLA memory grows upwards, slab and page allocators grow downwards.
+//This would need kernel support to do properly.
+#define NO_RESERVE_MEMORY
+
+//The BTRACE debug framework requires Symbian OS 9.3 or higher.
+//Required header files are not included in S60 3.2 and 5.0 SDKs, but
+//they are available for open source versions of Symbian OS.
+
+//This debug flag uses BTRACE to emit debug traces to identify the heaps.
+//Note that it uses the ETest1 trace category which is not reserved
+//#define TRACING_HEAPS
+//This debug flag uses BTRACE to emit debug traces to aid with debugging
+//allocs, frees & reallocs. It should be used together with the KUSERHEAPTRACE
+//kernel trace flag to enable heap tracing.
+//#define TRACING_ALLOCS
+
+#if defined(TRACING_ALLOCS) || defined(TRACING_HEAPS)
+#include <e32btrace.h>
+#endif
+
+#ifndef __WINS__
+#pragma push
+#pragma arm
+#endif
+
+#ifdef QT_USE_NEW_SYMBIAN_ALLOCATOR
+
+#include "dla_p.h"
+#include "newallocator_p.h"
+
+// if non zero this causes the slabs to be configured only when the chunk size exceeds this level
+#define DELAYED_SLAB_THRESHOLD (64*1024) // 64KB seems about right based on trace data
+#define SLAB_CONFIG (0xabe)
+
+_LIT(KDLHeapPanicCategory, "DL Heap");
+#define GET_PAGE_SIZE(x) HAL::Get(HALData::EMemoryPageSize, x)
+#define __CHECK_CELL(p)
+#define __POWER_OF_2(x) ((TUint32)((x)^((x)-1))>=(TUint32)(x))
+#define HEAP_PANIC(r) Panic(r)
+
+LOCAL_C void Panic(TCdtPanic aPanic)
+// Panic the process with USER as the category.
+ {
+ User::Panic(_L("USER"),aPanic);
+ }
+
+size_t getpagesize()
+{
+ TInt size;
+ TInt err = GET_PAGE_SIZE(size);
+ if(err != KErrNone)
+ return (size_t)0x1000;
+ return (size_t)size;
+}
+
+#define gm (&iGlobalMallocState)
+
+RNewAllocator::RNewAllocator(TInt aMaxLength, TInt aAlign, TBool aSingleThread)
+// constructor for a fixed heap. Just use DL allocator
+ :iMinLength(aMaxLength), iMaxLength(aMaxLength), iOffset(0), iGrowBy(0), iChunkHandle(0),
+ iNestingLevel(0), iAllocCount(0), iFailType(ENone), iTestData(NULL), iChunkSize(aMaxLength)
+ {
+
+ if ((TUint32)aAlign>=sizeof(TAny*) && __POWER_OF_2(iAlign))
+ {
+ iAlign = aAlign;
+ }
+ else
+ {
+ iAlign = 4;
+ }
+ iPageSize = 0;
+ iFlags = aSingleThread ? (ESingleThreaded|EFixedSize) : EFixedSize;
+
+ Init(0, 0, 0);
+ }
+#ifdef TRACING_HEAPS
+RNewAllocator::RNewAllocator(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy,
+ TInt aAlign, TBool aSingleThread)
+ : iMinLength(aMinLength), iMaxLength(aMaxLength), iOffset(aOffset), iChunkHandle(aChunkHandle), iNestingLevel(0), iAllocCount(0),
+ iAlign(aAlign),iFailType(ENone), iTestData(NULL), iChunkSize(aMinLength),iHighWaterMark(aMinLength)
+#else
+RNewAllocator::RNewAllocator(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy,
+ TInt aAlign, TBool aSingleThread)
+ : iMinLength(aMinLength), iMaxLength(aMaxLength), iOffset(aOffset), iChunkHandle(aChunkHandle), iNestingLevel(0), iAllocCount(0),
+ iAlign(aAlign),iFailType(ENone), iTestData(NULL), iChunkSize(aMinLength)
+#endif
+ {
+ iPageSize = malloc_getpagesize;
+ __ASSERT_ALWAYS(aOffset >=0, User::Panic(KDLHeapPanicCategory, ETHeapNewBadOffset));
+ iGrowBy = _ALIGN_UP(aGrowBy, iPageSize);
+ iFlags = aSingleThread ? ESingleThreaded : 0;
+
+ // Initialise
+ // if the heap is created with aMinLength==aMaxLength then it cannot allocate slab or page memory
+ // so these sub-allocators should be disabled. Otherwise initialise with default values
+ if (aMinLength == aMaxLength)
+ Init(0, 0, 0);
+ else
+ Init(0xabe, 16, iPageSize*4); // slabs {48, 40, 32, 24, 20, 16, 12, 8}, page {64KB}, trim {16KB}
+#ifdef TRACING_HEAPS
+ RChunk chunk;
+ chunk.SetHandle(iChunkHandle);
+ TKName chunk_name;
+ chunk.FullName(chunk_name);
+ BTraceContextBig(BTrace::ETest1, 2, 22, chunk_name.Ptr(), chunk_name.Size());
+
+ TUint32 traceData[4];
+ traceData[0] = iChunkHandle;
+ traceData[1] = iMinLength;
+ traceData[2] = iMaxLength;
+ traceData[3] = iAlign;
+ BTraceContextN(BTrace::ETest1, 1, (TUint32)this, 11, traceData, sizeof(traceData));
+#endif
+
+ }
+
+TAny* RNewAllocator::operator new(TUint aSize, TAny* aBase) __NO_THROW
+ {
+ __ASSERT_ALWAYS(aSize>=sizeof(RNewAllocator), HEAP_PANIC(ETHeapNewBadSize));
+ RNewAllocator* h = (RNewAllocator*)aBase;
+ h->iAlign = 0x80000000; // garbage value
+ h->iBase = ((TUint8*)aBase) + aSize;
+ return aBase;
+ }
+
+void RNewAllocator::Init(TInt aBitmapSlab, TInt aPagePower, size_t aTrimThreshold)
+ {
+ __ASSERT_ALWAYS((TUint32)iAlign>=sizeof(TAny*) && __POWER_OF_2(iAlign), HEAP_PANIC(ETHeapNewBadAlignment));
+
+ /*Moved code which does iunitilization */
+ iTop = (TUint8*)this + iMinLength;
+ iAllocCount = 0;
+ memset(&mparams,0,sizeof(mparams));
+
+ Init_Dlmalloc(iTop - iBase, 0, aTrimThreshold);
+
+ slab_init();
+ slab_config_bits = aBitmapSlab;
+#ifdef DELAYED_SLAB_THRESHOLD
+ if (iChunkSize < DELAYED_SLAB_THRESHOLD)
+ {
+ slab_init_threshold = DELAYED_SLAB_THRESHOLD;
+ }
+ else
+#endif // DELAYED_SLAB_THRESHOLD
+ {
+ slab_init_threshold = KMaxTUint;
+ slab_config(aBitmapSlab);
+ }
+
+ /*10-1K,11-2K,12-4k,13-8K,14-16K,15-32K,16-64K*/
+ paged_init(aPagePower);
+
+#ifdef TRACING_ALLOCS
+ TUint32 traceData[3];
+ traceData[0] = aBitmapSlab;
+ traceData[1] = aPagePower;
+ traceData[2] = aTrimThreshold;
+ BTraceContextN(BTrace::ETest1, BTrace::EHeapAlloc, (TUint32)this, 0, traceData, sizeof(traceData));
+#endif
+
+ }
+
+RNewAllocator::SCell* RNewAllocator::GetAddress(const TAny* aCell) const
+//
+// As much as possible, check a cell address and backspace it
+// to point at the cell header.
+//
+ {
+
+ TLinAddr m = TLinAddr(iAlign - 1);
+ __ASSERT_ALWAYS(!(TLinAddr(aCell)&m), HEAP_PANIC(ETHeapBadCellAddress));
+
+ SCell* pC = (SCell*)(((TUint8*)aCell)-EAllocCellSize);
+ __CHECK_CELL(pC);
+
+ return pC;
+ }
+
+TInt RNewAllocator::AllocLen(const TAny* aCell) const
+{
+ if (ptrdiff(aCell, this) >= 0)
+ {
+ mchunkptr m = mem2chunk(aCell);
+ return chunksize(m) - overhead_for(m);
+ }
+ if (lowbits(aCell, pagesize) > cellalign)
+ return header_size(slab::slabfor(aCell)->header);
+ if (lowbits(aCell, pagesize) == cellalign)
+ return *(unsigned*)(offset(aCell,-int(cellalign)))-cellalign;
+ return paged_descriptor(aCell)->size;
+}
+
+TAny* RNewAllocator::Alloc(TInt aSize)
+{
+ __ASSERT_ALWAYS((TUint)aSize<(KMaxTInt/2),HEAP_PANIC(ETHeapBadAllocatedCellSize));
+
+ TAny* addr;
+
+#ifdef TRACING_ALLOCS
+ TInt aCnt=0;
+#endif
+ Lock();
+ if (aSize < slab_threshold)
+ {
+ TInt ix = sizemap[(aSize+3)>>2];
+ ASSERT(ix != 0xff);
+ addr = slab_allocate(slaballoc[ix]);
+ }else if((aSize >> page_threshold)==0)
+ {
+#ifdef TRACING_ALLOCS
+ aCnt=1;
+#endif
+ addr = dlmalloc(aSize);
+ }
+ else
+ {
+#ifdef TRACING_ALLOCS
+ aCnt=2;
+#endif
+ addr = paged_allocate(aSize);
+ }
+
+ iCellCount++;
+ iTotalAllocSize += aSize;
+ Unlock();
+
+#ifdef TRACING_ALLOCS
+ if (iFlags & ETraceAllocs)
+ {
+ TUint32 traceData[3];
+ traceData[0] = AllocLen(addr);
+ traceData[1] = aSize;
+ traceData[2] = aCnt;
+ BTraceContextN(BTrace::EHeap, BTrace::EHeapAlloc, (TUint32)this, (TUint32)addr, traceData, sizeof(traceData));
+ }
+#endif
+
+ return addr;
+}
+
+TInt RNewAllocator::Compress()
+ {
+ if (iFlags & EFixedSize)
+ return 0;
+
+ Lock();
+ dlmalloc_trim(0);
+ if (spare_page)
+ {
+ unmap(spare_page,pagesize);
+ spare_page = 0;
+ }
+ Unlock();
+ return 0;
+ }
+
+void RNewAllocator::Free(TAny* aPtr)
+{
+
+#ifdef TRACING_ALLOCS
+ TInt aCnt=0;
+#endif
+#ifdef ENABLE_DEBUG_TRACE
+ RThread me;
+ TBuf<100> thName;
+ me.FullName(thName);
+#endif
+ //if (!aPtr) return; //return in case of NULL pointer
+
+ Lock();
+
+ if (!aPtr)
+ ;
+ else if (ptrdiff(aPtr, this) >= 0)
+ {
+#ifdef TRACING_ALLOCS
+ aCnt = 1;
+#endif
+ dlfree( aPtr);
+ }
+ else if (lowbits(aPtr, pagesize) <= cellalign)
+ {
+#ifdef TRACING_ALLOCS
+ aCnt = 2;
+#endif
+ paged_free(aPtr);
+ }
+ else
+ {
+#ifdef TRACING_ALLOCS
+ aCnt = 0;
+#endif
+ slab_free(aPtr);
+ }
+ iCellCount--;
+ Unlock();
+
+#ifdef TRACING_ALLOCS
+ if (iFlags & ETraceAllocs)
+ {
+ TUint32 traceData;
+ traceData = aCnt;
+ BTraceContextN(BTrace::EHeap, BTrace::EHeapFree, (TUint32)this, (TUint32)aPtr, &traceData, sizeof(traceData));
+ }
+#endif
+}
+
+
+void RNewAllocator::Reset()
+ {
+ // TODO free everything
+ }
+
+#ifdef TRACING_ALLOCS
+TAny* RNewAllocator::DLReAllocImpl(TAny* aPtr, TInt aSize)
+ {
+ if(ptrdiff(aPtr,this)>=0)
+ {
+ // original cell is in DL zone
+ if(aSize >= slab_threshold && (aSize>>page_threshold)==0)
+ {
+ // and so is the new one
+ Lock();
+ TAny* addr = dlrealloc(aPtr,aSize);
+ Unlock();
+ return addr;
+ }
+ }
+ else if(lowbits(aPtr,pagesize)<=cellalign)
+ {
+ // original cell is either NULL or in paged zone
+ if (!aPtr)
+ return Alloc(aSize);
+ if(aSize >> page_threshold)
+ {
+ // and so is the new one
+ Lock();
+ TAny* addr = paged_reallocate(aPtr,aSize);
+ Unlock();
+ return addr;
+ }
+ }
+ else
+ {
+ // original cell is in slab znoe
+ if(aSize <= header_size(slab::slabfor(aPtr)->header))
+ return aPtr;
+ }
+ TAny* newp = Alloc(aSize);
+ if(newp)
+ {
+ TInt oldsize = AllocLen(aPtr);
+ memcpy(newp,aPtr,oldsize<aSize?oldsize:aSize);
+ Free(aPtr);
+ }
+ return newp;
+
+ }
+#endif
+TAny* RNewAllocator::ReAlloc(TAny* aPtr, TInt aSize, TInt /*aMode = 0*/)
+ {
+#ifdef TRACING_ALLOCS
+ TAny* retval = DLReAllocImpl(aPtr,aSize);
+
+#ifdef TRACING_ALLOCS
+ if (retval && (iFlags & ETraceAllocs))
+ {
+ TUint32 traceData[3];
+ traceData[0] = AllocLen(retval);
+ traceData[1] = aSize;
+ traceData[2] = (TUint32)aPtr;
+ BTraceContextN(BTrace::EHeap, BTrace::EHeapReAlloc,(TUint32)this, (TUint32)retval,traceData, sizeof(traceData));
+ }
+#endif
+ return retval;
+#else
+ if(ptrdiff(aPtr,this)>=0)
+ {
+ // original cell is in DL zone
+ if(aSize >= slab_threshold && (aSize>>page_threshold)==0)
+ {
+ // and so is the new one
+ Lock();
+ TAny* addr = dlrealloc(aPtr,aSize);
+ Unlock();
+ return addr;
+ }
+ }
+ else if(lowbits(aPtr,pagesize)<=cellalign)
+ {
+ // original cell is either NULL or in paged zone
+ if (!aPtr)
+ return Alloc(aSize);
+ if(aSize >> page_threshold)
+ {
+ // and so is the new one
+ Lock();
+ TAny* addr = paged_reallocate(aPtr,aSize);
+ Unlock();
+ return addr;
+ }
+ }
+ else
+ {
+ // original cell is in slab znoe
+ if(aSize <= header_size(slab::slabfor(aPtr)->header))
+ return aPtr;
+ }
+ TAny* newp = Alloc(aSize);
+ if(newp)
+ {
+ TInt oldsize = AllocLen(aPtr);
+ memcpy(newp,aPtr,oldsize<aSize?oldsize:aSize);
+ Free(aPtr);
+ }
+ return newp;
+#endif
+ }
+
+TInt RNewAllocator::Available(TInt& aBiggestBlock) const
+{
+ aBiggestBlock = 0;
+ return 1000;
+ /*Need to see how to implement this*/
+ // TODO: return iHeap.Available(aBiggestBlock);
+}
+TInt RNewAllocator::AllocSize(TInt& aTotalAllocSize) const
+{
+ aTotalAllocSize = iTotalAllocSize;
+// aTotalAllocSize = iChunkSize;
+ return iCellCount;
+}
+
+TInt RNewAllocator::DebugFunction(TInt /*aFunc*/, TAny* /*a1*/, TAny* /*a2*/)
+ {
+ return 0;
+ }
+TInt RNewAllocator::Extension_(TUint /* aExtensionId */, TAny*& /* a0 */, TAny* /* a1 */)
+ {
+ return KErrNotSupported;
+ }
+
+///////////////////////////////////////////////////////////////////////////////
+// imported from dla.cpp
+///////////////////////////////////////////////////////////////////////////////
+
+//#include <unistd.h>
+//#define DEBUG_REALLOC
+#ifdef DEBUG_REALLOC
+#include <e32debug.h>
+#endif
+inline int RNewAllocator::init_mparams(size_t aTrimThreshold /*= DEFAULT_TRIM_THRESHOLD*/)
+{
+ if (mparams.page_size == 0)
+ {
+ size_t s;
+ mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
+ mparams.trim_threshold = aTrimThreshold;
+ #if MORECORE_CONTIGUOUS
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
+ #else /* MORECORE_CONTIGUOUS */
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
+ #endif /* MORECORE_CONTIGUOUS */
+
+ s = (size_t)0x58585858U;
+ ACQUIRE_MAGIC_INIT_LOCK(&mparams);
+ if (mparams.magic == 0) {
+ mparams.magic = s;
+ /* Set up lock for main malloc area */
+ INITIAL_LOCK(&gm->mutex);
+ gm->mflags = mparams.default_mflags;
+ }
+ RELEASE_MAGIC_INIT_LOCK(&mparams);
+
+ mparams.page_size = malloc_getpagesize;
+
+ mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
+ DEFAULT_GRANULARITY : mparams.page_size);
+
+ /* Sanity-check configuration:
+ size_t must be unsigned and as wide as pointer type.
+ ints must be at least 4 bytes.
+ alignment must be at least 8.
+ Alignment, min chunk size, and page size must all be powers of 2.
+ */
+
+ if ((sizeof(size_t) != sizeof(TUint8*)) ||
+ (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
+ (sizeof(int) < 4) ||
+ (MALLOC_ALIGNMENT < (size_t)8U) ||
+ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
+ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
+ ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
+ ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
+ ABORT;
+ }
+ return 0;
+}
+
+inline void RNewAllocator::init_bins(mstate m) {
+ /* Establish circular links for smallbins */
+ bindex_t i;
+ for (i = 0; i < NSMALLBINS; ++i) {
+ sbinptr bin = smallbin_at(m,i);
+ bin->fd = bin->bk = bin;
+ }
+}
+/* ---------------------------- malloc support --------------------------- */
+
+/* allocate a large request from the best fitting chunk in a treebin */
+void* RNewAllocator::tmalloc_large(mstate m, size_t nb) {
+ tchunkptr v = 0;
+ size_t rsize = -nb; /* Unsigned negation */
+ tchunkptr t;
+ bindex_t idx;
+ compute_tree_index(nb, idx);
+
+ if ((t = *treebin_at(m, idx)) != 0) {
+ /* Traverse tree for this bin looking for node with size == nb */
+ size_t sizebits =
+ nb <<
+ leftshift_for_tree_index(idx);
+ tchunkptr rst = 0; /* The deepest untaken right subtree */
+ for (;;) {
+ tchunkptr rt;
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ v = t;
+ if ((rsize = trem) == 0)
+ break;
+ }
+ rt = t->child[1];
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ if (rt != 0 && rt != t)
+ rst = rt;
+ if (t == 0) {
+ t = rst; /* set t to least subtree holding sizes > nb */
+ break;
+ }
+ sizebits <<= 1;
+ }
+ }
+ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
+ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
+ if (leftbits != 0) {
+ bindex_t i;
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ t = *treebin_at(m, i);
+ }
+ }
+ while (t != 0) { /* find smallest of tree or subtree */
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ t = leftmost_child(t);
+ }
+ /* If dv is a better fit, return 0 so malloc will use it */
+ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
+ if (RTCHECK(ok_address(m, v))) { /* split */
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ insert_chunk(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+ CORRUPTION_ERROR_ACTION(m);
+ }
+ return 0;
+}
+
+/* allocate a small request from the best fitting chunk in a treebin */
+void* RNewAllocator::tmalloc_small(mstate m, size_t nb) {
+ tchunkptr t, v;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leastbit = least_bit(m->treemap);
+ compute_bit2idx(leastbit, i);
+
+ v = t = *treebin_at(m, i);
+ rsize = chunksize(t) - nb;
+
+ while ((t = leftmost_child(t)) != 0) {
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ }
+
+ if (RTCHECK(ok_address(m, v))) {
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+ CORRUPTION_ERROR_ACTION(m);
+ return 0;
+}
+
+inline void RNewAllocator::init_top(mstate m, mchunkptr p, size_t psize)
+{
+ /* Ensure alignment */
+ size_t offset = align_offset(chunk2mem(p));
+ p = (mchunkptr)((TUint8*)p + offset);
+ psize -= offset;
+ m->top = p;
+ m->topsize = psize;
+ p->head = psize | PINUSE_BIT;
+ /* set size of fake trailing chunk holding overhead space only once */
+ mchunkptr chunkPlusOff = chunk_plus_offset(p, psize);
+ chunkPlusOff->head = TOP_FOOT_SIZE;
+ m->trim_check = mparams.trim_threshold; /* reset on each update */
+}
+
+void* RNewAllocator::internal_realloc(mstate m, void* oldmem, size_t bytes)
+{
+ if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ return 0;
+ }
+ if (!PREACTION(m)) {
+ mchunkptr oldp = mem2chunk(oldmem);
+ size_t oldsize = chunksize(oldp);
+ mchunkptr next = chunk_plus_offset(oldp, oldsize);
+ mchunkptr newp = 0;
+ void* extra = 0;
+
+ /* Try to either shrink or extend into top. Else malloc-copy-free */
+
+ if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
+ ok_next(oldp, next) && ok_pinuse(next))) {
+ size_t nb = request2size(bytes);
+ if (is_mmapped(oldp))
+ newp = mmap_resize(m, oldp, nb);
+ else
+ if (oldsize >= nb) { /* already big enough */
+ size_t rsize = oldsize - nb;
+ newp = oldp;
+ if (rsize >= MIN_CHUNK_SIZE) {
+ mchunkptr remainder = chunk_plus_offset(newp, nb);
+ set_inuse(m, newp, nb);
+ set_inuse(m, remainder, rsize);
+ extra = chunk2mem(remainder);
+ }
+ }
+ /*AMOD: Modified to optimized*/
+ else if (next == m->top && oldsize + m->topsize > nb)
+ {
+ /* Expand into top */
+ if(oldsize + m->topsize > nb)
+ {
+ size_t newsize = oldsize + m->topsize;
+ size_t newtopsize = newsize - nb;
+ mchunkptr newtop = chunk_plus_offset(oldp, nb);
+ set_inuse(m, oldp, nb);
+ newtop->head = newtopsize |PINUSE_BIT;
+ m->top = newtop;
+ m->topsize = newtopsize;
+ newp = oldp;
+ }
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(m, oldmem);
+ POSTACTION(m);
+ return 0;
+ }
+
+ POSTACTION(m);
+
+ if (newp != 0) {
+ if (extra != 0) {
+ internal_free(m, extra);
+ }
+ check_inuse_chunk(m, newp);
+ return chunk2mem(newp);
+ }
+ else {
+ void* newmem = internal_malloc(m, bytes);
+ if (newmem != 0) {
+ size_t oc = oldsize - overhead_for(oldp);
+ memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
+ internal_free(m, oldmem);
+ }
+ return newmem;
+ }
+ }
+ return 0;
+}
+/* ----------------------------- statistics ------------------------------ */
+mallinfo RNewAllocator::internal_mallinfo(mstate m) {
+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ TInt chunkCnt = 0;
+ if (!PREACTION(m)) {
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ size_t nfree = SIZE_T_ONE; /* top always free */
+ size_t mfree = m->topsize + TOP_FOOT_SIZE;
+ size_t sum = mfree;
+ msegmentptr s = &m->seg;
+ TInt tmp = (TUint8*)m->top - (TUint8*)s->base;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ chunkCnt++;
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ size_t sz = chunksize(q);
+ sum += sz;
+ if (!cinuse(q)) {
+ mfree += sz;
+ ++nfree;
+ }
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ nm.arena = sum;
+ nm.ordblks = nfree;
+ nm.hblkhd = m->footprint - sum;
+ nm.usmblks = m->max_footprint;
+ nm.uordblks = m->footprint - mfree;
+ nm.fordblks = mfree;
+ nm.keepcost = m->topsize;
+ nm.cellCount= chunkCnt;/*number of chunks allocated*/
+ }
+ POSTACTION(m);
+ }
+ return nm;
+}
+
+void RNewAllocator::internal_malloc_stats(mstate m) {
+if (!PREACTION(m)) {
+ size_t maxfp = 0;
+ size_t fp = 0;
+ size_t used = 0;
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ maxfp = m->max_footprint;
+ fp = m->footprint;
+ used = fp - (m->topsize + TOP_FOOT_SIZE);
+
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ if (!cinuse(q))
+ used -= chunksize(q);
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+ POSTACTION(m);
+}
+}
+/* support for mallopt */
+int RNewAllocator::change_mparam(int param_number, int value) {
+ size_t val = (size_t)value;
+ init_mparams(DEFAULT_TRIM_THRESHOLD);
+ switch(param_number) {
+ case M_TRIM_THRESHOLD:
+ mparams.trim_threshold = val;
+ return 1;
+ case M_GRANULARITY:
+ if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
+ mparams.granularity = val;
+ return 1;
+ }
+ else
+ return 0;
+ case M_MMAP_THRESHOLD:
+ mparams.mmap_threshold = val;
+ return 1;
+ default:
+ return 0;
+ }
+}
+/* Get memory from system using MORECORE or MMAP */
+void* RNewAllocator::sys_alloc(mstate m, size_t nb)
+{
+ TUint8* tbase = CMFAIL;
+ size_t tsize = 0;
+ flag_t mmap_flag = 0;
+ //init_mparams();/*No need to do init_params here*/
+ /* Directly map large chunks */
+ if (use_mmap(m) && nb >= mparams.mmap_threshold)
+ {
+ void* mem = mmap_alloc(m, nb);
+ if (mem != 0)
+ return mem;
+ }
+ /*
+ Try getting memory in any of three ways (in most-preferred to
+ least-preferred order):
+ 1. A call to MORECORE that can normally contiguously extend memory.
+ (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
+ or main space is mmapped or a previous contiguous call failed)
+ 2. A call to MMAP new space (disabled if not HAVE_MMAP).
+ Note that under the default settings, if MORECORE is unable to
+ fulfill a request, and HAVE_MMAP is true, then mmap is
+ used as a noncontiguous system allocator. This is a useful backup
+ strategy for systems with holes in address spaces -- in this case
+ sbrk cannot contiguously expand the heap, but mmap may be able to
+ find space.
+ 3. A call to MORECORE that cannot usually contiguously extend memory.
+ (disabled if not HAVE_MORECORE)
+ */
+ /*Trying to allocate the memory*/
+ if(MORECORE_CONTIGUOUS && !use_noncontiguous(m))
+ {
+ TUint8* br = CMFAIL;
+ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (TUint8*)m->top);
+ size_t asize = 0;
+ ACQUIRE_MORECORE_LOCK(m);
+ if (ss == 0)
+ { /* First time through or recovery */
+ TUint8* base = (TUint8*)CALL_MORECORE(0);
+ if (base != CMFAIL)
+ {
+ asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
+ /* Adjust to end on a page boundary */
+ if (!is_page_aligned(base))
+ asize += (page_align((size_t)base) - (size_t)base);
+ /* Can't call MORECORE if size is negative when treated as signed */
+ if (asize < HALF_MAX_SIZE_T &&(br = (TUint8*)(CALL_MORECORE(asize))) == base)
+ {
+ tbase = base;
+ tsize = asize;
+ }
+ }
+ }
+ else
+ {
+ /* Subtract out existing available top space from MORECORE request. */
+ asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
+ /* Use mem here only if it did continuously extend old space */
+ if (asize < HALF_MAX_SIZE_T &&
+ (br = (TUint8*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
+ tbase = br;
+ tsize = asize;
+ }
+ }
+ if (tbase == CMFAIL) { /* Cope with partial failure */
+ if (br != CMFAIL) { /* Try to use/extend the space we did get */
+ if (asize < HALF_MAX_SIZE_T &&
+ asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
+ size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
+ if (esize < HALF_MAX_SIZE_T) {
+ TUint8* end = (TUint8*)CALL_MORECORE(esize);
+ if (end != CMFAIL)
+ asize += esize;
+ else { /* Can't use; try to release */
+ CALL_MORECORE(-asize);
+ br = CMFAIL;
+ }
+ }
+ }
+ }
+ if (br != CMFAIL) { /* Use the space we did get */
+ tbase = br;
+ tsize = asize;
+ }
+ else
+ disable_contiguous(m); /* Don't try contiguous path in the future */
+ }
+ RELEASE_MORECORE_LOCK(m);
+ }
+ if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
+ size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
+ size_t rsize = granularity_align(req);
+ if (rsize > nb) { /* Fail if wraps around zero */
+ TUint8* mp = (TUint8*)(CALL_MMAP(rsize));
+ if (mp != CMFAIL) {
+ tbase = mp;
+ tsize = rsize;
+ mmap_flag = IS_MMAPPED_BIT;
+ }
+ }
+ }
+ if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
+ size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
+ if (asize < HALF_MAX_SIZE_T) {
+ TUint8* br = CMFAIL;
+ TUint8* end = CMFAIL;
+ ACQUIRE_MORECORE_LOCK(m);
+ br = (TUint8*)(CALL_MORECORE(asize));
+ end = (TUint8*)(CALL_MORECORE(0));
+ RELEASE_MORECORE_LOCK(m);
+ if (br != CMFAIL && end != CMFAIL && br < end) {
+ size_t ssize = end - br;
+ if (ssize > nb + TOP_FOOT_SIZE) {
+ tbase = br;
+ tsize = ssize;
+ }
+ }
+ }
+ }
+ if (tbase != CMFAIL) {
+ if ((m->footprint += tsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ if (!is_initialized(m)) { /* first-time initialization */
+ m->seg.base = m->least_addr = tbase;
+ m->seg.size = tsize;
+ m->seg.sflags = mmap_flag;
+ m->magic = mparams.magic;
+ init_bins(m);
+ if (is_global(m))
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
+ else {
+ /* Offset top by embedded malloc_state */
+ mchunkptr mn = next_chunk(mem2chunk(m));
+ init_top(m, mn, (size_t)((tbase + tsize) - (TUint8*)mn) -TOP_FOOT_SIZE);
+ }
+ }else {
+ /* Try to merge with an existing segment */
+ msegmentptr sp = &m->seg;
+ while (sp != 0 && tbase != sp->base + sp->size)
+ sp = sp->next;
+ if (sp != 0 && !is_extern_segment(sp) &&
+ (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
+ segment_holds(sp, m->top))
+ { /* append */
+ sp->size += tsize;
+ init_top(m, m->top, m->topsize + tsize);
+ }
+ else {
+ if (tbase < m->least_addr)
+ m->least_addr = tbase;
+ sp = &m->seg;
+ while (sp != 0 && sp->base != tbase + tsize)
+ sp = sp->next;
+ if (sp != 0 &&
+ !is_extern_segment(sp) &&
+ (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
+ TUint8* oldbase = sp->base;
+ sp->base = tbase;
+ sp->size += tsize;
+ return prepend_alloc(m, tbase, oldbase, nb);
+ }
+ else
+ add_segment(m, tbase, tsize, mmap_flag);
+ }
+ }
+ if (nb < m->topsize) { /* Allocate from new or extended top space */
+ size_t rsize = m->topsize -= nb;
+ mchunkptr p = m->top;
+ mchunkptr r = m->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+ check_top_chunk(m, m->top);
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+ }
+ }
+ /*need to check this*/
+ //errno = -1;
+ return 0;
+}
+msegmentptr RNewAllocator::segment_holding(mstate m, TUint8* addr) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if (addr >= sp->base && addr < sp->base + sp->size)
+ return sp;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+/* Unlink the first chunk from a smallbin */
+inline void RNewAllocator::unlink_first_small_chunk(mstate M,mchunkptr B,mchunkptr P,bindex_t& I)
+{
+ mchunkptr F = P->fd;
+ assert(P != B);
+ assert(P != F);
+ assert(chunksize(P) == small_index2size(I));
+ if (B == F)
+ clear_smallmap(M, I);
+ else if (RTCHECK(ok_address(M, F))) {
+ B->fd = F;
+ F->bk = B;
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ }
+}
+/* Link a free chunk into a smallbin */
+inline void RNewAllocator::insert_small_chunk(mstate M,mchunkptr P, size_t S)
+{
+ bindex_t I = small_index(S);
+ mchunkptr B = smallbin_at(M, I);
+ mchunkptr F = B;
+ assert(S >= MIN_CHUNK_SIZE);
+ if (!smallmap_is_marked(M, I))
+ mark_smallmap(M, I);
+ else if (RTCHECK(ok_address(M, B->fd)))
+ F = B->fd;
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ }
+ B->fd = P;
+ F->bk = P;
+ P->fd = F;
+ P->bk = B;
+}
+
+
+inline void RNewAllocator::insert_chunk(mstate M,mchunkptr P,size_t S)
+{
+ if (is_small(S))
+ insert_small_chunk(M, P, S);
+ else{
+ tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S);
+ }
+}
+
+inline void RNewAllocator::unlink_large_chunk(mstate M,tchunkptr X)
+{
+ tchunkptr XP = X->parent;
+ tchunkptr R;
+ if (X->bk != X) {
+ tchunkptr F = X->fd;
+ R = X->bk;
+ if (RTCHECK(ok_address(M, F))) {
+ F->bk = R;
+ R->fd = F;
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ }
+ }
+ else {
+ tchunkptr* RP;
+ if (((R = *(RP = &(X->child[1]))) != 0) ||
+ ((R = *(RP = &(X->child[0]))) != 0)) {
+ tchunkptr* CP;
+ while ((*(CP = &(R->child[1])) != 0) ||
+ (*(CP = &(R->child[0])) != 0)) {
+ R = *(RP = CP);
+ }
+ if (RTCHECK(ok_address(M, RP)))
+ *RP = 0;
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ }
+ }
+ }
+ if (XP != 0) {
+ tbinptr* H = treebin_at(M, X->index);
+ if (X == *H) {
+ if ((*H = R) == 0)
+ clear_treemap(M, X->index);
+ }
+ else if (RTCHECK(ok_address(M, XP))) {
+ if (XP->child[0] == X)
+ XP->child[0] = R;
+ else
+ XP->child[1] = R;
+ }
+ else
+ CORRUPTION_ERROR_ACTION(M);
+ if (R != 0) {
+ if (RTCHECK(ok_address(M, R))) {
+ tchunkptr C0, C1;
+ R->parent = XP;
+ if ((C0 = X->child[0]) != 0) {
+ if (RTCHECK(ok_address(M, C0))) {
+ R->child[0] = C0;
+ C0->parent = R;
+ }
+ else
+ CORRUPTION_ERROR_ACTION(M);
+ }
+ if ((C1 = X->child[1]) != 0) {
+ if (RTCHECK(ok_address(M, C1))) {
+ R->child[1] = C1;
+ C1->parent = R;
+ }
+ else
+ CORRUPTION_ERROR_ACTION(M);
+ }
+ }
+ else
+ CORRUPTION_ERROR_ACTION(M);
+ }
+ }
+}
+
+/* Unlink a chunk from a smallbin */
+inline void RNewAllocator::unlink_small_chunk(mstate M, mchunkptr P,size_t S)
+{
+ mchunkptr F = P->fd;
+ mchunkptr B = P->bk;
+ bindex_t I = small_index(S);
+ assert(P != B);
+ assert(P != F);
+ assert(chunksize(P) == small_index2size(I));
+ if (F == B)
+ clear_smallmap(M, I);
+ else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&
+ (B == smallbin_at(M,I) || ok_address(M, B)))) {
+ F->bk = B;
+ B->fd = F;
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ }
+}
+
+inline void RNewAllocator::unlink_chunk(mstate M, mchunkptr P, size_t S)
+{
+ if (is_small(S))
+ unlink_small_chunk(M, P, S);
+ else
+ {
+ tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP);
+ }
+}
+
+inline void RNewAllocator::compute_tree_index(size_t S, bindex_t& I)
+{
+ size_t X = S >> TREEBIN_SHIFT;
+ if (X == 0)
+ I = 0;
+ else if (X > 0xFFFF)
+ I = NTREEBINS-1;
+ else {
+ unsigned int Y = (unsigned int)X;
+ unsigned int N = ((Y - 0x100) >> 16) & 8;
+ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;
+ N += K;
+ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;
+ K = 14 - N + ((Y <<= K) >> 15);
+ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));
+ }
+}
+
+/* ------------------------- Operations on trees ------------------------- */
+
+/* Insert chunk into tree */
+inline void RNewAllocator::insert_large_chunk(mstate M,tchunkptr X,size_t S)
+{
+ tbinptr* H;
+ bindex_t I;
+ compute_tree_index(S, I);
+ H = treebin_at(M, I);
+ X->index = I;
+ X->child[0] = X->child[1] = 0;
+ if (!treemap_is_marked(M, I)) {
+ mark_treemap(M, I);
+ *H = X;
+ X->parent = (tchunkptr)H;
+ X->fd = X->bk = X;
+ }
+ else {
+ tchunkptr T = *H;
+ size_t K = S << leftshift_for_tree_index(I);
+ for (;;) {
+ if (chunksize(T) != S) {
+ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);
+ K <<= 1;
+ if (*C != 0)
+ T = *C;
+ else if (RTCHECK(ok_address(M, C))) {
+ *C = X;
+ X->parent = T;
+ X->fd = X->bk = X;
+ break;
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ break;
+ }
+ }
+ else {
+ tchunkptr F = T->fd;
+ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {
+ T->fd = F->bk = X;
+ X->fd = F;
+ X->bk = T;
+ X->parent = 0;
+ break;
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(M);
+ break;
+ }
+ }
+ }
+ }
+}
+
+/*
+ Unlink steps:
+
+ 1. If x is a chained node, unlink it from its same-sized fd/bk links
+ and choose its bk node as its replacement.
+ 2. If x was the last node of its size, but not a leaf node, it must
+ be replaced with a leaf node (not merely one with an open left or
+ right), to make sure that lefts and rights of descendents
+ correspond properly to bit masks. We use the rightmost descendent
+ of x. We could use any other leaf, but this is easy to locate and
+ tends to counteract removal of leftmosts elsewhere, and so keeps
+ paths shorter than minimally guaranteed. This doesn't loop much
+ because on average a node in a tree is near the bottom.
+ 3. If x is the base of a chain (i.e., has parent links) relink
+ x's parent and children to x's replacement (or null if none).
+*/
+
+/* Replace dv node, binning the old one */
+/* Used only when dvsize known to be small */
+inline void RNewAllocator::replace_dv(mstate M, mchunkptr P, size_t S)
+{
+ size_t DVS = M->dvsize;
+ if (DVS != 0) {
+ mchunkptr DV = M->dv;
+ assert(is_small(DVS));
+ insert_small_chunk(M, DV, DVS);
+ }
+ M->dvsize = S;
+ M->dv = P;
+}
+
+inline void RNewAllocator::compute_bit2idx(binmap_t X,bindex_t& I)
+{
+ unsigned int Y = X - 1;
+ unsigned int K = Y >> (16-4) & 16;
+ unsigned int N = K; Y >>= K;
+ N += K = Y >> (8-3) & 8; Y >>= K;
+ N += K = Y >> (4-2) & 4; Y >>= K;
+ N += K = Y >> (2-1) & 2; Y >>= K;
+ N += K = Y >> (1-0) & 1; Y >>= K;
+ I = (bindex_t)(N + Y);
+}
+
+void RNewAllocator::add_segment(mstate m, TUint8* tbase, size_t tsize, flag_t mmapped) {
+ /* Determine locations and sizes of segment, fenceposts, old top */
+ TUint8* old_top = (TUint8*)m->top;
+ msegmentptr oldsp = segment_holding(m, old_top);
+ TUint8* old_end = oldsp->base + oldsp->size;
+ size_t ssize = pad_request(sizeof(struct malloc_segment));
+ TUint8* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ size_t offset = align_offset(chunk2mem(rawsp));
+ TUint8* asp = rawsp + offset;
+ TUint8* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
+ mchunkptr sp = (mchunkptr)csp;
+ msegmentptr ss = (msegmentptr)(chunk2mem(sp));
+ mchunkptr tnext = chunk_plus_offset(sp, ssize);
+ mchunkptr p = tnext;
+ int nfences = 0;
+
+ /* reset top to new space */
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
+
+ /* Set up segment record */
+ assert(is_aligned(ss));
+ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
+ *ss = m->seg; /* Push current record */
+ m->seg.base = tbase;
+ m->seg.size = tsize;
+ m->seg.sflags = mmapped;
+ m->seg.next = ss;
+
+ /* Insert trailing fenceposts */
+ for (;;) {
+ mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
+ p->head = FENCEPOST_HEAD;
+ ++nfences;
+ if ((TUint8*)(&(nextp->head)) < old_end)
+ p = nextp;
+ else
+ break;
+ }
+ assert(nfences >= 2);
+
+ /* Insert the rest of old top into a bin as an ordinary free chunk */
+ if (csp != old_top) {
+ mchunkptr q = (mchunkptr)old_top;
+ size_t psize = csp - old_top;
+ mchunkptr tn = chunk_plus_offset(q, psize);
+ set_free_with_pinuse(q, psize, tn);
+ insert_chunk(m, q, psize);
+ }
+
+ check_top_chunk(m, m->top);
+}
+
+
+void* RNewAllocator::prepend_alloc(mstate m, TUint8* newbase, TUint8* oldbase,
+ size_t nb) {
+ mchunkptr p = align_as_chunk(newbase);
+ mchunkptr oldfirst = align_as_chunk(oldbase);
+ size_t psize = (TUint8*)oldfirst - (TUint8*)p;
+ mchunkptr q = chunk_plus_offset(p, nb);
+ size_t qsize = psize - nb;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+
+ assert((TUint8*)oldfirst > (TUint8*)q);
+ assert(pinuse(oldfirst));
+ assert(qsize >= MIN_CHUNK_SIZE);
+
+ /* consolidate remainder with first chunk of old base */
+ if (oldfirst == m->top) {
+ size_t tsize = m->topsize += qsize;
+ m->top = q;
+ q->head = tsize | PINUSE_BIT;
+ check_top_chunk(m, q);
+ }
+ else if (oldfirst == m->dv) {
+ size_t dsize = m->dvsize += qsize;
+ m->dv = q;
+ set_size_and_pinuse_of_free_chunk(q, dsize);
+ }
+ else {
+ if (!cinuse(oldfirst)) {
+ size_t nsize = chunksize(oldfirst);
+ unlink_chunk(m, oldfirst, nsize);
+ oldfirst = chunk_plus_offset(oldfirst, nsize);
+ qsize += nsize;
+ }
+ set_free_with_pinuse(q, qsize, oldfirst);
+ insert_chunk(m, q, qsize);
+ check_free_chunk(m, q);
+ }
+
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+}
+
+void* RNewAllocator::mmap_alloc(mstate m, size_t nb) {
+ size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ if (mmsize > nb) { /* Check for wrap around 0 */
+ TUint8* mm = (TUint8*)(DIRECT_MMAP(mmsize));
+ if (mm != CMFAIL) {
+ size_t offset = align_offset(chunk2mem(mm));
+ size_t psize = mmsize - offset - MMAP_FOOT_PAD;
+ mchunkptr p = (mchunkptr)(mm + offset);
+ p->prev_foot = offset | IS_MMAPPED_BIT;
+ (p)->head = (psize|CINUSE_BIT);
+ mark_inuse_foot(m, p, psize);
+ chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
+
+ if (mm < m->least_addr)
+ m->least_addr = mm;
+ if ((m->footprint += mmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ assert(is_aligned(chunk2mem(p)));
+ check_mmapped_chunk(m, p);
+ return chunk2mem(p);
+ }
+ }
+ return 0;
+}
+
+ int RNewAllocator::sys_trim(mstate m, size_t pad)
+ {
+ size_t released = 0;
+ if (pad < MAX_REQUEST && is_initialized(m)) {
+ pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
+
+ if (m->topsize > pad) {
+ /* Shrink top space in granularity-size units, keeping at least one */
+ size_t unit = mparams.granularity;
+ size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - SIZE_T_ONE) * unit;
+ msegmentptr sp = segment_holding(m, (TUint8*)m->top);
+
+ if (!is_extern_segment(sp)) {
+ if (is_mmapped_segment(sp)) {
+ if (HAVE_MMAP &&
+ sp->size >= extra &&
+ !has_segment_link(m, sp)) { /* can't shrink if pinned */
+ size_t newsize = sp->size - extra;
+ /* Prefer mremap, fall back to munmap */
+ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
+ (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
+ released = extra;
+ }
+ }
+ }
+ else if (HAVE_MORECORE) {
+ if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
+ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
+ ACQUIRE_MORECORE_LOCK(m);
+ {
+ /* Make sure end of memory is where we last set it. */
+ TUint8* old_br = (TUint8*)(CALL_MORECORE(0));
+ if (old_br == sp->base + sp->size) {
+ TUint8* rel_br = (TUint8*)(CALL_MORECORE(-extra));
+ TUint8* new_br = (TUint8*)(CALL_MORECORE(0));
+ if (rel_br != CMFAIL && new_br < old_br)
+ released = old_br - new_br;
+ }
+ }
+ RELEASE_MORECORE_LOCK(m);
+ }
+ }
+
+ if (released != 0) {
+ sp->size -= released;
+ m->footprint -= released;
+ init_top(m, m->top, m->topsize - released);
+ check_top_chunk(m, m->top);
+ }
+ }
+
+ /* Unmap any unused mmapped segments */
+ if (HAVE_MMAP)
+ released += release_unused_segments(m);
+
+ /* On failure, disable autotrim to avoid repeated failed future calls */
+ if (released == 0)
+ m->trim_check = MAX_SIZE_T;
+ }
+
+ return (released != 0)? 1 : 0;
+ }
+
+ inline int RNewAllocator::has_segment_link(mstate m, msegmentptr ss)
+ {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if ((TUint8*)sp >= ss->base && (TUint8*)sp < ss->base + ss->size)
+ return 1;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+ }
+
+ /* Unmap and unlink any mmapped segments that don't contain used chunks */
+ size_t RNewAllocator::release_unused_segments(mstate m)
+ {
+ size_t released = 0;
+ msegmentptr pred = &m->seg;
+ msegmentptr sp = pred->next;
+ while (sp != 0) {
+ TUint8* base = sp->base;
+ size_t size = sp->size;
+ msegmentptr next = sp->next;
+ if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
+ mchunkptr p = align_as_chunk(base);
+ size_t psize = chunksize(p);
+ /* Can unmap if first chunk holds entire segment and not pinned */
+ if (!cinuse(p) && (TUint8*)p + psize >= base + size - TOP_FOOT_SIZE) {
+ tchunkptr tp = (tchunkptr)p;
+ assert(segment_holds(sp, (TUint8*)sp));
+ if (p == m->dv) {
+ m->dv = 0;
+ m->dvsize = 0;
+ }
+ else {
+ unlink_large_chunk(m, tp);
+ }
+ if (CALL_MUNMAP(base, size) == 0) {
+ released += size;
+ m->footprint -= size;
+ /* unlink obsoleted record */
+ sp = pred;
+ sp->next = next;
+ }
+ else { /* back out if cannot unmap */
+ insert_large_chunk(m, tp, psize);
+ }
+ }
+ }
+ pred = sp;
+ sp = next;
+ }/*End of while*/
+ return released;
+ }
+ /* Realloc using mmap */
+ inline mchunkptr RNewAllocator::mmap_resize(mstate m, mchunkptr oldp, size_t nb)
+ {
+ size_t oldsize = chunksize(oldp);
+ if (is_small(nb)) /* Can't shrink mmap regions below small size */
+ return 0;
+ /* Keep old chunk if big enough but not too big */
+ if (oldsize >= nb + SIZE_T_SIZE &&
+ (oldsize - nb) <= (mparams.granularity << 1))
+ return oldp;
+ else {
+ size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
+ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
+ size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
+ CHUNK_ALIGN_MASK);
+ TUint8* cp = (TUint8*)CALL_MREMAP((char*)oldp - offset,
+ oldmmsize, newmmsize, 1);
+ if (cp != CMFAIL) {
+ mchunkptr newp = (mchunkptr)(cp + offset);
+ size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
+ newp->head = (psize|CINUSE_BIT);
+ mark_inuse_foot(m, newp, psize);
+ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
+
+ if (cp < m->least_addr)
+ m->least_addr = cp;
+ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ check_mmapped_chunk(m, newp);
+ return newp;
+ }
+ }
+ return 0;
+ }
+
+
+void RNewAllocator::Init_Dlmalloc(size_t capacity, int locked, size_t aTrimThreshold)
+ {
+ memset(gm,0,sizeof(malloc_state));
+ init_mparams(aTrimThreshold); /* Ensure pagesize etc initialized */
+ // The maximum amount that can be allocated can be calculated as:-
+ // 2^sizeof(size_t) - sizeof(malloc_state) - TOP_FOOT_SIZE - page size (all accordingly padded)
+ // If the capacity exceeds this, no allocation will be done.
+ gm->seg.base = gm->least_addr = iBase;
+ gm->seg.size = capacity;
+ gm->seg.sflags = !IS_MMAPPED_BIT;
+ set_lock(gm, locked);
+ gm->magic = mparams.magic;
+ init_bins(gm);
+ init_top(gm, (mchunkptr)iBase, capacity - TOP_FOOT_SIZE);
+ }
+
+void* RNewAllocator::dlmalloc(size_t bytes) {
+ /*
+ Basic algorithm:
+ If a small request (< 256 bytes minus per-chunk overhead):
+ 1. If one exists, use a remainderless chunk in associated smallbin.
+ (Remainderless means that there are too few excess bytes to
+ represent as a chunk.)
+ 2. If it is big enough, use the dv chunk, which is normally the
+ chunk adjacent to the one used for the most recent small request.
+ 3. If one exists, split the smallest available chunk in a bin,
+ saving remainder in dv.
+ 4. If it is big enough, use the top chunk.
+ 5. If available, get memory from system and use it
+ Otherwise, for a large request:
+ 1. Find the smallest available binned chunk that fits, and use it
+ if it is better fitting than dv chunk, splitting if necessary.
+ 2. If better fitting than any binned chunk, use the dv chunk.
+ 3. If it is big enough, use the top chunk.
+ 4. If request size >= mmap threshold, try to directly mmap this chunk.
+ 5. If available, get memory from system and use it
+
+ The ugly goto's here ensure that postaction occurs along all paths.
+ */
+ if (!PREACTION(gm)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = gm->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(gm, idx);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(gm, b, p, idx);
+ set_inuse_and_pinuse(gm, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > gm->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(gm, i);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(gm, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(gm, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(gm, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= gm->dvsize) {
+ size_t rsize = gm->dvsize - nb;
+ mchunkptr p = gm->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
+ gm->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = gm->dvsize;
+ gm->dvsize = 0;
+ gm->dv = 0;
+ set_inuse_and_pinuse(gm, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < gm->topsize) { /* Split top */
+ size_t rsize = gm->topsize -= nb;
+ mchunkptr p = gm->top;
+ mchunkptr r = gm->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(gm, gm->top);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(gm, nb);
+
+ postaction:
+ POSTACTION(gm);
+ return mem;
+ }
+
+ return 0;
+}
+
+void RNewAllocator::dlfree(void* mem) {
+ /*
+ Consolidate freed chunks with preceeding or succeeding bordering
+ free chunks, if they exist, and then place in a bin. Intermixed
+ with special cases for top, dv, mmapped chunks, and usage errors.
+ */
+
+ if (mem != 0)
+ {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+ if (!ok_magic(fm))
+ {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+#else /* FOOTERS */
+#define fm gm
+#endif /* FOOTERS */
+
+ if (!PREACTION(fm))
+ {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_cinuse(p)))
+ {
+ size_t psize = chunksize(p);
+ iTotalAllocSize -= psize; // TODO DAN
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p))
+ {
+ size_t prevsize = p->prev_foot;
+ if ((prevsize & IS_MMAPPED_BIT) != 0)
+ {
+ prevsize &= ~IS_MMAPPED_BIT;
+ psize += prevsize + MMAP_FOOT_PAD;
+ /*TInt tmp = TOP_FOOT_SIZE;
+ TUint8* top = (TUint8*)fm->top + fm->topsize + 40;
+ if((top == (TUint8*)p)&& fm->topsize > 4096)
+ {
+ fm->topsize += psize;
+ msegmentptr sp = segment_holding(fm, (TUint8*)fm->top);
+ sp->size+=psize;
+ if (should_trim(fm, fm->topsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else*/
+ {
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ fm->footprint -= psize;
+ goto postaction;
+ }
+ }
+ else
+ {
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev)))
+ { /* consolidate backward */
+ if (p != fm->dv)
+ {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS)
+ {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next)))
+ {
+ if (!cinuse(next))
+ { /* consolidate forward */
+ if (next == fm->top)
+ {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv)
+ {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ if (should_trim(fm, tsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else if (next == fm->dv)
+ {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else
+ {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv)
+ {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+ insert_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ goto postaction;
+ }
+ }
+erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+postaction:
+ POSTACTION(fm);
+ }
+ }
+#if !FOOTERS
+#undef fm
+#endif /* FOOTERS */
+}
+
+void* RNewAllocator::dlrealloc(void* oldmem, size_t bytes) {
+ if (oldmem == 0)
+ return dlmalloc(bytes);
+#ifdef REALLOC_ZERO_BYTES_FREES
+ if (bytes == 0) {
+ dlfree(oldmem);
+ return 0;
+ }
+#endif /* REALLOC_ZERO_BYTES_FREES */
+ else {
+#if ! FOOTERS
+ mstate m = gm;
+#else /* FOOTERS */
+ mstate m = get_mstate_for(mem2chunk(oldmem));
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+#endif /* FOOTERS */
+ return internal_realloc(m, oldmem, bytes);
+ }
+}
+
+
+int RNewAllocator::dlmalloc_trim(size_t pad) {
+ int result = 0;
+ if (!PREACTION(gm)) {
+ result = sys_trim(gm, pad);
+ POSTACTION(gm);
+ }
+ return result;
+}
+
+size_t RNewAllocator::dlmalloc_footprint(void) {
+ return gm->footprint;
+}
+
+size_t RNewAllocator::dlmalloc_max_footprint(void) {
+ return gm->max_footprint;
+}
+
+#if !NO_MALLINFO
+struct mallinfo RNewAllocator::dlmallinfo(void) {
+ return internal_mallinfo(gm);
+}
+#endif /* NO_MALLINFO */
+
+void RNewAllocator::dlmalloc_stats() {
+ internal_malloc_stats(gm);
+}
+
+int RNewAllocator::dlmallopt(int param_number, int value) {
+ return change_mparam(param_number, value);
+}
+
+//inline slab* slab::slabfor(void* p)
+inline slab* slab::slabfor( const void* p)
+ {return (slab*)(floor(p, slabsize));}
+
+
+void RNewAllocator::tree_remove(slab* s)
+{
+ slab** r = s->parent;
+ slab* c1 = s->child1;
+ slab* c2 = s->child2;
+ for (;;)
+ {
+ if (!c2)
+ {
+ *r = c1;
+ if (c1)
+ c1->parent = r;
+ return;
+ }
+ if (!c1)
+ {
+ *r = c2;
+ c2->parent = r;
+ return;
+ }
+ if (c1 > c2)
+ {
+ slab* c3 = c1;
+ c1 = c2;
+ c2 = c3;
+ }
+ slab* newc2 = c1->child2;
+ *r = c1;
+ c1->parent = r;
+ c1->child2 = c2;
+ c2->parent = &c1->child2;
+ s = c1;
+ c1 = s->child1;
+ c2 = newc2;
+ r = &s->child1;
+ }
+}
+void RNewAllocator::tree_insert(slab* s,slab** r)
+ {
+ slab* n = *r;
+ for (;;)
+ {
+ if (!n)
+ { // tree empty
+ *r = s;
+ s->parent = r;
+ s->child1 = s->child2 = 0;
+ break;
+ }
+ if (s < n)
+ { // insert between parent and n
+ *r = s;
+ s->parent = r;
+ s->child1 = n;
+ s->child2 = 0;
+ n->parent = &s->child1;
+ break;
+ }
+ slab* c1 = n->child1;
+ slab* c2 = n->child2;
+ if (c1 < c2)
+ {
+ r = &n->child1;
+ n = c1;
+ }
+ else
+ {
+ r = &n->child2;
+ n = c2;
+ }
+ }
+ }
+void* RNewAllocator::allocnewslab(slabset& allocator)
+//
+// Acquire and initialise a new slab, returning a cell from the slab
+// The strategy is:
+// 1. Use the lowest address free slab, if available. This is done by using the lowest slab
+// in the page at the root of the partial_page heap (which is address ordered). If the
+// is now fully used, remove it from the partial_page heap.
+// 2. Allocate a new page for slabs if no empty slabs are available
+//
+{
+ page* p = page::pagefor(partial_page);
+ if (!p)
+ return allocnewpage(allocator);
+
+ unsigned h = p->slabs[0].header;
+ unsigned pagemap = header_pagemap(h);
+ ASSERT(&p->slabs[hibit(pagemap)] == partial_page);
+
+ unsigned slabix = lowbit(pagemap);
+ p->slabs[0].header = h &~ (0x100<<slabix);
+ if (!(pagemap &~ (1<<slabix)))
+ {
+ tree_remove(partial_page); // last free slab in page
+ }
+ return initnewslab(allocator,&p->slabs[slabix]);
+}
+
+/**Defination of this functionis not there in proto code***/
+#if 0
+void RNewAllocator::partial_insert(slab* s)
+ {
+ // slab has had first cell freed and needs to be linked back into partial tree
+ slabset& ss = slaballoc[sizemap[s->clz]];
+
+ ASSERT(s->used == slabfull);
+ s->used = ss.fulluse - s->clz; // full-1 loading
+ tree_insert(s,&ss.partial);
+ checktree(ss.partial);
+ }
+/**Defination of this functionis not there in proto code***/
+#endif
+
+void* RNewAllocator::allocnewpage(slabset& allocator)
+//
+// Acquire and initialise a new page, returning a cell from a new slab
+// The partial_page tree is empty (otherwise we'd have used a slab from there)
+// The partial_page link is put in the highest addressed slab in the page, and the
+// lowest addressed slab is used to fulfill the allocation request
+//
+{
+ page* p = spare_page;
+ if (p)
+ spare_page = 0;
+ else
+ {
+ p = static_cast<page*>(map(0,pagesize));
+ if (!p)
+ return 0;
+ }
+ ASSERT(p == floor(p,pagesize));
+ p->slabs[0].header = ((1<<3) + (1<<2) + (1<<1))<<8; // set pagemap
+ p->slabs[3].parent = &partial_page;
+ p->slabs[3].child1 = p->slabs[3].child2 = 0;
+ partial_page = &p->slabs[3];
+ return initnewslab(allocator,&p->slabs[0]);
+}
+
+void RNewAllocator::freepage(page* p)
+//
+// Release an unused page to the OS
+// A single page is cached for reuse to reduce thrashing
+// the OS allocator.
+//
+{
+ ASSERT(ceiling(p,pagesize) == p);
+ if (!spare_page)
+ {
+ spare_page = p;
+ return;
+ }
+ unmap(p,pagesize);
+}
+
+void RNewAllocator::freeslab(slab* s)
+//
+// Release an empty slab to the slab manager
+// The strategy is:
+// 1. The page containing the slab is checked to see the state of the other slabs in the page by
+// inspecting the pagemap field in the header of the first slab in the page.
+// 2. The pagemap is updated to indicate the new unused slab
+// 3. If this is the only unused slab in the page then the slab header is used to add the page to
+// the partial_page tree/heap
+// 4. If all the slabs in the page are now unused the page is release back to the OS
+// 5. If this slab has a higher address than the one currently used to track this page in
+// the partial_page heap, the linkage is moved to the new unused slab
+//
+{
+ tree_remove(s);
+ checktree(*s->parent);
+ ASSERT(header_usedm4(s->header) == header_size(s->header)-4);
+ CHECK(s->header |= 0xFF00000); // illegal value for debug purposes
+ page* p = page::pagefor(s);
+ unsigned h = p->slabs[0].header;
+ int slabix = s - &p->slabs[0];
+ unsigned pagemap = header_pagemap(h);
+ p->slabs[0].header = h | (0x100<<slabix);
+ if (pagemap == 0)
+ { // page was full before, use this slab as link in empty heap
+ tree_insert(s, &partial_page);
+ }
+ else
+ { // find the current empty-link slab
+ slab* sl = &p->slabs[hibit(pagemap)];
+ pagemap ^= (1<<slabix);
+ if (pagemap == 0xf)
+ { // page is now empty so recycle page to os
+ tree_remove(sl);
+ freepage(p);
+ return;
+ }
+ // ensure the free list link is in highest address slab in page
+ if (s > sl)
+ { // replace current link with new one. Address-order tree so position stays the same
+ slab** r = sl->parent;
+ slab* c1 = sl->child1;
+ slab* c2 = sl->child2;
+ s->parent = r;
+ s->child1 = c1;
+ s->child2 = c2;
+ *r = s;
+ if (c1)
+ c1->parent = &s->child1;
+ if (c2)
+ c2->parent = &s->child2;
+ }
+ CHECK(if (s < sl) s=sl);
+ }
+ ASSERT(header_pagemap(p->slabs[0].header) != 0);
+ ASSERT(hibit(header_pagemap(p->slabs[0].header)) == unsigned(s - &p->slabs[0]));
+}
+
+void RNewAllocator::slab_init()
+{
+ slab_threshold=0;
+ partial_page = 0;
+ spare_page = 0;
+ memset(&sizemap[0],0xff,sizeof(sizemap));
+ memset(&slaballoc[0],0,sizeof(slaballoc));
+}
+
+void RNewAllocator::slab_config(unsigned slabbitmap)
+{
+ ASSERT((slabbitmap & ~okbits) == 0);
+ ASSERT(maxslabsize <= 60);
+
+ unsigned char ix = 0xff;
+ unsigned bit = 1<<((maxslabsize>>2)-1);
+ for (int sz = maxslabsize; sz >= 0; sz -= 4, bit >>= 1)
+ {
+ if (slabbitmap & bit)
+ {
+ if (ix == 0xff)
+ slab_threshold=sz+1;
+ ix = (sz>>2)-1;
+ }
+ sizemap[sz>>2] = ix;
+ }
+}
+
+void* RNewAllocator::slab_allocate(slabset& ss)
+//
+// Allocate a cell from the given slabset
+// Strategy:
+// 1. Take the partially full slab at the top of the heap (lowest address).
+// 2. If there is no such slab, allocate from a new slab
+// 3. If the slab has a non-empty freelist, pop the cell from the front of the list and update the slab
+// 4. Otherwise, if the slab is not full, return the cell at the end of the currently used region of
+// the slab, updating the slab
+// 5. Otherwise, release the slab from the partial tree/heap, marking it as 'floating' and go back to
+// step 1
+//
+{
+ for (;;)
+ {
+ slab *s = ss.partial;
+ if (!s)
+ break;
+ unsigned h = s->header;
+ unsigned free = h & 0xff; // extract free cell positiong
+ if (free)
+ {
+ ASSERT(((free<<2)-sizeof(slabhdr))%header_size(h) == 0);
+ void* p = offset(s,free<<2);
+ free = *(unsigned char*)p; // get next pos in free list
+ h += (h&0x3C000)<<6; // update usedm4
+ h &= ~0xff;
+ h |= free; // update freelist
+ s->header = h;
+ ASSERT(header_free(h) == 0 || ((header_free(h)<<2)-sizeof(slabhdr))%header_size(h) == 0);
+ ASSERT(header_usedm4(h) <= 0x3F8u);
+ ASSERT((header_usedm4(h)+4)%header_size(h) == 0);
+ return p;
+ }
+ unsigned h2 = h + ((h&0x3C000)<<6);
+ if (h2 < 0xfc00000)
+ {
+ ASSERT((header_usedm4(h2)+4)%header_size(h2) == 0);
+ s->header = h2;
+ return offset(s,(h>>18) + sizeof(unsigned) + sizeof(slabhdr));
+ }
+ h |= 0x80000000; // mark the slab as full-floating
+ s->header = h;
+ tree_remove(s);
+ checktree(ss.partial);
+ // go back and try the next slab...
+ }
+ // no partial slabs found, so allocate from a new slab
+ return allocnewslab(ss);
+}
+
+void RNewAllocator::slab_free(void* p)
+//
+// Free a cell from the slab allocator
+// Strategy:
+// 1. Find the containing slab (round down to nearest 1KB boundary)
+// 2. Push the cell into the slab's freelist, and update the slab usage count
+// 3. If this is the last allocated cell, free the slab to the main slab manager
+// 4. If the slab was full-floating then insert the slab in it's respective partial tree
+//
+{
+ ASSERT(lowbits(p,3)==0);
+ slab* s = slab::slabfor(p);
+
+ unsigned pos = lowbits(p, slabsize);
+ unsigned h = s->header;
+ ASSERT(header_usedm4(h) != 0x3fC); // slab is empty already
+ ASSERT((pos-sizeof(slabhdr))%header_size(h) == 0);
+ *(unsigned char*)p = (unsigned char)h;
+ h &= ~0xFF;
+ h |= (pos>>2);
+ unsigned size = h & 0x3C000;
+ iTotalAllocSize -= size; // TODO DAN
+ if (int(h) >= 0)
+ {
+ h -= size<<6;
+ if (int(h)>=0)
+ {
+ s->header = h;
+ return;
+ }
+ freeslab(s);
+ return;
+ }
+ h -= size<<6;
+ h &= ~0x80000000;
+ s->header = h;
+ slabset& ss = slaballoc[(size>>14)-1];
+ tree_insert(s,&ss.partial);
+ checktree(ss.partial);
+}
+
+void* RNewAllocator::initnewslab(slabset& allocator, slab* s)
+//
+// initialise an empty slab for this allocator and return the fist cell
+// pre-condition: the slabset has no partial slabs for allocation
+//
+{
+ ASSERT(allocator.partial==0);
+ TInt size = 4 + ((&allocator-&slaballoc[0])<<2); // infer size from slab allocator address
+ unsigned h = s->header & 0xF00; // preserve pagemap only
+ h |= (size<<12); // set size
+ h |= (size-4)<<18; // set usedminus4 to one object minus 4
+ s->header = h;
+ allocator.partial = s;
+ s->parent = &allocator.partial;
+ s->child1 = s->child2 = 0;
+ return offset(s,sizeof(slabhdr));
+}
+
+TAny* RNewAllocator::SetBrk(TInt32 aDelta)
+{
+ if (iFlags & EFixedSize)
+ return MFAIL;
+
+ if (aDelta < 0)
+ {
+ unmap(offset(iTop, aDelta), -aDelta);
+ }
+ else if (aDelta > 0)
+ {
+ if (!map(iTop, aDelta))
+ return MFAIL;
+ }
+ void * p =iTop;
+ iTop = offset(iTop, aDelta);
+ return p;
+}
+
+void* RNewAllocator::map(void* p,unsigned sz)
+//
+// allocate pages in the chunk
+// if p is NULL, find an allocate the required number of pages (which must lie in the lower half)
+// otherwise commit the pages specified
+//
+{
+ASSERT(p == floor(p, pagesize));
+ASSERT(sz == ceiling(sz, pagesize));
+ASSERT(sz > 0);
+
+ if (iChunkSize + sz > iMaxLength)
+ return 0;
+
+ RChunk chunk;
+ chunk.SetHandle(iChunkHandle);
+ if (p)
+ {
+ TInt r = chunk.Commit(iOffset + ptrdiff(p, this),sz);
+ if (r < 0)
+ return 0;
+ //ASSERT(p = offset(this, r - iOffset));
+ }
+ else
+ {
+ TInt r = chunk.Allocate(sz);
+ if (r < 0)
+ return 0;
+ if (r > iOffset)
+ {
+ // can't allow page allocations in DL zone
+ chunk.Decommit(r, sz);
+ return 0;
+ }
+ p = offset(this, r - iOffset);
+ }
+ iChunkSize += sz;
+#ifdef TRACING_HEAPS
+ if(iChunkSize > iHighWaterMark)
+ {
+ iHighWaterMark = ceiling(iChunkSize,16*pagesize);
+
+
+ RChunk chunk;
+ chunk.SetHandle(iChunkHandle);
+ TKName chunk_name;
+ chunk.FullName(chunk_name);
+ BTraceContextBig(BTrace::ETest1, 4, 44, chunk_name.Ptr(), chunk_name.Size());
+
+ TUint32 traceData[6];
+ traceData[0] = iChunkHandle;
+ traceData[1] = iMinLength;
+ traceData[2] = iMaxLength;
+ traceData[3] = sz;
+ traceData[4] = iChunkSize;
+ traceData[5] = iHighWaterMark;
+ BTraceContextN(BTrace::ETest1, 3, (TUint32)this, 33, traceData, sizeof(traceData));
+ }
+#endif
+ if (iChunkSize >= slab_init_threshold)
+ { // set up slab system now that heap is large enough
+ slab_config(slab_config_bits);
+ slab_init_threshold = KMaxTUint;
+ }
+ return p;
+}
+
+void* RNewAllocator::remap(void* p,unsigned oldsz,unsigned sz)
+{
+ if (oldsz > sz)
+ { // shrink
+ unmap(offset(p,sz), oldsz-sz);
+ }
+ else if (oldsz < sz)
+ { // grow, try and do this in place first
+ if (!map(offset(p, oldsz), sz-oldsz))
+ {
+ // need to allocate-copy-free
+ void* newp = map(0, sz);
+ memcpy(newp, p, oldsz);
+ unmap(p,oldsz);
+ return newp;
+ }
+ }
+ return p;
+}
+
+void RNewAllocator::unmap(void* p,unsigned sz)
+{
+ ASSERT(p == floor(p, pagesize));
+ ASSERT(sz == ceiling(sz, pagesize));
+ ASSERT(sz > 0);
+
+ RChunk chunk;
+ chunk.SetHandle(iChunkHandle);
+ TInt r = chunk.Decommit(ptrdiff(p, offset(this,-iOffset)), sz);
+ //TInt offset = (TUint8*)p-(TUint8*)chunk.Base();
+ //TInt r = chunk.Decommit(offset,sz);
+
+ ASSERT(r >= 0);
+ iChunkSize -= sz;
+}
+
+void RNewAllocator::paged_init(unsigned pagepower)
+ {
+ if (pagepower == 0)
+ pagepower = 31;
+ else if (pagepower < minpagepower)
+ pagepower = minpagepower;
+ page_threshold = pagepower;
+ for (int i=0;i<npagecells;++i)
+ {
+ pagelist[i].page = 0;
+ pagelist[i].size = 0;
+ }
+ }
+
+void* RNewAllocator::paged_allocate(unsigned size)
+{
+ unsigned nbytes = ceiling(size, pagesize);
+ if (nbytes < size + cellalign)
+ { // not enough extra space for header and alignment, try and use cell list
+ for (pagecell *c = pagelist,*e = c + npagecells;c < e;++c)
+ if (c->page == 0)
+ {
+ void* p = map(0, nbytes);
+ if (!p)
+ return 0;
+ c->page = p;
+ c->size = nbytes;
+ return p;
+ }
+ }
+ // use a cell header
+ nbytes = ceiling(size + cellalign, pagesize);
+ void* p = map(0, nbytes);
+ if (!p)
+ return 0;
+ *static_cast<unsigned*>(p) = nbytes;
+ return offset(p, cellalign);
+}
+
+void* RNewAllocator::paged_reallocate(void* p, unsigned size)
+{
+ if (lowbits(p, pagesize) == 0)
+ { // continue using descriptor
+ pagecell* c = paged_descriptor(p);
+ unsigned nbytes = ceiling(size, pagesize);
+ void* newp = remap(p, c->size, nbytes);
+ if (!newp)
+ return 0;
+ c->page = newp;
+ c->size = nbytes;
+ return newp;
+ }
+ else
+ { // use a cell header
+ ASSERT(lowbits(p,pagesize) == cellalign);
+ p = offset(p,-int(cellalign));
+ unsigned nbytes = ceiling(size + cellalign, pagesize);
+ unsigned obytes = *static_cast<unsigned*>(p);
+ void* newp = remap(p, obytes, nbytes);
+ if (!newp)
+ return 0;
+ *static_cast<unsigned*>(newp) = nbytes;
+ return offset(newp, cellalign);
+ }
+}
+
+void RNewAllocator::paged_free(void* p)
+{
+ if (lowbits(p,pagesize) == 0)
+ { // check pagelist
+ pagecell* c = paged_descriptor(p);
+
+ iTotalAllocSize -= c->size; // TODO DAN
+
+ unmap(p, c->size);
+ c->page = 0;
+ c->size = 0;
+ }
+ else
+ { // check page header
+ unsigned* page = static_cast<unsigned*>(offset(p,-int(cellalign)));
+ unsigned size = *page;
+ unmap(page,size);
+ }
+}
+
+pagecell* RNewAllocator::paged_descriptor(const void* p) const
+{
+ ASSERT(lowbits(p,pagesize) == 0);
+ // Double casting to keep the compiler happy. Seems to think we can trying to
+ // change a non-const member (pagelist) in a const function
+ pagecell* c = (pagecell*)((void*)pagelist);
+ pagecell* e = c + npagecells;
+ for (;;)
+ {
+ ASSERT(c!=e);
+ if (c->page == p)
+ return c;
+ ++c;
+ }
+}
+
+RNewAllocator* RNewAllocator::FixedHeap(TAny* aBase, TInt aMaxLength, TInt aAlign, TBool aSingleThread)
+/**
+Creates a fixed length heap at a specified location.
+
+On successful return from this function, aMaxLength bytes are committed by the chunk.
+The heap cannot be extended.
+
+@param aBase A pointer to the location where the heap is to be constructed.
+@param aMaxLength The length of the heap. If the supplied value is less
+ than KMinHeapSize, it is discarded and the value KMinHeapSize
+ is used instead.
+@param aAlign The alignment of heap cells.
+@param aSingleThread Indicates whether single threaded or not.
+
+@return A pointer to the new heap, or NULL if the heap could not be created.
+
+@panic USER 56 if aMaxLength is negative.
+*/
+//
+// Force construction of the fixed memory.
+//
+ {
+
+ __ASSERT_ALWAYS(aMaxLength>=0, ::Panic(ETHeapMaxLengthNegative));
+ if (aMaxLength<KMinHeapSize)
+ aMaxLength=KMinHeapSize;
+
+ RNewAllocator* h = new(aBase) RNewAllocator(aMaxLength, aAlign, aSingleThread);
+
+ if (!aSingleThread)
+ {
+ TInt r = h->iLock.CreateLocal();
+ if (r!=KErrNone)
+ return NULL;
+ h->iHandles = (TInt*)&h->iLock;
+ h->iHandleCount = 1;
+ }
+ return h;
+ }
+
+RNewAllocator* RNewAllocator::ChunkHeap(const TDesC* aName, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign, TBool aSingleThread)
+/**
+Creates a heap in a local or global chunk.
+
+The chunk hosting the heap can be local or global.
+
+A local chunk is one which is private to the process creating it and is not
+intended for access by other user processes.
+A global chunk is one which is visible to all processes.
+
+The hosting chunk is local, if the pointer aName is NULL, otherwise
+the hosting chunk is global and the descriptor *aName is assumed to contain
+the name to be assigned to it.
+
+Ownership of the host chunk is vested in the current process.
+
+A minimum and a maximum size for the heap can be specified. On successful
+return from this function, the size of the heap is at least aMinLength.
+If subsequent requests for allocation of memory from the heap cannot be
+satisfied by compressing the heap, the size of the heap is extended in
+increments of aGrowBy until the request can be satisfied. Attempts to extend
+the heap causes the size of the host chunk to be adjusted.
+
+Note that the size of the heap cannot be adjusted by more than aMaxLength.
+
+@param aName If NULL, the function constructs a local chunk to host
+ the heap.
+ If not NULL, a pointer to a descriptor containing the name
+ to be assigned to the global chunk hosting the heap.
+@param aMinLength The minimum length of the heap.
+@param aMaxLength The maximum length to which the heap can grow.
+ If the supplied value is less than KMinHeapSize, then it
+ is discarded and the value KMinHeapSize used instead.
+@param aGrowBy The increments to the size of the host chunk. If a value is
+ not explicitly specified, the value KMinHeapGrowBy is taken
+ by default
+@param aAlign The alignment of heap cells.
+@param aSingleThread Indicates whether single threaded or not.
+
+@return A pointer to the new heap or NULL if the heap could not be created.
+
+@panic USER 41 if aMinLength is greater than the supplied value of aMaxLength.
+@panic USER 55 if aMinLength is negative.
+@panic USER 56 if aMaxLength is negative.
+*/
+//
+// Allocate a Chunk of the requested size and force construction.
+//
+ {
+
+ __ASSERT_ALWAYS(aMinLength>=0, ::Panic(ETHeapMinLengthNegative));
+ __ASSERT_ALWAYS(aMaxLength>=aMinLength, ::Panic(ETHeapCreateMaxLessThanMin));
+ if (aMaxLength<KMinHeapSize)
+ aMaxLength=KMinHeapSize;
+ RChunk c;
+ TInt r;
+ if (aName)
+ r = c.CreateDisconnectedGlobal(*aName, 0, 0, aMaxLength*2, aSingleThread ? EOwnerThread : EOwnerProcess);
+ else
+ r = c.CreateDisconnectedLocal(0, 0, aMaxLength*2, aSingleThread ? EOwnerThread : EOwnerProcess);
+ if (r!=KErrNone)
+ return NULL;
+
+ RNewAllocator* h = ChunkHeap(c, aMinLength, aGrowBy, aMaxLength, aAlign, aSingleThread, UserHeap::EChunkHeapDuplicate);
+ c.Close();
+ return h;
+ }
+
+RNewAllocator* RNewAllocator::ChunkHeap(RChunk aChunk, TInt aMinLength, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode)
+/**
+Creates a heap in an existing chunk.
+
+This function is intended to be used to create a heap in a user writable code
+chunk as created by a call to RChunk::CreateLocalCode().
+This type of heap can be used to hold code fragments from a JIT compiler.
+
+The maximum length to which the heap can grow is the same as
+the maximum size of the chunk.
+
+@param aChunk The chunk that will host the heap.
+@param aMinLength The minimum length of the heap.
+@param aGrowBy The increments to the size of the host chunk.
+@param aMaxLength The maximum length to which the heap can grow.
+@param aAlign The alignment of heap cells.
+@param aSingleThread Indicates whether single threaded or not.
+@param aMode Flags controlling the reallocation. The only bit which has any
+ effect on reallocation is that defined by the enumeration
+ ENeverMove of the enum RAllocator::TReAllocMode.
+ If this is set, then any successful reallocation guarantees not
+ to have changed the start address of the cell.
+ By default, this parameter is zero.
+
+@return A pointer to the new heap or NULL if the heap could not be created.
+*/
+//
+// Construct a heap in an already existing chunk
+//
+ {
+
+ return OffsetChunkHeap(aChunk, aMinLength, 0, aGrowBy, aMaxLength, aAlign, aSingleThread, aMode);
+ }
+
+RNewAllocator* RNewAllocator::OffsetChunkHeap(RChunk aChunk, TInt aMinLength, TInt aOffset, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode)
+/**
+Creates a heap in an existing chunk, offset from the beginning of the chunk.
+
+This function is intended to be used to create a heap where a fixed amount of
+additional data must be stored at a known location. The additional data can be
+placed at the base address of the chunk, allowing it to be located without
+depending on the internals of the heap structure.
+
+The maximum length to which the heap can grow is the maximum size of the chunk,
+minus the offset.
+
+@param aChunk The chunk that will host the heap.
+@param aMinLength The minimum length of the heap.
+@param aOffset The offset from the start of the chunk, to the start of the heap.
+@param aGrowBy The increments to the size of the host chunk.
+@param aMaxLength The maximum length to which the heap can grow.
+@param aAlign The alignment of heap cells.
+@param aSingleThread Indicates whether single threaded or not.
+@param aMode Flags controlling the reallocation. The only bit which has any
+ effect on reallocation is that defined by the enumeration
+ ENeverMove of the enum RAllocator::TReAllocMode.
+ If this is set, then any successful reallocation guarantees not
+ to have changed the start address of the cell.
+ By default, this parameter is zero.
+
+@return A pointer to the new heap or NULL if the heap could not be created.
+*/
+//
+// Construct a heap in an already existing chunk
+//
+ {
+
+ TInt page_size = malloc_getpagesize;
+ if (!aAlign)
+ aAlign = RNewAllocator::ECellAlignment;
+ TInt maxLength = aChunk.MaxSize();
+ TInt round_up = Max(aAlign, page_size);
+ TInt min_cell = _ALIGN_UP(Max((TInt)RNewAllocator::EAllocCellSize, (TInt)RNewAllocator::EFreeCellSize), aAlign);
+ aOffset = _ALIGN_UP(aOffset, 8);
+
+#ifdef NO_RESERVE_MEMORY
+#ifdef TRACING_HEAPS
+ TKName chunk_name;
+ aChunk.FullName(chunk_name);
+ BTraceContextBig(BTrace::ETest1, 0xF, 0xFF, chunk_name.Ptr(), chunk_name.Size());
+
+ TUint32 traceData[4];
+ traceData[0] = aChunk.Handle();
+ traceData[1] = aMinLength;
+ traceData[2] = aMaxLength;
+ traceData[3] = aAlign;
+ BTraceContextN(BTrace::ETest1, 0xE, 0xEE, 0xEE, traceData, sizeof(traceData));
+#endif
+ //modifying the aMinLength because not all memory is the same in the new allocator. So it cannot reserve it properly
+ if( aMinLength<aMaxLength)
+ aMinLength = 0;
+#endif
+
+ if (aMaxLength && aMaxLength+aOffset<maxLength)
+ maxLength = _ALIGN_UP(aMaxLength+aOffset, round_up);
+ __ASSERT_ALWAYS(aMinLength>=0, ::Panic(ETHeapMinLengthNegative));
+ __ASSERT_ALWAYS(maxLength>=aMinLength, ::Panic(ETHeapCreateMaxLessThanMin));
+ aMinLength = _ALIGN_UP(Max(aMinLength, (TInt)sizeof(RNewAllocator) + min_cell) + aOffset, round_up);
+
+ // the new allocator uses a disconnected chunk so must commit the initial allocation
+ // with Commit() instead of Adjust()
+ // TInt r=aChunk.Adjust(aMinLength);
+ //TInt r = aChunk.Commit(aOffset, aMinLength);
+
+ aOffset = maxLength;
+ //TInt MORE_CORE_OFFSET = maxLength/2;
+ //TInt r = aChunk.Commit(MORE_CORE_OFFSET, aMinLength);
+ TInt r = aChunk.Commit(aOffset, aMinLength);
+
+ if (r!=KErrNone)
+ return NULL;
+
+ RNewAllocator* h = new (aChunk.Base() + aOffset) RNewAllocator(aChunk.Handle(), aOffset, aMinLength, maxLength, aGrowBy, aAlign, aSingleThread);
+ //RNewAllocator* h = new (aChunk.Base() + MORE_CORE_OFFSET) RNewAllocator(aChunk.Handle(), aOffset, aMinLength, maxLength, aGrowBy, aAlign, aSingleThread);
+
+ TBool duplicateLock = EFalse;
+ if (!aSingleThread)
+ {
+ duplicateLock = aMode & UserHeap::EChunkHeapSwitchTo;
+ if(h->iLock.CreateLocal(duplicateLock ? EOwnerThread : EOwnerProcess)!=KErrNone)
+ {
+ h->iChunkHandle = 0;
+ return NULL;
+ }
+ }
+
+ if (aMode & UserHeap::EChunkHeapSwitchTo)
+ User::SwitchHeap(h);
+
+ h->iHandles = &h->iChunkHandle;
+ if (!aSingleThread)
+ {
+ // now change the thread-relative chunk/semaphore handles into process-relative handles
+ h->iHandleCount = 2;
+ if(duplicateLock)
+ {
+ RHandleBase s = h->iLock;
+ r = h->iLock.Duplicate(RThread());
+ s.Close();
+ }
+ if (r==KErrNone && (aMode & UserHeap::EChunkHeapDuplicate))
+ {
+ r = ((RChunk*)&h->iChunkHandle)->Duplicate(RThread());
+ if (r!=KErrNone)
+ h->iLock.Close(), h->iChunkHandle=0;
+ }
+ }
+ else
+ {
+ h->iHandleCount = 1;
+ if (aMode & UserHeap::EChunkHeapDuplicate)
+ r = ((RChunk*)&h->iChunkHandle)->Duplicate(RThread(), EOwnerThread);
+ }
+
+ // return the heap address
+ return (r==KErrNone) ? h : NULL;
+ }
+
+
+#define UserTestDebugMaskBit(bit) (TBool)(UserSvr::DebugMask(bit>>5) & (1<<(bit&31)))
+
+#ifndef NO_NAMED_LOCAL_CHUNKS
+//this class requires Symbian^3 for ElocalNamed
+
+// Hack to get access to TChunkCreateInfo internals outside of the kernel
+class TFakeChunkCreateInfo: public TChunkCreateInfo
+ {
+public:
+ void SetThreadNewAllocator(TInt aInitialSize, TInt aMaxSize, const TDesC& aName)
+ {
+ iType = TChunkCreate::ENormal | TChunkCreate::EDisconnected | TChunkCreate::EData;
+ iMaxSize = aMaxSize * 2;
+
+ iInitialBottom = 0;
+ iInitialTop = aInitialSize;
+ iAttributes = TChunkCreate::ELocalNamed;
+ iName = &aName;
+ iOwnerType = EOwnerThread;
+ }
+ };
+#endif
+
+_LIT(KLitDollarHeap,"$HEAP");
+TInt RNewAllocator::CreateThreadHeap(SStdEpocThreadCreateInfo& aInfo, RNewAllocator*& aHeap, TInt aAlign, TBool aSingleThread)
+/**
+@internalComponent
+*/
+//
+// Create a user-side heap
+//
+ {
+ TInt page_size = malloc_getpagesize;
+ TInt minLength = _ALIGN_UP(aInfo.iHeapInitialSize, page_size);
+ TInt maxLength = Max(aInfo.iHeapMaxSize, minLength);
+#ifdef TRACING_ALLOCS
+ if (UserTestDebugMaskBit(96)) // 96 == KUSERHEAPTRACE in nk_trace.h
+ aInfo.iFlags |= ETraceHeapAllocs;
+#endif
+ // Create the thread's heap chunk.
+ RChunk c;
+#ifndef NO_NAMED_LOCAL_CHUNKS
+ TFakeChunkCreateInfo createInfo;
+ createInfo.SetThreadNewAllocator(0, maxLength, KLitDollarHeap()); // Initialise with no memory committed.
+ TInt r = c.Create(createInfo);
+#else
+ TInt r = c.CreateDisconnectedLocal(0, 0, maxLength * 2);
+#endif
+ if (r!=KErrNone)
+ return r;
+ aHeap = ChunkHeap(c, minLength, page_size, maxLength, aAlign, aSingleThread, UserHeap::EChunkHeapSwitchTo|UserHeap::EChunkHeapDuplicate);
+ c.Close();
+ if (!aHeap)
+ return KErrNoMemory;
+#ifdef TRACING_ALLOCS
+ if (aInfo.iFlags & ETraceHeapAllocs)
+ {
+ aHeap->iFlags |= RAllocator::ETraceAllocs;
+ BTraceContext8(BTrace::EHeap, BTrace::EHeapCreate,(TUint32)aHeap, RNewAllocator::EAllocCellSize);
+ TInt handle = aHeap->ChunkHandle();
+ TInt chunkId = ((RHandleBase&)handle).BTraceId();
+ BTraceContext8(BTrace::EHeap, BTrace::EHeapChunkCreate, (TUint32)aHeap, chunkId);
+ }
+#endif
+ return KErrNone;
+ }
+
+/*
+ * \internal
+ * Called from the qtmain.lib application wrapper.
+ * Create a new heap as requested, but use the new allocator
+ */
+Q_CORE_EXPORT qt_symbian_SetupThreadHeap(TBool aNotFirst, SStdEpocThreadCreateInfo& aInfo)
+ {
+ TInt r = KErrNone;
+ if (!aInfo.iAllocator && aInfo.iHeapInitialSize>0)
+ {
+ // new heap required
+ RNewAllocator* pH = NULL;
+ r = RNewAllocator::CreateThreadHeap(aInfo, pH);
+ }
+ else if (aInfo.iAllocator)
+ {
+ // sharing a heap
+ RAllocator* pA = aInfo.iAllocator;
+ pA->Open();
+ User::SwitchAllocator(pA);
+ }
+ return r;
+ }
+
+#else
+/*
+ * \internal
+ * Called from the qtmain.lib application wrapper.
+ * Create a new heap as requested, using the default system allocator
+ */
+Q_CORE_EXPORT TInt qt_symbian_SetupThreadHeap(TBool aNotFirst, SStdEpocThreadCreateInfo& aInfo)
+{
+ return UserHeap::SetupThreadHeap(aNotFirst, aInfo);
+}
+#endif
+
+#ifndef __WINS__
+#pragma pop
+#endif
diff --git a/src/corelib/arch/symbian/newallocator_p.h b/src/corelib/arch/symbian/newallocator_p.h
new file mode 100644
index 0000000..8f03506
--- /dev/null
+++ b/src/corelib/arch/symbian/newallocator_p.h
@@ -0,0 +1,336 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the Symbian application wrapper of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+** The memory allocator is backported from Symbian OS, and can eventually
+** be removed from Qt once it is built in to all supported OS versions.
+** The allocator is a composite of three allocators:
+** - A page allocator, for large allocations
+** - A slab allocator, for small allocations
+** - Doug Lea's allocator, for medium size allocations
+****************************************************************************/
+#ifndef NEWALLOCATOR_H
+#define NEWALLOCATOR_H
+
+class RNewAllocator : public RAllocator
+ {
+public:
+ enum{EAllocCellSize = 8};
+
+ virtual TAny* Alloc(TInt aSize);
+ virtual void Free(TAny* aPtr);
+ virtual TAny* ReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0);
+ virtual TInt AllocLen(const TAny* aCell) const;
+ virtual TInt Compress();
+ virtual void Reset();
+ virtual TInt AllocSize(TInt& aTotalAllocSize) const;
+ virtual TInt Available(TInt& aBiggestBlock) const;
+ virtual TInt DebugFunction(TInt aFunc, TAny* a1=NULL, TAny* a2=NULL);
+protected:
+ virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1);
+
+public:
+ TInt Size() const
+ { return iChunkSize; }
+
+ inline TInt MaxLength() const;
+ inline TUint8* Base() const;
+ inline TInt Align(TInt a) const;
+ inline const TAny* Align(const TAny* a) const;
+ inline void Lock() const;
+ inline void Unlock() const;
+ inline TInt ChunkHandle() const;
+
+ /**
+ @internalComponent
+ */
+ struct _s_align {char c; double d;};
+
+ /**
+ The structure of a heap cell header for a heap cell on the free list.
+ */
+ struct SCell {
+ /**
+ The length of the cell, which includes the length of
+ this header.
+ */
+ TInt len;
+
+
+ /**
+ A pointer to the next cell in the free list.
+ */
+ SCell* next;
+ };
+
+ /**
+ The default cell alignment.
+ */
+ enum {ECellAlignment = sizeof(_s_align)-sizeof(double)};
+
+ /**
+ Size of a free cell header.
+ */
+ enum {EFreeCellSize = sizeof(SCell)};
+
+ /**
+ @internalComponent
+ */
+ enum TDefaultShrinkRatios {EShrinkRatio1=256, EShrinkRatioDflt=512};
+
+public:
+ RNewAllocator(TInt aMaxLength, TInt aAlign=0, TBool aSingleThread=ETrue);
+ RNewAllocator(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign=0, TBool aSingleThread=EFalse);
+ inline RNewAllocator();
+
+ TAny* operator new(TUint aSize, TAny* aBase) __NO_THROW;
+ inline void operator delete(TAny*, TAny*);
+
+protected:
+ SCell* GetAddress(const TAny* aCell) const;
+
+public:
+ TInt iMinLength;
+ TInt iMaxLength; // maximum bytes used by the allocator in total
+ TInt iOffset; // offset of RNewAllocator object from chunk base
+ TInt iGrowBy;
+
+ TInt iChunkHandle; // handle of chunk
+ RFastLock iLock;
+ TUint8* iBase; // bottom of DL memory, i.e. this+sizeof(RNewAllocator)
+ TUint8* iTop; // top of DL memory (page aligned)
+ TInt iAlign;
+ TInt iMinCell;
+ TInt iPageSize;
+ SCell iFree;
+protected:
+ TInt iNestingLevel;
+ TInt iAllocCount;
+ TAllocFail iFailType;
+ TInt iFailRate;
+ TBool iFailed;
+ TInt iFailAllocCount;
+ TInt iRand;
+ TAny* iTestData;
+protected:
+ TInt iChunkSize; // currently allocated bytes in the chunk (== chunk.Size())
+ malloc_state iGlobalMallocState;
+ malloc_params mparams;
+private:
+ void Init(TInt aBitmapSlab, TInt aPagePower, size_t aTrimThreshold);/*Init internal data structures*/
+ inline int init_mparams(size_t aTrimThreshold /*= DEFAULT_TRIM_THRESHOLD*/);
+ inline void init_bins(mstate m);
+ inline void init_top(mstate m, mchunkptr p, size_t psize);
+ void* sys_alloc(mstate m, size_t nb);
+ msegmentptr segment_holding(mstate m, TUint8* addr);
+ void add_segment(mstate m, TUint8* tbase, size_t tsize, flag_t mmapped);
+ int sys_trim(mstate m, size_t pad);
+ int has_segment_link(mstate m, msegmentptr ss);
+ size_t release_unused_segments(mstate m);
+ void* mmap_alloc(mstate m, size_t nb);/*Need to check this function*/
+ void* prepend_alloc(mstate m, TUint8* newbase, TUint8* oldbase, size_t nb);
+ void* tmalloc_large(mstate m, size_t nb);
+ void* tmalloc_small(mstate m, size_t nb);
+ /*MACROS converted functions*/
+ static inline void unlink_first_small_chunk(mstate M,mchunkptr B,mchunkptr P,bindex_t& I);
+ static inline void insert_small_chunk(mstate M,mchunkptr P, size_t S);
+ static inline void insert_chunk(mstate M,mchunkptr P,size_t S);
+ static inline void unlink_large_chunk(mstate M,tchunkptr X);
+ static inline void unlink_small_chunk(mstate M, mchunkptr P,size_t S);
+ static inline void unlink_chunk(mstate M, mchunkptr P, size_t S);
+ static inline void compute_tree_index(size_t S, bindex_t& I);
+ static inline void insert_large_chunk(mstate M,tchunkptr X,size_t S);
+ static inline void replace_dv(mstate M, mchunkptr P, size_t S);
+ static inline void compute_bit2idx(binmap_t X,bindex_t& I);
+ /*MACROS converted functions*/
+ TAny* SetBrk(TInt32 aDelta);
+ void* internal_realloc(mstate m, void* oldmem, size_t bytes);
+ void internal_malloc_stats(mstate m);
+ int change_mparam(int param_number, int value);
+#if !NO_MALLINFO
+ mallinfo internal_mallinfo(mstate m);
+#endif
+ void Init_Dlmalloc(size_t capacity, int locked, size_t aTrimThreshold);
+ void* dlmalloc(size_t);
+ void dlfree(void*);
+ void* dlrealloc(void*, size_t);
+ int dlmallopt(int, int);
+ size_t dlmalloc_footprint(void);
+ size_t dlmalloc_max_footprint(void);
+ #if !NO_MALLINFO
+ struct mallinfo dlmallinfo(void);
+ #endif
+ int dlmalloc_trim(size_t);
+ size_t dlmalloc_usable_size(void*);
+ void dlmalloc_stats(void);
+ inline mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb);
+
+ /****************************Code Added For DL heap**********************/
+ friend TInt qt_symbian_SetupThreadHeap(TBool aNotFirst, SStdEpocThreadCreateInfo& aInfo);
+private:
+ unsigned short slab_threshold;
+ unsigned short page_threshold; // 2^n is smallest cell size allocated in paged allocator
+ unsigned slab_init_threshold;
+ unsigned slab_config_bits;
+ slab* partial_page;// partial-use page tree
+ page* spare_page; // single empty page cached
+ unsigned char sizemap[(maxslabsize>>2)+1]; // index of slabset based on size class
+private:
+ static void tree_remove(slab* s);
+ static void tree_insert(slab* s,slab** r);
+public:
+ enum {okbits = (1<<(maxslabsize>>2))-1};
+ void slab_init();
+ void slab_config(unsigned slabbitmap);
+ void* slab_allocate(slabset& allocator);
+ void slab_free(void* p);
+ void* allocnewslab(slabset& allocator);
+ void* allocnewpage(slabset& allocator);
+ void* initnewslab(slabset& allocator, slab* s);
+ void freeslab(slab* s);
+ void freepage(page* p);
+ void* map(void* p,unsigned sz);
+ void* remap(void* p,unsigned oldsz,unsigned sz);
+ void unmap(void* p,unsigned sz);
+ /**I think we need to move this functions to slab allocator class***/
+ static inline unsigned header_free(unsigned h)
+ {return (h&0x000000ff);}
+ static inline unsigned header_pagemap(unsigned h)
+ {return (h&0x00000f00)>>8;}
+ static inline unsigned header_size(unsigned h)
+ {return (h&0x0003f000)>>12;}
+ static inline unsigned header_usedm4(unsigned h)
+ {return (h&0x0ffc0000)>>18;}
+ /***paged allocator code***/
+ void paged_init(unsigned pagepower);
+ void* paged_allocate(unsigned size);
+ void paged_free(void* p);
+ void* paged_reallocate(void* p, unsigned size);
+ pagecell* paged_descriptor(const void* p) const ;
+private:
+ // paged allocator structures
+ enum {npagecells=4};
+ pagecell pagelist[npagecells]; // descriptors for page-aligned large allocations
+ TAny* DLReAllocImpl(TAny* aPtr, TInt aSize);
+ // to track maximum used
+ //TInt iHighWaterMark;
+
+ slabset slaballoc[maxslabsize>>2];
+
+private:
+ static RNewAllocator* FixedHeap(TAny* aBase, TInt aMaxLength, TInt aAlign, TBool aSingleThread);
+ static RNewAllocator* ChunkHeap(const TDesC* aName, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign, TBool aSingleThread);
+ static RNewAllocator* ChunkHeap(RChunk aChunk, TInt aMinLength, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode);
+ static RNewAllocator* OffsetChunkHeap(RChunk aChunk, TInt aMinLength, TInt aOffset, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode);
+ static TInt CreateThreadHeap(SStdEpocThreadCreateInfo& aInfo, RNewAllocator*& aHeap, TInt aAlign = 0, TBool aSingleThread = EFalse);
+};
+
+inline RNewAllocator::RNewAllocator()
+ {}
+
+/**
+@return The maximum length to which the heap can grow.
+
+@publishedAll
+@released
+*/
+inline TInt RNewAllocator::MaxLength() const
+ {return iMaxLength;}
+
+inline void RNewAllocator::operator delete(TAny*, TAny*)
+/**
+Called if constructor issued by operator new(TUint aSize, TAny* aBase) throws exception.
+This is dummy as corresponding new operator does not allocate memory.
+*/
+ {}
+
+
+inline TUint8* RNewAllocator::Base() const
+/**
+Gets a pointer to the start of the heap.
+
+Note that because of the small space overhead incurred by all allocated cells,
+no cell will have the same address as that returned by this function.
+
+@return A pointer to the base of the heap.
+*/
+ {return iBase;}
+
+
+inline TInt RNewAllocator::Align(TInt a) const
+/**
+@internalComponent
+*/
+ {return _ALIGN_UP(a, iAlign);}
+
+
+
+
+inline const TAny* RNewAllocator::Align(const TAny* a) const
+/**
+@internalComponent
+*/
+ {return (const TAny*)_ALIGN_UP((TLinAddr)a, iAlign);}
+
+
+
+inline void RNewAllocator::Lock() const
+/**
+@internalComponent
+*/
+ {((RFastLock&)iLock).Wait();}
+
+
+
+
+inline void RNewAllocator::Unlock() const
+/**
+@internalComponent
+*/
+ {((RFastLock&)iLock).Signal();}
+
+
+inline TInt RNewAllocator::ChunkHandle() const
+/**
+@internalComponent
+*/
+ {
+ return iChunkHandle;
+ }
+
+#endif // NEWALLOCATOR_H