summaryrefslogtreecommitdiffstats
path: root/src/corelib/tools/qregexp.cpp
diff options
context:
space:
mode:
authorAlexis Menard <alexis.menard@nokia.com>2009-04-17 14:06:06 (GMT)
committerAlexis Menard <alexis.menard@nokia.com>2009-04-17 14:06:06 (GMT)
commitf15b8a83e2e51955776a3f07cb85ebfc342dd8ef (patch)
treec5dc684986051654898db11ce73e03b9fec8db99 /src/corelib/tools/qregexp.cpp
downloadQt-f15b8a83e2e51955776a3f07cb85ebfc342dd8ef.zip
Qt-f15b8a83e2e51955776a3f07cb85ebfc342dd8ef.tar.gz
Qt-f15b8a83e2e51955776a3f07cb85ebfc342dd8ef.tar.bz2
Initial import of statemachine branch from the old kinetic repository
Diffstat (limited to 'src/corelib/tools/qregexp.cpp')
-rw-r--r--src/corelib/tools/qregexp.cpp4070
1 files changed, 4070 insertions, 0 deletions
diff --git a/src/corelib/tools/qregexp.cpp b/src/corelib/tools/qregexp.cpp
new file mode 100644
index 0000000..e1c3921
--- /dev/null
+++ b/src/corelib/tools/qregexp.cpp
@@ -0,0 +1,4070 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the QtCore module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the either Technology Preview License Agreement or the
+** Beta Release License Agreement.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain
+** additional rights. These rights are described in the Nokia Qt LGPL
+** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
+** package.
+**
+** GNU General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU
+** General Public License version 3.0 as published by the Free Software
+** Foundation and appearing in the file LICENSE.GPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU General Public License version 3.0 requirements will be
+** met: http://www.gnu.org/copyleft/gpl.html.
+**
+** If you are unsure which license is appropriate for your use, please
+** contact the sales department at qt-sales@nokia.com.
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include "qregexp.h"
+
+#include "qalgorithms.h"
+#include "qbitarray.h"
+#include "qcache.h"
+#include "qdatastream.h"
+#include "qlist.h"
+#include "qmap.h"
+#include "qmutex.h"
+#include "qstring.h"
+#include "qstringlist.h"
+#include "qstringmatcher.h"
+#include "qvector.h"
+
+#include <limits.h>
+
+QT_BEGIN_NAMESPACE
+
+int qFindString(const QChar *haystack, int haystackLen, int from,
+ const QChar *needle, int needleLen, Qt::CaseSensitivity cs);
+
+// error strings for the regexp parser
+#define RXERR_OK QT_TRANSLATE_NOOP("QRegExp", "no error occurred")
+#define RXERR_DISABLED QT_TRANSLATE_NOOP("QRegExp", "disabled feature used")
+#define RXERR_CHARCLASS QT_TRANSLATE_NOOP("QRegExp", "bad char class syntax")
+#define RXERR_LOOKAHEAD QT_TRANSLATE_NOOP("QRegExp", "bad lookahead syntax")
+#define RXERR_REPETITION QT_TRANSLATE_NOOP("QRegExp", "bad repetition syntax")
+#define RXERR_OCTAL QT_TRANSLATE_NOOP("QRegExp", "invalid octal value")
+#define RXERR_LEFTDELIM QT_TRANSLATE_NOOP("QRegExp", "missing left delim")
+#define RXERR_END QT_TRANSLATE_NOOP("QRegExp", "unexpected end")
+#define RXERR_LIMIT QT_TRANSLATE_NOOP("QRegExp", "met internal limit")
+
+/*
+ WARNING! Be sure to read qregexp.tex before modifying this file.
+*/
+
+/*!
+ \class QRegExp
+ \reentrant
+ \brief The QRegExp class provides pattern matching using regular expressions.
+
+ \ingroup tools
+ \ingroup misc
+ \ingroup shared
+ \mainclass
+ \keyword regular expression
+
+ A regular expression, or "regexp", is a pattern for matching
+ substrings in a text. This is useful in many contexts, e.g.,
+
+ \table
+ \row \i Validation
+ \i A regexp can test whether a substring meets some criteria,
+ e.g. is an integer or contains no whitespace.
+ \row \i Searching
+ \i A regexp provides more powerful pattern matching than
+ simple substring matching, e.g., match one of the words
+ \e{mail}, \e{letter} or \e{correspondence}, but none of the
+ words \e{email}, \e{mailman}, \e{mailer}, \e{letterbox}, etc.
+ \row \i Search and Replace
+ \i A regexp can replace all occurrences of a substring with a
+ different substring, e.g., replace all occurrences of \e{&}
+ with \e{\&amp;} except where the \e{&} is already followed by
+ an \e{amp;}.
+ \row \i String Splitting
+ \i A regexp can be used to identify where a string should be
+ split apart, e.g. splitting tab-delimited strings.
+ \endtable
+
+ A brief introduction to regexps is presented, a description of
+ Qt's regexp language, some examples, and the function
+ documentation itself. QRegExp is modeled on Perl's regexp
+ language. It fully supports Unicode. QRegExp can also be used in a
+ simpler, \e{wildcard mode} that is similar to the functionality
+ found in command shells. The syntax rules used by QRegExp can be
+ changed with setPatternSyntax(). In particular, the pattern syntax
+ can be set to QRegExp::FixedString, which means the pattern to be
+ matched is interpreted as a plain string, i.e., special characters
+ (e.g., backslash) are not escaped.
+
+ A good text on regexps is \e {Mastering Regular Expressions}
+ (Third Edition) by Jeffrey E. F. Friedl, ISBN 0-596-52812-4.
+
+ \tableofcontents
+
+ \section1 Introduction
+
+ Regexps are built up from expressions, quantifiers, and
+ assertions. The simplest expression is a character, e.g. \bold{x}
+ or \bold{5}. An expression can also be a set of characters
+ enclosed in square brackets. \bold{[ABCD]} will match an \bold{A}
+ or a \bold{B} or a \bold{C} or a \bold{D}. We can write this same
+ expression as \bold{[A-D]}, and an experession to match any
+ captital letter in the English alphabet is written as
+ \bold{[A-Z]}.
+
+ A quantifier specifies the number of occurrences of an expression
+ that must be matched. \bold{x{1,1}} means match one and only one
+ \bold{x}. \bold{x{1,5}} means match a sequence of \bold{x}
+ characters that contains at least one \bold{x} but no more than
+ five.
+
+ Note that in general regexps cannot be used to check for balanced
+ brackets or tags. For example, a regexp can be written to match an
+ opening html \c{<b>} and its closing \c{</b>}, if the \c{<b>} tags
+ are not nested, but if the \c{<b>} tags are nested, that same
+ regexp will match an opening \c{<b>} tag with the wrong closing
+ \c{</b>}. For the fragment \c{<b>bold <b>bolder</b></b>}, the
+ first \c{<b>} would be matched with the first \c{</b>}, which is
+ not correct. However, it is possible to write a regexp that will
+ match nested brackets or tags correctly, but only if the number of
+ nesting levels is fixed and known. If the number of nesting levels
+ is not fixed and known, it is impossible to write a regexp that
+ will not fail.
+
+ Suppose we want a regexp to match integers in the range 0 to 99.
+ At least one digit is required, so we start with the expression
+ \bold{[0-9]{1,1}}, which matches a single digit exactly once. This
+ regexp matches integers in the range 0 to 9. To match integers up
+ to 99, increase the maximum number of occurrences to 2, so the
+ regexp becomes \bold{[0-9]{1,2}}. This regexp satisfies the
+ original requirement to match integers from 0 to 99, but it will
+ also match integers that occur in the middle of strings. If we
+ want the matched integer to be the whole string, we must use the
+ anchor assertions, \bold{^} (caret) and \bold{$} (dollar). When
+ \bold{^} is the first character in a regexp, it means the regexp
+ must match from the beginning of the string. When \bold{$} is the
+ last character of the regexp, it means the regexp must match to
+ the end of the string. The regexp becomes \bold{^[0-9]{1,2}$}.
+ Note that assertions, e.g. \bold{^} and \bold{$}, do not match
+ characters but locations in the string.
+
+ If you have seen regexps described elsewhere, they may have looked
+ different from the ones shown here. This is because some sets of
+ characters and some quantifiers are so common that they have been
+ given special symbols to represent them. \bold{[0-9]} can be
+ replaced with the symbol \bold{\\d}. The quantifier to match
+ exactly one occurrence, \bold{{1,1}}, can be replaced with the
+ expression itself, i.e. \bold{x{1,1}} is the same as \bold{x}. So
+ our 0 to 99 matcher could be written as \bold{^\\d{1,2}$}. It can
+ also be written \bold{^\\d\\d{0,1}$}, i.e. \e{From the start of
+ the string, match a digit, followed immediately by 0 or 1 digits}.
+ In practice, it would be written as \bold{^\\d\\d?$}. The \bold{?}
+ is shorthand for the quantifier \bold{{0,1}}, i.e. 0 or 1
+ occurrences. \bold{?} makes an expression optional. The regexp
+ \bold{^\\d\\d?$} means \e{From the beginning of the string, match
+ one digit, followed immediately by 0 or 1 more digit, followed
+ immediately by end of string}.
+
+ To write a regexp that matches one of the words 'mail' \e or
+ 'letter' \e or 'correspondence' but does not match words that
+ contain these words, e.g., 'email', 'mailman', 'mailer', and
+ 'letterbox', start with a regexp that matches 'mail'. Expressed
+ fully, the regexp is \bold{m{1,1}a{1,1}i{1,1}l{1,1}}, but because
+ a character expression is automatically quantified by
+ \bold{{1,1}}, we can simplify the regexp to \bold{mail}, i.e., an
+ 'm' followed by an 'a' followed by an 'i' followed by an 'l'. Now
+ we can use the vertical bar \bold{|}, which means \bold{or}, to
+ include the other two words, so our regexp for matching any of the
+ three words becomes \bold{mail|letter|correspondence}. Match
+ 'mail' \bold{or} 'letter' \bold{or} 'correspondence'. While this
+ regexp will match one of the three words we want to match, it will
+ also match words we don't want to match, e.g., 'email'. To
+ prevent the regexp from matching unwanted words, we must tell it
+ to begin and end the match at word boundaries. First we enclose
+ our regexp in parentheses, \bold{(mail|letter|correspondence)}.
+ Parentheses group expressions together, and they identify a part
+ of the regexp that we wish to \l{capturing text}{capture}.
+ Enclosing the expression in parentheses allows us to use it as a
+ component in more complex regexps. It also allows us to examine
+ which of the three words was actually matched. To force the match
+ to begin and end on word boundaries, we enclose the regexp in
+ \bold{\\b} \e{word boundary} assertions:
+ \bold{\\b(mail|letter|correspondence)\\b}. Now the regexp means:
+ \e{Match a word boundary, followed by the regexp in parentheses,
+ followed by a word boundary}. The \bold{\\b} assertion matches a
+ \e position in the regexp, not a \e character. A word boundary is
+ any non-word character, e.g., a space, newline, or the beginning
+ or ending of a string.
+
+ If we want to replace ampersand characters with the HTML entity
+ \bold{\&amp;}, the regexp to match is simply \bold{\&}. But this
+ regexp will also match ampersands that have already been converted
+ to HTML entities. We want to replace only ampersands that are not
+ already followed by \bold{amp;}. For this, we need the negative
+ lookahead assertion, \bold{(?!}__\bold{)}. The regexp can then be
+ written as \bold{\&(?!amp;)}, i.e. \e{Match an ampersand that is}
+ \bold{not} \e{followed by} \bold{amp;}.
+
+ If we want to count all the occurrences of 'Eric' and 'Eirik' in a
+ string, two valid solutions are \bold{\\b(Eric|Eirik)\\b} and
+ \bold{\\bEi?ri[ck]\\b}. The word boundary assertion '\\b' is
+ required to avoid matching words that contain either name,
+ e.g. 'Ericsson'. Note that the second regexp matches more
+ spellings than we want: 'Eric', 'Erik', 'Eiric' and 'Eirik'.
+
+ Some of the examples discussed above are implemented in the
+ \link #code-examples code examples \endlink section.
+
+ \target characters-and-abbreviations-for-sets-of-characters
+ \section1 Characters and Abbreviations for Sets of Characters
+
+ \table
+ \header \i Element \i Meaning
+ \row \i \bold{c}
+ \i A character represents itself unless it has a special
+ regexp meaning. e.g. \bold{c} matches the character \e c.
+ \row \i \bold{\\c}
+ \i A character that follows a backslash matches the character
+ itself, except as specified below. e.g., To match a literal
+ caret at the beginning of a string, write \bold{\\^}.
+ \row \i \bold{\\a}
+ \i Matches the ASCII bell (BEL, 0x07).
+ \row \i \bold{\\f}
+ \i Matches the ASCII form feed (FF, 0x0C).
+ \row \i \bold{\\n}
+ \i Matches the ASCII line feed (LF, 0x0A, Unix newline).
+ \row \i \bold{\\r}
+ \i Matches the ASCII carriage return (CR, 0x0D).
+ \row \i \bold{\\t}
+ \i Matches the ASCII horizontal tab (HT, 0x09).
+ \row \i \bold{\\v}
+ \i Matches the ASCII vertical tab (VT, 0x0B).
+ \row \i \bold{\\x\e{hhhh}}
+ \i Matches the Unicode character corresponding to the
+ hexadecimal number \e{hhhh} (between 0x0000 and 0xFFFF).
+ \row \i \bold{\\0\e{ooo}} (i.e., \\zero \e{ooo})
+ \i matches the ASCII/Latin1 character for the octal number
+ \e{ooo} (between 0 and 0377).
+ \row \i \bold{. (dot)}
+ \i Matches any character (including newline).
+ \row \i \bold{\\d}
+ \i Matches a digit (QChar::isDigit()).
+ \row \i \bold{\\D}
+ \i Matches a non-digit.
+ \row \i \bold{\\s}
+ \i Matches a whitespace character (QChar::isSpace()).
+ \row \i \bold{\\S}
+ \i Matches a non-whitespace character.
+ \row \i \bold{\\w}
+ \i Matches a word character (QChar::isLetterOrNumber(), QChar::isMark(), or '_').
+ \row \i \bold{\\W}
+ \i Matches a non-word character.
+ \row \i \bold{\\\e{n}}
+ \i The \e{n}-th \l backreference, e.g. \\1, \\2, etc.
+ \endtable
+
+ \bold{Note:} The C++ compiler transforms backslashes in strings.
+ To include a \bold{\\} in a regexp, enter it twice, i.e. \c{\\}.
+ To match the backslash character itself, enter it four times, i.e.
+ \c{\\\\}.
+
+ \target sets-of-characters
+ \section1 Sets of Characters
+
+ Square brackets mean match any character contained in the square
+ brackets. The character set abbreviations described above can
+ appear in a character set in square brackets. Except for the
+ character set abbreviations and the following two exceptions,
+ characters do not have special meanings in square brackets.
+
+ \table
+ \row \i \bold{^}
+
+ \i The caret negates the character set if it occurs as the
+ first character (i.e. immediately after the opening square
+ bracket). \bold{[abc]} matches 'a' or 'b' or 'c', but
+ \bold{[^abc]} matches anything \e but 'a' or 'b' or 'c'.
+
+ \row \i \bold{-}
+
+ \i The dash indicates a range of characters. \bold{[W-Z]}
+ matches 'W' or 'X' or 'Y' or 'Z'.
+
+ \endtable
+
+ Using the predefined character set abbreviations is more portable
+ than using character ranges across platforms and languages. For
+ example, \bold{[0-9]} matches a digit in Western alphabets but
+ \bold{\\d} matches a digit in \e any alphabet.
+
+ Note: In other regexp documentation, sets of characters are often
+ called "character classes".
+
+ \target quantifiers
+ \section1 Quantifiers
+
+ By default, an expression is automatically quantified by
+ \bold{{1,1}}, i.e. it should occur exactly once. In the following
+ list, \bold{\e {E}} stands for expression. An expression is a
+ character, or an abbreviation for a set of characters, or a set of
+ characters in square brackets, or an expression in parentheses.
+
+ \table
+ \row \i \bold{\e {E}?}
+
+ \i Matches zero or one occurrences of \e E. This quantifier
+ means \e{The previous expression is optional}, because it
+ will match whether or not the expression is found. \bold{\e
+ {E}?} is the same as \bold{\e {E}{0,1}}. e.g., \bold{dents?}
+ matches 'dent' or 'dents'.
+
+ \row \i \bold{\e {E}+}
+
+ \i Matches one or more occurrences of \e E. \bold{\e {E}+} is
+ the same as \bold{\e {E}{1,}}. e.g., \bold{0+} matches '0',
+ '00', '000', etc.
+
+ \row \i \bold{\e {E}*}
+
+ \i Matches zero or more occurrences of \e E. It is the same
+ as \bold{\e {E}{0,}}. The \bold{*} quantifier is often used
+ in error where \bold{+} should be used. For example, if
+ \bold{\\s*$} is used in an expression to match strings that
+ end in whitespace, it will match every string because
+ \bold{\\s*$} means \e{Match zero or more whitespaces followed
+ by end of string}. The correct regexp to match strings that
+ have at least one trailing whitespace character is
+ \bold{\\s+$}.
+
+ \row \i \bold{\e {E}{n}}
+
+ \i Matches exactly \e n occurrences of \e E. \bold{\e {E}{n}}
+ is the same as repeating \e E \e n times. For example,
+ \bold{x{5}} is the same as \bold{xxxxx}. It is also the same
+ as \bold{\e {E}{n,n}}, e.g. \bold{x{5,5}}.
+
+ \row \i \bold{\e {E}{n,}}
+ \i Matches at least \e n occurrences of \e E.
+
+ \row \i \bold{\e {E}{,m}}
+ \i Matches at most \e m occurrences of \e E. \bold{\e {E}{,m}}
+ is the same as \bold{\e {E}{0,m}}.
+
+ \row \i \bold{\e {E}{n,m}}
+ \i Matches at least \e n and at most \e m occurrences of \e E.
+ \endtable
+
+ To apply a quantifier to more than just the preceding character,
+ use parentheses to group characters together in an expression. For
+ example, \bold{tag+} matches a 't' followed by an 'a' followed by
+ at least one 'g', whereas \bold{(tag)+} matches at least one
+ occurrence of 'tag'.
+
+ Note: Quantifiers are normally "greedy". They always match as much
+ text as they can. For example, \bold{0+} matches the first zero it
+ finds and all the consecutive zeros after the first zero. Applied
+ to '20005', it matches'2\underline{000}5'. Quantifiers can be made
+ non-greedy, see setMinimal().
+
+ \target capturing parentheses
+ \target backreferences
+ \section1 Capturing Text
+
+ Parentheses allow us to group elements together so that we can
+ quantify and capture them. For example if we have the expression
+ \bold{mail|letter|correspondence} that matches a string we know
+ that \e one of the words matched but not which one. Using
+ parentheses allows us to "capture" whatever is matched within
+ their bounds, so if we used \bold{(mail|letter|correspondence)}
+ and matched this regexp against the string "I sent you some email"
+ we can use the cap() or capturedTexts() functions to extract the
+ matched characters, in this case 'mail'.
+
+ We can use captured text within the regexp itself. To refer to the
+ captured text we use \e backreferences which are indexed from 1,
+ the same as for cap(). For example we could search for duplicate
+ words in a string using \bold{\\b(\\w+)\\W+\\1\\b} which means match a
+ word boundary followed by one or more word characters followed by
+ one or more non-word characters followed by the same text as the
+ first parenthesized expression followed by a word boundary.
+
+ If we want to use parentheses purely for grouping and not for
+ capturing we can use the non-capturing syntax, e.g.
+ \bold{(?:green|blue)}. Non-capturing parentheses begin '(?:' and
+ end ')'. In this example we match either 'green' or 'blue' but we
+ do not capture the match so we only know whether or not we matched
+ but not which color we actually found. Using non-capturing
+ parentheses is more efficient than using capturing parentheses
+ since the regexp engine has to do less book-keeping.
+
+ Both capturing and non-capturing parentheses may be nested.
+
+ \target greedy quantifiers
+
+ For historical reasons, quantifiers (e.g. \bold{*}) that apply to
+ capturing parentheses are more "greedy" than other quantifiers.
+ For example, \bold{a*(a)*} will match "aaa" with cap(1) == "aaa".
+ This behavior is different from what other regexp engines do
+ (notably, Perl). To obtain a more intuitive capturing behavior,
+ specify QRegExp::RegExp2 to the QRegExp constructor or call
+ setPatternSyntax(QRegExp::RegExp2).
+
+ \target cap_in_a_loop
+
+ When the number of matches cannot be determined in advance, a
+ common idiom is to use cap() in a loop. For example:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 0
+
+ \target assertions
+ \section1 Assertions
+
+ Assertions make some statement about the text at the point where
+ they occur in the regexp but they do not match any characters. In
+ the following list \bold{\e {E}} stands for any expression.
+
+ \table
+ \row \i \bold{^}
+ \i The caret signifies the beginning of the string. If you
+ wish to match a literal \c{^} you must escape it by
+ writing \c{\\^}. For example, \bold{^#include} will only
+ match strings which \e begin with the characters '#include'.
+ (When the caret is the first character of a character set it
+ has a special meaning, see \link #sets-of-characters Sets of
+ Characters \endlink.)
+
+ \row \i \bold{$}
+ \i The dollar signifies the end of the string. For example
+ \bold{\\d\\s*$} will match strings which end with a digit
+ optionally followed by whitespace. If you wish to match a
+ literal \c{$} you must escape it by writing
+ \c{\\$}.
+
+ \row \i \bold{\\b}
+ \i A word boundary. For example the regexp
+ \bold{\\bOK\\b} means match immediately after a word
+ boundary (e.g. start of string or whitespace) the letter 'O'
+ then the letter 'K' immediately before another word boundary
+ (e.g. end of string or whitespace). But note that the
+ assertion does not actually match any whitespace so if we
+ write \bold{(\\bOK\\b)} and we have a match it will only
+ contain 'OK' even if the string is "It's \underline{OK} now".
+
+ \row \i \bold{\\B}
+ \i A non-word boundary. This assertion is true wherever
+ \bold{\\b} is false. For example if we searched for
+ \bold{\\Bon\\B} in "Left on" the match would fail (space
+ and end of string aren't non-word boundaries), but it would
+ match in "t\underline{on}ne".
+
+ \row \i \bold{(?=\e E)}
+ \i Positive lookahead. This assertion is true if the
+ expression matches at this point in the regexp. For example,
+ \bold{const(?=\\s+char)} matches 'const' whenever it is
+ followed by 'char', as in 'static \underline{const} char *'.
+ (Compare with \bold{const\\s+char}, which matches 'static
+ \underline{const char} *'.)
+
+ \row \i \bold{(?!\e E)}
+ \i Negative lookahead. This assertion is true if the
+ expression does not match at this point in the regexp. For
+ example, \bold{const(?!\\s+char)} matches 'const' \e except
+ when it is followed by 'char'.
+ \endtable
+
+ \keyword QRegExp wildcard matching
+ \section1 Wildcard Matching
+
+ Most command shells such as \e bash or \e cmd.exe support "file
+ globbing", the ability to identify a group of files by using
+ wildcards. The setPatternSyntax() function is used to switch
+ between regexp and wildcard mode. Wildcard matching is much
+ simpler than full regexps and has only four features:
+
+ \table
+ \row \i \bold{c}
+ \i Any character represents itself apart from those mentioned
+ below. Thus \bold{c} matches the character \e c.
+ \row \i \bold{?}
+ \i Matches any single character. It is the same as
+ \bold{.} in full regexps.
+ \row \i \bold{*}
+ \i Matches zero or more of any characters. It is the
+ same as \bold{.*} in full regexps.
+ \row \i \bold{[...]}
+ \i Sets of characters can be represented in square brackets,
+ similar to full regexps. Within the character class, like
+ outside, backslash has no special meaning.
+ \endtable
+
+ For example if we are in wildcard mode and have strings which
+ contain filenames we could identify HTML files with \bold{*.html}.
+ This will match zero or more characters followed by a dot followed
+ by 'h', 't', 'm' and 'l'.
+
+ To test a string against a wildcard expression, use exactMatch().
+ For example:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 1
+
+ \target perl-users
+ \section1 Notes for Perl Users
+
+ Most of the character class abbreviations supported by Perl are
+ supported by QRegExp, see \link
+ #characters-and-abbreviations-for-sets-of-characters characters
+ and abbreviations for sets of characters \endlink.
+
+ In QRegExp, apart from within character classes, \c{^} always
+ signifies the start of the string, so carets must always be
+ escaped unless used for that purpose. In Perl the meaning of caret
+ varies automagically depending on where it occurs so escaping it
+ is rarely necessary. The same applies to \c{$} which in
+ QRegExp always signifies the end of the string.
+
+ QRegExp's quantifiers are the same as Perl's greedy quantifiers
+ (but see the \l{greedy quantifiers}{note above}). Non-greedy
+ matching cannot be applied to individual quantifiers, but can be
+ applied to all the quantifiers in the pattern. For example, to
+ match the Perl regexp \bold{ro+?m} requires:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 2
+
+ The equivalent of Perl's \c{/i} option is
+ setCaseSensitivity(Qt::CaseInsensitive).
+
+ Perl's \c{/g} option can be emulated using a \l{#cap_in_a_loop}{loop}.
+
+ In QRegExp \bold{.} matches any character, therefore all QRegExp
+ regexps have the equivalent of Perl's \c{/s} option. QRegExp
+ does not have an equivalent to Perl's \c{/m} option, but this
+ can be emulated in various ways for example by splitting the input
+ into lines or by looping with a regexp that searches for newlines.
+
+ Because QRegExp is string oriented, there are no \\A, \\Z, or \\z
+ assertions. The \\G assertion is not supported but can be emulated
+ in a loop.
+
+ Perl's $& is cap(0) or capturedTexts()[0]. There are no QRegExp
+ equivalents for $`, $' or $+. Perl's capturing variables, $1, $2,
+ ... correspond to cap(1) or capturedTexts()[1], cap(2) or
+ capturedTexts()[2], etc.
+
+ To substitute a pattern use QString::replace().
+
+ Perl's extended \c{/x} syntax is not supported, nor are
+ directives, e.g. (?i), or regexp comments, e.g. (?#comment). On
+ the other hand, C++'s rules for literal strings can be used to
+ achieve the same:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 3
+
+ Both zero-width positive and zero-width negative lookahead
+ assertions (?=pattern) and (?!pattern) are supported with the same
+ syntax as Perl. Perl's lookbehind assertions, "independent"
+ subexpressions and conditional expressions are not supported.
+
+ Non-capturing parentheses are also supported, with the same
+ (?:pattern) syntax.
+
+ See QString::split() and QStringList::join() for equivalents
+ to Perl's split and join functions.
+
+ Note: because C++ transforms \\'s they must be written \e twice in
+ code, e.g. \bold{\\b} must be written \bold{\\\\b}.
+
+ \target code-examples
+ \section1 Code Examples
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 4
+
+ The third string matches '\underline{6}'. This is a simple validation
+ regexp for integers in the range 0 to 99.
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 5
+
+ The second string matches '\underline{This_is-OK}'. We've used the
+ character set abbreviation '\\S' (non-whitespace) and the anchors
+ to match strings which contain no whitespace.
+
+ In the following example we match strings containing 'mail' or
+ 'letter' or 'correspondence' but only match whole words i.e. not
+ 'email'
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 6
+
+ The second string matches "Please write the \underline{letter}". The
+ word 'letter' is also captured (because of the parentheses). We
+ can see what text we've captured like this:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 7
+
+ This will capture the text from the first set of capturing
+ parentheses (counting capturing left parentheses from left to
+ right). The parentheses are counted from 1 since cap(0) is the
+ whole matched regexp (equivalent to '&' in most regexp engines).
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 8
+
+ Here we've passed the QRegExp to QString's replace() function to
+ replace the matched text with new text.
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 9
+
+ We've used the indexIn() function to repeatedly match the regexp in
+ the string. Note that instead of moving forward by one character
+ at a time \c pos++ we could have written \c {pos +=
+ rx.matchedLength()} to skip over the already matched string. The
+ count will equal 3, matching 'One \underline{Eric} another
+ \underline{Eirik}, and an Ericsson. How many Eiriks, \underline{Eric}?'; it
+ doesn't match 'Ericsson' or 'Eiriks' because they are not bounded
+ by non-word boundaries.
+
+ One common use of regexps is to split lines of delimited data into
+ their component fields.
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 10
+
+ In this example our input lines have the format company name, web
+ address and country. Unfortunately the regexp is rather long and
+ not very versatile -- the code will break if we add any more
+ fields. A simpler and better solution is to look for the
+ separator, '\\t' in this case, and take the surrounding text. The
+ QString::split() function can take a separator string or regexp
+ as an argument and split a string accordingly.
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 11
+
+ Here field[0] is the company, field[1] the web address and so on.
+
+ To imitate the matching of a shell we can use wildcard mode.
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 12
+
+ Wildcard matching can be convenient because of its simplicity, but
+ any wildcard regexp can be defined using full regexps, e.g.
+ \bold{.*\.html$}. Notice that we can't match both \c .html and \c
+ .htm files with a wildcard unless we use \bold{*.htm*} which will
+ also match 'test.html.bak'. A full regexp gives us the precision
+ we need, \bold{.*\\.html?$}.
+
+ QRegExp can match case insensitively using setCaseSensitivity(),
+ and can use non-greedy matching, see setMinimal(). By
+ default QRegExp uses full regexps but this can be changed with
+ setWildcard(). Searching can be forward with indexIn() or backward
+ with lastIndexIn(). Captured text can be accessed using
+ capturedTexts() which returns a string list of all captured
+ strings, or using cap() which returns the captured string for the
+ given index. The pos() function takes a match index and returns
+ the position in the string where the match was made (or -1 if
+ there was no match).
+
+ \sa QString, QStringList, QRegExpValidator, QSortFilterProxyModel,
+ {tools/regexp}{Regular Expression Example}
+*/
+
+const int NumBadChars = 64;
+#define BadChar(ch) ((ch).unicode() % NumBadChars)
+
+const int NoOccurrence = INT_MAX;
+const int EmptyCapture = INT_MAX;
+const int InftyLen = INT_MAX;
+const int InftyRep = 1025;
+const int EOS = -1;
+
+static bool isWord(QChar ch)
+{
+ return ch.isLetterOrNumber() || ch.isMark() || ch == QLatin1Char('_');
+}
+
+/*
+ Merges two vectors of ints and puts the result into the first
+ one.
+*/
+static void mergeInto(QVector<int> *a, const QVector<int> &b)
+{
+ int asize = a->size();
+ int bsize = b.size();
+ if (asize == 0) {
+ *a = b;
+#ifndef QT_NO_REGEXP_OPTIM
+ } else if (bsize == 1 && a->at(asize - 1) < b.at(0)) {
+ a->resize(asize + 1);
+ (*a)[asize] = b.at(0);
+#endif
+ } else if (bsize >= 1) {
+ int csize = asize + bsize;
+ QVector<int> c(csize);
+ int i = 0, j = 0, k = 0;
+ while (i < asize) {
+ if (j < bsize) {
+ if (a->at(i) == b.at(j)) {
+ ++i;
+ --csize;
+ } else if (a->at(i) < b.at(j)) {
+ c[k++] = a->at(i++);
+ } else {
+ c[k++] = b.at(j++);
+ }
+ } else {
+ memcpy(c.data() + k, a->constData() + i, (asize - i) * sizeof(int));
+ break;
+ }
+ }
+ c.resize(csize);
+ if (j < bsize)
+ memcpy(c.data() + k, b.constData() + j, (bsize - j) * sizeof(int));
+ *a = c;
+ }
+}
+
+#ifndef QT_NO_REGEXP_WILDCARD
+/*
+ Translates a wildcard pattern to an equivalent regular expression
+ pattern (e.g., *.cpp to .*\.cpp).
+*/
+static QString wc2rx(const QString &wc_str)
+{
+ int wclen = wc_str.length();
+ QString rx;
+ int i = 0;
+ const QChar *wc = wc_str.unicode();
+ while (i < wclen) {
+ QChar c = wc[i++];
+ switch (c.unicode()) {
+ case '*':
+ rx += QLatin1String(".*");
+ break;
+ case '?':
+ rx += QLatin1Char('.');
+ break;
+ case '$':
+ case '(':
+ case ')':
+ case '+':
+ case '.':
+ case '\\':
+ case '^':
+ case '{':
+ case '|':
+ case '}':
+ rx += QLatin1Char('\\');
+ rx += c;
+ break;
+ case '[':
+ rx += c;
+ if (wc[i] == QLatin1Char('^'))
+ rx += wc[i++];
+ if (i < wclen) {
+ if (rx[i] == QLatin1Char(']'))
+ rx += wc[i++];
+ while (i < wclen && wc[i] != QLatin1Char(']')) {
+ if (wc[i] == QLatin1Char('\\'))
+ rx += QLatin1Char('\\');
+ rx += wc[i++];
+ }
+ }
+ break;
+ default:
+ rx += c;
+ }
+ }
+ return rx;
+}
+#endif
+
+static int caretIndex(int offset, QRegExp::CaretMode caretMode)
+{
+ if (caretMode == QRegExp::CaretAtZero) {
+ return 0;
+ } else if (caretMode == QRegExp::CaretAtOffset) {
+ return offset;
+ } else { // QRegExp::CaretWontMatch
+ return -1;
+ }
+}
+
+/*
+ The QRegExpEngineKey struct uniquely identifies an engine.
+*/
+struct QRegExpEngineKey
+{
+ QString pattern;
+ QRegExp::PatternSyntax patternSyntax;
+ Qt::CaseSensitivity cs;
+
+ inline QRegExpEngineKey(const QString &pattern, QRegExp::PatternSyntax patternSyntax,
+ Qt::CaseSensitivity cs)
+ : pattern(pattern), patternSyntax(patternSyntax), cs(cs) {}
+
+ inline void clear() {
+ pattern.clear();
+ patternSyntax = QRegExp::RegExp;
+ cs = Qt::CaseSensitive;
+ }
+};
+
+bool operator==(const QRegExpEngineKey &key1, const QRegExpEngineKey &key2)
+{
+ return key1.pattern == key2.pattern && key1.patternSyntax == key2.patternSyntax
+ && key1.cs == key2.cs;
+}
+
+class QRegExpEngine;
+
+//Q_DECLARE_TYPEINFO(QVector<int>, Q_MOVABLE_TYPE);
+
+/*
+ This is the engine state during matching.
+*/
+struct QRegExpMatchState
+{
+ const QChar *in; // a pointer to the input string data
+ int pos; // the current position in the string
+ int caretPos;
+ int len; // the length of the input string
+ bool minimal; // minimal matching?
+ int *bigArray; // big array holding the data for the next pointers
+ int *inNextStack; // is state is nextStack?
+ int *curStack; // stack of current states
+ int *nextStack; // stack of next states
+ int *curCapBegin; // start of current states' captures
+ int *nextCapBegin; // start of next states' captures
+ int *curCapEnd; // end of current states' captures
+ int *nextCapEnd; // end of next states' captures
+ int *tempCapBegin; // start of temporary captures
+ int *tempCapEnd; // end of temporary captures
+ int *capBegin; // start of captures for a next state
+ int *capEnd; // end of captures for a next state
+ int *slideTab; // bump-along slide table for bad-character heuristic
+ int *captured; // what match() returned last
+ int slideTabSize; // size of slide table
+ int capturedSize;
+#ifndef QT_NO_REGEXP_BACKREF
+ QList<QVector<int> > sleeping; // list of back-reference sleepers
+#endif
+ int matchLen; // length of match
+ int oneTestMatchedLen; // length of partial match
+
+ const QRegExpEngine *eng;
+
+ inline QRegExpMatchState() : bigArray(0), captured(0) {}
+ inline ~QRegExpMatchState() { free(bigArray); }
+
+ void drain() { free(bigArray); bigArray = 0; captured = 0; } // to save memory
+ void prepareForMatch(QRegExpEngine *eng);
+ void match(const QChar *str, int len, int pos, bool minimal,
+ bool oneTest, int caretIndex);
+ bool matchHere();
+ bool testAnchor(int i, int a, const int *capBegin);
+};
+
+/*
+ The struct QRegExpAutomatonState represents one state in a modified NFA. The
+ input characters matched are stored in the state instead of on
+ the transitions, something possible for an automaton
+ constructed from a regular expression.
+*/
+struct QRegExpAutomatonState
+{
+#ifndef QT_NO_REGEXP_CAPTURE
+ int atom; // which atom does this state belong to?
+#endif
+ int match; // what does it match? (see CharClassBit and BackRefBit)
+ QVector<int> outs; // out-transitions
+ QMap<int, int> reenter; // atoms reentered when transiting out
+ QMap<int, int> anchors; // anchors met when transiting out
+
+ inline QRegExpAutomatonState() { }
+#ifndef QT_NO_REGEXP_CAPTURE
+ inline QRegExpAutomatonState(int a, int m)
+ : atom(a), match(m) { }
+#else
+ inline QRegExpAutomatonState(int m)
+ : match(m) { }
+#endif
+};
+
+Q_DECLARE_TYPEINFO(QRegExpAutomatonState, Q_MOVABLE_TYPE);
+
+/*
+ The struct QRegExpCharClassRange represents a range of characters (e.g.,
+ [0-9] denotes range 48 to 57).
+*/
+struct QRegExpCharClassRange
+{
+ ushort from; // 48
+ ushort len; // 10
+};
+
+Q_DECLARE_TYPEINFO(QRegExpCharClassRange, Q_PRIMITIVE_TYPE);
+
+#ifndef QT_NO_REGEXP_CAPTURE
+/*
+ The struct QRegExpAtom represents one node in the hierarchy of regular
+ expression atoms.
+*/
+struct QRegExpAtom
+{
+ enum { NoCapture = -1, OfficialCapture = -2, UnofficialCapture = -3 };
+
+ int parent; // index of parent in array of atoms
+ int capture; // index of capture, from 1 to ncap - 1
+};
+
+Q_DECLARE_TYPEINFO(QRegExpAtom, Q_PRIMITIVE_TYPE);
+#endif
+
+struct QRegExpLookahead;
+
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+/*
+ The struct QRegExpAnchorAlternation represents a pair of anchors with
+ OR semantics.
+*/
+struct QRegExpAnchorAlternation
+{
+ int a; // this anchor...
+ int b; // ...or this one
+};
+
+Q_DECLARE_TYPEINFO(QRegExpAnchorAlternation, Q_PRIMITIVE_TYPE);
+#endif
+
+#ifndef QT_NO_REGEXP_CCLASS
+/*
+ The class QRegExpCharClass represents a set of characters, such as can
+ be found in regular expressions (e.g., [a-z] denotes the set
+ {a, b, ..., z}).
+*/
+class QRegExpCharClass
+{
+public:
+ QRegExpCharClass();
+ inline QRegExpCharClass(const QRegExpCharClass &cc) { operator=(cc); }
+
+ QRegExpCharClass &operator=(const QRegExpCharClass &cc);
+
+ void clear();
+ bool negative() const { return n; }
+ void setNegative(bool negative);
+ void addCategories(int cats);
+ void addRange(ushort from, ushort to);
+ void addSingleton(ushort ch) { addRange(ch, ch); }
+
+ bool in(QChar ch) const;
+#ifndef QT_NO_REGEXP_OPTIM
+ const QVector<int> &firstOccurrence() const { return occ1; }
+#endif
+
+#if defined(QT_DEBUG)
+ void dump() const;
+#endif
+
+private:
+ int c; // character classes
+ QVector<QRegExpCharClassRange> r; // character ranges
+ bool n; // negative?
+#ifndef QT_NO_REGEXP_OPTIM
+ QVector<int> occ1; // first-occurrence array
+#endif
+};
+#else
+struct QRegExpCharClass
+{
+ int dummy;
+
+#ifndef QT_NO_REGEXP_OPTIM
+ QRegExpCharClass() { occ1.fill(0, NumBadChars); }
+
+ const QVector<int> &firstOccurrence() const { return occ1; }
+ QVector<int> occ1;
+#endif
+};
+#endif
+
+Q_DECLARE_TYPEINFO(QRegExpCharClass, Q_MOVABLE_TYPE);
+
+/*
+ The QRegExpEngine class encapsulates a modified nondeterministic
+ finite automaton (NFA).
+*/
+class QRegExpEngine
+{
+public:
+ QRegExpEngine(Qt::CaseSensitivity cs, bool greedyQuantifiers)
+ : cs(cs), greedyQuantifiers(greedyQuantifiers) { setup(); }
+
+ QRegExpEngine(const QRegExpEngineKey &key);
+ ~QRegExpEngine();
+
+ bool isValid() const { return valid; }
+ const QString &errorString() const { return yyError; }
+ int numCaptures() const { return officialncap; }
+
+ int createState(QChar ch);
+ int createState(const QRegExpCharClass &cc);
+#ifndef QT_NO_REGEXP_BACKREF
+ int createState(int bref);
+#endif
+
+ void addCatTransitions(const QVector<int> &from, const QVector<int> &to);
+#ifndef QT_NO_REGEXP_CAPTURE
+ void addPlusTransitions(const QVector<int> &from, const QVector<int> &to, int atom);
+#endif
+
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+ int anchorAlternation(int a, int b);
+ int anchorConcatenation(int a, int b);
+#else
+ int anchorAlternation(int a, int b) { return a & b; }
+ int anchorConcatenation(int a, int b) { return a | b; }
+#endif
+ void addAnchors(int from, int to, int a);
+
+#ifndef QT_NO_REGEXP_OPTIM
+ void heuristicallyChooseHeuristic();
+#endif
+
+#if defined(QT_DEBUG)
+ void dump() const;
+#endif
+
+ QAtomicInt ref;
+
+private:
+ enum { CharClassBit = 0x10000, BackRefBit = 0x20000 };
+ enum { InitialState = 0, FinalState = 1 };
+
+ void setup();
+ int setupState(int match);
+
+ /*
+ Let's hope that 13 lookaheads and 14 back-references are
+ enough.
+ */
+ enum { MaxLookaheads = 13, MaxBackRefs = 14 };
+ enum { Anchor_Dollar = 0x00000001, Anchor_Caret = 0x00000002, Anchor_Word = 0x00000004,
+ Anchor_NonWord = 0x00000008, Anchor_FirstLookahead = 0x00000010,
+ Anchor_BackRef1Empty = Anchor_FirstLookahead << MaxLookaheads,
+ Anchor_BackRef0Empty = Anchor_BackRef1Empty >> 1,
+ Anchor_Alternation = unsigned(Anchor_BackRef1Empty) << MaxBackRefs,
+
+ Anchor_LookaheadMask = (Anchor_FirstLookahead - 1) ^
+ ((Anchor_FirstLookahead << MaxLookaheads) - 1) };
+#ifndef QT_NO_REGEXP_CAPTURE
+ int startAtom(bool officialCapture);
+ void finishAtom(int atom, bool needCapture);
+#endif
+
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ int addLookahead(QRegExpEngine *eng, bool negative);
+#endif
+
+#ifndef QT_NO_REGEXP_OPTIM
+ bool goodStringMatch(QRegExpMatchState &matchState) const;
+ bool badCharMatch(QRegExpMatchState &matchState) const;
+#else
+ bool bruteMatch(QRegExpMatchState &matchState) const;
+#endif
+
+ QVector<QRegExpAutomatonState> s; // array of states
+#ifndef QT_NO_REGEXP_CAPTURE
+ QVector<QRegExpAtom> f; // atom hierarchy
+ int nf; // number of atoms
+ int cf; // current atom
+ QVector<int> captureForOfficialCapture;
+#endif
+ int officialncap; // number of captures, seen from the outside
+ int ncap; // number of captures, seen from the inside
+#ifndef QT_NO_REGEXP_CCLASS
+ QVector<QRegExpCharClass> cl; // array of character classes
+#endif
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ QVector<QRegExpLookahead *> ahead; // array of lookaheads
+#endif
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+ QVector<QRegExpAnchorAlternation> aa; // array of (a, b) pairs of anchors
+#endif
+#ifndef QT_NO_REGEXP_OPTIM
+ bool caretAnchored; // does the regexp start with ^?
+ bool trivial; // is the good-string all that needs to match?
+#endif
+ bool valid; // is the regular expression valid?
+ Qt::CaseSensitivity cs; // case sensitive?
+ bool greedyQuantifiers; // RegExp2?
+#ifndef QT_NO_REGEXP_BACKREF
+ int nbrefs; // number of back-references
+#endif
+
+#ifndef QT_NO_REGEXP_OPTIM
+ bool useGoodStringHeuristic; // use goodStringMatch? otherwise badCharMatch
+
+ int goodEarlyStart; // the index where goodStr can first occur in a match
+ int goodLateStart; // the index where goodStr can last occur in a match
+ QString goodStr; // the string that any match has to contain
+
+ int minl; // the minimum length of a match
+ QVector<int> occ1; // first-occurrence array
+#endif
+
+ /*
+ The class Box is an abstraction for a regular expression
+ fragment. It can also be seen as one node in the syntax tree of
+ a regular expression with synthetized attributes.
+
+ Its interface is ugly for performance reasons.
+ */
+ class Box
+ {
+ public:
+ Box(QRegExpEngine *engine);
+ Box(const Box &b) { operator=(b); }
+
+ Box &operator=(const Box &b);
+
+ void clear() { operator=(Box(eng)); }
+ void set(QChar ch);
+ void set(const QRegExpCharClass &cc);
+#ifndef QT_NO_REGEXP_BACKREF
+ void set(int bref);
+#endif
+
+ void cat(const Box &b);
+ void orx(const Box &b);
+ void plus(int atom);
+ void opt();
+ void catAnchor(int a);
+#ifndef QT_NO_REGEXP_OPTIM
+ void setupHeuristics();
+#endif
+
+#if defined(QT_DEBUG)
+ void dump() const;
+#endif
+
+ private:
+ void addAnchorsToEngine(const Box &to) const;
+
+ QRegExpEngine *eng; // the automaton under construction
+ QVector<int> ls; // the left states (firstpos)
+ QVector<int> rs; // the right states (lastpos)
+ QMap<int, int> lanchors; // the left anchors
+ QMap<int, int> ranchors; // the right anchors
+ int skipanchors; // the anchors to match if the box is skipped
+
+#ifndef QT_NO_REGEXP_OPTIM
+ int earlyStart; // the index where str can first occur
+ int lateStart; // the index where str can last occur
+ QString str; // a string that has to occur in any match
+ QString leftStr; // a string occurring at the left of this box
+ QString rightStr; // a string occurring at the right of this box
+ int maxl; // the maximum length of this box (possibly InftyLen)
+#endif
+
+ int minl; // the minimum length of this box
+#ifndef QT_NO_REGEXP_OPTIM
+ QVector<int> occ1; // first-occurrence array
+#endif
+ };
+
+ friend class Box;
+
+ /*
+ This is the lexical analyzer for regular expressions.
+ */
+ enum { Tok_Eos, Tok_Dollar, Tok_LeftParen, Tok_MagicLeftParen, Tok_PosLookahead,
+ Tok_NegLookahead, Tok_RightParen, Tok_CharClass, Tok_Caret, Tok_Quantifier, Tok_Bar,
+ Tok_Word, Tok_NonWord, Tok_Char = 0x10000, Tok_BackRef = 0x20000 };
+ int getChar();
+ int getEscape();
+#ifndef QT_NO_REGEXP_INTERVAL
+ int getRep(int def);
+#endif
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ void skipChars(int n);
+#endif
+ void error(const char *msg);
+ void startTokenizer(const QChar *rx, int len);
+ int getToken();
+
+ const QChar *yyIn; // a pointer to the input regular expression pattern
+ int yyPos0; // the position of yyTok in the input pattern
+ int yyPos; // the position of the next character to read
+ int yyLen; // the length of yyIn
+ int yyCh; // the last character read
+ QRegExpCharClass *yyCharClass; // attribute for Tok_CharClass tokens
+ int yyMinRep; // attribute for Tok_Quantifier
+ int yyMaxRep; // ditto
+ QString yyError; // syntax error or overflow during parsing?
+
+ /*
+ This is the syntactic analyzer for regular expressions.
+ */
+ int parse(const QChar *rx, int len);
+ void parseAtom(Box *box);
+ void parseFactor(Box *box);
+ void parseTerm(Box *box);
+ void parseExpression(Box *box);
+
+ int yyTok; // the last token read
+ bool yyMayCapture; // set this to false to disable capturing
+
+ friend struct QRegExpMatchState;
+};
+
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+/*
+ The struct QRegExpLookahead represents a lookahead a la Perl (e.g.,
+ (?=foo) and (?!bar)).
+*/
+struct QRegExpLookahead
+{
+ QRegExpEngine *eng; // NFA representing the embedded regular expression
+ bool neg; // negative lookahead?
+
+ inline QRegExpLookahead(QRegExpEngine *eng0, bool neg0)
+ : eng(eng0), neg(neg0) { }
+ inline ~QRegExpLookahead() { delete eng; }
+};
+#endif
+
+QRegExpEngine::QRegExpEngine(const QRegExpEngineKey &key)
+ : cs(key.cs), greedyQuantifiers(key.patternSyntax == QRegExp::RegExp2)
+{
+ setup();
+
+ QString rx;
+
+ switch (key.patternSyntax) {
+ case QRegExp::Wildcard:
+#ifndef QT_NO_REGEXP_WILDCARD
+ rx = wc2rx(key.pattern);
+#endif
+ break;
+ case QRegExp::FixedString:
+ rx = QRegExp::escape(key.pattern);
+ break;
+ default:
+ rx = key.pattern;
+ }
+
+ valid = (parse(rx.unicode(), rx.length()) == rx.length());
+ if (!valid) {
+#ifndef QT_NO_REGEXP_OPTIM
+ trivial = false;
+#endif
+ error(RXERR_LEFTDELIM);
+ }
+}
+
+QRegExpEngine::~QRegExpEngine()
+{
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ qDeleteAll(ahead);
+#endif
+}
+
+void QRegExpMatchState::prepareForMatch(QRegExpEngine *eng)
+{
+ /*
+ We use one QVector<int> for all the big data used a lot in
+ matchHere() and friends.
+ */
+ int ns = eng->s.size(); // number of states
+ int ncap = eng->ncap;
+#ifndef QT_NO_REGEXP_OPTIM
+ slideTabSize = qMax(eng->minl + 1, 16);
+#else
+ slideTabSize = 0;
+#endif
+ int numCaptures = eng->numCaptures();
+ capturedSize = 2 + 2 * numCaptures;
+ bigArray = (int *)realloc(bigArray, ((3 + 4 * ncap) * ns + 4 * ncap + slideTabSize + capturedSize)*sizeof(int));
+
+ inNextStack = bigArray;
+ memset(inNextStack, -1, ns * sizeof(int));
+ curStack = inNextStack + ns;
+ nextStack = inNextStack + 2 * ns;
+
+ curCapBegin = inNextStack + 3 * ns;
+ nextCapBegin = curCapBegin + ncap * ns;
+ curCapEnd = curCapBegin + 2 * ncap * ns;
+ nextCapEnd = curCapBegin + 3 * ncap * ns;
+
+ tempCapBegin = curCapBegin + 4 * ncap * ns;
+ tempCapEnd = tempCapBegin + ncap;
+ capBegin = tempCapBegin + 2 * ncap;
+ capEnd = tempCapBegin + 3 * ncap;
+
+ slideTab = tempCapBegin + 4 * ncap;
+ captured = slideTab + slideTabSize;
+ memset(captured, -1, capturedSize*sizeof(int));
+ this->eng = eng;
+}
+
+/*
+ Tries to match in str and returns an array of (begin, length) pairs
+ for captured text. If there is no match, all pairs are (-1, -1).
+*/
+void QRegExpMatchState::match(const QChar *str0, int len0, int pos0,
+ bool minimal0, bool oneTest, int caretIndex)
+{
+ bool matched = false;
+ QChar char_null;
+
+#ifndef QT_NO_REGEXP_OPTIM
+ if (eng->trivial && !oneTest) {
+ pos = qFindString(str0, len0, pos0, eng->goodStr.unicode(), eng->goodStr.length(), eng->cs);
+ matchLen = eng->goodStr.length();
+ matched = (pos != -1);
+ } else
+#endif
+ {
+ in = str0;
+ if (in == 0)
+ in = &char_null;
+ pos = pos0;
+ caretPos = caretIndex;
+ len = len0;
+ minimal = minimal0;
+ matchLen = 0;
+ oneTestMatchedLen = 0;
+
+ if (eng->valid && pos >= 0 && pos <= len) {
+#ifndef QT_NO_REGEXP_OPTIM
+ if (oneTest) {
+ matched = matchHere();
+ } else {
+ if (pos <= len - eng->minl) {
+ if (eng->caretAnchored) {
+ matched = matchHere();
+ } else if (eng->useGoodStringHeuristic) {
+ matched = eng->goodStringMatch(*this);
+ } else {
+ matched = eng->badCharMatch(*this);
+ }
+ }
+ }
+#else
+ matched = oneTest ? matchHere() : eng->bruteMatch(*this);
+#endif
+ }
+ }
+
+ if (matched) {
+ int *c = captured;
+ *c++ = pos;
+ *c++ = matchLen;
+
+ int numCaptures = (capturedSize - 2) >> 1;
+#ifndef QT_NO_REGEXP_CAPTURE
+ for (int i = 0; i < numCaptures; ++i) {
+ int j = eng->captureForOfficialCapture.at(i);
+ int len = capEnd[j] - capBegin[j];
+ *c++ = (len > 0) ? pos + capBegin[j] : 0;
+ *c++ = len;
+ }
+#endif
+ } else {
+ // we rely on 2's complement here
+ memset(captured, -1, capturedSize * sizeof(int));
+ }
+}
+
+/*
+ The three following functions add one state to the automaton and
+ return the number of the state.
+*/
+
+int QRegExpEngine::createState(QChar ch)
+{
+ return setupState(ch.unicode());
+}
+
+int QRegExpEngine::createState(const QRegExpCharClass &cc)
+{
+#ifndef QT_NO_REGEXP_CCLASS
+ int n = cl.size();
+ cl += QRegExpCharClass(cc);
+ return setupState(CharClassBit | n);
+#else
+ Q_UNUSED(cc);
+ return setupState(CharClassBit);
+#endif
+}
+
+#ifndef QT_NO_REGEXP_BACKREF
+int QRegExpEngine::createState(int bref)
+{
+ if (bref > nbrefs) {
+ nbrefs = bref;
+ if (nbrefs > MaxBackRefs) {
+ error(RXERR_LIMIT);
+ return 0;
+ }
+ }
+ return setupState(BackRefBit | bref);
+}
+#endif
+
+/*
+ The two following functions add a transition between all pairs of
+ states (i, j) where i is found in from, and j is found in to.
+
+ Cat-transitions are distinguished from plus-transitions for
+ capturing.
+*/
+
+void QRegExpEngine::addCatTransitions(const QVector<int> &from, const QVector<int> &to)
+{
+ for (int i = 0; i < from.size(); i++)
+ mergeInto(&s[from.at(i)].outs, to);
+}
+
+#ifndef QT_NO_REGEXP_CAPTURE
+void QRegExpEngine::addPlusTransitions(const QVector<int> &from, const QVector<int> &to, int atom)
+{
+ for (int i = 0; i < from.size(); i++) {
+ QRegExpAutomatonState &st = s[from.at(i)];
+ const QVector<int> oldOuts = st.outs;
+ mergeInto(&st.outs, to);
+ if (f.at(atom).capture != QRegExpAtom::NoCapture) {
+ for (int j = 0; j < to.size(); j++) {
+ // ### st.reenter.contains(to.at(j)) check looks suspicious
+ if (!st.reenter.contains(to.at(j)) &&
+ qBinaryFind(oldOuts.constBegin(), oldOuts.constEnd(), to.at(j)) == oldOuts.end())
+ st.reenter.insert(to.at(j), atom);
+ }
+ }
+ }
+}
+#endif
+
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+/*
+ Returns an anchor that means a OR b.
+*/
+int QRegExpEngine::anchorAlternation(int a, int b)
+{
+ if (((a & b) == a || (a & b) == b) && ((a | b) & Anchor_Alternation) == 0)
+ return a & b;
+
+ int n = aa.size();
+#ifndef QT_NO_REGEXP_OPTIM
+ if (n > 0 && aa.at(n - 1).a == a && aa.at(n - 1).b == b)
+ return Anchor_Alternation | (n - 1);
+#endif
+
+ aa.resize(n + 1);
+ aa[n].a = a;
+ aa[n].b = b;
+ return Anchor_Alternation | n;
+}
+
+/*
+ Returns an anchor that means a AND b.
+*/
+int QRegExpEngine::anchorConcatenation(int a, int b)
+{
+ if (((a | b) & Anchor_Alternation) == 0)
+ return a | b;
+ if ((b & Anchor_Alternation) != 0)
+ qSwap(a, b);
+
+ int aprime = anchorConcatenation(aa.at(a ^ Anchor_Alternation).a, b);
+ int bprime = anchorConcatenation(aa.at(a ^ Anchor_Alternation).b, b);
+ return anchorAlternation(aprime, bprime);
+}
+#endif
+
+/*
+ Adds anchor a on a transition caracterised by its from state and
+ its to state.
+*/
+void QRegExpEngine::addAnchors(int from, int to, int a)
+{
+ QRegExpAutomatonState &st = s[from];
+ if (st.anchors.contains(to))
+ a = anchorAlternation(st.anchors.value(to), a);
+ st.anchors.insert(to, a);
+}
+
+#ifndef QT_NO_REGEXP_OPTIM
+/*
+ This function chooses between the good-string and the bad-character
+ heuristics. It computes two scores and chooses the heuristic with
+ the highest score.
+
+ Here are some common-sense constraints on the scores that should be
+ respected if the formulas are ever modified: (1) If goodStr is
+ empty, the good-string heuristic scores 0. (2) If the regular
+ expression is trivial, the good-string heuristic should be used.
+ (3) If the search is case insensitive, the good-string heuristic
+ should be used, unless it scores 0. (Case insensitivity turns all
+ entries of occ1 to 0.) (4) If (goodLateStart - goodEarlyStart) is
+ big, the good-string heuristic should score less.
+*/
+void QRegExpEngine::heuristicallyChooseHeuristic()
+{
+ if (minl == 0) {
+ useGoodStringHeuristic = false;
+ } else if (trivial) {
+ useGoodStringHeuristic = true;
+ } else {
+ /*
+ Magic formula: The good string has to constitute a good
+ proportion of the minimum-length string, and appear at a
+ more-or-less known index.
+ */
+ int goodStringScore = (64 * goodStr.length() / minl) -
+ (goodLateStart - goodEarlyStart);
+ /*
+ Less magic formula: We pick some characters at random, and
+ check whether they are good or bad.
+ */
+ int badCharScore = 0;
+ int step = qMax(1, NumBadChars / 32);
+ for (int i = 1; i < NumBadChars; i += step) {
+ if (occ1.at(i) == NoOccurrence)
+ badCharScore += minl;
+ else
+ badCharScore += occ1.at(i);
+ }
+ badCharScore /= minl;
+ useGoodStringHeuristic = (goodStringScore > badCharScore);
+ }
+}
+#endif
+
+#if defined(QT_DEBUG)
+void QRegExpEngine::dump() const
+{
+ int i, j;
+ qDebug("Case %ssensitive engine", cs ? "" : "in");
+ qDebug(" States");
+ for (i = 0; i < s.size(); i++) {
+ qDebug(" %d%s", i, i == InitialState ? " (initial)" : i == FinalState ? " (final)" : "");
+#ifndef QT_NO_REGEXP_CAPTURE
+ if (nf > 0)
+ qDebug(" in atom %d", s[i].atom);
+#endif
+ int m = s[i].match;
+ if ((m & CharClassBit) != 0) {
+ qDebug(" match character class %d", m ^ CharClassBit);
+#ifndef QT_NO_REGEXP_CCLASS
+ cl[m ^ CharClassBit].dump();
+#else
+ qDebug(" negative character class");
+#endif
+ } else if ((m & BackRefBit) != 0) {
+ qDebug(" match back-reference %d", m ^ BackRefBit);
+ } else if (m >= 0x20 && m <= 0x7e) {
+ qDebug(" match 0x%.4x (%c)", m, m);
+ } else {
+ qDebug(" match 0x%.4x", m);
+ }
+ for (j = 0; j < s[i].outs.size(); j++) {
+ int next = s[i].outs[j];
+ qDebug(" -> %d", next);
+ if (s[i].reenter.contains(next))
+ qDebug(" [reenter %d]", s[i].reenter[next]);
+ if (s[i].anchors.value(next) != 0)
+ qDebug(" [anchors 0x%.8x]", s[i].anchors[next]);
+ }
+ }
+#ifndef QT_NO_REGEXP_CAPTURE
+ if (nf > 0) {
+ qDebug(" Atom Parent Capture");
+ for (i = 0; i < nf; i++) {
+ if (f[i].capture == QRegExpAtom::NoCapture) {
+ qDebug(" %6d %6d nil", i, f[i].parent);
+ } else {
+ int cap = f[i].capture;
+ bool official = captureForOfficialCapture.contains(cap);
+ qDebug(" %6d %6d %6d %s", i, f[i].parent, f[i].capture,
+ official ? "official" : "");
+ }
+ }
+ }
+#endif
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+ for (i = 0; i < aa.size(); i++)
+ qDebug(" Anchor alternation 0x%.8x: 0x%.8x 0x%.9x", i, aa[i].a, aa[i].b);
+#endif
+}
+#endif
+
+void QRegExpEngine::setup()
+{
+ ref = 1;
+#ifndef QT_NO_REGEXP_CAPTURE
+ f.resize(32);
+ nf = 0;
+ cf = -1;
+#endif
+ officialncap = 0;
+ ncap = 0;
+#ifndef QT_NO_REGEXP_OPTIM
+ caretAnchored = true;
+ trivial = true;
+#endif
+ valid = false;
+#ifndef QT_NO_REGEXP_BACKREF
+ nbrefs = 0;
+#endif
+#ifndef QT_NO_REGEXP_OPTIM
+ useGoodStringHeuristic = true;
+ minl = 0;
+ occ1.fill(0, NumBadChars);
+#endif
+}
+
+int QRegExpEngine::setupState(int match)
+{
+#ifndef QT_NO_REGEXP_CAPTURE
+ s += QRegExpAutomatonState(cf, match);
+#else
+ s += QRegExpAutomatonState(match);
+#endif
+ return s.size() - 1;
+}
+
+#ifndef QT_NO_REGEXP_CAPTURE
+/*
+ Functions startAtom() and finishAtom() should be called to delimit
+ atoms. When a state is created, it is assigned to the current atom.
+ The information is later used for capturing.
+*/
+int QRegExpEngine::startAtom(bool officialCapture)
+{
+ if ((nf & (nf + 1)) == 0 && nf + 1 >= f.size())
+ f.resize((nf + 1) << 1);
+ f[nf].parent = cf;
+ cf = nf++;
+ f[cf].capture = officialCapture ? QRegExpAtom::OfficialCapture : QRegExpAtom::NoCapture;
+ return cf;
+}
+
+void QRegExpEngine::finishAtom(int atom, bool needCapture)
+{
+ if (greedyQuantifiers && needCapture && f[atom].capture == QRegExpAtom::NoCapture)
+ f[atom].capture = QRegExpAtom::UnofficialCapture;
+ cf = f.at(atom).parent;
+}
+#endif
+
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+/*
+ Creates a lookahead anchor.
+*/
+int QRegExpEngine::addLookahead(QRegExpEngine *eng, bool negative)
+{
+ int n = ahead.size();
+ if (n == MaxLookaheads) {
+ error(RXERR_LIMIT);
+ return 0;
+ }
+ ahead += new QRegExpLookahead(eng, negative);
+ return Anchor_FirstLookahead << n;
+}
+#endif
+
+#ifndef QT_NO_REGEXP_CAPTURE
+/*
+ We want the longest leftmost captures.
+*/
+static bool isBetterCapture(int ncap, const int *begin1, const int *end1, const int *begin2,
+ const int *end2)
+{
+ for (int i = 0; i < ncap; i++) {
+ int delta = begin2[i] - begin1[i]; // it has to start early...
+ if (delta == 0)
+ delta = end1[i] - end2[i]; // ...and end late
+
+ if (delta != 0)
+ return delta > 0;
+ }
+ return false;
+}
+#endif
+
+/*
+ Returns true if anchor a matches at position pos + i in the input
+ string, otherwise false.
+*/
+bool QRegExpMatchState::testAnchor(int i, int a, const int *capBegin)
+{
+ int j;
+
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+ if ((a & QRegExpEngine::Anchor_Alternation) != 0)
+ return testAnchor(i, eng->aa.at(a ^ QRegExpEngine::Anchor_Alternation).a, capBegin)
+ || testAnchor(i, eng->aa.at(a ^ QRegExpEngine::Anchor_Alternation).b, capBegin);
+#endif
+
+ if ((a & QRegExpEngine::Anchor_Caret) != 0) {
+ if (pos + i != caretPos)
+ return false;
+ }
+ if ((a & QRegExpEngine::Anchor_Dollar) != 0) {
+ if (pos + i != len)
+ return false;
+ }
+#ifndef QT_NO_REGEXP_ESCAPE
+ if ((a & (QRegExpEngine::Anchor_Word | QRegExpEngine::Anchor_NonWord)) != 0) {
+ bool before = false;
+ bool after = false;
+ if (pos + i != 0)
+ before = isWord(in[pos + i - 1]);
+ if (pos + i != len)
+ after = isWord(in[pos + i]);
+ if ((a & QRegExpEngine::Anchor_Word) != 0 && (before == after))
+ return false;
+ if ((a & QRegExpEngine::Anchor_NonWord) != 0 && (before != after))
+ return false;
+ }
+#endif
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ if ((a & QRegExpEngine::Anchor_LookaheadMask) != 0) {
+ const QVector<QRegExpLookahead *> &ahead = eng->ahead;
+ for (j = 0; j < ahead.size(); j++) {
+ if ((a & (QRegExpEngine::Anchor_FirstLookahead << j)) != 0) {
+ QRegExpMatchState matchState;
+ matchState.prepareForMatch(ahead[j]->eng);
+ matchState.match(in + pos + i, len - pos - i, 0,
+ true, true, matchState.caretPos - matchState.pos - i);
+ if ((matchState.captured[0] == 0) == ahead[j]->neg)
+ return false;
+ }
+ }
+ }
+#endif
+#ifndef QT_NO_REGEXP_CAPTURE
+#ifndef QT_NO_REGEXP_BACKREF
+ for (j = 0; j < eng->nbrefs; j++) {
+ if ((a & (QRegExpEngine::Anchor_BackRef1Empty << j)) != 0) {
+ int i = eng->captureForOfficialCapture.at(j);
+ if (capBegin[i] != EmptyCapture)
+ return false;
+ }
+ }
+#endif
+#endif
+ return true;
+}
+
+#ifndef QT_NO_REGEXP_OPTIM
+/*
+ The three following functions are what Jeffrey Friedl would call
+ transmissions (or bump-alongs). Using one or the other should make
+ no difference except in performance.
+*/
+
+bool QRegExpEngine::goodStringMatch(QRegExpMatchState &matchState) const
+{
+ int k = matchState.pos + goodEarlyStart;
+ QStringMatcher matcher(goodStr.unicode(), goodStr.length(), cs);
+ while ((k = matcher.indexIn(matchState.in, matchState.len, k)) != -1) {
+ int from = k - goodLateStart;
+ int to = k - goodEarlyStart;
+ if (from > matchState.pos)
+ matchState.pos = from;
+
+ while (matchState.pos <= to) {
+ if (matchState.matchHere())
+ return true;
+ ++matchState.pos;
+ }
+ ++k;
+ }
+ return false;
+}
+
+bool QRegExpEngine::badCharMatch(QRegExpMatchState &matchState) const
+{
+ int slideHead = 0;
+ int slideNext = 0;
+ int i;
+ int lastPos = matchState.len - minl;
+ memset(matchState.slideTab, 0, matchState.slideTabSize * sizeof(int));
+
+ /*
+ Set up the slide table, used for the bad-character heuristic,
+ using the table of first occurrence of each character.
+ */
+ for (i = 0; i < minl; i++) {
+ int sk = occ1[BadChar(matchState.in[matchState.pos + i])];
+ if (sk == NoOccurrence)
+ sk = i + 1;
+ if (sk > 0) {
+ int k = i + 1 - sk;
+ if (k < 0) {
+ sk = i + 1;
+ k = 0;
+ }
+ if (sk > matchState.slideTab[k])
+ matchState.slideTab[k] = sk;
+ }
+ }
+
+ if (matchState.pos > lastPos)
+ return false;
+
+ for (;;) {
+ if (++slideNext >= matchState.slideTabSize)
+ slideNext = 0;
+ if (matchState.slideTab[slideHead] > 0) {
+ if (matchState.slideTab[slideHead] - 1 > matchState.slideTab[slideNext])
+ matchState.slideTab[slideNext] = matchState.slideTab[slideHead] - 1;
+ matchState.slideTab[slideHead] = 0;
+ } else {
+ if (matchState.matchHere())
+ return true;
+ }
+
+ if (matchState.pos == lastPos)
+ break;
+
+ /*
+ Update the slide table. This code has much in common with
+ the initialization code.
+ */
+ int sk = occ1[BadChar(matchState.in[matchState.pos + minl])];
+ if (sk == NoOccurrence) {
+ matchState.slideTab[slideNext] = minl;
+ } else if (sk > 0) {
+ int k = slideNext + minl - sk;
+ if (k >= matchState.slideTabSize)
+ k -= matchState.slideTabSize;
+ if (sk > matchState.slideTab[k])
+ matchState.slideTab[k] = sk;
+ }
+ slideHead = slideNext;
+ ++matchState.pos;
+ }
+ return false;
+}
+#else
+bool QRegExpEngine::bruteMatch(QRegExpMatchState &matchState) const
+{
+ while (matchState.pos <= matchState.len) {
+ if (matchState.matchHere())
+ return true;
+ ++matchState.pos;
+ }
+ return false;
+}
+#endif
+
+/*
+ Here's the core of the engine. It tries to do a match here and now.
+*/
+bool QRegExpMatchState::matchHere()
+{
+ int ncur = 1, nnext = 0;
+ int i = 0, j, k, m;
+ bool stop = false;
+
+ matchLen = -1;
+ oneTestMatchedLen = -1;
+ curStack[0] = QRegExpEngine::InitialState;
+
+ int ncap = eng->ncap;
+#ifndef QT_NO_REGEXP_CAPTURE
+ if (ncap > 0) {
+ for (j = 0; j < ncap; j++) {
+ curCapBegin[j] = EmptyCapture;
+ curCapEnd[j] = EmptyCapture;
+ }
+ }
+#endif
+
+#ifndef QT_NO_REGEXP_BACKREF
+ while ((ncur > 0 || !sleeping.isEmpty()) && i <= len - pos && !stop)
+#else
+ while (ncur > 0 && i <= len - pos && !stop)
+#endif
+ {
+ int ch = (i < len - pos) ? in[pos + i].unicode() : 0;
+ for (j = 0; j < ncur; j++) {
+ int cur = curStack[j];
+ const QRegExpAutomatonState &scur = eng->s.at(cur);
+ const QVector<int> &outs = scur.outs;
+ for (k = 0; k < outs.size(); k++) {
+ int next = outs.at(k);
+ const QRegExpAutomatonState &snext = eng->s.at(next);
+ bool inside = true;
+#if !defined(QT_NO_REGEXP_BACKREF) && !defined(QT_NO_REGEXP_CAPTURE)
+ int needSomeSleep = 0;
+#endif
+
+ /*
+ First, check if the anchors are anchored properly.
+ */
+ int a = scur.anchors.value(next);
+ if (a != 0 && !testAnchor(i, a, curCapBegin + j * ncap))
+ inside = false;
+
+ /*
+ If indeed they are, check if the input character is
+ correct for this transition.
+ */
+ if (inside) {
+ m = snext.match;
+ if ((m & (QRegExpEngine::CharClassBit | QRegExpEngine::BackRefBit)) == 0) {
+ if (eng->cs)
+ inside = (m == ch);
+ else
+ inside = (QChar(m).toLower() == QChar(ch).toLower());
+ } else if (next == QRegExpEngine::FinalState) {
+ matchLen = i;
+ stop = minimal;
+ inside = true;
+ } else if ((m & QRegExpEngine::CharClassBit) != 0) {
+#ifndef QT_NO_REGEXP_CCLASS
+ const QRegExpCharClass &cc = eng->cl.at(m ^ QRegExpEngine::CharClassBit);
+ if (eng->cs)
+ inside = cc.in(ch);
+ else if (cc.negative())
+ inside = cc.in(QChar(ch).toLower()) &&
+ cc.in(QChar(ch).toUpper());
+ else
+ inside = cc.in(QChar(ch).toLower()) ||
+ cc.in(QChar(ch).toUpper());
+#endif
+#if !defined(QT_NO_REGEXP_BACKREF) && !defined(QT_NO_REGEXP_CAPTURE)
+ } else { /* ((m & QRegExpEngine::BackRefBit) != 0) */
+ int bref = m ^ QRegExpEngine::BackRefBit;
+ int ell = j * ncap + eng->captureForOfficialCapture.at(bref - 1);
+
+ inside = bref <= ncap && curCapBegin[ell] != EmptyCapture;
+ if (inside) {
+ if (eng->cs)
+ inside = (in[pos + curCapBegin[ell]] == QChar(ch));
+ else
+ inside = (in[pos + curCapBegin[ell]].toLower()
+ == QChar(ch).toLower());
+ }
+
+ if (inside) {
+ int delta;
+ if (curCapEnd[ell] == EmptyCapture)
+ delta = i - curCapBegin[ell];
+ else
+ delta = curCapEnd[ell] - curCapBegin[ell];
+
+ inside = (delta <= len - (pos + i));
+ if (inside && delta > 1) {
+ int n = 1;
+ if (eng->cs) {
+ while (n < delta) {
+ if (in[pos + curCapBegin[ell] + n]
+ != in[pos + i + n])
+ break;
+ ++n;
+ }
+ } else {
+ while (n < delta) {
+ QChar a = in[pos + curCapBegin[ell] + n];
+ QChar b = in[pos + i + n];
+ if (a.toLower() != b.toLower())
+ break;
+ ++n;
+ }
+ }
+ inside = (n == delta);
+ if (inside)
+ needSomeSleep = delta - 1;
+ }
+ }
+#endif
+ }
+ }
+
+ /*
+ We must now update our data structures.
+ */
+ if (inside) {
+#ifndef QT_NO_REGEXP_CAPTURE
+ int *capBegin, *capEnd;
+#endif
+ /*
+ If the next state was not encountered yet, all
+ is fine.
+ */
+ if ((m = inNextStack[next]) == -1) {
+ m = nnext++;
+ nextStack[m] = next;
+ inNextStack[next] = m;
+#ifndef QT_NO_REGEXP_CAPTURE
+ capBegin = nextCapBegin + m * ncap;
+ capEnd = nextCapEnd + m * ncap;
+
+ /*
+ Otherwise, we'll first maintain captures in
+ temporary arrays, and decide at the end whether
+ it's best to keep the previous capture zones or
+ the new ones.
+ */
+ } else {
+ capBegin = tempCapBegin;
+ capEnd = tempCapEnd;
+#endif
+ }
+
+#ifndef QT_NO_REGEXP_CAPTURE
+ /*
+ Updating the capture zones is much of a task.
+ */
+ if (ncap > 0) {
+ memcpy(capBegin, curCapBegin + j * ncap, ncap * sizeof(int));
+ memcpy(capEnd, curCapEnd + j * ncap, ncap * sizeof(int));
+ int c = scur.atom, n = snext.atom;
+ int p = -1, q = -1;
+ int cap;
+
+ /*
+ Lemma 1. For any x in the range [0..nf), we
+ have f[x].parent < x.
+
+ Proof. By looking at startAtom(), it is
+ clear that cf < nf holds all the time, and
+ thus that f[nf].parent < nf.
+ */
+
+ /*
+ If we are reentering an atom, we empty all
+ capture zones inside it.
+ */
+ if ((q = scur.reenter.value(next)) != 0) {
+ QBitArray b(eng->nf, false);
+ b.setBit(q, true);
+ for (int ell = q + 1; ell < eng->nf; ell++) {
+ if (b.testBit(eng->f.at(ell).parent)) {
+ b.setBit(ell, true);
+ cap = eng->f.at(ell).capture;
+ if (cap >= 0) {
+ capBegin[cap] = EmptyCapture;
+ capEnd[cap] = EmptyCapture;
+ }
+ }
+ }
+ p = eng->f.at(q).parent;
+
+ /*
+ Otherwise, close the capture zones we are
+ leaving. We are leaving f[c].capture,
+ f[f[c].parent].capture,
+ f[f[f[c].parent].parent].capture, ...,
+ until f[x].capture, with x such that
+ f[x].parent is the youngest common ancestor
+ for c and n.
+
+ We go up along c's and n's ancestry until
+ we find x.
+ */
+ } else {
+ p = c;
+ q = n;
+ while (p != q) {
+ if (p > q) {
+ cap = eng->f.at(p).capture;
+ if (cap >= 0) {
+ if (capBegin[cap] == i) {
+ capBegin[cap] = EmptyCapture;
+ capEnd[cap] = EmptyCapture;
+ } else {
+ capEnd[cap] = i;
+ }
+ }
+ p = eng->f.at(p).parent;
+ } else {
+ q = eng->f.at(q).parent;
+ }
+ }
+ }
+
+ /*
+ In any case, we now open the capture zones
+ we are entering. We work upwards from n
+ until we reach p (the parent of the atom we
+ reenter or the youngest common ancestor).
+ */
+ while (n > p) {
+ cap = eng->f.at(n).capture;
+ if (cap >= 0) {
+ capBegin[cap] = i;
+ capEnd[cap] = EmptyCapture;
+ }
+ n = eng->f.at(n).parent;
+ }
+ /*
+ If the next state was already in
+ nextStack, we must choose carefully which
+ capture zones we want to keep.
+ */
+ if (capBegin == tempCapBegin &&
+ isBetterCapture(ncap, capBegin, capEnd, nextCapBegin + m * ncap,
+ nextCapEnd + m * ncap)) {
+ memcpy(nextCapBegin + m * ncap, capBegin, ncap * sizeof(int));
+ memcpy(nextCapEnd + m * ncap, capEnd, ncap * sizeof(int));
+ }
+ }
+#ifndef QT_NO_REGEXP_BACKREF
+ /*
+ We are done with updating the capture zones.
+ It's now time to put the next state to sleep,
+ if it needs to, and to remove it from
+ nextStack.
+ */
+ if (needSomeSleep > 0) {
+ QVector<int> zzZ(2 + 2 * ncap);
+ zzZ[0] = i + needSomeSleep;
+ zzZ[1] = next;
+ if (ncap > 0) {
+ memcpy(zzZ.data() + 2, capBegin, ncap * sizeof(int));
+ memcpy(zzZ.data() + 2 + ncap, capEnd, ncap * sizeof(int));
+ }
+ inNextStack[nextStack[--nnext]] = -1;
+ sleeping.append(zzZ);
+ }
+#endif
+#endif
+ }
+ }
+ }
+#ifndef QT_NO_REGEXP_CAPTURE
+ /*
+ If we reached the final state, hurray! Copy the captured
+ zone.
+ */
+ if (ncap > 0 && (m = inNextStack[QRegExpEngine::FinalState]) != -1) {
+ memcpy(capBegin, nextCapBegin + m * ncap, ncap * sizeof(int));
+ memcpy(capEnd, nextCapEnd + m * ncap, ncap * sizeof(int));
+ }
+#ifndef QT_NO_REGEXP_BACKREF
+ /*
+ It's time to wake up the sleepers.
+ */
+ j = 0;
+ while (j < sleeping.count()) {
+ if (sleeping.at(j)[0] == i) {
+ const QVector<int> &zzZ = sleeping.at(j);
+ int next = zzZ[1];
+ const int *capBegin = zzZ.data() + 2;
+ const int *capEnd = zzZ.data() + 2 + ncap;
+ bool copyOver = true;
+
+ if ((m = inNextStack[next]) == -1) {
+ m = nnext++;
+ nextStack[m] = next;
+ inNextStack[next] = m;
+ } else {
+ copyOver = isBetterCapture(ncap, nextCapBegin + m * ncap, nextCapEnd + m * ncap,
+ capBegin, capEnd);
+ }
+ if (copyOver) {
+ memcpy(nextCapBegin + m * ncap, capBegin, ncap * sizeof(int));
+ memcpy(nextCapEnd + m * ncap, capEnd, ncap * sizeof(int));
+ }
+
+ sleeping.removeAt(j);
+ } else {
+ ++j;
+ }
+ }
+#endif
+#endif
+ for (j = 0; j < nnext; j++)
+ inNextStack[nextStack[j]] = -1;
+
+ // avoid needless iteration that confuses oneTestMatchedLen
+ if (nnext == 1 && nextStack[0] == QRegExpEngine::FinalState
+#ifndef QT_NO_REGEXP_BACKREF
+ && sleeping.isEmpty()
+#endif
+ )
+ stop = true;
+
+ qSwap(curStack, nextStack);
+#ifndef QT_NO_REGEXP_CAPTURE
+ qSwap(curCapBegin, nextCapBegin);
+ qSwap(curCapEnd, nextCapEnd);
+#endif
+ ncur = nnext;
+ nnext = 0;
+ ++i;
+ }
+
+#ifndef QT_NO_REGEXP_BACKREF
+ /*
+ If minimal matching is enabled, we might have some sleepers
+ left.
+ */
+ if (!sleeping.isEmpty())
+ sleeping.clear();
+#endif
+
+ oneTestMatchedLen = i - 1;
+ return (matchLen >= 0);
+}
+
+#ifndef QT_NO_REGEXP_CCLASS
+
+QRegExpCharClass::QRegExpCharClass()
+ : c(0), n(false)
+{
+#ifndef QT_NO_REGEXP_OPTIM
+ occ1.fill(NoOccurrence, NumBadChars);
+#endif
+}
+
+QRegExpCharClass &QRegExpCharClass::operator=(const QRegExpCharClass &cc)
+{
+ c = cc.c;
+ r = cc.r;
+ n = cc.n;
+#ifndef QT_NO_REGEXP_OPTIM
+ occ1 = cc.occ1;
+#endif
+ return *this;
+}
+
+void QRegExpCharClass::clear()
+{
+ c = 0;
+ r.resize(0);
+ n = false;
+}
+
+void QRegExpCharClass::setNegative(bool negative)
+{
+ n = negative;
+#ifndef QT_NO_REGEXP_OPTIM
+ occ1.fill(0, NumBadChars);
+#endif
+}
+
+void QRegExpCharClass::addCategories(int cats)
+{
+ c |= cats;
+#ifndef QT_NO_REGEXP_OPTIM
+ occ1.fill(0, NumBadChars);
+#endif
+}
+
+void QRegExpCharClass::addRange(ushort from, ushort to)
+{
+ if (from > to)
+ qSwap(from, to);
+ int m = r.size();
+ r.resize(m + 1);
+ r[m].from = from;
+ r[m].len = to - from + 1;
+
+#ifndef QT_NO_REGEXP_OPTIM
+ int i;
+
+ if (to - from < NumBadChars) {
+ if (from % NumBadChars <= to % NumBadChars) {
+ for (i = from % NumBadChars; i <= to % NumBadChars; i++)
+ occ1[i] = 0;
+ } else {
+ for (i = 0; i <= to % NumBadChars; i++)
+ occ1[i] = 0;
+ for (i = from % NumBadChars; i < NumBadChars; i++)
+ occ1[i] = 0;
+ }
+ } else {
+ occ1.fill(0, NumBadChars);
+ }
+#endif
+}
+
+bool QRegExpCharClass::in(QChar ch) const
+{
+#ifndef QT_NO_REGEXP_OPTIM
+ if (occ1.at(BadChar(ch)) == NoOccurrence)
+ return n;
+#endif
+
+ if (c != 0 && (c & (1 << (int)ch.category())) != 0)
+ return !n;
+
+ const int uc = ch.unicode();
+ int size = r.size();
+
+ for (int i = 0; i < size; ++i) {
+ const QRegExpCharClassRange &range = r.at(i);
+ if (uint(uc - range.from) < uint(r.at(i).len))
+ return !n;
+ }
+ return n;
+}
+
+#if defined(QT_DEBUG)
+void QRegExpCharClass::dump() const
+{
+ int i;
+ qDebug(" %stive character class", n ? "nega" : "posi");
+#ifndef QT_NO_REGEXP_CCLASS
+ if (c != 0)
+ qDebug(" categories 0x%.8x", c);
+#endif
+ for (i = 0; i < r.size(); i++)
+ qDebug(" 0x%.4x through 0x%.4x", r[i].from, r[i].from + r[i].len - 1);
+}
+#endif
+#endif
+
+QRegExpEngine::Box::Box(QRegExpEngine *engine)
+ : eng(engine), skipanchors(0)
+#ifndef QT_NO_REGEXP_OPTIM
+ , earlyStart(0), lateStart(0), maxl(0)
+#endif
+{
+#ifndef QT_NO_REGEXP_OPTIM
+ occ1.fill(NoOccurrence, NumBadChars);
+#endif
+ minl = 0;
+}
+
+QRegExpEngine::Box &QRegExpEngine::Box::operator=(const Box &b)
+{
+ eng = b.eng;
+ ls = b.ls;
+ rs = b.rs;
+ lanchors = b.lanchors;
+ ranchors = b.ranchors;
+ skipanchors = b.skipanchors;
+#ifndef QT_NO_REGEXP_OPTIM
+ earlyStart = b.earlyStart;
+ lateStart = b.lateStart;
+ str = b.str;
+ leftStr = b.leftStr;
+ rightStr = b.rightStr;
+ maxl = b.maxl;
+ occ1 = b.occ1;
+#endif
+ minl = b.minl;
+ return *this;
+}
+
+void QRegExpEngine::Box::set(QChar ch)
+{
+ ls.resize(1);
+ ls[0] = eng->createState(ch);
+ rs = ls;
+#ifndef QT_NO_REGEXP_OPTIM
+ str = ch;
+ leftStr = ch;
+ rightStr = ch;
+ maxl = 1;
+ occ1[BadChar(ch)] = 0;
+#endif
+ minl = 1;
+}
+
+void QRegExpEngine::Box::set(const QRegExpCharClass &cc)
+{
+ ls.resize(1);
+ ls[0] = eng->createState(cc);
+ rs = ls;
+#ifndef QT_NO_REGEXP_OPTIM
+ maxl = 1;
+ occ1 = cc.firstOccurrence();
+#endif
+ minl = 1;
+}
+
+#ifndef QT_NO_REGEXP_BACKREF
+void QRegExpEngine::Box::set(int bref)
+{
+ ls.resize(1);
+ ls[0] = eng->createState(bref);
+ rs = ls;
+ if (bref >= 1 && bref <= MaxBackRefs)
+ skipanchors = Anchor_BackRef0Empty << bref;
+#ifndef QT_NO_REGEXP_OPTIM
+ maxl = InftyLen;
+#endif
+ minl = 0;
+}
+#endif
+
+void QRegExpEngine::Box::cat(const Box &b)
+{
+ eng->addCatTransitions(rs, b.ls);
+ addAnchorsToEngine(b);
+ if (minl == 0) {
+ lanchors.unite(b.lanchors);
+ if (skipanchors != 0) {
+ for (int i = 0; i < b.ls.size(); i++) {
+ int a = eng->anchorConcatenation(lanchors.value(b.ls.at(i), 0), skipanchors);
+ lanchors.insert(b.ls.at(i), a);
+ }
+ }
+ mergeInto(&ls, b.ls);
+ }
+ if (b.minl == 0) {
+ ranchors.unite(b.ranchors);
+ if (b.skipanchors != 0) {
+ for (int i = 0; i < rs.size(); i++) {
+ int a = eng->anchorConcatenation(ranchors.value(rs.at(i), 0), b.skipanchors);
+ ranchors.insert(rs.at(i), a);
+ }
+ }
+ mergeInto(&rs, b.rs);
+ } else {
+ ranchors = b.ranchors;
+ rs = b.rs;
+ }
+
+#ifndef QT_NO_REGEXP_OPTIM
+ if (maxl != InftyLen) {
+ if (rightStr.length() + b.leftStr.length() >
+ qMax(str.length(), b.str.length())) {
+ earlyStart = minl - rightStr.length();
+ lateStart = maxl - rightStr.length();
+ str = rightStr + b.leftStr;
+ } else if (b.str.length() > str.length()) {
+ earlyStart = minl + b.earlyStart;
+ lateStart = maxl + b.lateStart;
+ str = b.str;
+ }
+ }
+
+ if (leftStr.length() == maxl)
+ leftStr += b.leftStr;
+
+ if (b.rightStr.length() == b.maxl) {
+ rightStr += b.rightStr;
+ } else {
+ rightStr = b.rightStr;
+ }
+
+ if (maxl == InftyLen || b.maxl == InftyLen) {
+ maxl = InftyLen;
+ } else {
+ maxl += b.maxl;
+ }
+
+ for (int i = 0; i < NumBadChars; i++) {
+ if (b.occ1.at(i) != NoOccurrence && minl + b.occ1.at(i) < occ1.at(i))
+ occ1[i] = minl + b.occ1.at(i);
+ }
+#endif
+
+ minl += b.minl;
+ if (minl == 0)
+ skipanchors = eng->anchorConcatenation(skipanchors, b.skipanchors);
+ else
+ skipanchors = 0;
+}
+
+void QRegExpEngine::Box::orx(const Box &b)
+{
+ mergeInto(&ls, b.ls);
+ lanchors.unite(b.lanchors);
+ mergeInto(&rs, b.rs);
+ ranchors.unite(b.ranchors);
+
+ if (b.minl == 0) {
+ if (minl == 0)
+ skipanchors = eng->anchorAlternation(skipanchors, b.skipanchors);
+ else
+ skipanchors = b.skipanchors;
+ }
+
+#ifndef QT_NO_REGEXP_OPTIM
+ for (int i = 0; i < NumBadChars; i++) {
+ if (occ1.at(i) > b.occ1.at(i))
+ occ1[i] = b.occ1.at(i);
+ }
+ earlyStart = 0;
+ lateStart = 0;
+ str = QString();
+ leftStr = QString();
+ rightStr = QString();
+ if (b.maxl > maxl)
+ maxl = b.maxl;
+#endif
+ if (b.minl < minl)
+ minl = b.minl;
+}
+
+void QRegExpEngine::Box::plus(int atom)
+{
+#ifndef QT_NO_REGEXP_CAPTURE
+ eng->addPlusTransitions(rs, ls, atom);
+#else
+ Q_UNUSED(atom);
+ eng->addCatTransitions(rs, ls);
+#endif
+ addAnchorsToEngine(*this);
+#ifndef QT_NO_REGEXP_OPTIM
+ maxl = InftyLen;
+#endif
+}
+
+void QRegExpEngine::Box::opt()
+{
+#ifndef QT_NO_REGEXP_OPTIM
+ earlyStart = 0;
+ lateStart = 0;
+ str = QString();
+ leftStr = QString();
+ rightStr = QString();
+#endif
+ skipanchors = 0;
+ minl = 0;
+}
+
+void QRegExpEngine::Box::catAnchor(int a)
+{
+ if (a != 0) {
+ for (int i = 0; i < rs.size(); i++) {
+ a = eng->anchorConcatenation(ranchors.value(rs.at(i), 0), a);
+ ranchors.insert(rs.at(i), a);
+ }
+ if (minl == 0)
+ skipanchors = eng->anchorConcatenation(skipanchors, a);
+ }
+}
+
+#ifndef QT_NO_REGEXP_OPTIM
+void QRegExpEngine::Box::setupHeuristics()
+{
+ eng->goodEarlyStart = earlyStart;
+ eng->goodLateStart = lateStart;
+ eng->goodStr = eng->cs ? str : str.toLower();
+
+ eng->minl = minl;
+ if (eng->cs) {
+ /*
+ A regular expression such as 112|1 has occ1['2'] = 2 and minl =
+ 1 at this point. An entry of occ1 has to be at most minl or
+ infinity for the rest of the algorithm to go well.
+
+ We waited until here before normalizing these cases (instead of
+ doing it in Box::orx()) because sometimes things improve by
+ themselves. Consider for example (112|1)34.
+ */
+ for (int i = 0; i < NumBadChars; i++) {
+ if (occ1.at(i) != NoOccurrence && occ1.at(i) >= minl)
+ occ1[i] = minl;
+ }
+ eng->occ1 = occ1;
+ } else {
+ eng->occ1.fill(0, NumBadChars);
+ }
+
+ eng->heuristicallyChooseHeuristic();
+}
+#endif
+
+#if defined(QT_DEBUG)
+void QRegExpEngine::Box::dump() const
+{
+ int i;
+ qDebug("Box of at least %d character%s", minl, minl == 1 ? "" : "s");
+ qDebug(" Left states:");
+ for (i = 0; i < ls.size(); i++) {
+ if (lanchors.value(ls[i], 0) == 0)
+ qDebug(" %d", ls[i]);
+ else
+ qDebug(" %d [anchors 0x%.8x]", ls[i], lanchors[ls[i]]);
+ }
+ qDebug(" Right states:");
+ for (i = 0; i < rs.size(); i++) {
+ if (ranchors.value(rs[i], 0) == 0)
+ qDebug(" %d", rs[i]);
+ else
+ qDebug(" %d [anchors 0x%.8x]", rs[i], ranchors[rs[i]]);
+ }
+ qDebug(" Skip anchors: 0x%.8x", skipanchors);
+}
+#endif
+
+void QRegExpEngine::Box::addAnchorsToEngine(const Box &to) const
+{
+ for (int i = 0; i < to.ls.size(); i++) {
+ for (int j = 0; j < rs.size(); j++) {
+ int a = eng->anchorConcatenation(ranchors.value(rs.at(j), 0),
+ to.lanchors.value(to.ls.at(i), 0));
+ eng->addAnchors(rs[j], to.ls[i], a);
+ }
+ }
+}
+
+int QRegExpEngine::getChar()
+{
+ return (yyPos == yyLen) ? EOS : yyIn[yyPos++].unicode();
+}
+
+int QRegExpEngine::getEscape()
+{
+#ifndef QT_NO_REGEXP_ESCAPE
+ const char tab[] = "afnrtv"; // no b, as \b means word boundary
+ const char backTab[] = "\a\f\n\r\t\v";
+ ushort low;
+ int i;
+#endif
+ ushort val;
+ int prevCh = yyCh;
+
+ if (prevCh == EOS) {
+ error(RXERR_END);
+ return Tok_Char | '\\';
+ }
+ yyCh = getChar();
+#ifndef QT_NO_REGEXP_ESCAPE
+ if ((prevCh & ~0xff) == 0) {
+ const char *p = strchr(tab, prevCh);
+ if (p != 0)
+ return Tok_Char | backTab[p - tab];
+ }
+#endif
+
+ switch (prevCh) {
+#ifndef QT_NO_REGEXP_ESCAPE
+ case '0':
+ val = 0;
+ for (i = 0; i < 3; i++) {
+ if (yyCh >= '0' && yyCh <= '7')
+ val = (val << 3) | (yyCh - '0');
+ else
+ break;
+ yyCh = getChar();
+ }
+ if ((val & ~0377) != 0)
+ error(RXERR_OCTAL);
+ return Tok_Char | val;
+#endif
+#ifndef QT_NO_REGEXP_ESCAPE
+ case 'B':
+ return Tok_NonWord;
+#endif
+#ifndef QT_NO_REGEXP_CCLASS
+ case 'D':
+ // see QChar::isDigit()
+ yyCharClass->addCategories(0x7fffffef);
+ return Tok_CharClass;
+ case 'S':
+ // see QChar::isSpace()
+ yyCharClass->addCategories(0x7ffff87f);
+ yyCharClass->addRange(0x0000, 0x0008);
+ yyCharClass->addRange(0x000e, 0x001f);
+ yyCharClass->addRange(0x007f, 0x009f);
+ return Tok_CharClass;
+ case 'W':
+ // see QChar::isLetterOrNumber() and QChar::isMark()
+ yyCharClass->addCategories(0x7fe07f81);
+ yyCharClass->addRange(0x203f, 0x2040);
+ yyCharClass->addSingleton(0x2040);
+ yyCharClass->addSingleton(0x2054);
+ yyCharClass->addSingleton(0x30fb);
+ yyCharClass->addRange(0xfe33, 0xfe34);
+ yyCharClass->addRange(0xfe4d, 0xfe4f);
+ yyCharClass->addSingleton(0xff3f);
+ yyCharClass->addSingleton(0xff65);
+ return Tok_CharClass;
+#endif
+#ifndef QT_NO_REGEXP_ESCAPE
+ case 'b':
+ return Tok_Word;
+#endif
+#ifndef QT_NO_REGEXP_CCLASS
+ case 'd':
+ // see QChar::isDigit()
+ yyCharClass->addCategories(0x00000010);
+ return Tok_CharClass;
+ case 's':
+ // see QChar::isSpace()
+ yyCharClass->addCategories(0x00000380);
+ yyCharClass->addRange(0x0009, 0x000d);
+ return Tok_CharClass;
+ case 'w':
+ // see QChar::isLetterOrNumber() and QChar::isMark()
+ yyCharClass->addCategories(0x000f807e);
+ yyCharClass->addSingleton(0x005f); // '_'
+ return Tok_CharClass;
+#endif
+#ifndef QT_NO_REGEXP_ESCAPE
+ case 'x':
+ val = 0;
+ for (i = 0; i < 4; i++) {
+ low = QChar(yyCh).toLower().unicode();
+ if (low >= '0' && low <= '9')
+ val = (val << 4) | (low - '0');
+ else if (low >= 'a' && low <= 'f')
+ val = (val << 4) | (low - 'a' + 10);
+ else
+ break;
+ yyCh = getChar();
+ }
+ return Tok_Char | val;
+#endif
+ default:
+ if (prevCh >= '1' && prevCh <= '9') {
+#ifndef QT_NO_REGEXP_BACKREF
+ val = prevCh - '0';
+ while (yyCh >= '0' && yyCh <= '9') {
+ val = (val * 10) + (yyCh - '0');
+ yyCh = getChar();
+ }
+ return Tok_BackRef | val;
+#else
+ error(RXERR_DISABLED);
+#endif
+ }
+ return Tok_Char | prevCh;
+ }
+}
+
+#ifndef QT_NO_REGEXP_INTERVAL
+int QRegExpEngine::getRep(int def)
+{
+ if (yyCh >= '0' && yyCh <= '9') {
+ int rep = 0;
+ do {
+ rep = 10 * rep + yyCh - '0';
+ if (rep >= InftyRep) {
+ error(RXERR_REPETITION);
+ rep = def;
+ }
+ yyCh = getChar();
+ } while (yyCh >= '0' && yyCh <= '9');
+ return rep;
+ } else {
+ return def;
+ }
+}
+#endif
+
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+void QRegExpEngine::skipChars(int n)
+{
+ if (n > 0) {
+ yyPos += n - 1;
+ yyCh = getChar();
+ }
+}
+#endif
+
+void QRegExpEngine::error(const char *msg)
+{
+ if (yyError.isEmpty())
+ yyError = QLatin1String(msg);
+}
+
+void QRegExpEngine::startTokenizer(const QChar *rx, int len)
+{
+ yyIn = rx;
+ yyPos0 = 0;
+ yyPos = 0;
+ yyLen = len;
+ yyCh = getChar();
+ yyCharClass = new QRegExpCharClass;
+ yyMinRep = 0;
+ yyMaxRep = 0;
+ yyError = QString();
+}
+
+int QRegExpEngine::getToken()
+{
+#ifndef QT_NO_REGEXP_CCLASS
+ ushort pendingCh = 0;
+ bool charPending;
+ bool rangePending;
+ int tok;
+#endif
+ int prevCh = yyCh;
+
+ yyPos0 = yyPos - 1;
+#ifndef QT_NO_REGEXP_CCLASS
+ yyCharClass->clear();
+#endif
+ yyMinRep = 0;
+ yyMaxRep = 0;
+ yyCh = getChar();
+
+ switch (prevCh) {
+ case EOS:
+ yyPos0 = yyPos;
+ return Tok_Eos;
+ case '$':
+ return Tok_Dollar;
+ case '(':
+ if (yyCh == '?') {
+ prevCh = getChar();
+ yyCh = getChar();
+ switch (prevCh) {
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ case '!':
+ return Tok_NegLookahead;
+ case '=':
+ return Tok_PosLookahead;
+#endif
+ case ':':
+ return Tok_MagicLeftParen;
+ default:
+ error(RXERR_LOOKAHEAD);
+ return Tok_MagicLeftParen;
+ }
+ } else {
+ return Tok_LeftParen;
+ }
+ case ')':
+ return Tok_RightParen;
+ case '*':
+ yyMinRep = 0;
+ yyMaxRep = InftyRep;
+ return Tok_Quantifier;
+ case '+':
+ yyMinRep = 1;
+ yyMaxRep = InftyRep;
+ return Tok_Quantifier;
+ case '.':
+#ifndef QT_NO_REGEXP_CCLASS
+ yyCharClass->setNegative(true);
+#endif
+ return Tok_CharClass;
+ case '?':
+ yyMinRep = 0;
+ yyMaxRep = 1;
+ return Tok_Quantifier;
+ case '[':
+#ifndef QT_NO_REGEXP_CCLASS
+ if (yyCh == '^') {
+ yyCharClass->setNegative(true);
+ yyCh = getChar();
+ }
+ charPending = false;
+ rangePending = false;
+ do {
+ if (yyCh == '-' && charPending && !rangePending) {
+ rangePending = true;
+ yyCh = getChar();
+ } else {
+ if (charPending && !rangePending) {
+ yyCharClass->addSingleton(pendingCh);
+ charPending = false;
+ }
+ if (yyCh == '\\') {
+ yyCh = getChar();
+ tok = getEscape();
+ if (tok == Tok_Word)
+ tok = '\b';
+ } else {
+ tok = Tok_Char | yyCh;
+ yyCh = getChar();
+ }
+ if (tok == Tok_CharClass) {
+ if (rangePending) {
+ yyCharClass->addSingleton('-');
+ yyCharClass->addSingleton(pendingCh);
+ charPending = false;
+ rangePending = false;
+ }
+ } else if ((tok & Tok_Char) != 0) {
+ if (rangePending) {
+ yyCharClass->addRange(pendingCh, tok ^ Tok_Char);
+ charPending = false;
+ rangePending = false;
+ } else {
+ pendingCh = tok ^ Tok_Char;
+ charPending = true;
+ }
+ } else {
+ error(RXERR_CHARCLASS);
+ }
+ }
+ } while (yyCh != ']' && yyCh != EOS);
+ if (rangePending)
+ yyCharClass->addSingleton('-');
+ if (charPending)
+ yyCharClass->addSingleton(pendingCh);
+ if (yyCh == EOS)
+ error(RXERR_END);
+ else
+ yyCh = getChar();
+ return Tok_CharClass;
+#else
+ error(RXERR_END);
+ return Tok_Char | '[';
+#endif
+ case '\\':
+ return getEscape();
+ case ']':
+ error(RXERR_LEFTDELIM);
+ return Tok_Char | ']';
+ case '^':
+ return Tok_Caret;
+ case '{':
+#ifndef QT_NO_REGEXP_INTERVAL
+ yyMinRep = getRep(0);
+ yyMaxRep = yyMinRep;
+ if (yyCh == ',') {
+ yyCh = getChar();
+ yyMaxRep = getRep(InftyRep);
+ }
+ if (yyMaxRep < yyMinRep)
+ qSwap(yyMinRep, yyMaxRep);
+ if (yyCh != '}')
+ error(RXERR_REPETITION);
+ yyCh = getChar();
+ return Tok_Quantifier;
+#else
+ error(RXERR_DISABLED);
+ return Tok_Char | '{';
+#endif
+ case '|':
+ return Tok_Bar;
+ case '}':
+ error(RXERR_LEFTDELIM);
+ return Tok_Char | '}';
+ default:
+ return Tok_Char | prevCh;
+ }
+}
+
+int QRegExpEngine::parse(const QChar *pattern, int len)
+{
+ valid = true;
+ startTokenizer(pattern, len);
+ yyTok = getToken();
+#ifndef QT_NO_REGEXP_CAPTURE
+ yyMayCapture = true;
+#else
+ yyMayCapture = false;
+#endif
+
+#ifndef QT_NO_REGEXP_CAPTURE
+ int atom = startAtom(false);
+#endif
+ QRegExpCharClass anything;
+ Box box(this); // create InitialState
+ box.set(anything);
+ Box rightBox(this); // create FinalState
+ rightBox.set(anything);
+
+ Box middleBox(this);
+ parseExpression(&middleBox);
+#ifndef QT_NO_REGEXP_CAPTURE
+ finishAtom(atom, false);
+#endif
+#ifndef QT_NO_REGEXP_OPTIM
+ middleBox.setupHeuristics();
+#endif
+ box.cat(middleBox);
+ box.cat(rightBox);
+ delete yyCharClass;
+ yyCharClass = 0;
+
+#ifndef QT_NO_REGEXP_CAPTURE
+ for (int i = 0; i < nf; ++i) {
+ switch (f[i].capture) {
+ case QRegExpAtom::NoCapture:
+ break;
+ case QRegExpAtom::OfficialCapture:
+ f[i].capture = ncap;
+ captureForOfficialCapture.append(ncap);
+ ++ncap;
+ ++officialncap;
+ break;
+ case QRegExpAtom::UnofficialCapture:
+ f[i].capture = greedyQuantifiers ? ncap++ : QRegExpAtom::NoCapture;
+ }
+ }
+
+#ifndef QT_NO_REGEXP_BACKREF
+#ifndef QT_NO_REGEXP_OPTIM
+ if (officialncap == 0 && nbrefs == 0) {
+ ncap = nf = 0;
+ f.clear();
+ }
+#endif
+ // handle the case where there's a \5 with no corresponding capture
+ // (captureForOfficialCapture.size() != officialncap)
+ for (int i = 0; i < nbrefs - officialncap; ++i) {
+ captureForOfficialCapture.append(ncap);
+ ++ncap;
+ }
+#endif
+#endif
+
+ if (!yyError.isEmpty())
+ return -1;
+
+#ifndef QT_NO_REGEXP_OPTIM
+ const QRegExpAutomatonState &sinit = s.at(InitialState);
+ caretAnchored = !sinit.anchors.isEmpty();
+ if (caretAnchored) {
+ const QMap<int, int> &anchors = sinit.anchors;
+ QMap<int, int>::const_iterator a;
+ for (a = anchors.constBegin(); a != anchors.constEnd(); ++a) {
+ if (
+#ifndef QT_NO_REGEXP_ANCHOR_ALT
+ (*a & Anchor_Alternation) != 0 ||
+#endif
+ (*a & Anchor_Caret) == 0)
+ {
+ caretAnchored = false;
+ break;
+ }
+ }
+ }
+#endif
+
+ // cleanup anchors
+ int numStates = s.count();
+ for (int i = 0; i < numStates; ++i) {
+ QRegExpAutomatonState &state = s[i];
+ if (!state.anchors.isEmpty()) {
+ QMap<int, int>::iterator a = state.anchors.begin();
+ while (a != state.anchors.end()) {
+ if (a.value() == 0)
+ a = state.anchors.erase(a);
+ else
+ ++a;
+ }
+ }
+ }
+
+ return yyPos0;
+}
+
+void QRegExpEngine::parseAtom(Box *box)
+{
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ QRegExpEngine *eng = 0;
+ bool neg;
+ int len;
+#endif
+
+ if ((yyTok & Tok_Char) != 0) {
+ box->set(QChar(yyTok ^ Tok_Char));
+ } else {
+#ifndef QT_NO_REGEXP_OPTIM
+ trivial = false;
+#endif
+ switch (yyTok) {
+ case Tok_Dollar:
+ box->catAnchor(Anchor_Dollar);
+ break;
+ case Tok_Caret:
+ box->catAnchor(Anchor_Caret);
+ break;
+#ifndef QT_NO_REGEXP_LOOKAHEAD
+ case Tok_PosLookahead:
+ case Tok_NegLookahead:
+ neg = (yyTok == Tok_NegLookahead);
+ eng = new QRegExpEngine(cs, greedyQuantifiers);
+ len = eng->parse(yyIn + yyPos - 1, yyLen - yyPos + 1);
+ if (len >= 0)
+ skipChars(len);
+ else
+ error(RXERR_LOOKAHEAD);
+ box->catAnchor(addLookahead(eng, neg));
+ yyTok = getToken();
+ if (yyTok != Tok_RightParen)
+ error(RXERR_LOOKAHEAD);
+ break;
+#endif
+#ifndef QT_NO_REGEXP_ESCAPE
+ case Tok_Word:
+ box->catAnchor(Anchor_Word);
+ break;
+ case Tok_NonWord:
+ box->catAnchor(Anchor_NonWord);
+ break;
+#endif
+ case Tok_LeftParen:
+ case Tok_MagicLeftParen:
+ yyTok = getToken();
+ parseExpression(box);
+ if (yyTok != Tok_RightParen)
+ error(RXERR_END);
+ break;
+ case Tok_CharClass:
+ box->set(*yyCharClass);
+ break;
+ case Tok_Quantifier:
+ error(RXERR_REPETITION);
+ break;
+ default:
+#ifndef QT_NO_REGEXP_BACKREF
+ if ((yyTok & Tok_BackRef) != 0)
+ box->set(yyTok ^ Tok_BackRef);
+ else
+#endif
+ error(RXERR_DISABLED);
+ }
+ }
+ yyTok = getToken();
+}
+
+void QRegExpEngine::parseFactor(Box *box)
+{
+#ifndef QT_NO_REGEXP_CAPTURE
+ int outerAtom = greedyQuantifiers ? startAtom(false) : -1;
+ int innerAtom = startAtom(yyMayCapture && yyTok == Tok_LeftParen);
+ bool magicLeftParen = (yyTok == Tok_MagicLeftParen);
+#else
+ const int innerAtom = -1;
+#endif
+
+#ifndef QT_NO_REGEXP_INTERVAL
+#define YYREDO() \
+ yyIn = in, yyPos0 = pos0, yyPos = pos, yyLen = len, yyCh = ch, \
+ *yyCharClass = charClass, yyMinRep = 0, yyMaxRep = 0, yyTok = tok
+
+ const QChar *in = yyIn;
+ int pos0 = yyPos0;
+ int pos = yyPos;
+ int len = yyLen;
+ int ch = yyCh;
+ QRegExpCharClass charClass;
+ if (yyTok == Tok_CharClass)
+ charClass = *yyCharClass;
+ int tok = yyTok;
+ bool mayCapture = yyMayCapture;
+#endif
+
+ parseAtom(box);
+#ifndef QT_NO_REGEXP_CAPTURE
+ finishAtom(innerAtom, magicLeftParen);
+#endif
+
+ bool hasQuantifier = (yyTok == Tok_Quantifier);
+ if (hasQuantifier) {
+#ifndef QT_NO_REGEXP_OPTIM
+ trivial = false;
+#endif
+ if (yyMaxRep == InftyRep) {
+ box->plus(innerAtom);
+#ifndef QT_NO_REGEXP_INTERVAL
+ } else if (yyMaxRep == 0) {
+ box->clear();
+#endif
+ }
+ if (yyMinRep == 0)
+ box->opt();
+
+#ifndef QT_NO_REGEXP_INTERVAL
+ yyMayCapture = false;
+ int alpha = (yyMinRep == 0) ? 0 : yyMinRep - 1;
+ int beta = (yyMaxRep == InftyRep) ? 0 : yyMaxRep - (alpha + 1);
+
+ Box rightBox(this);
+ int i;
+
+ for (i = 0; i < beta; i++) {
+ YYREDO();
+ Box leftBox(this);
+ parseAtom(&leftBox);
+ leftBox.cat(rightBox);
+ leftBox.opt();
+ rightBox = leftBox;
+ }
+ for (i = 0; i < alpha; i++) {
+ YYREDO();
+ Box leftBox(this);
+ parseAtom(&leftBox);
+ leftBox.cat(rightBox);
+ rightBox = leftBox;
+ }
+ rightBox.cat(*box);
+ *box = rightBox;
+#endif
+ yyTok = getToken();
+#ifndef QT_NO_REGEXP_INTERVAL
+ yyMayCapture = mayCapture;
+#endif
+ }
+#undef YYREDO
+#ifndef QT_NO_REGEXP_CAPTURE
+ if (greedyQuantifiers)
+ finishAtom(outerAtom, hasQuantifier);
+#endif
+}
+
+void QRegExpEngine::parseTerm(Box *box)
+{
+#ifndef QT_NO_REGEXP_OPTIM
+ if (yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar)
+ parseFactor(box);
+#endif
+ while (yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar) {
+ Box rightBox(this);
+ parseFactor(&rightBox);
+ box->cat(rightBox);
+ }
+}
+
+void QRegExpEngine::parseExpression(Box *box)
+{
+ parseTerm(box);
+ while (yyTok == Tok_Bar) {
+#ifndef QT_NO_REGEXP_OPTIM
+ trivial = false;
+#endif
+ Box rightBox(this);
+ yyTok = getToken();
+ parseTerm(&rightBox);
+ box->orx(rightBox);
+ }
+}
+
+/*
+ The struct QRegExpPrivate contains the private data of a regular
+ expression other than the automaton. It makes it possible for many
+ QRegExp objects to use the same QRegExpEngine object with different
+ QRegExpPrivate objects.
+*/
+struct QRegExpPrivate
+{
+ QRegExpEngine *eng;
+ QRegExpEngineKey engineKey;
+ bool minimal;
+#ifndef QT_NO_REGEXP_CAPTURE
+ QString t; // last string passed to QRegExp::indexIn() or lastIndexIn()
+ QStringList capturedCache; // what QRegExp::capturedTexts() returned last
+#endif
+ QRegExpMatchState matchState;
+
+ inline QRegExpPrivate()
+ : eng(0), engineKey(QString(), QRegExp::RegExp, Qt::CaseSensitive), minimal(false) { }
+ inline QRegExpPrivate(const QRegExpEngineKey &key)
+ : eng(0), engineKey(key), minimal(false) {}
+};
+
+#if !defined(QT_NO_REGEXP_OPTIM)
+uint qHash(const QRegExpEngineKey &key)
+{
+ return qHash(key.pattern);
+}
+
+typedef QCache<QRegExpEngineKey, QRegExpEngine> EngineCache;
+Q_GLOBAL_STATIC(EngineCache, globalEngineCache)
+Q_GLOBAL_STATIC(QMutex, mutex)
+#endif // QT_NO_REGEXP_OPTIM
+
+static void derefEngine(QRegExpEngine *eng, const QRegExpEngineKey &key)
+{
+ if (!eng->ref.deref()) {
+#if !defined(QT_NO_REGEXP_OPTIM)
+ if (globalEngineCache()) {
+ QMutexLocker locker(mutex());
+ globalEngineCache()->insert(key, eng, 4 + key.pattern.length() / 4);
+ }
+ else
+ delete eng;
+#else
+ Q_UNUSED(key);
+ delete eng;
+#endif
+ }
+}
+
+static void prepareEngine_helper(QRegExpPrivate *priv)
+{
+ bool initMatchState = !priv->eng;
+#if !defined(QT_NO_REGEXP_OPTIM)
+ if (!priv->eng) {
+ QMutexLocker locker(mutex());
+ priv->eng = globalEngineCache()->take(priv->engineKey);
+ if (priv->eng != 0)
+ priv->eng->ref.ref();
+ }
+#endif // QT_NO_REGEXP_OPTIM
+
+ if (!priv->eng)
+ priv->eng = new QRegExpEngine(priv->engineKey);
+
+ if (initMatchState)
+ priv->matchState.prepareForMatch(priv->eng);
+}
+
+inline static void prepareEngine(QRegExpPrivate *priv)
+{
+ if (priv->eng)
+ return;
+ prepareEngine_helper(priv);
+}
+
+static void prepareEngineForMatch(QRegExpPrivate *priv, const QString &str)
+{
+ prepareEngine(priv);
+ priv->matchState.prepareForMatch(priv->eng);
+#ifndef QT_NO_REGEXP_CAPTURE
+ priv->t = str;
+ priv->capturedCache.clear();
+#else
+ Q_UNUSED(str);
+#endif
+}
+
+static void invalidateEngine(QRegExpPrivate *priv)
+{
+ if (priv->eng != 0) {
+ derefEngine(priv->eng, priv->engineKey);
+ priv->eng = 0;
+ priv->matchState.drain();
+ }
+}
+
+/*!
+ \enum QRegExp::CaretMode
+
+ The CaretMode enum defines the different meanings of the caret
+ (\bold{^}) in a regular expression. The possible values are:
+
+ \value CaretAtZero
+ The caret corresponds to index 0 in the searched string.
+
+ \value CaretAtOffset
+ The caret corresponds to the start offset of the search.
+
+ \value CaretWontMatch
+ The caret never matches.
+*/
+
+/*!
+ \enum QRegExp::PatternSyntax
+
+ The syntax used to interpret the meaning of the pattern.
+
+ \value RegExp A rich Perl-like pattern matching syntax. This is
+ the default.
+
+ \value RegExp2 Like RegExp, but with \l{greedy quantifiers}. This
+ will be the default in Qt 5. (Introduced in Qt 4.2.)
+
+ \value Wildcard This provides a simple pattern matching syntax
+ similar to that used by shells (command interpreters) for "file
+ globbing". See \l{Wildcard Matching}.
+
+ \value FixedString The pattern is a fixed string. This is
+ equivalent to using the RegExp pattern on a string in
+ which all metacharacters are escaped using escape().
+
+ \sa setPatternSyntax()
+*/
+
+/*!
+ Constructs an empty regexp.
+
+ \sa isValid(), errorString()
+*/
+QRegExp::QRegExp()
+{
+ priv = new QRegExpPrivate;
+}
+
+/*!
+ Constructs a regular expression object for the given \a pattern
+ string. The pattern must be given using wildcard notation if \a
+ syntax is \l Wildcard; the default is \l RegExp. The pattern is
+ case sensitive, unless \a cs is Qt::CaseInsensitive. Matching is
+ greedy (maximal), but can be changed by calling
+ setMinimal().
+
+ \sa setPattern(), setCaseSensitivity(), setPatternSyntax()
+*/
+QRegExp::QRegExp(const QString &pattern, Qt::CaseSensitivity cs, PatternSyntax syntax)
+{
+ priv = new QRegExpPrivate(QRegExpEngineKey(pattern, syntax, cs));
+}
+
+/*!
+ Constructs a regular expression as a copy of \a rx.
+
+ \sa operator=()
+*/
+QRegExp::QRegExp(const QRegExp &rx)
+{
+ priv = new QRegExpPrivate;
+ operator=(rx);
+}
+
+/*!
+ Destroys the regular expression and cleans up its internal data.
+*/
+QRegExp::~QRegExp()
+{
+ invalidateEngine(priv);
+ delete priv;
+}
+
+/*!
+ Copies the regular expression \a rx and returns a reference to the
+ copy. The case sensitivity, wildcard, and minimal matching options
+ are also copied.
+*/
+QRegExp &QRegExp::operator=(const QRegExp &rx)
+{
+ prepareEngine(rx.priv); // to allow sharing
+ QRegExpEngine *otherEng = rx.priv->eng;
+ if (otherEng)
+ otherEng->ref.ref();
+ invalidateEngine(priv);
+ priv->eng = otherEng;
+ priv->engineKey = rx.priv->engineKey;
+ priv->minimal = rx.priv->minimal;
+#ifndef QT_NO_REGEXP_CAPTURE
+ priv->t = rx.priv->t;
+ priv->capturedCache = rx.priv->capturedCache;
+#endif
+ if (priv->eng)
+ priv->matchState.prepareForMatch(priv->eng);
+ priv->matchState.captured = rx.priv->matchState.captured;
+ return *this;
+}
+
+/*!
+ Returns true if this regular expression is equal to \a rx;
+ otherwise returns false.
+
+ Two QRegExp objects are equal if they have the same pattern
+ strings and the same settings for case sensitivity, wildcard and
+ minimal matching.
+*/
+bool QRegExp::operator==(const QRegExp &rx) const
+{
+ return priv->engineKey == rx.priv->engineKey && priv->minimal == rx.priv->minimal;
+}
+
+/*!
+ \fn bool QRegExp::operator!=(const QRegExp &rx) const
+
+ Returns true if this regular expression is not equal to \a rx;
+ otherwise returns false.
+
+ \sa operator==()
+*/
+
+/*!
+ Returns true if the pattern string is empty; otherwise returns
+ false.
+
+ If you call exactMatch() with an empty pattern on an empty string
+ it will return true; otherwise it returns false since it operates
+ over the whole string. If you call indexIn() with an empty pattern
+ on \e any string it will return the start offset (0 by default)
+ because the empty pattern matches the 'emptiness' at the start of
+ the string. In this case the length of the match returned by
+ matchedLength() will be 0.
+
+ See QString::isEmpty().
+*/
+
+bool QRegExp::isEmpty() const
+{
+ return priv->engineKey.pattern.isEmpty();
+}
+
+/*!
+ Returns true if the regular expression is valid; otherwise returns
+ false. An invalid regular expression never matches.
+
+ The pattern \bold{[a-z} is an example of an invalid pattern, since
+ it lacks a closing square bracket.
+
+ Note that the validity of a regexp may also depend on the setting
+ of the wildcard flag, for example \bold{*.html} is a valid
+ wildcard regexp but an invalid full regexp.
+
+ \sa errorString()
+*/
+bool QRegExp::isValid() const
+{
+ if (priv->engineKey.pattern.isEmpty()) {
+ return true;
+ } else {
+ prepareEngine(priv);
+ return priv->eng->isValid();
+ }
+}
+
+/*!
+ Returns the pattern string of the regular expression. The pattern
+ has either regular expression syntax or wildcard syntax, depending
+ on patternSyntax().
+
+ \sa patternSyntax(), caseSensitivity()
+*/
+QString QRegExp::pattern() const
+{
+ return priv->engineKey.pattern;
+}
+
+/*!
+ Sets the pattern string to \a pattern. The case sensitivity,
+ wildcard, and minimal matching options are not changed.
+
+ \sa setPatternSyntax(), setCaseSensitivity()
+*/
+void QRegExp::setPattern(const QString &pattern)
+{
+ if (priv->engineKey.pattern != pattern) {
+ invalidateEngine(priv);
+ priv->engineKey.pattern = pattern;
+ }
+}
+
+/*!
+ Returns Qt::CaseSensitive if the regexp is matched case
+ sensitively; otherwise returns Qt::CaseInsensitive.
+
+ \sa patternSyntax(), pattern(), isMinimal()
+*/
+Qt::CaseSensitivity QRegExp::caseSensitivity() const
+{
+ return priv->engineKey.cs;
+}
+
+/*!
+ Sets case sensitive matching to \a cs.
+
+ If \a cs is Qt::CaseSensitive, \bold{\\.txt$} matches
+ \c{readme.txt} but not \c{README.TXT}.
+
+ \sa setPatternSyntax(), setPattern(), setMinimal()
+*/
+void QRegExp::setCaseSensitivity(Qt::CaseSensitivity cs)
+{
+ if ((bool)cs != (bool)priv->engineKey.cs) {
+ invalidateEngine(priv);
+ priv->engineKey.cs = cs;
+ }
+}
+
+/*!
+ Returns the syntax used by the regular expression. The default is
+ QRegExp::RegExp.
+
+ \sa pattern(), caseSensitivity()
+*/
+QRegExp::PatternSyntax QRegExp::patternSyntax() const
+{
+ return priv->engineKey.patternSyntax;
+}
+
+/*!
+ Sets the syntax mode for the regular expression. The default is
+ QRegExp::RegExp.
+
+ Setting \a syntax to QRegExp::Wildcard enables simple shell-like
+ \l{wildcard matching}. For example, \bold{r*.txt} matches the
+ string \c{readme.txt} in wildcard mode, but does not match
+ \c{readme}.
+
+ Setting \a syntax to QRegExp::FixedString means that the pattern
+ is interpreted as a plain string. Special characters (e.g.,
+ backslash) don't need to be escaped then.
+
+ \sa setPattern(), setCaseSensitivity(), escape()
+*/
+void QRegExp::setPatternSyntax(PatternSyntax syntax)
+{
+ if (syntax != priv->engineKey.patternSyntax) {
+ invalidateEngine(priv);
+ priv->engineKey.patternSyntax = syntax;
+ }
+}
+
+/*!
+ Returns true if minimal (non-greedy) matching is enabled;
+ otherwise returns false.
+
+ \sa caseSensitivity(), setMinimal()
+*/
+bool QRegExp::isMinimal() const
+{
+ return priv->minimal;
+}
+
+/*!
+ Enables or disables minimal matching. If \a minimal is false,
+ matching is greedy (maximal) which is the default.
+
+ For example, suppose we have the input string "We must be
+ <b>bold</b>, very <b>bold</b>!" and the pattern
+ \bold{<b>.*</b>}. With the default greedy (maximal) matching,
+ the match is "We must be \underline{<b>bold</b>, very
+ <b>bold</b>}!". But with minimal (non-greedy) matching, the
+ first match is: "We must be \underline{<b>bold</b>}, very
+ <b>bold</b>!" and the second match is "We must be <b>bold</b>,
+ very \underline{<b>bold</b>}!". In practice we might use the pattern
+ \bold{<b>[^<]*\</b>} instead, although this will still fail for
+ nested tags.
+
+ \sa setCaseSensitivity()
+*/
+void QRegExp::setMinimal(bool minimal)
+{
+ priv->minimal = minimal;
+}
+
+// ### Qt 5: make non-const
+/*!
+ Returns true if \a str is matched exactly by this regular
+ expression; otherwise returns false. You can determine how much of
+ the string was matched by calling matchedLength().
+
+ For a given regexp string R, exactMatch("R") is the equivalent of
+ indexIn("^R$") since exactMatch() effectively encloses the regexp
+ in the start of string and end of string anchors, except that it
+ sets matchedLength() differently.
+
+ For example, if the regular expression is \bold{blue}, then
+ exactMatch() returns true only for input \c blue. For inputs \c
+ bluebell, \c blutak and \c lightblue, exactMatch() returns false
+ and matchedLength() will return 4, 3 and 0 respectively.
+
+ Although const, this function sets matchedLength(),
+ capturedTexts(), and pos().
+
+ \sa indexIn(), lastIndexIn()
+*/
+bool QRegExp::exactMatch(const QString &str) const
+{
+ prepareEngineForMatch(priv, str);
+ priv->matchState.match(str.unicode(), str.length(), 0, priv->minimal, true, 0);
+ if (priv->matchState.captured[1] == str.length()) {
+ return true;
+ } else {
+ priv->matchState.captured[0] = 0;
+ priv->matchState.captured[1] = priv->matchState.oneTestMatchedLen;
+ return false;
+ }
+}
+
+// ### Qt 5: make non-const
+/*!
+ Attempts to find a match in \a str from position \a offset (0 by
+ default). If \a offset is -1, the search starts at the last
+ character; if -2, at the next to last character; etc.
+
+ Returns the position of the first match, or -1 if there was no
+ match.
+
+ The \a caretMode parameter can be used to instruct whether \bold{^}
+ should match at index 0 or at \a offset.
+
+ You might prefer to use QString::indexOf(), QString::contains(),
+ or even QStringList::filter(). To replace matches use
+ QString::replace().
+
+ Example:
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 13
+
+ Although const, this function sets matchedLength(),
+ capturedTexts() and pos().
+
+ If the QRegExp is a wildcard expression (see setPatternSyntax())
+ and want to test a string against the whole wildcard expression,
+ use exactMatch() instead of this function.
+
+ \sa lastIndexIn(), exactMatch()
+*/
+
+int QRegExp::indexIn(const QString &str, int offset, CaretMode caretMode) const
+{
+ prepareEngineForMatch(priv, str);
+ if (offset < 0)
+ offset += str.length();
+ priv->matchState.match(str.unicode(), str.length(), offset,
+ priv->minimal, false, caretIndex(offset, caretMode));
+ return priv->matchState.captured[0];
+}
+
+// ### Qt 5: make non-const
+/*!
+ Attempts to find a match backwards in \a str from position \a
+ offset. If \a offset is -1 (the default), the search starts at the
+ last character; if -2, at the next to last character; etc.
+
+ Returns the position of the first match, or -1 if there was no
+ match.
+
+ The \a caretMode parameter can be used to instruct whether \bold{^}
+ should match at index 0 or at \a offset.
+
+ Although const, this function sets matchedLength(),
+ capturedTexts() and pos().
+
+ \warning Searching backwards is much slower than searching
+ forwards.
+
+ \sa indexIn(), exactMatch()
+*/
+
+int QRegExp::lastIndexIn(const QString &str, int offset, CaretMode caretMode) const
+{
+ prepareEngineForMatch(priv, str);
+ if (offset < 0)
+ offset += str.length();
+ if (offset < 0 || offset > str.length()) {
+ memset(priv->matchState.captured, -1, priv->matchState.capturedSize*sizeof(int));
+ return -1;
+ }
+
+ while (offset >= 0) {
+ priv->matchState.match(str.unicode(), str.length(), offset,
+ priv->minimal, true, caretIndex(offset, caretMode));
+ if (priv->matchState.captured[0] == offset)
+ return offset;
+ --offset;
+ }
+ return -1;
+}
+
+/*!
+ Returns the length of the last matched string, or -1 if there was
+ no match.
+
+ \sa exactMatch(), indexIn(), lastIndexIn()
+*/
+int QRegExp::matchedLength() const
+{
+ return priv->matchState.captured[1];
+}
+
+#ifndef QT_NO_REGEXP_CAPTURE
+/*!
+ Returns the number of captures contained in the regular expression.
+ */
+int QRegExp::numCaptures() const
+{
+ prepareEngine(priv);
+ return priv->eng->numCaptures();
+}
+
+/*!
+ Returns a list of the captured text strings.
+
+ The first string in the list is the entire matched string. Each
+ subsequent list element contains a string that matched a
+ (capturing) subexpression of the regexp.
+
+ For example:
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 14
+
+ The above example also captures elements that may be present but
+ which we have no interest in. This problem can be solved by using
+ non-capturing parentheses:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 15
+
+ Note that if you want to iterate over the list, you should iterate
+ over a copy, e.g.
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 16
+
+ Some regexps can match an indeterminate number of times. For
+ example if the input string is "Offsets: 12 14 99 231 7" and the
+ regexp, \c{rx}, is \bold{(\\d+)+}, we would hope to get a list of
+ all the numbers matched. However, after calling
+ \c{rx.indexIn(str)}, capturedTexts() will return the list ("12",
+ "12"), i.e. the entire match was "12" and the first subexpression
+ matched was "12". The correct approach is to use cap() in a
+ \l{QRegExp#cap_in_a_loop}{loop}.
+
+ The order of elements in the string list is as follows. The first
+ element is the entire matching string. Each subsequent element
+ corresponds to the next capturing open left parentheses. Thus
+ capturedTexts()[1] is the text of the first capturing parentheses,
+ capturedTexts()[2] is the text of the second and so on
+ (corresponding to $1, $2, etc., in some other regexp languages).
+
+ \sa cap(), pos()
+*/
+QStringList QRegExp::capturedTexts() const
+{
+ if (priv->capturedCache.isEmpty()) {
+ prepareEngine(priv);
+ const int *captured = priv->matchState.captured;
+ int n = priv->matchState.capturedSize;
+
+ for (int i = 0; i < n; i += 2) {
+ QString m;
+ if (captured[i + 1] == 0)
+ m = QLatin1String(""); // ### Qt 5: don't distinguish between null and empty
+ else if (captured[i] >= 0)
+ m = priv->t.mid(captured[i], captured[i + 1]);
+ priv->capturedCache.append(m);
+ }
+ priv->t.clear();
+ }
+ return priv->capturedCache;
+}
+
+/*!
+ \internal
+*/
+QStringList QRegExp::capturedTexts()
+{
+ return const_cast<const QRegExp *>(this)->capturedTexts();
+}
+
+/*!
+ Returns the text captured by the \a nth subexpression. The entire
+ match has index 0 and the parenthesized subexpressions have
+ indexes starting from 1 (excluding non-capturing parentheses).
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 17
+
+ The order of elements matched by cap() is as follows. The first
+ element, cap(0), is the entire matching string. Each subsequent
+ element corresponds to the next capturing open left parentheses.
+ Thus cap(1) is the text of the first capturing parentheses, cap(2)
+ is the text of the second, and so on.
+
+ \sa capturedTexts(), pos()
+*/
+QString QRegExp::cap(int nth) const
+{
+ return capturedTexts().value(nth);
+}
+
+/*!
+ \internal
+*/
+QString QRegExp::cap(int nth)
+{
+ return const_cast<const QRegExp *>(this)->cap(nth);
+}
+
+/*!
+ Returns the position of the \a nth captured text in the searched
+ string. If \a nth is 0 (the default), pos() returns the position
+ of the whole match.
+
+ Example:
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 18
+
+ For zero-length matches, pos() always returns -1. (For example, if
+ cap(4) would return an empty string, pos(4) returns -1.) This is
+ a feature of the implementation.
+
+ \sa cap(), capturedTexts()
+*/
+int QRegExp::pos(int nth) const
+{
+ if (nth < 0 || nth >= priv->matchState.capturedSize / 2)
+ return -1;
+ else
+ return priv->matchState.captured[2 * nth];
+}
+
+/*!
+ \internal
+*/
+int QRegExp::pos(int nth)
+{
+ return const_cast<const QRegExp *>(this)->pos(nth);
+}
+
+/*!
+ Returns a text string that explains why a regexp pattern is
+ invalid the case being; otherwise returns "no error occurred".
+
+ \sa isValid()
+*/
+QString QRegExp::errorString() const
+{
+ if (isValid()) {
+ return QString::fromLatin1(RXERR_OK);
+ } else {
+ return priv->eng->errorString();
+ }
+}
+
+/*!
+ \internal
+*/
+QString QRegExp::errorString()
+{
+ return const_cast<const QRegExp *>(this)->errorString();
+}
+#endif
+
+/*!
+ Returns the string \a str with every regexp special character
+ escaped with a backslash. The special characters are $, (,), *, +,
+ ., ?, [, \,], ^, {, | and }.
+
+ Example:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 19
+
+ This function is useful to construct regexp patterns dynamically:
+
+ \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 20
+
+ \sa setPatternSyntax()
+*/
+QString QRegExp::escape(const QString &str)
+{
+ QString quoted;
+ const int count = str.count();
+ quoted.reserve(count * 2);
+ const QLatin1Char backslash('\\');
+ for (int i = 0; i < count; i++) {
+ switch (str.at(i).toLatin1()) {
+ case '$':
+ case '(':
+ case ')':
+ case '*':
+ case '+':
+ case '.':
+ case '?':
+ case '[':
+ case '\\':
+ case ']':
+ case '^':
+ case '{':
+ case '|':
+ case '}':
+ quoted.append(backslash);
+ }
+ quoted.append(str.at(i));
+ }
+ return quoted;
+}
+
+/*!
+ \fn bool QRegExp::caseSensitive() const
+
+ Use \l caseSensitivity() instead.
+*/
+
+/*!
+ \fn void QRegExp::setCaseSensitive(bool sensitive)
+
+ Use \l setCaseSensitivity() instead.
+*/
+
+/*!
+ \fn bool QRegExp::wildcard() const
+
+ Use \l patternSyntax() instead.
+
+ \oldcode
+ bool wc = rx.wildcard();
+ \newcode
+ bool wc = (rx.patternSyntax() == QRegExp::Wildcard);
+ \endcode
+*/
+
+/*!
+ \fn void QRegExp::setWildcard(bool wildcard)
+
+ Use \l setPatternSyntax() instead.
+
+ \oldcode
+ rx.setWildcard(wc);
+ \newcode
+ rx.setPatternSyntax(wc ? QRegExp::Wildcard : QRegExp::RegExp);
+ \endcode
+*/
+
+/*!
+ \fn bool QRegExp::minimal() const
+
+ Use \l isMinimal() instead.
+*/
+
+/*!
+ \fn int QRegExp::search(const QString &str, int from = 0,
+ CaretMode caretMode = CaretAtZero) const
+
+ Use \l indexIn() instead.
+*/
+
+/*!
+ \fn int QRegExp::searchRev(const QString &str, int from = -1, \
+ CaretMode caretMode = CaretAtZero) const
+
+ Use \l lastIndexIn() instead.
+*/
+
+/*!
+ \fn QRegExp::QRegExp(const QString &pattern, bool cs, bool wildcard = false)
+
+ Use another constructor instead.
+
+ \oldcode
+ QRegExp rx("*.txt", false, true);
+ \newcode
+ QRegExp rx("*.txt", Qt::CaseInsensitive, QRegExp::Wildcard);
+ \endcode
+*/
+
+#ifndef QT_NO_DATASTREAM
+/*!
+ \relates QRegExp
+
+ Writes the regular expression \a regExp to stream \a out.
+
+ \sa {Format of the QDataStream Operators}
+*/
+QDataStream &operator<<(QDataStream &out, const QRegExp &regExp)
+{
+ return out << regExp.pattern() << (quint8)regExp.caseSensitivity()
+ << (quint8)regExp.patternSyntax()
+ << (quint8)!!regExp.isMinimal();
+}
+
+/*!
+ \relates QRegExp
+
+ Reads a regular expression from stream \a in into \a regExp.
+
+ \sa {Format of the QDataStream Operators}
+*/
+QDataStream &operator>>(QDataStream &in, QRegExp &regExp)
+{
+ QString pattern;
+ quint8 cs;
+ quint8 patternSyntax;
+ quint8 isMinimal;
+
+ in >> pattern >> cs >> patternSyntax >> isMinimal;
+
+ QRegExp newRegExp(pattern, Qt::CaseSensitivity(cs),
+ QRegExp::PatternSyntax(patternSyntax));
+
+ newRegExp.setMinimal(isMinimal);
+ regExp = newRegExp;
+ return in;
+}
+#endif
+
+QT_END_NAMESPACE