diff options
author | Lars Knoll <lars.knoll@nokia.com> | 2009-03-23 09:34:13 (GMT) |
---|---|---|
committer | Simon Hausmann <simon.hausmann@nokia.com> | 2009-03-23 09:34:13 (GMT) |
commit | 67ad0519fd165acee4a4d2a94fa502e9e4847bd0 (patch) | |
tree | 1dbf50b3dff8d5ca7e9344733968c72704eb15ff /src/gui/math3d/qvector3d.cpp | |
download | Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.zip Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.tar.gz Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.tar.bz2 |
Long live Qt!
Diffstat (limited to 'src/gui/math3d/qvector3d.cpp')
-rw-r--r-- | src/gui/math3d/qvector3d.cpp | 535 |
1 files changed, 535 insertions, 0 deletions
diff --git a/src/gui/math3d/qvector3d.cpp b/src/gui/math3d/qvector3d.cpp new file mode 100644 index 0000000..f0b3aeb --- /dev/null +++ b/src/gui/math3d/qvector3d.cpp @@ -0,0 +1,535 @@ +/**************************************************************************** +** +** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). +** Contact: Qt Software Information (qt-info@nokia.com) +** +** This file is part of the $MODULE$ of the Qt Toolkit. +** +** $TROLLTECH_DUAL_LICENSE$ +** +****************************************************************************/ + +#include "qvector3d.h" +#include "qvector2d.h" +#include "qvector4d.h" +#include "qmath3dutil_p.h" +#include <QtCore/qmath.h> + +QT_BEGIN_NAMESPACE + +#ifndef QT_NO_VECTOR3D + +/*! + \class QVector3D + \brief The QVector3D class represents a vector or vertex in 3D space. + \since 4.6 + + Vectors are one of the main building blocks of 3D representation and + drawing. They consist of three coordinates, traditionally called + x, y, and z. + + The QVector3D class can also be used to represent vertices in 3D space. + We therefore do not need to provide a separate vertex class. + + The coordinates are stored internally using the most efficient + representation for the GL rendering engine, which will be either + floating-point or fixed-point. +*/ + +/*! + \fn QVector3D::QVector3D() + + Constructs a null vector, i.e. with coordinates (0, 0, 0). +*/ + +/*! + \fn QVector3D::QVector3D(qreal xpos, qreal ypos, qreal zpos) + + Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos). +*/ + +/*! + \fn QVector3D::QVector3D(int xpos, int ypos, int zpos) + + Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos). +*/ + +/*! + \fn QVector3D::QVector3D(const QPoint& point) + + Constructs a vector with x and y coordinates from a 2D \a point, and a + z coordinate of 0. +*/ + +/*! + \fn QVector3D::QVector3D(const QPointF& point) + + Constructs a vector with x and y coordinates from a 2D \a point, and a + z coordinate of 0. +*/ + +#ifndef QT_NO_VECTOR2D + +/*! + Constructs a 3D vector from the specified 2D \a vector. The z + coordinate is set to zero. + + \sa toVector2D() +*/ +QVector3D::QVector3D(const QVector2D& vector) +{ + xp = vector.xp; + yp = vector.yp; + zp = 0.0f; +} + +/*! + Constructs a 3D vector from the specified 2D \a vector. The z + coordinate is set to \a zpos. + + \sa toVector2D() +*/ +QVector3D::QVector3D(const QVector2D& vector, qreal zpos) +{ + xp = vector.xp; + yp = vector.yp; + zp = zpos; +} + +#endif + +#ifndef QT_NO_VECTOR4D + +/*! + Constructs a 3D vector from the specified 4D \a vector. The w + coordinate is dropped. + + \sa toVector4D() +*/ +QVector3D::QVector3D(const QVector4D& vector) +{ + xp = vector.xp; + yp = vector.yp; + zp = vector.zp; +} + +#endif + +/*! + \fn bool QVector3D::isNull() const + + Returns true if the x, y, and z coordinates are set to 0.0, + otherwise returns false. +*/ + +/*! + \fn qreal QVector3D::x() const + + Returns the x coordinate of this point. + + \sa setX(), y(), z() +*/ + +/*! + \fn qreal QVector3D::y() const + + Returns the y coordinate of this point. + + \sa setY(), x(), z() +*/ + +/*! + \fn qreal QVector3D::z() const + + Returns the z coordinate of this point. + + \sa setZ(), x(), y() +*/ + +/*! + \fn void QVector3D::setX(qreal x) + + Sets the x coordinate of this point to the given \a x coordinate. + + \sa x(), setY(), setZ() +*/ + +/*! + \fn void QVector3D::setY(qreal y) + + Sets the y coordinate of this point to the given \a y coordinate. + + \sa y(), setX(), setZ() +*/ + +/*! + \fn void QVector3D::setZ(qreal z) + + Sets the z coordinate of this point to the given \a z coordinate. + + \sa z(), setX(), setY() +*/ + +/*! + Returns the normalized unit vector form of this vector. If this vector + is not null, the returned vector is guaranteed to be 1.0 in length. + If this vector is null, then a null vector is returned. + + \sa length(), normalize() +*/ +QVector3D QVector3D::normalized() const +{ + qreal len = length(); + if (!qIsNull(len)) + return *this / len; + else + return QVector3D(); +} + +/*! + Normalizes the currect vector in place. Nothing happens if this + vector is a null vector. + + \sa length(), normalized() +*/ +void QVector3D::normalize() +{ + qreal len = length(); + if (qIsNull(len)) + return; + + xp /= len; + yp /= len; + zp /= len; +} + +/*! + \fn QVector3D &QVector3D::operator+=(const QVector3D &vector) + + Adds the given \a vector to this vector and returns a reference to + this vector. + + \sa operator-=() +*/ + +/*! + \fn QVector3D &QVector3D::operator-=(const QVector3D &vector) + + Subtracts the given \a vector from this vector and returns a reference to + this vector. + + \sa operator+=() +*/ + +/*! + \fn QVector3D &QVector3D::operator*=(qreal factor) + + Multiplies this vector's coordinates by the given \a factor, and + returns a reference to this vector. + + \sa operator/=() +*/ + +/*! + \fn QVector3D &QVector3D::operator*=(const QVector3D& vector) + \overload + + Multiplies the components of this vector by the corresponding + components in \a vector. + + Note: this is not the same as the crossProduct() of this + vector and \a vector. + + \sa crossProduct() +*/ + +/*! + \fn QVector3D &QVector3D::operator/=(qreal divisor) + + Divides this vector's coordinates by the given \a divisor, and + returns a reference to this vector. + + \sa operator*=() +*/ + +/*! + Returns the dot product of \a v1 and \a v2. +*/ +qreal QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2) +{ + return qvtdot64(qvtmul64(v1.xp, v2.xp) + qvtmul64(v1.yp, v2.yp) + qvtmul64(v1.zp, v2.zp)); +} + +/*! + Returns the cross-product of vectors \a v1 and \a v2, which corresponds + to the normal vector of a plane defined by \a v1 and \a v2. + + \sa normal() +*/ +QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2) +{ + return QVector3D(v1.yp * v2.zp - v1.zp * v2.yp, + v1.zp * v2.xp - v1.xp * v2.zp, + v1.xp * v2.yp - v1.yp * v2.xp, 1); +} + +/*! + Returns the normal vector of a plane defined by vectors \a v1 and \a v2, + normalized to be a unit vector. + + Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you + do not need the result to be normalized to a unit vector. + + \sa crossProduct(), distanceToPlane() +*/ +QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2) +{ + return crossProduct(v1, v2).normalized(); +} + +/*! + \overload + + Returns the normal vector of a plane defined by vectors + \a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector. + + Use crossProduct() to compute the cross-product of \a v2 - \a v1 and + \a v3 - \a v1 if you do not need the result to be normalized to a + unit vector. + + \sa crossProduct(), distanceToPlane() +*/ +QVector3D QVector3D::normal + (const QVector3D& v1, const QVector3D& v2, const QVector3D& v3) +{ + return crossProduct((v2 - v1), (v3 - v1)).normalized(); +} + +/*! + Returns the distance from this vertex to a plane defined by + the vertex \a plane and a \a normal unit vector. The \a normal + parameter is assumed to have been normalized to a unit vector. + + The return value will be negative if the vertex is below the plane, + or zero if it is on the plane. + + \sa normal(), distanceToLine() +*/ +qreal QVector3D::distanceToPlane + (const QVector3D& plane, const QVector3D& normal) const +{ + return dotProduct(*this - plane, normal); +} + +/*! + \overload + + Returns the distance from this vertex a plane defined by + the vertices \a plane1, \a plane2 and \a plane3. + + The return value will be negative if the vertex is below the plane, + or zero if it is on the plane. + + The two vectors that define the plane are \a plane2 - \a plane1 + and \a plane3 - \a plane1. + + \sa normal(), distanceToLine() +*/ +qreal QVector3D::distanceToPlane + (const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const +{ + QVector3D n = normal(plane2 - plane1, plane3 - plane1); + return dotProduct(*this - plane1, n); +} + +/*! + Returns the distance that this vertex is from a line defined + by \a point and the unit vector \a direction. + + If \a direction is a null vector, then it does not define a line. + In that case, the distance from \a point to this vertex is returned. + + \sa distanceToPlane() +*/ +qreal QVector3D::distanceToLine + (const QVector3D& point, const QVector3D& direction) const +{ + if (direction.isNull()) + return (*this - point).length(); + QVector3D p = point + dotProduct(*this - point, direction) * direction; + return (*this - p).length(); +} + +/*! + \fn bool operator==(const QVector3D &v1, const QVector3D &v2) + \relates QVector3D + + Returns true if \a v1 is equal to \a v2; otherwise returns false. + This operator uses an exact floating-point comparison. +*/ + +/*! + \fn bool operator!=(const QVector3D &v1, const QVector3D &v2) + \relates QVector3D + + Returns true if \a v1 is not equal to \a v2; otherwise returns false. + This operator uses an exact floating-point comparison. +*/ + +/*! + \fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2) + \relates QVector3D + + Returns a QVector3D object that is the sum of the given vectors, \a v1 + and \a v2; each component is added separately. + + \sa QVector3D::operator+=() +*/ + +/*! + \fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2) + \relates QVector3D + + Returns a QVector3D object that is formed by subtracting \a v2 from \a v1; + each component is subtracted separately. + + \sa QVector3D::operator-=() +*/ + +/*! + \fn const QVector3D operator*(qreal factor, const QVector3D &vector) + \relates QVector3D + + Returns a copy of the given \a vector, multiplied by the given \a factor. + + \sa QVector3D::operator*=() +*/ + +/*! + \fn const QVector3D operator*(const QVector3D &vector, qreal factor) + \relates QVector3D + + Returns a copy of the given \a vector, multiplied by the given \a factor. + + \sa QVector3D::operator*=() +*/ + +/*! + \fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2) + \relates QVector3D + + Multiplies the components of \a v1 by the corresponding components in \a v2. + + Note: this is not the same as the crossProduct() of \a v1 and \a v2. + + \sa QVector3D::crossProduct() +*/ + +/*! + \fn const QVector3D operator-(const QVector3D &vector) + \relates QVector3D + \overload + + Returns a QVector3D object that is formed by changing the sign of + all three components of the given \a vector. + + Equivalent to \c {QVector3D(0,0,0) - vector}. +*/ + +/*! + \fn const QVector3D operator/(const QVector3D &vector, qreal divisor) + \relates QVector3D + + Returns the QVector3D object formed by dividing all three components of + the given \a vector by the given \a divisor. + + \sa QVector3D::operator/=() +*/ + +/*! + \fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2) + \relates QVector3D + + Returns true if \a v1 and \a v2 are equal, allowing for a small + fuzziness factor for floating-point comparisons; false otherwise. +*/ + +#ifndef QT_NO_VECTOR2D + +/*! + Returns the 2D vector form of this 3D vector, dropping the z coordinate. + + \sa toVector4D(), toPoint() +*/ +QVector2D QVector3D::toVector2D() const +{ + return QVector2D(xp, yp, 1); +} + +#endif + +#ifndef QT_NO_VECTOR4D + +/*! + Returns the 4D form of this 3D vector, with the w coordinate set to zero. + + \sa toVector2D(), toPoint() +*/ +QVector4D QVector3D::toVector4D() const +{ + return QVector4D(xp, yp, zp, 0.0f, 1); +} + +#endif + +/*! + \fn QPoint QVector3D::toPoint() const + + Returns the QPoint form of this 3D vector. + + \sa toPointF(), toVector2D() +*/ + +/*! + \fn QPointF QVector3D::toPointF() const + + Returns the QPointF form of this 3D vector. + + \sa toPoint(), toVector2D() +*/ + +/*! + Returns the length of the vector from the origin. + + \sa lengthSquared(), normalized() +*/ +qreal QVector3D::length() const +{ + return qvtsqrt64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp)); +} + +/*! + Returns the squared length of the vector from the origin. + This is equivalent to the dot product of the vector with itself. + + \sa length(), dotProduct() +*/ +qreal QVector3D::lengthSquared() const +{ + return qvtdot64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp)); +} + +#ifndef QT_NO_DEBUG_STREAM + +QDebug operator<<(QDebug dbg, const QVector3D &vector) +{ + dbg.nospace() << "QVector3D(" + << vector.x() << ", " << vector.y() << ", " << vector.z() << ')'; + return dbg.space(); +} + +#endif + +#endif + +QT_END_NAMESPACE |