summaryrefslogtreecommitdiffstats
path: root/src/gui/math3d/qquaternion.cpp
diff options
context:
space:
mode:
authorLars Knoll <lars.knoll@nokia.com>2009-03-23 09:34:13 (GMT)
committerSimon Hausmann <simon.hausmann@nokia.com>2009-03-23 09:34:13 (GMT)
commit67ad0519fd165acee4a4d2a94fa502e9e4847bd0 (patch)
tree1dbf50b3dff8d5ca7e9344733968c72704eb15ff /src/gui/math3d/qquaternion.cpp
downloadQt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.zip
Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.tar.gz
Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.tar.bz2
Long live Qt!
Diffstat (limited to 'src/gui/math3d/qquaternion.cpp')
-rw-r--r--src/gui/math3d/qquaternion.cpp513
1 files changed, 513 insertions, 0 deletions
diff --git a/src/gui/math3d/qquaternion.cpp b/src/gui/math3d/qquaternion.cpp
new file mode 100644
index 0000000..730844f
--- /dev/null
+++ b/src/gui/math3d/qquaternion.cpp
@@ -0,0 +1,513 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the $MODULE$ of the Qt Toolkit.
+**
+** $TROLLTECH_DUAL_LICENSE$
+**
+****************************************************************************/
+
+#include "qquaternion.h"
+#include "qmath3dutil_p.h"
+#include <QtCore/qmath.h>
+
+QT_BEGIN_NAMESPACE
+
+#ifndef QT_NO_QUATERNION
+
+/*!
+ \class QQuaternion
+ \brief The QQuaternion class represents a quaternion consisting of a vector and scalar.
+ \since 4.6
+
+ Quaternions are used to represent rotations in 3D space, and
+ consist of a 3D rotation axis specified by the x, y, and z
+ coordinates, and a scalar representing the rotation angle.
+
+ The components of a quaternion are stored internally using the most
+ efficient representation for the GL rendering engine, which will be
+ either floating-point or fixed-point.
+*/
+
+/*!
+ \fn QQuaternion::QQuaternion()
+
+ Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0).
+*/
+
+/*!
+ \fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos)
+
+ Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
+ and \a scalar.
+*/
+
+/*!
+ \fn QQuaternion::QQuaternion(int scalar, int xpos, int ypos, int zpos)
+
+ Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
+ and \a scalar.
+*/
+
+#ifndef QT_NO_VECTOR3D
+
+/*!
+ \fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector)
+
+ Constructs a quaternion vector from the specified \a vector and
+ \a scalar.
+
+ \sa vector(), scalar()
+*/
+
+/*!
+ \fn QVector3D QQuaternion::vector() const
+
+ Returns the vector component of this quaternion.
+
+ \sa setVector(), scalar()
+*/
+
+/*!
+ \fn void QQuaternion::setVector(const QVector3D& vector)
+
+ Sets the vector component of this quaternion to \a vector.
+
+ \sa vector(), setScalar()
+*/
+
+#endif
+
+/*!
+ \fn void QQuaternion::setVector(qreal x, qreal y, qreal z)
+
+ Sets the vector component of this quaternion to (\a x, \a y, \a z).
+
+ \sa vector(), setScalar()
+*/
+
+#ifndef QT_NO_VECTOR4D
+
+/*!
+ \fn QQuaternion::QQuaternion(const QVector4D& vector)
+
+ Constructs a quaternion from the components of \a vector.
+*/
+
+/*!
+ \fn QVector4D QQuaternion::toVector4D() const
+
+ Returns this quaternion as a 4D vector.
+*/
+
+#endif
+
+/*!
+ \fn bool QQuaternion::isNull() const
+
+ Returns true if the x, y, z, and scalar components of this
+ quaternion are set to 0.0; otherwise returns false.
+*/
+
+/*!
+ \fn bool QQuaternion::isIdentity() const
+
+ Returns true if the x, y, and z components of this
+ quaternion are set to 0.0, and the scalar component is set
+ to 1.0; otherwise returns false.
+*/
+
+/*!
+ \fn qreal QQuaternion::x() const
+
+ Returns the x coordinate of this quaternion's vector.
+
+ \sa setX(), y(), z(), scalar()
+*/
+
+/*!
+ \fn qreal QQuaternion::y() const
+
+ Returns the y coordinate of this quaternion's vector.
+
+ \sa setY(), x(), z(), scalar()
+*/
+
+/*!
+ \fn qreal QQuaternion::z() const
+
+ Returns the z coordinate of this quaternion's vector.
+
+ \sa setZ(), x(), y(), scalar()
+*/
+
+/*!
+ \fn qreal QQuaternion::scalar() const
+
+ Returns the scalar component of this quaternion.
+
+ \sa setScalar(), x(), y(), z()
+*/
+
+/*!
+ \fn void QQuaternion::setX(qreal x)
+
+ Sets the x coordinate of this quaternion's vector to the given
+ \a x coordinate.
+
+ \sa x(), setY(), setZ(), setScalar()
+*/
+
+/*!
+ \fn void QQuaternion::setY(qreal y)
+
+ Sets the y coordinate of this quaternion's vector to the given
+ \a y coordinate.
+
+ \sa y(), setX(), setZ(), setScalar()
+*/
+
+/*!
+ \fn void QQuaternion::setZ(qreal z)
+
+ Sets the z coordinate of this quaternion's vector to the given
+ \a z coordinate.
+
+ \sa z(), setX(), setY(), setScalar()
+*/
+
+/*!
+ \fn void QQuaternion::setScalar(qreal scalar)
+
+ Sets the scalar component of this quaternion to \a scalar.
+
+ \sa scalar(), setX(), setY(), setZ()
+*/
+
+/*!
+ Returns the length of the quaternion. This is also called the "norm".
+
+ \sa lengthSquared(), normalized()
+*/
+qreal QQuaternion::length() const
+{
+ return qvtsqrt64(qvtmul64(xp, xp) + qvtmul64(yp, yp) +
+ qvtmul64(zp, zp) + qvtmul64(wp, wp));
+}
+
+/*!
+ Returns the squared length of the quaternion.
+
+ \sa length()
+*/
+qreal QQuaternion::lengthSquared() const
+{
+ return qvtdot64(qvtmul64(xp, xp) + qvtmul64(yp, yp) +
+ qvtmul64(zp, zp) + qvtmul64(wp, wp));
+}
+
+/*!
+ Returns the normalized unit form of this quaternion. If this quaternion
+ is not null, the returned quaternion is guaranteed to be 1.0 in length.
+ If this quaternion is null, then a null quaternion is returned.
+
+ \sa length(), normalize()
+*/
+QQuaternion QQuaternion::normalized() const
+{
+ qreal len = length();
+ if (!qIsNull(len))
+ return *this / len;
+ else
+ return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);
+}
+
+/*!
+ Normalizes the currect quaternion in place. Nothing happens if this
+ is a null quaternion.
+
+ \sa length(), normalized()
+*/
+void QQuaternion::normalize()
+{
+ qreal len = length();
+ if (qIsNull(len))
+ return;
+
+ xp /= len;
+ yp /= len;
+ zp /= len;
+ wp /= len;
+}
+
+
+/*!
+ \fn QQuaternion QQuaternion::conjugate() const
+
+ Returns the conjugate of this quaternion, which is
+ (-x, -y, -z, scalar).
+*/
+
+/*!
+ Rotates \a vector with this quaternion to produce a new vector
+ in 3D space. The following code:
+
+ \code
+ QVector3D result = q.rotateVector(vector);
+ \endcode
+
+ is equivalent to the following:
+
+ \code
+ QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector();
+ \endcode
+*/
+QVector3D QQuaternion::rotateVector(const QVector3D& vector) const
+{
+ return (*this * QQuaternion(0, vector) * conjugate()).vector();
+}
+
+/*!
+ \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion)
+
+ Adds the given \a quaternion to this quaternion and returns a reference to
+ this quaternion.
+
+ \sa operator-=()
+*/
+
+/*!
+ \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion)
+
+ Subtracts the given \a quaternion from this quaternion and returns a
+ reference to this quaternion.
+
+ \sa operator+=()
+*/
+
+/*!
+ \fn QQuaternion &QQuaternion::operator*=(qreal factor)
+
+ Multiplies this quaternion's components by the given \a factor, and
+ returns a reference to this quaternion.
+
+ \sa operator/=()
+*/
+
+/*!
+ \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion)
+
+ Multiplies this quaternion by \a quaternion and returns a reference
+ to this quaternion.
+*/
+
+/*!
+ \fn QQuaternion &QQuaternion::operator/=(qreal divisor)
+
+ Divides this quaternion's components by the given \a divisor, and
+ returns a reference to this quaternion.
+
+ \sa operator*=()
+*/
+
+#ifndef QT_NO_VECTOR3D
+
+/*!
+ Creates a normalized quaternion that corresponds to rotating through
+ \a angle degrees about the specified 3D \a axis.
+*/
+QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle)
+{
+ // Algorithm from:
+ // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
+ // We normalize the result just in case the values are close
+ // to zero, as suggested in the above FAQ.
+ qrealinner s, c;
+ QVector3D ax = axis.normalized();
+ qt_math3d_sincos(angle / 2.0f, &s, &c);
+ return QQuaternion(c, ax.xp * s, ax.yp * s, ax.zp * s, 1).normalized();
+}
+
+#endif
+
+/*!
+ Creates a normalized quaternion that corresponds to rotating through
+ \a angle degrees about the 3D axis (\a x, \a y, \a z).
+*/
+QQuaternion QQuaternion::fromAxisAndAngle
+ (qreal x, qreal y, qreal z, qreal angle)
+{
+ qrealinner xp = x;
+ qrealinner yp = y;
+ qrealinner zp = z;
+ qrealinner s, c;
+ qreal length = qvtsqrt(xp * xp + yp * yp + zp * zp);
+ if (!qIsNull(length)) {
+ xp /= length;
+ yp /= length;
+ zp /= length;
+ }
+ qt_math3d_sincos(angle / 2.0f, &s, &c);
+ return QQuaternion(c, xp * s, yp * s, zp * s, 1).normalized();
+}
+
+/*!
+ \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2)
+ \relates QQuaternion
+
+ Returns true if \a q1 is equal to \a q2; otherwise returns false.
+ This operator uses an exact floating-point comparison.
+*/
+
+/*!
+ \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2)
+ \relates QQuaternion
+
+ Returns true if \a q1 is not equal to \a q2; otherwise returns false.
+ This operator uses an exact floating-point comparison.
+*/
+
+/*!
+ \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2)
+ \relates QQuaternion
+
+ Returns a QQuaternion object that is the sum of the given quaternions,
+ \a q1 and \a q2; each component is added separately.
+
+ \sa QQuaternion::operator+=()
+*/
+
+/*!
+ \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2)
+ \relates QQuaternion
+
+ Returns a QQuaternion object that is formed by subtracting
+ \a q2 from \a q1; each component is subtracted separately.
+
+ \sa QQuaternion::operator-=()
+*/
+
+/*!
+ \fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion)
+ \relates QQuaternion
+
+ Returns a copy of the given \a quaternion, multiplied by the
+ given \a factor.
+
+ \sa QQuaternion::operator*=()
+*/
+
+/*!
+ \fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor)
+ \relates QQuaternion
+
+ Returns a copy of the given \a quaternion, multiplied by the
+ given \a factor.
+
+ \sa QQuaternion::operator*=()
+*/
+
+/*!
+ \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2)
+ \relates QQuaternion
+
+ Multiplies \a q1 and \a q2 using quaternion multiplication.
+ The result corresponds to applying both of the rotations specified
+ by \a q1 and \a q2.
+
+ \sa QQuaternion::operator*=()
+*/
+
+/*!
+ \fn const QQuaternion operator-(const QQuaternion &quaternion)
+ \relates QQuaternion
+ \overload
+
+ Returns a QQuaternion object that is formed by changing the sign of
+ all three components of the given \a quaternion.
+
+ Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}.
+*/
+
+/*!
+ \fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor)
+ \relates QQuaternion
+
+ Returns the QQuaternion object formed by dividing all components of
+ the given \a quaternion by the given \a divisor.
+
+ \sa QQuaternion::operator/=()
+*/
+
+/*!
+ \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2)
+ \relates QQuaternion
+
+ Returns true if \a q1 and \a q2 are equal, allowing for a small
+ fuzziness factor for floating-point comparisons; false otherwise.
+*/
+
+/*!
+ Interpolates along the shortest spherical path between the
+ rotational positions \a q1 and \a q2. The value \a t should
+ be between 0 and 1, indicating the spherical distance to travel
+ between \a q1 and \a q2.
+
+ If \a t is less than or equal to 0, then \a q1 will be returned.
+ If \a t is greater than or equal to 1, then \a q2 will be returned.
+*/
+QQuaternion QQuaternion::interpolate
+ (const QQuaternion& q1, const QQuaternion& q2, qreal t)
+{
+ // Handle the easy cases first.
+ if (t <= 0.0f)
+ return q1;
+ else if (t >= 1.0f)
+ return q2;
+
+ // Determine the angle between the two quaternions.
+ QQuaternion q2b;
+ qreal dot;
+ dot = qvtdot64(qvtmul64(q1.xp, q2.xp) + qvtmul64(q1.yp, q2.yp) +
+ qvtmul64(q1.zp, q2.zp) + qvtmul64(q1.wp, q2.wp));
+ if (dot >= 0.0f) {
+ q2b = q2;
+ } else {
+ q2b = -q2;
+ dot = -dot;
+ }
+
+ // Get the scale factors. If they are too small,
+ // then revert to simple linear interpolation.
+ qreal factor1 = 1.0f - t;
+ qreal factor2 = t;
+ if ((1.0f - dot) > 0.0000001) {
+ qreal angle = qreal(qAcos(dot));
+ qreal sinOfAngle = qreal(qSin(angle));
+ if (sinOfAngle > 0.0000001) {
+ factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle;
+ factor2 = qreal(qSin(t * angle)) / sinOfAngle;
+ }
+ }
+
+ // Construct the result quaternion.
+ return q1 * factor1 + q2b * factor2;
+}
+
+#ifndef QT_NO_DEBUG_STREAM
+
+QDebug operator<<(QDebug dbg, const QQuaternion &q)
+{
+ dbg.nospace() << "QQuaternion(scalar:" << q.scalar()
+ << ", vector:(" << q.x() << ", "
+ << q.y() << ", " << q.z() << "))";
+ return dbg.space();
+}
+
+#endif
+
+#endif
+
+QT_END_NAMESPACE