diff options
Diffstat (limited to 'demos/spectrum/3rdparty/fftreal/FFTReal.hpp')
-rw-r--r-- | demos/spectrum/3rdparty/fftreal/FFTReal.hpp | 916 |
1 files changed, 916 insertions, 0 deletions
diff --git a/demos/spectrum/3rdparty/fftreal/FFTReal.hpp b/demos/spectrum/3rdparty/fftreal/FFTReal.hpp new file mode 100644 index 0000000..335d771 --- /dev/null +++ b/demos/spectrum/3rdparty/fftreal/FFTReal.hpp @@ -0,0 +1,916 @@ +/***************************************************************************** + + FFTReal.hpp + Copyright (c) 2005 Laurent de Soras + +--- Legal stuff --- + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +*Tab=3***********************************************************************/ + + + +#if defined (FFTReal_CURRENT_CODEHEADER) + #error Recursive inclusion of FFTReal code header. +#endif +#define FFTReal_CURRENT_CODEHEADER + +#if ! defined (FFTReal_CODEHEADER_INCLUDED) +#define FFTReal_CODEHEADER_INCLUDED + + + +/*\\\ INCLUDE FILES \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ + +#include <cassert> +#include <cmath> + + + +static inline bool FFTReal_is_pow2 (long x) +{ + assert (x > 0); + + return ((x & -x) == x); +} + + + +static inline int FFTReal_get_next_pow2 (long x) +{ + --x; + + int p = 0; + while ((x & ~0xFFFFL) != 0) + { + p += 16; + x >>= 16; + } + while ((x & ~0xFL) != 0) + { + p += 4; + x >>= 4; + } + while (x > 0) + { + ++p; + x >>= 1; + } + + return (p); +} + + + +/*\\\ PUBLIC \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ + + + +/* +============================================================================== +Name: ctor +Input parameters: + - length: length of the array on which we want to do a FFT. Range: power of + 2 only, > 0. +Throws: std::bad_alloc +============================================================================== +*/ + +template <class DT> +FFTReal <DT>::FFTReal (long length) +: _length (length) +, _nbr_bits (FFTReal_get_next_pow2 (length)) +, _br_lut () +, _trigo_lut () +, _buffer (length) +, _trigo_osc () +{ + assert (FFTReal_is_pow2 (length)); + assert (_nbr_bits <= MAX_BIT_DEPTH); + + init_br_lut (); + init_trigo_lut (); + init_trigo_osc (); +} + + + +/* +============================================================================== +Name: get_length +Description: + Returns the number of points processed by this FFT object. +Returns: The number of points, power of 2, > 0. +Throws: Nothing +============================================================================== +*/ + +template <class DT> +long FFTReal <DT>::get_length () const +{ + return (_length); +} + + + +/* +============================================================================== +Name: do_fft +Description: + Compute the FFT of the array. +Input parameters: + - x: pointer on the source array (time). +Output parameters: + - f: pointer on the destination array (frequencies). + f [0...length(x)/2] = real values, + f [length(x)/2+1...length(x)-1] = negative imaginary values of + coefficents 1...length(x)/2-1. +Throws: Nothing +============================================================================== +*/ + +template <class DT> +void FFTReal <DT>::do_fft (DataType f [], const DataType x []) const +{ + assert (f != 0); + assert (f != use_buffer ()); + assert (x != 0); + assert (x != use_buffer ()); + assert (x != f); + + // General case + if (_nbr_bits > 2) + { + compute_fft_general (f, x); + } + + // 4-point FFT + else if (_nbr_bits == 2) + { + f [1] = x [0] - x [2]; + f [3] = x [1] - x [3]; + + const DataType b_0 = x [0] + x [2]; + const DataType b_2 = x [1] + x [3]; + + f [0] = b_0 + b_2; + f [2] = b_0 - b_2; + } + + // 2-point FFT + else if (_nbr_bits == 1) + { + f [0] = x [0] + x [1]; + f [1] = x [0] - x [1]; + } + + // 1-point FFT + else + { + f [0] = x [0]; + } +} + + + +/* +============================================================================== +Name: do_ifft +Description: + Compute the inverse FFT of the array. Note that data must be post-scaled: + IFFT (FFT (x)) = x * length (x). +Input parameters: + - f: pointer on the source array (frequencies). + f [0...length(x)/2] = real values + f [length(x)/2+1...length(x)-1] = negative imaginary values of + coefficents 1...length(x)/2-1. +Output parameters: + - x: pointer on the destination array (time). +Throws: Nothing +============================================================================== +*/ + +template <class DT> +void FFTReal <DT>::do_ifft (const DataType f [], DataType x []) const +{ + assert (f != 0); + assert (f != use_buffer ()); + assert (x != 0); + assert (x != use_buffer ()); + assert (x != f); + + // General case + if (_nbr_bits > 2) + { + compute_ifft_general (f, x); + } + + // 4-point IFFT + else if (_nbr_bits == 2) + { + const DataType b_0 = f [0] + f [2]; + const DataType b_2 = f [0] - f [2]; + + x [0] = b_0 + f [1] * 2; + x [2] = b_0 - f [1] * 2; + x [1] = b_2 + f [3] * 2; + x [3] = b_2 - f [3] * 2; + } + + // 2-point IFFT + else if (_nbr_bits == 1) + { + x [0] = f [0] + f [1]; + x [1] = f [0] - f [1]; + } + + // 1-point IFFT + else + { + x [0] = f [0]; + } +} + + + +/* +============================================================================== +Name: rescale +Description: + Scale an array by divide each element by its length. This function should + be called after FFT + IFFT. +Input parameters: + - x: pointer on array to rescale (time or frequency). +Throws: Nothing +============================================================================== +*/ + +template <class DT> +void FFTReal <DT>::rescale (DataType x []) const +{ + const DataType mul = DataType (1.0 / _length); + + if (_length < 4) + { + long i = _length - 1; + do + { + x [i] *= mul; + --i; + } + while (i >= 0); + } + + else + { + assert ((_length & 3) == 0); + + // Could be optimized with SIMD instruction sets (needs alignment check) + long i = _length - 4; + do + { + x [i + 0] *= mul; + x [i + 1] *= mul; + x [i + 2] *= mul; + x [i + 3] *= mul; + i -= 4; + } + while (i >= 0); + } +} + + + +/* +============================================================================== +Name: use_buffer +Description: + Access the internal buffer, whose length is the FFT one. + Buffer content will be erased at each do_fft() / do_ifft() call! + This buffer cannot be used as: + - source for FFT or IFFT done with this object + - destination for FFT or IFFT done with this object +Returns: + Buffer start address +Throws: Nothing +============================================================================== +*/ + +template <class DT> +typename FFTReal <DT>::DataType * FFTReal <DT>::use_buffer () const +{ + return (&_buffer [0]); +} + + + +/*\\\ PROTECTED \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ + + + +/*\\\ PRIVATE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ + + + +template <class DT> +void FFTReal <DT>::init_br_lut () +{ + const long length = 1L << _nbr_bits; + _br_lut.resize (length); + + _br_lut [0] = 0; + long br_index = 0; + for (long cnt = 1; cnt < length; ++cnt) + { + // ++br_index (bit reversed) + long bit = length >> 1; + while (((br_index ^= bit) & bit) == 0) + { + bit >>= 1; + } + + _br_lut [cnt] = br_index; + } +} + + + +template <class DT> +void FFTReal <DT>::init_trigo_lut () +{ + using namespace std; + + if (_nbr_bits > 3) + { + const long total_len = (1L << (_nbr_bits - 1)) - 4; + _trigo_lut.resize (total_len); + + for (int level = 3; level < _nbr_bits; ++level) + { + const long level_len = 1L << (level - 1); + DataType * const level_ptr = + &_trigo_lut [get_trigo_level_index (level)]; + const double mul = PI / (level_len << 1); + + for (long i = 0; i < level_len; ++ i) + { + level_ptr [i] = static_cast <DataType> (cos (i * mul)); + } + } + } +} + + + +template <class DT> +void FFTReal <DT>::init_trigo_osc () +{ + const int nbr_osc = _nbr_bits - TRIGO_BD_LIMIT; + if (nbr_osc > 0) + { + _trigo_osc.resize (nbr_osc); + + for (int osc_cnt = 0; osc_cnt < nbr_osc; ++osc_cnt) + { + OscType & osc = _trigo_osc [osc_cnt]; + + const long len = 1L << (TRIGO_BD_LIMIT + osc_cnt); + const double mul = (0.5 * PI) / len; + osc.set_step (mul); + } + } +} + + + +template <class DT> +const long * FFTReal <DT>::get_br_ptr () const +{ + return (&_br_lut [0]); +} + + + +template <class DT> +const typename FFTReal <DT>::DataType * FFTReal <DT>::get_trigo_ptr (int level) const +{ + assert (level >= 3); + + return (&_trigo_lut [get_trigo_level_index (level)]); +} + + + +template <class DT> +long FFTReal <DT>::get_trigo_level_index (int level) const +{ + assert (level >= 3); + + return ((1L << (level - 1)) - 4); +} + + + +// Transform in several passes +template <class DT> +void FFTReal <DT>::compute_fft_general (DataType f [], const DataType x []) const +{ + assert (f != 0); + assert (f != use_buffer ()); + assert (x != 0); + assert (x != use_buffer ()); + assert (x != f); + + DataType * sf; + DataType * df; + + if ((_nbr_bits & 1) != 0) + { + df = use_buffer (); + sf = f; + } + else + { + df = f; + sf = use_buffer (); + } + + compute_direct_pass_1_2 (df, x); + compute_direct_pass_3 (sf, df); + + for (int pass = 3; pass < _nbr_bits; ++ pass) + { + compute_direct_pass_n (df, sf, pass); + + DataType * const temp_ptr = df; + df = sf; + sf = temp_ptr; + } +} + + + +template <class DT> +void FFTReal <DT>::compute_direct_pass_1_2 (DataType df [], const DataType x []) const +{ + assert (df != 0); + assert (x != 0); + assert (df != x); + + const long * const bit_rev_lut_ptr = get_br_ptr (); + long coef_index = 0; + do + { + const long rev_index_0 = bit_rev_lut_ptr [coef_index]; + const long rev_index_1 = bit_rev_lut_ptr [coef_index + 1]; + const long rev_index_2 = bit_rev_lut_ptr [coef_index + 2]; + const long rev_index_3 = bit_rev_lut_ptr [coef_index + 3]; + + DataType * const df2 = df + coef_index; + df2 [1] = x [rev_index_0] - x [rev_index_1]; + df2 [3] = x [rev_index_2] - x [rev_index_3]; + + const DataType sf_0 = x [rev_index_0] + x [rev_index_1]; + const DataType sf_2 = x [rev_index_2] + x [rev_index_3]; + + df2 [0] = sf_0 + sf_2; + df2 [2] = sf_0 - sf_2; + + coef_index += 4; + } + while (coef_index < _length); +} + + + +template <class DT> +void FFTReal <DT>::compute_direct_pass_3 (DataType df [], const DataType sf []) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + + const DataType sqrt2_2 = DataType (SQRT2 * 0.5); + long coef_index = 0; + do + { + DataType v; + + df [coef_index] = sf [coef_index] + sf [coef_index + 4]; + df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4]; + df [coef_index + 2] = sf [coef_index + 2]; + df [coef_index + 6] = sf [coef_index + 6]; + + v = (sf [coef_index + 5] - sf [coef_index + 7]) * sqrt2_2; + df [coef_index + 1] = sf [coef_index + 1] + v; + df [coef_index + 3] = sf [coef_index + 1] - v; + + v = (sf [coef_index + 5] + sf [coef_index + 7]) * sqrt2_2; + df [coef_index + 5] = v + sf [coef_index + 3]; + df [coef_index + 7] = v - sf [coef_index + 3]; + + coef_index += 8; + } + while (coef_index < _length); +} + + + +template <class DT> +void FFTReal <DT>::compute_direct_pass_n (DataType df [], const DataType sf [], int pass) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + assert (pass >= 3); + assert (pass < _nbr_bits); + + if (pass <= TRIGO_BD_LIMIT) + { + compute_direct_pass_n_lut (df, sf, pass); + } + else + { + compute_direct_pass_n_osc (df, sf, pass); + } +} + + + +template <class DT> +void FFTReal <DT>::compute_direct_pass_n_lut (DataType df [], const DataType sf [], int pass) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + assert (pass >= 3); + assert (pass < _nbr_bits); + + const long nbr_coef = 1 << pass; + const long h_nbr_coef = nbr_coef >> 1; + const long d_nbr_coef = nbr_coef << 1; + long coef_index = 0; + const DataType * const cos_ptr = get_trigo_ptr (pass); + do + { + const DataType * const sf1r = sf + coef_index; + const DataType * const sf2r = sf1r + nbr_coef; + DataType * const dfr = df + coef_index; + DataType * const dfi = dfr + nbr_coef; + + // Extreme coefficients are always real + dfr [0] = sf1r [0] + sf2r [0]; + dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] = + dfr [h_nbr_coef] = sf1r [h_nbr_coef]; + dfi [h_nbr_coef] = sf2r [h_nbr_coef]; + + // Others are conjugate complex numbers + const DataType * const sf1i = sf1r + h_nbr_coef; + const DataType * const sf2i = sf1i + nbr_coef; + for (long i = 1; i < h_nbr_coef; ++ i) + { + const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef); + const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef); + DataType v; + + v = sf2r [i] * c - sf2i [i] * s; + dfr [i] = sf1r [i] + v; + dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] = + + v = sf2r [i] * s + sf2i [i] * c; + dfi [i] = v + sf1i [i]; + dfi [nbr_coef - i] = v - sf1i [i]; + } + + coef_index += d_nbr_coef; + } + while (coef_index < _length); +} + + + +template <class DT> +void FFTReal <DT>::compute_direct_pass_n_osc (DataType df [], const DataType sf [], int pass) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + assert (pass > TRIGO_BD_LIMIT); + assert (pass < _nbr_bits); + + const long nbr_coef = 1 << pass; + const long h_nbr_coef = nbr_coef >> 1; + const long d_nbr_coef = nbr_coef << 1; + long coef_index = 0; + OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)]; + do + { + const DataType * const sf1r = sf + coef_index; + const DataType * const sf2r = sf1r + nbr_coef; + DataType * const dfr = df + coef_index; + DataType * const dfi = dfr + nbr_coef; + + osc.clear_buffers (); + + // Extreme coefficients are always real + dfr [0] = sf1r [0] + sf2r [0]; + dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] = + dfr [h_nbr_coef] = sf1r [h_nbr_coef]; + dfi [h_nbr_coef] = sf2r [h_nbr_coef]; + + // Others are conjugate complex numbers + const DataType * const sf1i = sf1r + h_nbr_coef; + const DataType * const sf2i = sf1i + nbr_coef; + for (long i = 1; i < h_nbr_coef; ++ i) + { + osc.step (); + const DataType c = osc.get_cos (); + const DataType s = osc.get_sin (); + DataType v; + + v = sf2r [i] * c - sf2i [i] * s; + dfr [i] = sf1r [i] + v; + dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] = + + v = sf2r [i] * s + sf2i [i] * c; + dfi [i] = v + sf1i [i]; + dfi [nbr_coef - i] = v - sf1i [i]; + } + + coef_index += d_nbr_coef; + } + while (coef_index < _length); +} + + + +// Transform in several pass +template <class DT> +void FFTReal <DT>::compute_ifft_general (const DataType f [], DataType x []) const +{ + assert (f != 0); + assert (f != use_buffer ()); + assert (x != 0); + assert (x != use_buffer ()); + assert (x != f); + + DataType * sf = const_cast <DataType *> (f); + DataType * df; + DataType * df_temp; + + if (_nbr_bits & 1) + { + df = use_buffer (); + df_temp = x; + } + else + { + df = x; + df_temp = use_buffer (); + } + + for (int pass = _nbr_bits - 1; pass >= 3; -- pass) + { + compute_inverse_pass_n (df, sf, pass); + + if (pass < _nbr_bits - 1) + { + DataType * const temp_ptr = df; + df = sf; + sf = temp_ptr; + } + else + { + sf = df; + df = df_temp; + } + } + + compute_inverse_pass_3 (df, sf); + compute_inverse_pass_1_2 (x, df); +} + + + +template <class DT> +void FFTReal <DT>::compute_inverse_pass_n (DataType df [], const DataType sf [], int pass) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + assert (pass >= 3); + assert (pass < _nbr_bits); + + if (pass <= TRIGO_BD_LIMIT) + { + compute_inverse_pass_n_lut (df, sf, pass); + } + else + { + compute_inverse_pass_n_osc (df, sf, pass); + } +} + + + +template <class DT> +void FFTReal <DT>::compute_inverse_pass_n_lut (DataType df [], const DataType sf [], int pass) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + assert (pass >= 3); + assert (pass < _nbr_bits); + + const long nbr_coef = 1 << pass; + const long h_nbr_coef = nbr_coef >> 1; + const long d_nbr_coef = nbr_coef << 1; + long coef_index = 0; + const DataType * const cos_ptr = get_trigo_ptr (pass); + do + { + const DataType * const sfr = sf + coef_index; + const DataType * const sfi = sfr + nbr_coef; + DataType * const df1r = df + coef_index; + DataType * const df2r = df1r + nbr_coef; + + // Extreme coefficients are always real + df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef] + df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef] + df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2; + df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2; + + // Others are conjugate complex numbers + DataType * const df1i = df1r + h_nbr_coef; + DataType * const df2i = df1i + nbr_coef; + for (long i = 1; i < h_nbr_coef; ++ i) + { + df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i] + df1i [i] = sfi [i] - sfi [nbr_coef - i]; + + const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef); + const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef); + const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i] + const DataType vi = sfi [i] + sfi [nbr_coef - i]; + + df2r [i] = vr * c + vi * s; + df2i [i] = vi * c - vr * s; + } + + coef_index += d_nbr_coef; + } + while (coef_index < _length); +} + + + +template <class DT> +void FFTReal <DT>::compute_inverse_pass_n_osc (DataType df [], const DataType sf [], int pass) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + assert (pass > TRIGO_BD_LIMIT); + assert (pass < _nbr_bits); + + const long nbr_coef = 1 << pass; + const long h_nbr_coef = nbr_coef >> 1; + const long d_nbr_coef = nbr_coef << 1; + long coef_index = 0; + OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)]; + do + { + const DataType * const sfr = sf + coef_index; + const DataType * const sfi = sfr + nbr_coef; + DataType * const df1r = df + coef_index; + DataType * const df2r = df1r + nbr_coef; + + osc.clear_buffers (); + + // Extreme coefficients are always real + df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef] + df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef] + df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2; + df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2; + + // Others are conjugate complex numbers + DataType * const df1i = df1r + h_nbr_coef; + DataType * const df2i = df1i + nbr_coef; + for (long i = 1; i < h_nbr_coef; ++ i) + { + df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i] + df1i [i] = sfi [i] - sfi [nbr_coef - i]; + + osc.step (); + const DataType c = osc.get_cos (); + const DataType s = osc.get_sin (); + const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i] + const DataType vi = sfi [i] + sfi [nbr_coef - i]; + + df2r [i] = vr * c + vi * s; + df2i [i] = vi * c - vr * s; + } + + coef_index += d_nbr_coef; + } + while (coef_index < _length); +} + + + +template <class DT> +void FFTReal <DT>::compute_inverse_pass_3 (DataType df [], const DataType sf []) const +{ + assert (df != 0); + assert (sf != 0); + assert (df != sf); + + const DataType sqrt2_2 = DataType (SQRT2 * 0.5); + long coef_index = 0; + do + { + df [coef_index] = sf [coef_index] + sf [coef_index + 4]; + df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4]; + df [coef_index + 2] = sf [coef_index + 2] * 2; + df [coef_index + 6] = sf [coef_index + 6] * 2; + + df [coef_index + 1] = sf [coef_index + 1] + sf [coef_index + 3]; + df [coef_index + 3] = sf [coef_index + 5] - sf [coef_index + 7]; + + const DataType vr = sf [coef_index + 1] - sf [coef_index + 3]; + const DataType vi = sf [coef_index + 5] + sf [coef_index + 7]; + + df [coef_index + 5] = (vr + vi) * sqrt2_2; + df [coef_index + 7] = (vi - vr) * sqrt2_2; + + coef_index += 8; + } + while (coef_index < _length); +} + + + +template <class DT> +void FFTReal <DT>::compute_inverse_pass_1_2 (DataType x [], const DataType sf []) const +{ + assert (x != 0); + assert (sf != 0); + assert (x != sf); + + const long * bit_rev_lut_ptr = get_br_ptr (); + const DataType * sf2 = sf; + long coef_index = 0; + do + { + { + const DataType b_0 = sf2 [0] + sf2 [2]; + const DataType b_2 = sf2 [0] - sf2 [2]; + const DataType b_1 = sf2 [1] * 2; + const DataType b_3 = sf2 [3] * 2; + + x [bit_rev_lut_ptr [0]] = b_0 + b_1; + x [bit_rev_lut_ptr [1]] = b_0 - b_1; + x [bit_rev_lut_ptr [2]] = b_2 + b_3; + x [bit_rev_lut_ptr [3]] = b_2 - b_3; + } + { + const DataType b_0 = sf2 [4] + sf2 [6]; + const DataType b_2 = sf2 [4] - sf2 [6]; + const DataType b_1 = sf2 [5] * 2; + const DataType b_3 = sf2 [7] * 2; + + x [bit_rev_lut_ptr [4]] = b_0 + b_1; + x [bit_rev_lut_ptr [5]] = b_0 - b_1; + x [bit_rev_lut_ptr [6]] = b_2 + b_3; + x [bit_rev_lut_ptr [7]] = b_2 - b_3; + } + + sf2 += 8; + coef_index += 8; + bit_rev_lut_ptr += 8; + } + while (coef_index < _length); +} + + + +#endif // FFTReal_CODEHEADER_INCLUDED + +#undef FFTReal_CURRENT_CODEHEADER + + + +/*\\\ EOF \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ |