diff options
Diffstat (limited to 'src/3rdparty/ptmalloc')
-rw-r--r-- | src/3rdparty/ptmalloc/COPYRIGHT | 19 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/ChangeLog | 33 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/Makefile | 211 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/README | 186 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/lran2.h | 51 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/malloc-2.8.3.h | 534 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/malloc-private.h | 170 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/malloc.c | 5515 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/ptmalloc3.c | 1135 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/generic/atomic.h | 1 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/generic/malloc-machine.h | 68 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/generic/thread-st.h | 48 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/pthread/malloc-machine.h | 131 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/pthread/thread-st.h | 111 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/solaris/malloc-machine.h | 51 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/solaris/thread-st.h | 72 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/sproc/malloc-machine.h | 51 | ||||
-rw-r--r-- | src/3rdparty/ptmalloc/sysdeps/sproc/thread-st.h | 85 |
18 files changed, 8472 insertions, 0 deletions
diff --git a/src/3rdparty/ptmalloc/COPYRIGHT b/src/3rdparty/ptmalloc/COPYRIGHT new file mode 100644 index 0000000..155e4dd --- /dev/null +++ b/src/3rdparty/ptmalloc/COPYRIGHT @@ -0,0 +1,19 @@ +Copyright (c) 2001-2006 Wolfram Gloger + +Permission to use, copy, modify, distribute, and sell this software +and its documentation for any purpose is hereby granted without fee, +provided that (i) the above copyright notices and this permission +notice appear in all copies of the software and related documentation, +and (ii) the name of Wolfram Gloger may not be used in any advertising +or publicity relating to the software. + +THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, +EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY +WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +IN NO EVENT SHALL WOLFRAM GLOGER BE LIABLE FOR ANY SPECIAL, +INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY +DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, +WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY +OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THIS SOFTWARE. diff --git a/src/3rdparty/ptmalloc/ChangeLog b/src/3rdparty/ptmalloc/ChangeLog new file mode 100644 index 0000000..45f7f46 --- /dev/null +++ b/src/3rdparty/ptmalloc/ChangeLog @@ -0,0 +1,33 @@ +2006-05-31 Wolfram Gloger <wg@malloc.de> + + * sysdeps/pthread/malloc-machine.h (mutex_unlock): Unlock needs + full memory barrier (thanks Bart Robinson). + +2006-03-31 Wolfram Gloger <wg@malloc.de> + + * ptmalloc3.c (public_iCALLOc, public_iCOMALLOc): New functions. + +2006-03-30 Wolfram Gloger <wg@malloc.de> + + * malloc/malloc.c: Upgrade to version pre-2.8.4-29mar06. + * malloc/malloc-private.h: New fields in malloc_state. + +2004-03-29 Wolfram Gloger <wg@malloc.de> + + * malloc/malloc.c (mmap_alloc): Use page_align instead of + granularity_align. + (mmap_resize): Likewise. + + * malloc/ptmalloc3.c (ptmalloc_init): + Add MALLOC_GRANULARITY_ and synonymous MALLOC_TOP_PAD_ environment + parameters. + +2006-03-25 Wolfram Gloger <wg@malloc.de> + + * malloc/malloc-private.h: New file. + +2005-12-31 Wolfram Gloger <wg@malloc.de> + + * malloc/malloc.c: Imported from Doug Lea's malloc-2.8.3. + * malloc/malloc.h-2.8.3.h: Likewise. + * malloc/ptmalloc3.c: New file. diff --git a/src/3rdparty/ptmalloc/Makefile b/src/3rdparty/ptmalloc/Makefile new file mode 100644 index 0000000..ae7793c --- /dev/null +++ b/src/3rdparty/ptmalloc/Makefile @@ -0,0 +1,211 @@ +# Makefile for ptmalloc, version 3 +# by Wolfram Gloger 1996-1999, 2001-2005, 2006 + +DIST_FILES0 = ChangeLog malloc-2.8.3.h malloc.c \ + malloc-private.h ptmalloc3.c \ + sysdeps \ + #tst-mallocstate.c tst-mstats.c +DIST_FILES1 = COPYRIGHT README Makefile \ + $(DIST_FILES0) \ + lran2.h t-test.h t-test1.c t-test2.c \ + tst-independent-alloc.c \ + #debian +DIST_FILES2 = $(DIST_FILES1) \ + m-test1.c \ + RCS/*,v + +TAR_FLAGS = --numeric-owner --exclude "*~" --exclude "debian/tmp*" + +#CC = /pkg/gcc-2.95.2-wg/bin/gcc +CC = gcc + +SYS_FLAGS = +OPT_FLAGS = -g -O2 #-O # -O2 +WARN_FLAGS = -Wall -Wstrict-prototypes +SH_FLAGS = -shared -fpic + +INC_FLAGS = -Isysdeps/generic + +# Flags for the test programs +T_FLAGS = -DUSE_MALLOC=1 -DTEST=1 + +# Flags for the compilation of malloc.c +M_FLAGS = -DTHREAD_STATS=1 #-DMALLOC_DEBUG=1 -DDEBUG=1 + +# Thread flags. +# See the platform-specific targets below. +THR_FLAGS = -DUSE_TSD_DATA_HACK -D_REENTRANT +THR_LIBS = -lpthread + +RM = rm -f +AR = ar +RANLIB = ranlib + +MALLOC_OBJ = ptmalloc3.o malloc.o +LIB_MALLOC = libptmalloc3.a + +T_SUF = +TESTS = t-test1$(T_SUF) t-test2$(T_SUF) \ + tst-independent-alloc$(T_SUF) + #m-test1$(T_SUF) tst-mallocstate$(T_SUF) tst-mstats$(T_SUF) + +CFLAGS = $(SYS_FLAGS) $(OPT_FLAGS) $(WARN_FLAGS) $(THR_FLAGS) $(INC_FLAGS) + +.c.o: + $(CC) -c $(CFLAGS) $< + +all: $(LIB_MALLOC) + +ptmalloc3.o: ptmalloc3.c malloc-2.8.3.h + $(CC) -c $(CFLAGS) $(M_FLAGS) -DMSPACES=1 $< + +malloc.o: malloc.c + $(CC) -c $(CFLAGS) $(M_FLAGS) -DONLY_MSPACES -DUSE_LOCKS=0 $< + +#malloc-stats.o: malloc-stats.c malloc.h +# $(CC) -c $(CFLAGS) $(M_FLAGS) $< + +libptmalloc3.a: $(MALLOC_OBJ) + $(AR) cr $@ $(MALLOC_OBJ) + $(RANLIB) $@ + +libptmalloc3.so: $(MALLOC_OBJ) + $(CC) $(SH_FLAGS) $(CFLAGS) $(M_FLAGS) $(MALLOC_OBJ) -o $@ + +again: + $(RM) $(TESTS) + $(MAKE) $(TESTS) + +clean: + $(RM) $(MALLOC_OBJ) libptmalloc3.a libptmalloc3.so $(TESTS) \ + core core.[0-9]* + +m-test1$(T_SUF): m-test1.c $(LIB_MALLOC) + $(CC) $(CFLAGS) $(T_FLAGS) m-test1.c $(LIB_MALLOC) $(THR_LIBS) -o $@ + +t-test1$(T_SUF): t-test1.c t-test.h $(LIB_MALLOC) + $(CC) $(CFLAGS) $(T_FLAGS) t-test1.c $(LIB_MALLOC) $(THR_LIBS) -o $@ + +t-test2$(T_SUF): t-test2.c t-test.h $(LIB_MALLOC) + $(CC) $(CFLAGS) $(T_FLAGS) t-test2.c $(LIB_MALLOC) $(THR_LIBS) -o $@ + +tst-mallocstate$(T_SUF): tst-mallocstate.c $(LIB_MALLOC) + $(CC) $(CFLAGS) $(T_FLAGS) tst-mallocstate.c $(LIB_MALLOC) \ + $(THR_LIBS) -o $@ + +tst-mstats$(T_SUF): tst-mstats.c $(LIB_MALLOC) + $(CC) $(CFLAGS) $(T_FLAGS) tst-mstats.c $(LIB_MALLOC) \ + $(THR_LIBS) -o $@ + +tst-independent-alloc$(T_SUF): tst-independent-alloc.c $(LIB_MALLOC) + $(CC) $(CFLAGS) $(T_FLAGS) tst-independent-alloc.c $(LIB_MALLOC) \ + $(THR_LIBS) -o $@ + +############################################################################ +# Platform-specific targets. The ones ending in `-libc' are provided +# to enable comparison with the standard malloc implementation from +# the system's native C library. The option USE_TSD_DATA_HACK is now +# the default for pthreads systems, as most (Irix 6, Solaris 2) seem +# to need it. Try with USE_TSD_DATA_HACK undefined only if you're +# confident that your systems's thread specific data functions do _not_ +# use malloc themselves. + +# posix threads with TSD data hack +posix: + $(MAKE) THR_FLAGS='-DUSE_TSD_DATA_HACK -D_REENTRANT' \ + OPT_FLAGS='$(OPT_FLAGS)' SYS_FLAGS='$(SYS_FLAGS)' CC='$(CC)' \ + INC_FLAGS='-Isysdeps/pthread -Isysdeps/generic -I.' + THR_LIBS=-lpthread + +# posix threads with explicit initialization. Known to be needed on HPUX. +posix-explicit: + $(MAKE) THR_FLAGS='-D_REENTRANT -DUSE_TSD_DATA_HACK -DUSE_STARTER=2' \ + THR_LIBS=-lpthread \ + OPT_FLAGS='$(OPT_FLAGS)' SYS_FLAGS='$(SYS_FLAGS)' CC='$(CC)' \ + INC_FLAGS='-Isysdeps/pthread -Isysdeps/generic -I.' \ + M_FLAGS='$(M_FLAGS)' + +# posix threads without TSD data hack -- not known to work +posix-with-tsd: + $(MAKE) THR_FLAGS='-D_REENTRANT' THR_LIBS=-lpthread \ + INC_FLAGS='-Isysdeps/pthread -Isysdeps/generic -I.' \ + M_FLAGS='$(M_FLAGS)' + +posix-libc: + $(MAKE) THR_FLAGS='-D_REENTRANT' THR_LIBS=-lpthread \ + INC_FLAGS='-Isysdeps/pthread -Isysdeps/generic -I.' \ + M_FLAGS='$(M_FLAGS)' LIB_MALLOC= T_FLAGS= T_SUF=-libc + +linux-pthread: + $(MAKE) SYS_FLAGS='-D_GNU_SOURCE=1' \ + WARN_FLAGS='-Wall -Wstrict-prototypes' \ + OPT_FLAGS='$(OPT_FLAGS)' THR_FLAGS='-DUSE_TSD_DATA_HACK' \ + INC_FLAGS='-Isysdeps/pthread -Isysdeps/generic -I.' M_FLAGS='$(M_FLAGS)' \ + TESTS='$(TESTS)' + +linux-shared: + $(MAKE) SYS_FLAGS='-D_GNU_SOURCE=1 -fpic' \ + WARN_FLAGS='-Wall -Wstrict-prototypes' \ + OPT_FLAGS='$(OPT_FLAGS)' THR_FLAGS='-DUSE_TSD_DATA_HACK' \ + INC_FLAGS='-Isysdeps/pthread -Isysdeps/generic -I.' M_FLAGS='$(M_FLAGS)' \ + LIB_MALLOC=libptmalloc3.so + +sproc: + $(MAKE) THR_FLAGS='' THR_LIBS='' OPT_FLAGS='$(OPT_FLAGS)' CC='$(CC)' \ + INC_FLAGS='-Isysdeps/sproc -Isysdeps/generic -I.' \ + M_FLAGS='$(M_FLAGS) -Dmalloc_getpagesize=4096' + +sproc-shared: + $(MAKE) THR_FLAGS='' THR_LIBS= \ + SH_FLAGS='-shared -check_registry /usr/lib/so_locations' \ + INC_FLAGS='-Isysdeps/sproc -Isysdeps/generic -I.' \ + LIB_MALLOC=libptmalloc3.so M_FLAGS='$(M_FLAGS)' + +sproc-libc: + $(MAKE) THR_FLAGS='' THR_LIBS= LIB_MALLOC= T_FLAGS= \ + INC_FLAGS='-Isysdeps/sproc -Isysdeps/generic -I.' \ + T_SUF=-libc M_FLAGS='$(M_FLAGS)' + +solaris: + $(MAKE) THR_FLAGS='-D_REENTRANT' OPT_FLAGS='$(OPT_FLAGS)' \ + INC_FLAGS='-Isysdeps/solaris -Isysdeps/generic -I.' \ + THR_LIBS=-lthread M_FLAGS='$(M_FLAGS)' + +solaris-libc: + $(MAKE) THR_FLAGS='-D_REENTRANT' OPT_FLAGS='$(OPT_FLAGS)' \ + INC_FLAGS='-Isysdeps/solaris -Isysdeps/generic -I.' \ + THR_LIBS=-lthread LIB_MALLOC= T_FLAGS= T_SUF=-libc M_FLAGS='$(M_FLAGS)' + +nothreads: + $(MAKE) OPT_FLAGS='$(OPT_FLAGS)' SYS_FLAGS='$(SYS_FLAGS)' \ + INC_FLAGS='-Isysdeps/generic -I.' \ + THR_FLAGS='' THR_LIBS='' M_FLAGS='$(M_FLAGS)' + +gcc-nothreads: + $(MAKE) CC='gcc' WARN_FLAGS='-Wall' OPT_FLAGS='$(OPT_FLAGS)' \ + INC_FLAGS='-Isysdeps/generic -I.' \ + SYS_FLAGS='$(SYS_FLAGS)' THR_FLAGS='' THR_LIBS='' M_FLAGS='$(M_FLAGS)' + +linux-nothreads: + $(MAKE) CC='gcc' WARN_FLAGS='-Wall' OPT_FLAGS='$(OPT_FLAGS)' \ + INC_FLAGS='-Isysdeps/generic -I.' \ + SYS_FLAGS='-D_GNU_SOURCE' THR_FLAGS='' THR_LIBS='' M_FLAGS='$(M_FLAGS)' + +############################################################################ + +check: $(TESTS) + ./t-test1 + ./t-test2 + #./tst-mallocstate || echo "Test mallocstate failed!" + #./tst-mstats || echo "Test mstats failed!" + +snap: + cd ..; tar $(TAR_FLAGS) -c -f - $(DIST_FILES1:%=ptmalloc3/%) | \ + gzip -9 >ptmalloc3-current.tar.gz + +dist: + cd ..; tar $(TAR_FLAGS) -c -f - $(DIST_FILES2:%=ptmalloc3/%) | \ + gzip -9 >ptmalloc3.tar.gz + +# dependencies +ptmalloc3.o: malloc-private.h diff --git a/src/3rdparty/ptmalloc/README b/src/3rdparty/ptmalloc/README new file mode 100644 index 0000000..914c745 --- /dev/null +++ b/src/3rdparty/ptmalloc/README @@ -0,0 +1,186 @@ +ptmalloc3 - a multi-thread malloc implementation +================================================ + +Wolfram Gloger (wg@malloc.de) + +Jan 2006 + + +Thanks +====== + +This release was partly funded by Pixar Animation Studios. I would +like to thank David Baraff of Pixar for his support and Doug Lea +(dl@cs.oswego.edu) for the great original malloc implementation. + + +Introduction +============ + +This package is a modified version of Doug Lea's malloc-2.8.3 +implementation (available seperately from ftp://g.oswego.edu/pub/misc) +that I adapted for multiple threads, while trying to avoid lock +contention as much as possible. + +As part of the GNU C library, the source files may be available under +the GNU Library General Public License (see the comments in the +files). But as part of this stand-alone package, the code is also +available under the (probably less restrictive) conditions described +in the file 'COPYRIGHT'. In any case, there is no warranty whatsoever +for this package. + +The current distribution should be available from: + +http://www.malloc.de/malloc/ptmalloc3.tar.gz + + +Compilation +=========== + +It should be possible to build ptmalloc3 on any UN*X-like system that +implements the sbrk(), mmap(), munmap() and mprotect() calls. Since +there are now several source files, a library (libptmalloc3.a) is +generated. See the Makefile for examples of the compile-time options. + +Note that support for non-ANSI compilers is no longer there. + +Several example targets are provided in the Makefile: + + o Posix threads (pthreads), compile with "make posix" + + o Posix threads with explicit initialization, compile with + "make posix-explicit" (known to be required on HPUX) + + o Posix threads without "tsd data hack" (see below), compile with + "make posix-with-tsd" + + o Solaris threads, compile with "make solaris" + + o SGI sproc() threads, compile with "make sproc" + + o no threads, compile with "make nothreads" (currently out of order?) + +For Linux: + + o make "linux-pthread" (almost the same as "make posix") or + make "linux-shared" + +Note that some compilers need special flags for multi-threaded code, +e.g. with Solaris cc with Posix threads, one should use: + +% make posix SYS_FLAGS='-mt' + +Some additional targets, ending in `-libc', are also provided in the +Makefile, to compare performance of the test programs to the case when +linking with the standard malloc implementation in libc. + +A potential problem remains: If any of the system-specific functions +for getting/setting thread-specific data or for locking a mutex call +one of the malloc-related functions internally, the implementation +cannot work at all due to infinite recursion. One example seems to be +Solaris 2.4. I would like to hear if this problem occurs on other +systems, and whether similar workarounds could be applied. + +For Posix threads, too, an optional hack like that has been integrated +(activated when defining USE_TSD_DATA_HACK) which depends on +`pthread_t' being convertible to an integral type (which is of course +not generally guaranteed). USE_TSD_DATA_HACK is now the default +because I haven't yet found a non-glibc pthreads system where this +hack is _not_ needed. + +*NEW* and _important_: In (currently) one place in the ptmalloc3 +source, a write memory barrier is needed, named +atomic_write_barrier(). This macro needs to be defined at the end of +malloc-machine.h. For gcc, a fallback in the form of a full memory +barrier is already defined, but you may need to add another definition +if you don't use gcc. + +Usage +===== + +Just link libptmalloc3 into your application. + +Some wicked systems (e.g. HPUX apparently) won't let malloc call _any_ +thread-related functions before main(). On these systems, +USE_STARTER=2 must be defined during compilation (see "make +posix-explicit" above) and the global initialization function +ptmalloc_init() must be called explicitly, preferably at the start of +main(). + +Otherwise, when using ptmalloc3, no special precautions are necessary. + +Link order is important +======================= + +On some systems, when overriding malloc and linking against shared +libraries, the link order becomes very important. E.g., when linking +C++ programs on Solaris with Solaris threads [this is probably now +obsolete], don't rely on libC being included by default, but instead +put `-lthread' behind `-lC' on the command line: + + CC ... libptmalloc3.a -lC -lthread + +This is because there are global constructors in libC that need +malloc/ptmalloc, which in turn needs to have the thread library to be +already initialized. + +Debugging hooks +=============== + +All calls to malloc(), realloc(), free() and memalign() are routed +through the global function pointers __malloc_hook, __realloc_hook, +__free_hook and __memalign_hook if they are not NULL (see the malloc.h +header file for declarations of these pointers). Therefore the malloc +implementation can be changed at runtime, if care is taken not to call +free() or realloc() on pointers obtained with a different +implementation than the one currently in effect. (The easiest way to +guarantee this is to set up the hooks before any malloc call, e.g. +with a function pointed to by the global variable +__malloc_initialize_hook). + +You can now also tune other malloc parameters (normally adjused via +mallopt() calls from the application) with environment variables: + + MALLOC_TRIM_THRESHOLD_ for deciding to shrink the heap (in bytes) + + MALLOC_GRANULARITY_ The unit for allocating and deallocating + MALLOC_TOP_PAD_ memory from the system. The default + is 64k and this parameter _must_ be a + power of 2. + + MALLOC_MMAP_THRESHOLD_ min. size for chunks allocated via + mmap() (in bytes) + +Tests +===== + +Two testing applications, t-test1 and t-test2, are included in this +source distribution. Both perform pseudo-random sequences of +allocations/frees, and can be given numeric arguments (all arguments +are optional): + +% t-test[12] <n-total> <n-parallel> <n-allocs> <size-max> <bins> + + n-total = total number of threads executed (default 10) + n-parallel = number of threads running in parallel (2) + n-allocs = number of malloc()'s / free()'s per thread (10000) + size-max = max. size requested with malloc() in bytes (10000) + bins = number of bins to maintain + +The first test `t-test1' maintains a completely seperate pool of +allocated bins for each thread, and should therefore show full +parallelism. On the other hand, `t-test2' creates only a single pool +of bins, and each thread randomly allocates/frees any bin. Some lock +contention is to be expected in this case, as the threads frequently +cross each others arena. + +Performance results from t-test1 should be quite repeatable, while the +behaviour of t-test2 depends on scheduling variations. + +Conclusion +========== + +I'm always interested in performance data and feedback, just send mail +to ptmalloc@malloc.de. + +Good luck! diff --git a/src/3rdparty/ptmalloc/lran2.h b/src/3rdparty/ptmalloc/lran2.h new file mode 100644 index 0000000..cea9920 --- /dev/null +++ b/src/3rdparty/ptmalloc/lran2.h @@ -0,0 +1,51 @@ +/* lran2.h + * by Wolfram Gloger 1996. + * + * A small, portable pseudo-random number generator. + */ + +#ifndef _LRAN2_H +#define _LRAN2_H + +#define LRAN2_MAX 714025l /* constants for portable */ +#define IA 1366l /* random number generator */ +#define IC 150889l /* (see e.g. `Numerical Recipes') */ + +struct lran2_st { + long x, y, v[97]; +}; + +static void +lran2_init(struct lran2_st* d, long seed) +{ + long x; + int j; + + x = (IC - seed) % LRAN2_MAX; + if(x < 0) x = -x; + for(j=0; j<97; j++) { + x = (IA*x + IC) % LRAN2_MAX; + d->v[j] = x; + } + d->x = (IA*x + IC) % LRAN2_MAX; + d->y = d->x; +} + +#ifdef __GNUC__ +__inline__ +#endif +static long +lran2(struct lran2_st* d) +{ + int j = (d->y % 97); + + d->y = d->v[j]; + d->x = (IA*d->x + IC) % LRAN2_MAX; + d->v[j] = d->x; + return d->y; +} + +#undef IA +#undef IC + +#endif diff --git a/src/3rdparty/ptmalloc/malloc-2.8.3.h b/src/3rdparty/ptmalloc/malloc-2.8.3.h new file mode 100644 index 0000000..62f597e --- /dev/null +++ b/src/3rdparty/ptmalloc/malloc-2.8.3.h @@ -0,0 +1,534 @@ +/* + Default header file for malloc-2.8.x, written by Doug Lea + and released to the public domain, as explained at + http://creativecommons.org/licenses/publicdomain. + + last update: Mon Aug 15 08:55:52 2005 Doug Lea (dl at gee) + + This header is for ANSI C/C++ only. You can set any of + the following #defines before including: + + * If USE_DL_PREFIX is defined, it is assumed that malloc.c + was also compiled with this option, so all routines + have names starting with "dl". + + * If HAVE_USR_INCLUDE_MALLOC_H is defined, it is assumed that this + file will be #included AFTER <malloc.h>. This is needed only if + your system defines a struct mallinfo that is incompatible with the + standard one declared here. Otherwise, you can include this file + INSTEAD of your system system <malloc.h>. At least on ANSI, all + declarations should be compatible with system versions + + * If MSPACES is defined, declarations for mspace versions are included. +*/ + +#ifndef MALLOC_280_H +#define MALLOC_280_H + +#ifdef __cplusplus +extern "C" { +#endif + +#include <stddef.h> /* for size_t */ + +#if !ONLY_MSPACES + +#ifndef USE_DL_PREFIX +#define dlcalloc calloc +#define dlfree free +#define dlmalloc malloc +#define dlmemalign memalign +#define dlrealloc realloc +#define dlvalloc valloc +#define dlpvalloc pvalloc +#define dlmallinfo mallinfo +#define dlmallopt mallopt +#define dlmalloc_trim malloc_trim +#define dlmalloc_stats malloc_stats +#define dlmalloc_usable_size malloc_usable_size +#define dlmalloc_footprint malloc_footprint +#define dlindependent_calloc independent_calloc +#define dlindependent_comalloc independent_comalloc +#endif /* USE_DL_PREFIX */ + + +/* + malloc(size_t n) + Returns a pointer to a newly allocated chunk of at least n bytes, or + null if no space is available, in which case errno is set to ENOMEM + on ANSI C systems. + + If n is zero, malloc returns a minimum-sized chunk. (The minimum + size is 16 bytes on most 32bit systems, and 32 bytes on 64bit + systems.) Note that size_t is an unsigned type, so calls with + arguments that would be negative if signed are interpreted as + requests for huge amounts of space, which will often fail. The + maximum supported value of n differs across systems, but is in all + cases less than the maximum representable value of a size_t. +*/ +void* dlmalloc(size_t); + +/* + free(void* p) + Releases the chunk of memory pointed to by p, that had been previously + allocated using malloc or a related routine such as realloc. + It has no effect if p is null. If p was not malloced or already + freed, free(p) will by default cuase the current program to abort. +*/ +void dlfree(void*); + +/* + calloc(size_t n_elements, size_t element_size); + Returns a pointer to n_elements * element_size bytes, with all locations + set to zero. +*/ +void* dlcalloc(size_t, size_t); + +/* + realloc(void* p, size_t n) + Returns a pointer to a chunk of size n that contains the same data + as does chunk p up to the minimum of (n, p's size) bytes, or null + if no space is available. + + The returned pointer may or may not be the same as p. The algorithm + prefers extending p in most cases when possible, otherwise it + employs the equivalent of a malloc-copy-free sequence. + + If p is null, realloc is equivalent to malloc. + + If space is not available, realloc returns null, errno is set (if on + ANSI) and p is NOT freed. + + if n is for fewer bytes than already held by p, the newly unused + space is lopped off and freed if possible. realloc with a size + argument of zero (re)allocates a minimum-sized chunk. + + The old unix realloc convention of allowing the last-free'd chunk + to be used as an argument to realloc is not supported. +*/ + +void* dlrealloc(void*, size_t); + +/* + memalign(size_t alignment, size_t n); + Returns a pointer to a newly allocated chunk of n bytes, aligned + in accord with the alignment argument. + + The alignment argument should be a power of two. If the argument is + not a power of two, the nearest greater power is used. + 8-byte alignment is guaranteed by normal malloc calls, so don't + bother calling memalign with an argument of 8 or less. + + Overreliance on memalign is a sure way to fragment space. +*/ +void* dlmemalign(size_t, size_t); + +/* + valloc(size_t n); + Equivalent to memalign(pagesize, n), where pagesize is the page + size of the system. If the pagesize is unknown, 4096 is used. +*/ +void* dlvalloc(size_t); + +/* + mallopt(int parameter_number, int parameter_value) + Sets tunable parameters The format is to provide a + (parameter-number, parameter-value) pair. mallopt then sets the + corresponding parameter to the argument value if it can (i.e., so + long as the value is meaningful), and returns 1 if successful else + 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, + normally defined in malloc.h. None of these are use in this malloc, + so setting them has no effect. But this malloc also supports other + options in mallopt: + + Symbol param # default allowed param values + M_TRIM_THRESHOLD -1 2*1024*1024 any (-1U disables trimming) + M_GRANULARITY -2 page size any power of 2 >= page size + M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) +*/ +int dlmallopt(int, int); + +#define M_TRIM_THRESHOLD (-1) +#define M_GRANULARITY (-2) +#define M_MMAP_THRESHOLD (-3) + + +/* + malloc_footprint(); + Returns the number of bytes obtained from the system. The total + number of bytes allocated by malloc, realloc etc., is less than this + value. Unlike mallinfo, this function returns only a precomputed + result, so can be called frequently to monitor memory consumption. + Even if locks are otherwise defined, this function does not use them, + so results might not be up to date. +*/ +size_t dlmalloc_footprint(void); + +#if !NO_MALLINFO +/* + mallinfo() + Returns (by copy) a struct containing various summary statistics: + + arena: current total non-mmapped bytes allocated from system + ordblks: the number of free chunks + smblks: always zero. + hblks: current number of mmapped regions + hblkhd: total bytes held in mmapped regions + usmblks: the maximum total allocated space. This will be greater + than current total if trimming has occurred. + fsmblks: always zero + uordblks: current total allocated space (normal or mmapped) + fordblks: total free space + keepcost: the maximum number of bytes that could ideally be released + back to system via malloc_trim. ("ideally" means that + it ignores page restrictions etc.) + + Because these fields are ints, but internal bookkeeping may + be kept as longs, the reported values may wrap around zero and + thus be inaccurate. +*/ +#ifndef HAVE_USR_INCLUDE_MALLOC_H +#ifndef _MALLOC_H +#ifndef MALLINFO_FIELD_TYPE +#define MALLINFO_FIELD_TYPE size_t +#endif /* MALLINFO_FIELD_TYPE */ +struct mallinfo { + MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ + MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ + MALLINFO_FIELD_TYPE smblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ + MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ + MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ + MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ + MALLINFO_FIELD_TYPE fordblks; /* total free space */ + MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ +}; +#endif /* _MALLOC_H */ +#endif /* HAVE_USR_INCLUDE_MALLOC_H */ + +struct mallinfo dlmallinfo(void); +#endif /* NO_MALLINFO */ + +/* + independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); + + independent_calloc is similar to calloc, but instead of returning a + single cleared space, it returns an array of pointers to n_elements + independent elements that can hold contents of size elem_size, each + of which starts out cleared, and can be independently freed, + realloc'ed etc. The elements are guaranteed to be adjacently + allocated (this is not guaranteed to occur with multiple callocs or + mallocs), which may also improve cache locality in some + applications. + + The "chunks" argument is optional (i.e., may be null, which is + probably the most typical usage). If it is null, the returned array + is itself dynamically allocated and should also be freed when it is + no longer needed. Otherwise, the chunks array must be of at least + n_elements in length. It is filled in with the pointers to the + chunks. + + In either case, independent_calloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and "chunks" + is null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use regular calloc and assign pointers into this + space to represent elements. (In this case though, you cannot + independently free elements.) + + independent_calloc simplifies and speeds up implementations of many + kinds of pools. It may also be useful when constructing large data + structures that initially have a fixed number of fixed-sized nodes, + but the number is not known at compile time, and some of the nodes + may later need to be freed. For example: + + struct Node { int item; struct Node* next; }; + + struct Node* build_list() { + struct Node** pool; + int n = read_number_of_nodes_needed(); + if (n <= 0) return 0; + pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); + if (pool == 0) die(); + // organize into a linked list... + struct Node* first = pool[0]; + for (i = 0; i < n-1; ++i) + pool[i]->next = pool[i+1]; + free(pool); // Can now free the array (or not, if it is needed later) + return first; + } +*/ +void** dlindependent_calloc(size_t, size_t, void**); + +/* + independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); + + independent_comalloc allocates, all at once, a set of n_elements + chunks with sizes indicated in the "sizes" array. It returns + an array of pointers to these elements, each of which can be + independently freed, realloc'ed etc. The elements are guaranteed to + be adjacently allocated (this is not guaranteed to occur with + multiple callocs or mallocs), which may also improve cache locality + in some applications. + + The "chunks" argument is optional (i.e., may be null). If it is null + the returned array is itself dynamically allocated and should also + be freed when it is no longer needed. Otherwise, the chunks array + must be of at least n_elements in length. It is filled in with the + pointers to the chunks. + + In either case, independent_comalloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and chunks is + null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use a single regular malloc, and assign pointers at + particular offsets in the aggregate space. (In this case though, you + cannot independently free elements.) + + independent_comallac differs from independent_calloc in that each + element may have a different size, and also that it does not + automatically clear elements. + + independent_comalloc can be used to speed up allocation in cases + where several structs or objects must always be allocated at the + same time. For example: + + struct Head { ... } + struct Foot { ... } + + void send_message(char* msg) { + int msglen = strlen(msg); + size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; + void* chunks[3]; + if (independent_comalloc(3, sizes, chunks) == 0) + die(); + struct Head* head = (struct Head*)(chunks[0]); + char* body = (char*)(chunks[1]); + struct Foot* foot = (struct Foot*)(chunks[2]); + // ... + } + + In general though, independent_comalloc is worth using only for + larger values of n_elements. For small values, you probably won't + detect enough difference from series of malloc calls to bother. + + Overuse of independent_comalloc can increase overall memory usage, + since it cannot reuse existing noncontiguous small chunks that + might be available for some of the elements. +*/ +void** dlindependent_comalloc(size_t, size_t*, void**); + + +/* + pvalloc(size_t n); + Equivalent to valloc(minimum-page-that-holds(n)), that is, + round up n to nearest pagesize. + */ +void* dlpvalloc(size_t); + +/* + malloc_trim(size_t pad); + + If possible, gives memory back to the system (via negative arguments + to sbrk) if there is unused memory at the `high' end of the malloc + pool or in unused MMAP segments. You can call this after freeing + large blocks of memory to potentially reduce the system-level memory + requirements of a program. However, it cannot guarantee to reduce + memory. Under some allocation patterns, some large free blocks of + memory will be locked between two used chunks, so they cannot be + given back to the system. + + The `pad' argument to malloc_trim represents the amount of free + trailing space to leave untrimmed. If this argument is zero, only + the minimum amount of memory to maintain internal data structures + will be left. Non-zero arguments can be supplied to maintain enough + trailing space to service future expected allocations without having + to re-obtain memory from the system. + + Malloc_trim returns 1 if it actually released any memory, else 0. +*/ +int dlmalloc_trim(size_t); + +/* + malloc_usable_size(void* p); + + Returns the number of bytes you can actually use in + an allocated chunk, which may be more than you requested (although + often not) due to alignment and minimum size constraints. + You can use this many bytes without worrying about + overwriting other allocated objects. This is not a particularly great + programming practice. malloc_usable_size can be more useful in + debugging and assertions, for example: + + p = malloc(n); + assert(malloc_usable_size(p) >= 256); +*/ +size_t dlmalloc_usable_size(void*); + +/* + malloc_stats(); + Prints on stderr the amount of space obtained from the system (both + via sbrk and mmap), the maximum amount (which may be more than + current if malloc_trim and/or munmap got called), and the current + number of bytes allocated via malloc (or realloc, etc) but not yet + freed. Note that this is the number of bytes allocated, not the + number requested. It will be larger than the number requested + because of alignment and bookkeeping overhead. Because it includes + alignment wastage as being in use, this figure may be greater than + zero even when no user-level chunks are allocated. + + The reported current and maximum system memory can be inaccurate if + a program makes other calls to system memory allocation functions + (normally sbrk) outside of malloc. + + malloc_stats prints only the most commonly interesting statistics. + More information can be obtained by calling mallinfo. +*/ +void dlmalloc_stats(void); + +#endif /* !ONLY_MSPACES */ + +#if MSPACES + +/* + mspace is an opaque type representing an independent + region of space that supports mspace_malloc, etc. +*/ +typedef void* mspace; + +/* + create_mspace creates and returns a new independent space with the + given initial capacity, or, if 0, the default granularity size. It + returns null if there is no system memory available to create the + space. If argument locked is non-zero, the space uses a separate + lock to control access. The capacity of the space will grow + dynamically as needed to service mspace_malloc requests. You can + control the sizes of incremental increases of this space by + compiling with a different DEFAULT_GRANULARITY or dynamically + setting with mallopt(M_GRANULARITY, value). +*/ +mspace create_mspace(size_t capacity, int locked); + +/* + destroy_mspace destroys the given space, and attempts to return all + of its memory back to the system, returning the total number of + bytes freed. After destruction, the results of access to all memory + used by the space become undefined. +*/ +size_t destroy_mspace(mspace msp); + +/* + create_mspace_with_base uses the memory supplied as the initial base + of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this + space is used for bookkeeping, so the capacity must be at least this + large. (Otherwise 0 is returned.) When this initial space is + exhausted, additional memory will be obtained from the system. + Destroying this space will deallocate all additionally allocated + space (if possible) but not the initial base. +*/ +mspace create_mspace_with_base(void* base, size_t capacity, int locked); + +/* + mspace_malloc behaves as malloc, but operates within + the given space. +*/ +void* mspace_malloc(mspace msp, size_t bytes); + +/* + mspace_free behaves as free, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_free is not actually needed. + free may be called instead of mspace_free because freed chunks from + any space are handled by their originating spaces. +*/ +void mspace_free(mspace msp, void* mem); + +/* + mspace_realloc behaves as realloc, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_realloc is not actually + needed. realloc may be called instead of mspace_realloc because + realloced chunks from any space are handled by their originating + spaces. +*/ +void* mspace_realloc(mspace msp, void* mem, size_t newsize); + +/* + mspace_calloc behaves as calloc, but operates within + the given space. +*/ +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); + +/* + mspace_memalign behaves as memalign, but operates within + the given space. +*/ +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); + +/* + mspace_independent_calloc behaves as independent_calloc, but + operates within the given space. +*/ +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]); + +/* + mspace_independent_comalloc behaves as independent_comalloc, but + operates within the given space. +*/ +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]); + +/* + mspace_footprint() returns the number of bytes obtained from the + system for this space. +*/ +size_t mspace_footprint(mspace msp); + + +#if !NO_MALLINFO +/* + mspace_mallinfo behaves as mallinfo, but reports properties of + the given space. +*/ +struct mallinfo mspace_mallinfo(mspace msp); +#endif /* NO_MALLINFO */ + +/* + mspace_malloc_stats behaves as malloc_stats, but reports + properties of the given space. +*/ +void mspace_malloc_stats(mspace msp); + +/* + mspace_trim behaves as malloc_trim, but + operates within the given space. +*/ +int mspace_trim(mspace msp, size_t pad); + +/* + An alias for malloc_usable_size. +*/ +size_t mspace_usable_size(void *mem); + +/* + An alias for mallopt. +*/ +int mspace_mallopt(int, int); + +#endif /* MSPACES */ + +#ifdef __cplusplus +}; /* end of extern "C" */ +#endif + +#endif /* MALLOC_280_H */ diff --git a/src/3rdparty/ptmalloc/malloc-private.h b/src/3rdparty/ptmalloc/malloc-private.h new file mode 100644 index 0000000..680c36b --- /dev/null +++ b/src/3rdparty/ptmalloc/malloc-private.h @@ -0,0 +1,170 @@ +/* + $Id: malloc-private.h,v 1.4 2006/03/31 12:56:52 wg Exp $ + Private header file for ptmalloc3, created by Wolfram Gloger + and released to the public domain, as explained at + http://creativecommons.org/licenses/publicdomain. +*/ + +/* The following file is replicated from malloc.c */ + +#ifndef MALLOC_PRIVATE_H +#define MALLOC_PRIVATE_H + +#ifndef MALLOC_ALIGNMENT +# define MALLOC_ALIGNMENT ((size_t)8U) +#endif +#ifndef USE_LOCKS +# define USE_LOCKS 0 +#endif + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + +#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) +#define MAP_ANONYMOUS MAP_ANON +#endif /* MAP_ANON */ +#ifdef MAP_ANONYMOUS +#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) +#define CALL_MMAP(s) mmap(0, (s), PROT_READ|PROT_WRITE, MMAP_FLAGS, -1, 0) +#else /* MAP_ANONYMOUS */ +/* + Nearly all versions of mmap support MAP_ANONYMOUS, so the following + is unlikely to be needed, but is supplied just in case. +*/ +#include <fcntl.h> /* for O_RDWR */ +#define MMAP_FLAGS (MAP_PRIVATE) +static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ +#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ + (dev_zero_fd = open("/dev/zero", O_RDWR), \ + mmap(0, (s), PROT_READ|PROT_WRITE, MMAP_FLAGS, dev_zero_fd, 0)) : \ + mmap(0, (s), PROT_READ|PROT_WRITE, MMAP_FLAGS, dev_zero_fd, 0)) +#endif /* MAP_ANONYMOUS */ +#define CALL_MUNMAP(a, s) munmap((a), (s)) + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; + +typedef unsigned int binmap_t; +typedef unsigned int flag_t; + +struct malloc_tree_chunk; +typedef struct malloc_tree_chunk* tbinptr; + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ + flag_t sflags; /* mmap and extern flag */ +}; + +typedef struct malloc_segment msegment; + +#define NSMALLBINS (32U) +#define NTREEBINS (32U) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t release_checks; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + flag_t mflags; +#if USE_LOCKS + MLOCK_T mutex; +#endif /* USE_LOCKS */ + msegment seg; + void* extp; + size_t exts; +}; + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +#define CHUNK_OVERHEAD (SIZE_T_SIZE) + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ +/* Annoying but necessary to avoid errors on some platforms */ +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define SIZE_T_FOUR ((size_t)4) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +#define IS_MMAPPED_BIT (SIZE_T_ONE) +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|SIZE_T_FOUR) + +/* head field is or'ed with NON_MAIN_ARENA if the chunk was obtained + from a non-main arena. This is only set immediately before handing + the chunk to the user, if necessary. */ +#define NON_MAIN_ARENA (SIZE_T_FOUR) + +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define chunksize(p) ((p)->head & ~(FLAG_BITS)) + +#define is_mmapped(p)\ + (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + +#endif /* MALLOC_PRIVATE_H */ diff --git a/src/3rdparty/ptmalloc/malloc.c b/src/3rdparty/ptmalloc/malloc.c new file mode 100644 index 0000000..2778b30 --- /dev/null +++ b/src/3rdparty/ptmalloc/malloc.c @@ -0,0 +1,5515 @@ +/* + $Id: malloc.c,v 1.4 2006/03/30 16:47:29 wg Exp $ + + This version of malloc.c was adapted for ptmalloc3 by Wolfram Gloger + <wg@malloc.de>. Therefore, some of the comments below do not apply + for this modified version. However, it is the intention to keep + differences to Doug Lea's original version minimal, hence the + comments were mostly left unchanged. + + ----------------------------------------------------------------------- + + This is a version (aka dlmalloc) of malloc/free/realloc written by + Doug Lea and released to the public domain, as explained at + http://creativecommons.org/licenses/publicdomain. Send questions, + comments, complaints, performance data, etc to dl@cs.oswego.edu + +* Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee) + + Note: There may be an updated version of this malloc obtainable at + ftp://gee.cs.oswego.edu/pub/misc/malloc.c + Check before installing! + +* Quickstart + + This library is all in one file to simplify the most common usage: + ftp it, compile it (-O3), and link it into another program. All of + the compile-time options default to reasonable values for use on + most platforms. You might later want to step through various + compile-time and dynamic tuning options. + + For convenience, an include file for code using this malloc is at: + ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h + You don't really need this .h file unless you call functions not + defined in your system include files. The .h file contains only the + excerpts from this file needed for using this malloc on ANSI C/C++ + systems, so long as you haven't changed compile-time options about + naming and tuning parameters. If you do, then you can create your + own malloc.h that does include all settings by cutting at the point + indicated below. Note that you may already by default be using a C + library containing a malloc that is based on some version of this + malloc (for example in linux). You might still want to use the one + in this file to customize settings or to avoid overheads associated + with library versions. + +* Vital statistics: + + Supported pointer/size_t representation: 4 or 8 bytes + size_t MUST be an unsigned type of the same width as + pointers. (If you are using an ancient system that declares + size_t as a signed type, or need it to be a different width + than pointers, you can use a previous release of this malloc + (e.g. 2.7.2) supporting these.) + + Alignment: 8 bytes (default) + This suffices for nearly all current machines and C compilers. + However, you can define MALLOC_ALIGNMENT to be wider than this + if necessary (up to 128bytes), at the expense of using more space. + + Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) + 8 or 16 bytes (if 8byte sizes) + Each malloced chunk has a hidden word of overhead holding size + and status information, and additional cross-check word + if FOOTERS is defined. + + Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) + 8-byte ptrs: 32 bytes (including overhead) + + Even a request for zero bytes (i.e., malloc(0)) returns a + pointer to something of the minimum allocatable size. + The maximum overhead wastage (i.e., number of extra bytes + allocated than were requested in malloc) is less than or equal + to the minimum size, except for requests >= mmap_threshold that + are serviced via mmap(), where the worst case wastage is about + 32 bytes plus the remainder from a system page (the minimal + mmap unit); typically 4096 or 8192 bytes. + + Security: static-safe; optionally more or less + The "security" of malloc refers to the ability of malicious + code to accentuate the effects of errors (for example, freeing + space that is not currently malloc'ed or overwriting past the + ends of chunks) in code that calls malloc. This malloc + guarantees not to modify any memory locations below the base of + heap, i.e., static variables, even in the presence of usage + errors. The routines additionally detect most improper frees + and reallocs. All this holds as long as the static bookkeeping + for malloc itself is not corrupted by some other means. This + is only one aspect of security -- these checks do not, and + cannot, detect all possible programming errors. + + If FOOTERS is defined nonzero, then each allocated chunk + carries an additional check word to verify that it was malloced + from its space. These check words are the same within each + execution of a program using malloc, but differ across + executions, so externally crafted fake chunks cannot be + freed. This improves security by rejecting frees/reallocs that + could corrupt heap memory, in addition to the checks preventing + writes to statics that are always on. This may further improve + security at the expense of time and space overhead. (Note that + FOOTERS may also be worth using with MSPACES.) + + By default detected errors cause the program to abort (calling + "abort()"). You can override this to instead proceed past + errors by defining PROCEED_ON_ERROR. In this case, a bad free + has no effect, and a malloc that encounters a bad address + caused by user overwrites will ignore the bad address by + dropping pointers and indices to all known memory. This may + be appropriate for programs that should continue if at all + possible in the face of programming errors, although they may + run out of memory because dropped memory is never reclaimed. + + If you don't like either of these options, you can define + CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything + else. And if if you are sure that your program using malloc has + no errors or vulnerabilities, you can define INSECURE to 1, + which might (or might not) provide a small performance improvement. + + Thread-safety: NOT thread-safe unless USE_LOCKS defined + When USE_LOCKS is defined, each public call to malloc, free, + etc is surrounded with either a pthread mutex or a win32 + spinlock (depending on WIN32). This is not especially fast, and + can be a major bottleneck. It is designed only to provide + minimal protection in concurrent environments, and to provide a + basis for extensions. If you are using malloc in a concurrent + program, consider instead using nedmalloc + (http://www.nedprod.com/programs/portable/nedmalloc/) or + ptmalloc (See http://www.malloc.de), which are derived + from versions of this malloc. + + System requirements: Any combination of MORECORE and/or MMAP/MUNMAP + This malloc can use unix sbrk or any emulation (invoked using + the CALL_MORECORE macro) and/or mmap/munmap or any emulation + (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system + memory. On most unix systems, it tends to work best if both + MORECORE and MMAP are enabled. On Win32, it uses emulations + based on VirtualAlloc. It also uses common C library functions + like memset. + + Compliance: I believe it is compliant with the Single Unix Specification + (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably + others as well. + +* Overview of algorithms + + This is not the fastest, most space-conserving, most portable, or + most tunable malloc ever written. However it is among the fastest + while also being among the most space-conserving, portable and + tunable. Consistent balance across these factors results in a good + general-purpose allocator for malloc-intensive programs. + + In most ways, this malloc is a best-fit allocator. Generally, it + chooses the best-fitting existing chunk for a request, with ties + broken in approximately least-recently-used order. (This strategy + normally maintains low fragmentation.) However, for requests less + than 256bytes, it deviates from best-fit when there is not an + exactly fitting available chunk by preferring to use space adjacent + to that used for the previous small request, as well as by breaking + ties in approximately most-recently-used order. (These enhance + locality of series of small allocations.) And for very large requests + (>= 256Kb by default), it relies on system memory mapping + facilities, if supported. (This helps avoid carrying around and + possibly fragmenting memory used only for large chunks.) + + All operations (except malloc_stats and mallinfo) have execution + times that are bounded by a constant factor of the number of bits in + a size_t, not counting any clearing in calloc or copying in realloc, + or actions surrounding MORECORE and MMAP that have times + proportional to the number of non-contiguous regions returned by + system allocation routines, which is often just 1. In real-time + applications, you can optionally suppress segment traversals using + NO_SEGMENT_TRAVERSAL, which assures bounded execution even when + system allocators return non-contiguous spaces, at the typical + expense of carrying around more memory and increased fragmentation. + + The implementation is not very modular and seriously overuses + macros. Perhaps someday all C compilers will do as good a job + inlining modular code as can now be done by brute-force expansion, + but now, enough of them seem not to. + + Some compilers issue a lot of warnings about code that is + dead/unreachable only on some platforms, and also about intentional + uses of negation on unsigned types. All known cases of each can be + ignored. + + For a longer but out of date high-level description, see + http://gee.cs.oswego.edu/dl/html/malloc.html + +* MSPACES + If MSPACES is defined, then in addition to malloc, free, etc., + this file also defines mspace_malloc, mspace_free, etc. These + are versions of malloc routines that take an "mspace" argument + obtained using create_mspace, to control all internal bookkeeping. + If ONLY_MSPACES is defined, only these versions are compiled. + So if you would like to use this allocator for only some allocations, + and your system malloc for others, you can compile with + ONLY_MSPACES and then do something like... + static mspace mymspace = create_mspace(0,0); // for example + #define mymalloc(bytes) mspace_malloc(mymspace, bytes) + + (Note: If you only need one instance of an mspace, you can instead + use "USE_DL_PREFIX" to relabel the global malloc.) + + You can similarly create thread-local allocators by storing + mspaces as thread-locals. For example: + static __thread mspace tlms = 0; + void* tlmalloc(size_t bytes) { + if (tlms == 0) tlms = create_mspace(0, 0); + return mspace_malloc(tlms, bytes); + } + void tlfree(void* mem) { mspace_free(tlms, mem); } + + Unless FOOTERS is defined, each mspace is completely independent. + You cannot allocate from one and free to another (although + conformance is only weakly checked, so usage errors are not always + caught). If FOOTERS is defined, then each chunk carries around a tag + indicating its originating mspace, and frees are directed to their + originating spaces. + + ------------------------- Compile-time options --------------------------- + +Be careful in setting #define values for numerical constants of type +size_t. On some systems, literal values are not automatically extended +to size_t precision unless they are explicitly casted. You can also +use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. + +WIN32 default: defined if _WIN32 defined + Defining WIN32 sets up defaults for MS environment and compilers. + Otherwise defaults are for unix. + +MALLOC_ALIGNMENT default: (size_t)8 + Controls the minimum alignment for malloc'ed chunks. It must be a + power of two and at least 8, even on machines for which smaller + alignments would suffice. It may be defined as larger than this + though. Note however that code and data structures are optimized for + the case of 8-byte alignment. + +MSPACES default: 0 (false) + If true, compile in support for independent allocation spaces. + This is only supported if HAVE_MMAP is true. + +ONLY_MSPACES default: 0 (false) + If true, only compile in mspace versions, not regular versions. + +USE_LOCKS default: 0 (false) + Causes each call to each public routine to be surrounded with + pthread or WIN32 mutex lock/unlock. (If set true, this can be + overridden on a per-mspace basis for mspace versions.) If set to a + non-zero value other than 1, locks are used, but their + implementation is left out, so lock functions must be supplied manually. + +USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC + If true, uses custom spin locks for locking. This is currently + supported only for x86 platforms using gcc or recent MS compilers. + Otherwise, posix locks or win32 critical sections are used. + +FOOTERS default: 0 + If true, provide extra checking and dispatching by placing + information in the footers of allocated chunks. This adds + space and time overhead. + +INSECURE default: 0 + If true, omit checks for usage errors and heap space overwrites. + +USE_DL_PREFIX default: NOT defined + Causes compiler to prefix all public routines with the string 'dl'. + This can be useful when you only want to use this malloc in one part + of a program, using your regular system malloc elsewhere. + +ABORT default: defined as abort() + Defines how to abort on failed checks. On most systems, a failed + check cannot die with an "assert" or even print an informative + message, because the underlying print routines in turn call malloc, + which will fail again. Generally, the best policy is to simply call + abort(). It's not very useful to do more than this because many + errors due to overwriting will show up as address faults (null, odd + addresses etc) rather than malloc-triggered checks, so will also + abort. Also, most compilers know that abort() does not return, so + can better optimize code conditionally calling it. + +PROCEED_ON_ERROR default: defined as 0 (false) + Controls whether detected bad addresses cause them to bypassed + rather than aborting. If set, detected bad arguments to free and + realloc are ignored. And all bookkeeping information is zeroed out + upon a detected overwrite of freed heap space, thus losing the + ability to ever return it from malloc again, but enabling the + application to proceed. If PROCEED_ON_ERROR is defined, the + static variable malloc_corruption_error_count is compiled in + and can be examined to see if errors have occurred. This option + generates slower code than the default abort policy. + +DEBUG default: NOT defined + The DEBUG setting is mainly intended for people trying to modify + this code or diagnose problems when porting to new platforms. + However, it may also be able to better isolate user errors than just + using runtime checks. The assertions in the check routines spell + out in more detail the assumptions and invariants underlying the + algorithms. The checking is fairly extensive, and will slow down + execution noticeably. Calling malloc_stats or mallinfo with DEBUG + set will attempt to check every non-mmapped allocated and free chunk + in the course of computing the summaries. + +ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) + Debugging assertion failures can be nearly impossible if your + version of the assert macro causes malloc to be called, which will + lead to a cascade of further failures, blowing the runtime stack. + ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), + which will usually make debugging easier. + +MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 + The action to take before "return 0" when malloc fails to be able to + return memory because there is none available. + +HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES + True if this system supports sbrk or an emulation of it. + +MORECORE default: sbrk + The name of the sbrk-style system routine to call to obtain more + memory. See below for guidance on writing custom MORECORE + functions. The type of the argument to sbrk/MORECORE varies across + systems. It cannot be size_t, because it supports negative + arguments, so it is normally the signed type of the same width as + size_t (sometimes declared as "intptr_t"). It doesn't much matter + though. Internally, we only call it with arguments less than half + the max value of a size_t, which should work across all reasonable + possibilities, although sometimes generating compiler warnings. See + near the end of this file for guidelines for creating a custom + version of MORECORE. + +MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE + If true, take advantage of fact that consecutive calls to MORECORE + with positive arguments always return contiguous increasing + addresses. This is true of unix sbrk. It does not hurt too much to + set it true anyway, since malloc copes with non-contiguities. + Setting it false when definitely non-contiguous saves time + and possibly wasted space it would take to discover this though. + +MORECORE_CANNOT_TRIM default: NOT defined + True if MORECORE cannot release space back to the system when given + negative arguments. This is generally necessary only if you are + using a hand-crafted MORECORE function that cannot handle negative + arguments. + +NO_SEGMENT_TRAVERSAL default: 0 + If non-zero, suppresses traversals of memory segments + returned by either MORECORE or CALL_MMAP. This disables + merging of segments that are contiguous, and selectively + releasing them to the OS if unused, but bounds execution times. + +HAVE_MMAP default: 1 (true) + True if this system supports mmap or an emulation of it. If so, and + HAVE_MORECORE is not true, MMAP is used for all system + allocation. If set and HAVE_MORECORE is true as well, MMAP is + primarily used to directly allocate very large blocks. It is also + used as a backup strategy in cases where MORECORE fails to provide + space from system. Note: A single call to MUNMAP is assumed to be + able to unmap memory that may have be allocated using multiple calls + to MMAP, so long as they are adjacent. + +HAVE_MREMAP default: 1 on linux, else 0 + If true realloc() uses mremap() to re-allocate large blocks and + extend or shrink allocation spaces. + +MMAP_CLEARS default: 1 except on WINCE. + True if mmap clears memory so calloc doesn't need to. This is true + for standard unix mmap using /dev/zero and on WIN32 except for WINCE. + +USE_BUILTIN_FFS default: 0 (i.e., not used) + Causes malloc to use the builtin ffs() function to compute indices. + Some compilers may recognize and intrinsify ffs to be faster than the + supplied C version. Also, the case of x86 using gcc is special-cased + to an asm instruction, so is already as fast as it can be, and so + this setting has no effect. Similarly for Win32 under recent MS compilers. + (On most x86s, the asm version is only slightly faster than the C version.) + +malloc_getpagesize default: derive from system includes, or 4096. + The system page size. To the extent possible, this malloc manages + memory from the system in page-size units. This may be (and + usually is) a function rather than a constant. This is ignored + if WIN32, where page size is determined using getSystemInfo during + initialization. + +USE_DEV_RANDOM default: 0 (i.e., not used) + Causes malloc to use /dev/random to initialize secure magic seed for + stamping footers. Otherwise, the current time is used. + +NO_MALLINFO default: 0 + If defined, don't compile "mallinfo". This can be a simple way + of dealing with mismatches between system declarations and + those in this file. + +MALLINFO_FIELD_TYPE default: size_t + The type of the fields in the mallinfo struct. This was originally + defined as "int" in SVID etc, but is more usefully defined as + size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set + +REALLOC_ZERO_BYTES_FREES default: not defined + This should be set if a call to realloc with zero bytes should + be the same as a call to free. Some people think it should. Otherwise, + since this malloc returns a unique pointer for malloc(0), so does + realloc(p, 0). + +LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H +LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H +LACKS_STDLIB_H default: NOT defined unless on WIN32 + Define these if your system does not have these header files. + You might need to manually insert some of the declarations they provide. + +DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, + system_info.dwAllocationGranularity in WIN32, + otherwise 64K. + Also settable using mallopt(M_GRANULARITY, x) + The unit for allocating and deallocating memory from the system. On + most systems with contiguous MORECORE, there is no reason to + make this more than a page. However, systems with MMAP tend to + either require or encourage larger granularities. You can increase + this value to prevent system allocation functions to be called so + often, especially if they are slow. The value must be at least one + page and must be a power of two. Setting to 0 causes initialization + to either page size or win32 region size. (Note: In previous + versions of malloc, the equivalent of this option was called + "TOP_PAD") + +DEFAULT_TRIM_THRESHOLD default: 2MB + Also settable using mallopt(M_TRIM_THRESHOLD, x) + The maximum amount of unused top-most memory to keep before + releasing via malloc_trim in free(). Automatic trimming is mainly + useful in long-lived programs using contiguous MORECORE. Because + trimming via sbrk can be slow on some systems, and can sometimes be + wasteful (in cases where programs immediately afterward allocate + more large chunks) the value should be high enough so that your + overall system performance would improve by releasing this much + memory. As a rough guide, you might set to a value close to the + average size of a process (program) running on your system. + Releasing this much memory would allow such a process to run in + memory. Generally, it is worth tuning trim thresholds when a + program undergoes phases where several large chunks are allocated + and released in ways that can reuse each other's storage, perhaps + mixed with phases where there are no such chunks at all. The trim + value must be greater than page size to have any useful effect. To + disable trimming completely, you can set to MAX_SIZE_T. Note that the trick + some people use of mallocing a huge space and then freeing it at + program startup, in an attempt to reserve system memory, doesn't + have the intended effect under automatic trimming, since that memory + will immediately be returned to the system. + +DEFAULT_MMAP_THRESHOLD default: 256K + Also settable using mallopt(M_MMAP_THRESHOLD, x) + The request size threshold for using MMAP to directly service a + request. Requests of at least this size that cannot be allocated + using already-existing space will be serviced via mmap. (If enough + normal freed space already exists it is used instead.) Using mmap + segregates relatively large chunks of memory so that they can be + individually obtained and released from the host system. A request + serviced through mmap is never reused by any other request (at least + not directly; the system may just so happen to remap successive + requests to the same locations). Segregating space in this way has + the benefits that: Mmapped space can always be individually released + back to the system, which helps keep the system level memory demands + of a long-lived program low. Also, mapped memory doesn't become + `locked' between other chunks, as can happen with normally allocated + chunks, which means that even trimming via malloc_trim would not + release them. However, it has the disadvantage that the space + cannot be reclaimed, consolidated, and then used to service later + requests, as happens with normal chunks. The advantages of mmap + nearly always outweigh disadvantages for "large" chunks, but the + value of "large" may vary across systems. The default is an + empirically derived value that works well in most systems. You can + disable mmap by setting to MAX_SIZE_T. + +MAX_RELEASE_CHECK_RATE default: 255 unless not HAVE_MMAP + The number of consolidated frees between checks to release + unused segments when freeing. When using non-contiguous segments, + especially with multiple mspaces, checking only for topmost space + doesn't always suffice to trigger trimming. To compensate for this, + free() will, with a period of MAX_RELEASE_CHECK_RATE (or the + current number of segments, if greater) try to release unused + segments to the OS when freeing chunks that result in + consolidation. The best value for this parameter is a compromise + between slowing down frees with relatively costly checks that + rarely trigger versus holding on to unused memory. To effectively + disable, set to MAX_SIZE_T. This may lead to a very slight speed + improvement at the expense of carrying around more memory. +*/ + +#ifndef WIN32 +#ifdef _WIN32 +#define WIN32 1 +#endif /* _WIN32 */ +#endif /* WIN32 */ +#ifdef WIN32 +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#define HAVE_MMAP 1 +#define HAVE_MORECORE 0 +#define LACKS_UNISTD_H +#define LACKS_SYS_PARAM_H +#define LACKS_SYS_MMAN_H +#define LACKS_STRING_H +#define LACKS_STRINGS_H +#define LACKS_SYS_TYPES_H +#define LACKS_ERRNO_H +#define MALLOC_FAILURE_ACTION +#ifdef _WIN32_WCE /* WINCE reportedly does not clear */ +#define MMAP_CLEARS 0 +#else +#define MMAP_CLEARS 1 +#endif /* _WIN32_WCE */ +#endif /* WIN32 */ + +#if defined(DARWIN) || defined(_DARWIN) +/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ +#ifndef HAVE_MORECORE +#define HAVE_MORECORE 0 +#define HAVE_MMAP 1 +#endif /* HAVE_MORECORE */ +#endif /* DARWIN */ + +#ifndef LACKS_SYS_TYPES_H +#include <sys/types.h> /* For size_t */ +#endif /* LACKS_SYS_TYPES_H */ + +/* The maximum possible size_t value has all bits set */ +#define MAX_SIZE_T (~(size_t)0) + +#ifndef ONLY_MSPACES +#define ONLY_MSPACES 0 +#endif /* ONLY_MSPACES */ +#ifndef MSPACES +#if ONLY_MSPACES +#define MSPACES 1 +#else /* ONLY_MSPACES */ +#define MSPACES 0 +#endif /* ONLY_MSPACES */ +#endif /* MSPACES */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)8U) +#endif /* MALLOC_ALIGNMENT */ +#ifndef FOOTERS +#define FOOTERS 0 +#endif /* FOOTERS */ +#ifndef ABORT +#define ABORT abort() +#endif /* ABORT */ +#ifndef ABORT_ON_ASSERT_FAILURE +#define ABORT_ON_ASSERT_FAILURE 1 +#endif /* ABORT_ON_ASSERT_FAILURE */ +#ifndef PROCEED_ON_ERROR +#define PROCEED_ON_ERROR 0 +#endif /* PROCEED_ON_ERROR */ +#ifndef USE_LOCKS +#define USE_LOCKS 0 +#endif /* USE_LOCKS */ +#ifndef USE_SPIN_LOCKS +#if USE_LOCKS && (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) || (defined(_MSC_VER) && _MSC_VER>=1310) +#define USE_SPIN_LOCKS 1 +#else +#define USE_SPIN_LOCKS 0 +#endif /* USE_LOCKS && ... */ +#endif /* USE_SPIN_LOCKS */ +#ifndef INSECURE +#define INSECURE 0 +#endif /* INSECURE */ +#ifndef HAVE_MMAP +#define HAVE_MMAP 1 +#endif /* HAVE_MMAP */ +#ifndef MMAP_CLEARS +#define MMAP_CLEARS 1 +#endif /* MMAP_CLEARS */ +#ifndef HAVE_MREMAP +#ifdef linux +#define HAVE_MREMAP 1 +#else /* linux */ +#define HAVE_MREMAP 0 +#endif /* linux */ +#endif /* HAVE_MREMAP */ +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION errno = ENOMEM; +#endif /* MALLOC_FAILURE_ACTION */ +#ifndef HAVE_MORECORE +#if ONLY_MSPACES +#define HAVE_MORECORE 0 +#else /* ONLY_MSPACES */ +#define HAVE_MORECORE 1 +#endif /* ONLY_MSPACES */ +#endif /* HAVE_MORECORE */ +#if !HAVE_MORECORE +#define MORECORE_CONTIGUOUS 0 +#else /* !HAVE_MORECORE */ +#ifndef MORECORE +#define MORECORE sbrk +#endif /* MORECORE */ +#ifndef MORECORE_CONTIGUOUS +#define MORECORE_CONTIGUOUS 1 +#endif /* MORECORE_CONTIGUOUS */ +#endif /* HAVE_MORECORE */ +#ifndef DEFAULT_GRANULARITY +#if MORECORE_CONTIGUOUS +#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ +#else /* MORECORE_CONTIGUOUS */ +#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) +#endif /* MORECORE_CONTIGUOUS */ +#endif /* DEFAULT_GRANULARITY */ +#ifndef DEFAULT_TRIM_THRESHOLD +#ifndef MORECORE_CANNOT_TRIM +#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) +#else /* MORECORE_CANNOT_TRIM */ +#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T +#endif /* MORECORE_CANNOT_TRIM */ +#endif /* DEFAULT_TRIM_THRESHOLD */ +#ifndef DEFAULT_MMAP_THRESHOLD +#if HAVE_MMAP +#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) +#else /* HAVE_MMAP */ +#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* DEFAULT_MMAP_THRESHOLD */ +#ifndef MAX_RELEASE_CHECK_RATE +#if HAVE_MMAP +#define MAX_RELEASE_CHECK_RATE 255 +#else +#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* MAX_RELEASE_CHECK_RATE */ +#ifndef USE_BUILTIN_FFS +#define USE_BUILTIN_FFS 0 +#endif /* USE_BUILTIN_FFS */ +#ifndef USE_DEV_RANDOM +#define USE_DEV_RANDOM 0 +#endif /* USE_DEV_RANDOM */ +#ifndef NO_MALLINFO +#define NO_MALLINFO 0 +#endif /* NO_MALLINFO */ +#ifndef MALLINFO_FIELD_TYPE +#define MALLINFO_FIELD_TYPE size_t +#endif /* MALLINFO_FIELD_TYPE */ +#ifndef NO_SEGMENT_TRAVERSAL +#define NO_SEGMENT_TRAVERSAL 0 +#endif /* NO_SEGMENT_TRAVERSAL */ + +/* + mallopt tuning options. SVID/XPG defines four standard parameter + numbers for mallopt, normally defined in malloc.h. None of these + are used in this malloc, so setting them has no effect. But this + malloc does support the following options. +*/ + +#define M_TRIM_THRESHOLD (-1) +#define M_GRANULARITY (-2) +#define M_MMAP_THRESHOLD (-3) + +/* ------------------------ Mallinfo declarations ------------------------ */ + +#if !NO_MALLINFO +/* + This version of malloc supports the standard SVID/XPG mallinfo + routine that returns a struct containing usage properties and + statistics. It should work on any system that has a + /usr/include/malloc.h defining struct mallinfo. The main + declaration needed is the mallinfo struct that is returned (by-copy) + by mallinfo(). The malloinfo struct contains a bunch of fields that + are not even meaningful in this version of malloc. These fields are + are instead filled by mallinfo() with other numbers that might be of + interest. + + HAVE_USR_INCLUDE_MALLOC_H should be set if you have a + /usr/include/malloc.h file that includes a declaration of struct + mallinfo. If so, it is included; else a compliant version is + declared below. These must be precisely the same for mallinfo() to + work. The original SVID version of this struct, defined on most + systems with mallinfo, declares all fields as ints. But some others + define as unsigned long. If your system defines the fields using a + type of different width than listed here, you MUST #include your + system version and #define HAVE_USR_INCLUDE_MALLOC_H. +*/ + +/* #define HAVE_USR_INCLUDE_MALLOC_H */ + +#ifdef HAVE_USR_INCLUDE_MALLOC_H +#include "/usr/include/malloc.h" +#else /* HAVE_USR_INCLUDE_MALLOC_H */ + +struct mallinfo { + MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ + MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ + MALLINFO_FIELD_TYPE smblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ + MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ + MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ + MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ + MALLINFO_FIELD_TYPE fordblks; /* total free space */ + MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ +}; + +#endif /* HAVE_USR_INCLUDE_MALLOC_H */ +#endif /* NO_MALLINFO */ + +/* + Try to persuade compilers to inline. The most critical functions for + inlining are defined as macros, so these aren't used for them. +*/ + +#ifndef FORCEINLINE + #if defined(__GNUC__) +#define FORCEINLINE __inline __attribute__ ((always_inline)) + #elif defined(_MSC_VER) + #define FORCEINLINE __forceinline + #endif +#endif +#ifndef NOINLINE + #if defined(__GNUC__) + #define NOINLINE __attribute__ ((noinline)) + #elif defined(_MSC_VER) + #define NOINLINE __declspec(noinline) + #else + #define NOINLINE + #endif +#endif + +#ifdef __cplusplus +extern "C" { +#ifndef FORCEINLINE + #define FORCEINLINE inline +#endif +#endif /* __cplusplus */ +#ifndef FORCEINLINE + #define FORCEINLINE +#endif + +#if !ONLY_MSPACES + +/* ------------------- Declarations of public routines ------------------- */ + +#ifndef USE_DL_PREFIX +#define dlcalloc calloc +#define dlfree free +#define dlmalloc malloc +#define dlmemalign memalign +#define dlrealloc realloc +#define dlvalloc valloc +#define dlpvalloc pvalloc +#define dlmallinfo mallinfo +#define dlmallopt mallopt +#define dlmalloc_trim malloc_trim +#define dlmalloc_stats malloc_stats +#define dlmalloc_usable_size malloc_usable_size +#define dlmalloc_footprint malloc_footprint +#define dlmalloc_max_footprint malloc_max_footprint +#define dlindependent_calloc independent_calloc +#define dlindependent_comalloc independent_comalloc +#endif /* USE_DL_PREFIX */ + + +/* + malloc(size_t n) + Returns a pointer to a newly allocated chunk of at least n bytes, or + null if no space is available, in which case errno is set to ENOMEM + on ANSI C systems. + + If n is zero, malloc returns a minimum-sized chunk. (The minimum + size is 16 bytes on most 32bit systems, and 32 bytes on 64bit + systems.) Note that size_t is an unsigned type, so calls with + arguments that would be negative if signed are interpreted as + requests for huge amounts of space, which will often fail. The + maximum supported value of n differs across systems, but is in all + cases less than the maximum representable value of a size_t. +*/ +void* dlmalloc(size_t); + +/* + free(void* p) + Releases the chunk of memory pointed to by p, that had been previously + allocated using malloc or a related routine such as realloc. + It has no effect if p is null. If p was not malloced or already + freed, free(p) will by default cause the current program to abort. +*/ +void dlfree(void*); + +/* + calloc(size_t n_elements, size_t element_size); + Returns a pointer to n_elements * element_size bytes, with all locations + set to zero. +*/ +void* dlcalloc(size_t, size_t); + +/* + realloc(void* p, size_t n) + Returns a pointer to a chunk of size n that contains the same data + as does chunk p up to the minimum of (n, p's size) bytes, or null + if no space is available. + + The returned pointer may or may not be the same as p. The algorithm + prefers extending p in most cases when possible, otherwise it + employs the equivalent of a malloc-copy-free sequence. + + If p is null, realloc is equivalent to malloc. + + If space is not available, realloc returns null, errno is set (if on + ANSI) and p is NOT freed. + + if n is for fewer bytes than already held by p, the newly unused + space is lopped off and freed if possible. realloc with a size + argument of zero (re)allocates a minimum-sized chunk. + + The old unix realloc convention of allowing the last-free'd chunk + to be used as an argument to realloc is not supported. +*/ + +void* dlrealloc(void*, size_t); + +/* + memalign(size_t alignment, size_t n); + Returns a pointer to a newly allocated chunk of n bytes, aligned + in accord with the alignment argument. + + The alignment argument should be a power of two. If the argument is + not a power of two, the nearest greater power is used. + 8-byte alignment is guaranteed by normal malloc calls, so don't + bother calling memalign with an argument of 8 or less. + + Overreliance on memalign is a sure way to fragment space. +*/ +void* dlmemalign(size_t, size_t); + +/* + valloc(size_t n); + Equivalent to memalign(pagesize, n), where pagesize is the page + size of the system. If the pagesize is unknown, 4096 is used. +*/ +void* dlvalloc(size_t); + +/* + mallopt(int parameter_number, int parameter_value) + Sets tunable parameters The format is to provide a + (parameter-number, parameter-value) pair. mallopt then sets the + corresponding parameter to the argument value if it can (i.e., so + long as the value is meaningful), and returns 1 if successful else + 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, + normally defined in malloc.h. None of these are use in this malloc, + so setting them has no effect. But this malloc also supports other + options in mallopt. See below for details. Briefly, supported + parameters are as follows (listed defaults are for "typical" + configurations). + + Symbol param # default allowed param values + M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) + M_GRANULARITY -2 page size any power of 2 >= page size + M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) +*/ +int dlmallopt(int, int); + +/* + malloc_footprint(); + Returns the number of bytes obtained from the system. The total + number of bytes allocated by malloc, realloc etc., is less than this + value. Unlike mallinfo, this function returns only a precomputed + result, so can be called frequently to monitor memory consumption. + Even if locks are otherwise defined, this function does not use them, + so results might not be up to date. +*/ +size_t dlmalloc_footprint(void); + +/* + malloc_max_footprint(); + Returns the maximum number of bytes obtained from the system. This + value will be greater than current footprint if deallocated space + has been reclaimed by the system. The peak number of bytes allocated + by malloc, realloc etc., is less than this value. Unlike mallinfo, + this function returns only a precomputed result, so can be called + frequently to monitor memory consumption. Even if locks are + otherwise defined, this function does not use them, so results might + not be up to date. +*/ +size_t dlmalloc_max_footprint(void); + +#if !NO_MALLINFO +/* + mallinfo() + Returns (by copy) a struct containing various summary statistics: + + arena: current total non-mmapped bytes allocated from system + ordblks: the number of free chunks + smblks: always zero. + hblks: current number of mmapped regions + hblkhd: total bytes held in mmapped regions + usmblks: the maximum total allocated space. This will be greater + than current total if trimming has occurred. + fsmblks: always zero + uordblks: current total allocated space (normal or mmapped) + fordblks: total free space + keepcost: the maximum number of bytes that could ideally be released + back to system via malloc_trim. ("ideally" means that + it ignores page restrictions etc.) + + Because these fields are ints, but internal bookkeeping may + be kept as longs, the reported values may wrap around zero and + thus be inaccurate. +*/ +struct mallinfo dlmallinfo(void); +#endif /* NO_MALLINFO */ + +/* + independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); + + independent_calloc is similar to calloc, but instead of returning a + single cleared space, it returns an array of pointers to n_elements + independent elements that can hold contents of size elem_size, each + of which starts out cleared, and can be independently freed, + realloc'ed etc. The elements are guaranteed to be adjacently + allocated (this is not guaranteed to occur with multiple callocs or + mallocs), which may also improve cache locality in some + applications. + + The "chunks" argument is optional (i.e., may be null, which is + probably the most typical usage). If it is null, the returned array + is itself dynamically allocated and should also be freed when it is + no longer needed. Otherwise, the chunks array must be of at least + n_elements in length. It is filled in with the pointers to the + chunks. + + In either case, independent_calloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and "chunks" + is null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use regular calloc and assign pointers into this + space to represent elements. (In this case though, you cannot + independently free elements.) + + independent_calloc simplifies and speeds up implementations of many + kinds of pools. It may also be useful when constructing large data + structures that initially have a fixed number of fixed-sized nodes, + but the number is not known at compile time, and some of the nodes + may later need to be freed. For example: + + struct Node { int item; struct Node* next; }; + + struct Node* build_list() { + struct Node** pool; + int n = read_number_of_nodes_needed(); + if (n <= 0) return 0; + pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); + if (pool == 0) die(); + // organize into a linked list... + struct Node* first = pool[0]; + for (i = 0; i < n-1; ++i) + pool[i]->next = pool[i+1]; + free(pool); // Can now free the array (or not, if it is needed later) + return first; + } +*/ +void** dlindependent_calloc(size_t, size_t, void**); + +/* + independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); + + independent_comalloc allocates, all at once, a set of n_elements + chunks with sizes indicated in the "sizes" array. It returns + an array of pointers to these elements, each of which can be + independently freed, realloc'ed etc. The elements are guaranteed to + be adjacently allocated (this is not guaranteed to occur with + multiple callocs or mallocs), which may also improve cache locality + in some applications. + + The "chunks" argument is optional (i.e., may be null). If it is null + the returned array is itself dynamically allocated and should also + be freed when it is no longer needed. Otherwise, the chunks array + must be of at least n_elements in length. It is filled in with the + pointers to the chunks. + + In either case, independent_comalloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and chunks is + null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use a single regular malloc, and assign pointers at + particular offsets in the aggregate space. (In this case though, you + cannot independently free elements.) + + independent_comallac differs from independent_calloc in that each + element may have a different size, and also that it does not + automatically clear elements. + + independent_comalloc can be used to speed up allocation in cases + where several structs or objects must always be allocated at the + same time. For example: + + struct Head { ... } + struct Foot { ... } + + void send_message(char* msg) { + int msglen = strlen(msg); + size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; + void* chunks[3]; + if (independent_comalloc(3, sizes, chunks) == 0) + die(); + struct Head* head = (struct Head*)(chunks[0]); + char* body = (char*)(chunks[1]); + struct Foot* foot = (struct Foot*)(chunks[2]); + // ... + } + + In general though, independent_comalloc is worth using only for + larger values of n_elements. For small values, you probably won't + detect enough difference from series of malloc calls to bother. + + Overuse of independent_comalloc can increase overall memory usage, + since it cannot reuse existing noncontiguous small chunks that + might be available for some of the elements. +*/ +void** dlindependent_comalloc(size_t, size_t*, void**); + + +/* + pvalloc(size_t n); + Equivalent to valloc(minimum-page-that-holds(n)), that is, + round up n to nearest pagesize. + */ +void* dlpvalloc(size_t); + +/* + malloc_trim(size_t pad); + + If possible, gives memory back to the system (via negative arguments + to sbrk) if there is unused memory at the `high' end of the malloc + pool or in unused MMAP segments. You can call this after freeing + large blocks of memory to potentially reduce the system-level memory + requirements of a program. However, it cannot guarantee to reduce + memory. Under some allocation patterns, some large free blocks of + memory will be locked between two used chunks, so they cannot be + given back to the system. + + The `pad' argument to malloc_trim represents the amount of free + trailing space to leave untrimmed. If this argument is zero, only + the minimum amount of memory to maintain internal data structures + will be left. Non-zero arguments can be supplied to maintain enough + trailing space to service future expected allocations without having + to re-obtain memory from the system. + + Malloc_trim returns 1 if it actually released any memory, else 0. +*/ +int dlmalloc_trim(size_t); + +/* + malloc_usable_size(void* p); + + Returns the number of bytes you can actually use in + an allocated chunk, which may be more than you requested (although + often not) due to alignment and minimum size constraints. + You can use this many bytes without worrying about + overwriting other allocated objects. This is not a particularly great + programming practice. malloc_usable_size can be more useful in + debugging and assertions, for example: + + p = malloc(n); + assert(malloc_usable_size(p) >= 256); +*/ +size_t dlmalloc_usable_size(void*); + +/* + malloc_stats(); + Prints on stderr the amount of space obtained from the system (both + via sbrk and mmap), the maximum amount (which may be more than + current if malloc_trim and/or munmap got called), and the current + number of bytes allocated via malloc (or realloc, etc) but not yet + freed. Note that this is the number of bytes allocated, not the + number requested. It will be larger than the number requested + because of alignment and bookkeeping overhead. Because it includes + alignment wastage as being in use, this figure may be greater than + zero even when no user-level chunks are allocated. + + The reported current and maximum system memory can be inaccurate if + a program makes other calls to system memory allocation functions + (normally sbrk) outside of malloc. + + malloc_stats prints only the most commonly interesting statistics. + More information can be obtained by calling mallinfo. +*/ +void dlmalloc_stats(void); + +#endif /* ONLY_MSPACES */ + +#if MSPACES + +/* + mspace is an opaque type representing an independent + region of space that supports mspace_malloc, etc. +*/ +typedef void* mspace; + +/* + create_mspace creates and returns a new independent space with the + given initial capacity, or, if 0, the default granularity size. It + returns null if there is no system memory available to create the + space. If argument locked is non-zero, the space uses a separate + lock to control access. The capacity of the space will grow + dynamically as needed to service mspace_malloc requests. You can + control the sizes of incremental increases of this space by + compiling with a different DEFAULT_GRANULARITY or dynamically + setting with mallopt(M_GRANULARITY, value). +*/ +mspace create_mspace(size_t capacity, int locked); + +/* + destroy_mspace destroys the given space, and attempts to return all + of its memory back to the system, returning the total number of + bytes freed. After destruction, the results of access to all memory + used by the space become undefined. +*/ +size_t destroy_mspace(mspace msp); + +/* + create_mspace_with_base uses the memory supplied as the initial base + of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this + space is used for bookkeeping, so the capacity must be at least this + large. (Otherwise 0 is returned.) When this initial space is + exhausted, additional memory will be obtained from the system. + Destroying this space will deallocate all additionally allocated + space (if possible) but not the initial base. +*/ +mspace create_mspace_with_base(void* base, size_t capacity, int locked); + +/* + mspace_malloc behaves as malloc, but operates within + the given space. +*/ +void* mspace_malloc(mspace msp, size_t bytes); + +/* + mspace_free behaves as free, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_free is not actually needed. + free may be called instead of mspace_free because freed chunks from + any space are handled by their originating spaces. +*/ +void mspace_free(mspace msp, void* mem); + +/* + mspace_realloc behaves as realloc, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_realloc is not actually + needed. realloc may be called instead of mspace_realloc because + realloced chunks from any space are handled by their originating + spaces. +*/ +void* mspace_realloc(mspace msp, void* mem, size_t newsize); + +/* + mspace_calloc behaves as calloc, but operates within + the given space. +*/ +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); + +/* + mspace_memalign behaves as memalign, but operates within + the given space. +*/ +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); + +/* + mspace_independent_calloc behaves as independent_calloc, but + operates within the given space. +*/ +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]); + +/* + mspace_independent_comalloc behaves as independent_comalloc, but + operates within the given space. +*/ +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]); + +/* + mspace_footprint() returns the number of bytes obtained from the + system for this space. +*/ +size_t mspace_footprint(mspace msp); + +/* + mspace_max_footprint() returns the peak number of bytes obtained from the + system for this space. +*/ +size_t mspace_max_footprint(mspace msp); + + +#if !NO_MALLINFO +/* + mspace_mallinfo behaves as mallinfo, but reports properties of + the given space. +*/ +struct mallinfo mspace_mallinfo(mspace msp); +#endif /* NO_MALLINFO */ + +/* + mspace_malloc_stats behaves as malloc_stats, but reports + properties of the given space. +*/ +void mspace_malloc_stats(mspace msp); + +/* + mspace_trim behaves as malloc_trim, but + operates within the given space. +*/ +int mspace_trim(mspace msp, size_t pad); + +/* + An alias for mallopt. +*/ +int mspace_mallopt(int, int); + +#endif /* MSPACES */ + +#ifdef __cplusplus +}; /* end of extern "C" */ +#endif /* __cplusplus */ + +/* + ======================================================================== + To make a fully customizable malloc.h header file, cut everything + above this line, put into file malloc.h, edit to suit, and #include it + on the next line, as well as in programs that use this malloc. + ======================================================================== +*/ + +/* #include "malloc.h" */ + +/*------------------------------ internal #includes ---------------------- */ + +#ifdef WIN32 +#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ +#endif /* WIN32 */ + +#include <stdio.h> /* for printing in malloc_stats */ + +#ifndef LACKS_ERRNO_H +#include <errno.h> /* for MALLOC_FAILURE_ACTION */ +#endif /* LACKS_ERRNO_H */ +#if FOOTERS +#include <time.h> /* for magic initialization */ +#endif /* FOOTERS */ +#ifndef LACKS_STDLIB_H +#include <stdlib.h> /* for abort() */ +#endif /* LACKS_STDLIB_H */ +#ifdef DEBUG +#if ABORT_ON_ASSERT_FAILURE +#define assert(x) if(!(x)) ABORT +#else /* ABORT_ON_ASSERT_FAILURE */ +#include <assert.h> +#endif /* ABORT_ON_ASSERT_FAILURE */ +#else /* DEBUG */ +#define assert(x) +#endif /* DEBUG */ +#ifndef LACKS_STRING_H +#include <string.h> /* for memset etc */ +#endif /* LACKS_STRING_H */ +#if USE_BUILTIN_FFS +#ifndef LACKS_STRINGS_H +#include <strings.h> /* for ffs */ +#endif /* LACKS_STRINGS_H */ +#endif /* USE_BUILTIN_FFS */ +#if HAVE_MMAP +#ifndef LACKS_SYS_MMAN_H +#include <sys/mman.h> /* for mmap */ +#endif /* LACKS_SYS_MMAN_H */ +#ifndef LACKS_FCNTL_H +#include <fcntl.h> +#endif /* LACKS_FCNTL_H */ +#endif /* HAVE_MMAP */ +#if HAVE_MORECORE +#ifndef LACKS_UNISTD_H +#include <unistd.h> /* for sbrk */ +#else /* LACKS_UNISTD_H */ +#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) +extern void* sbrk(ptrdiff_t); +#endif /* FreeBSD etc */ +#endif /* LACKS_UNISTD_H */ +#endif /* HAVE_MMAP */ + +/* Declarations for locking */ +#if USE_LOCKS +#ifndef WIN32 +#include <pthread.h> +#if defined (__SVR4) && defined (__sun) /* solaris */ +#include <thread.h> +#endif /* solaris */ +#else +#ifndef _M_AMD64 +/* These are already defined on AMD64 builds */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +LONG __cdecl _InterlockedCompareExchange(LPLONG volatile Dest, LONG Exchange, LONG Comp); +LONG __cdecl _InterlockedExchange(LPLONG volatile Target, LONG Value); +#ifdef __cplusplus +} +#endif /* __cplusplus */ +#endif /* _M_AMD64 */ +#pragma intrinsic (_InterlockedCompareExchange) +#pragma intrinsic (_InterlockedExchange) +#define interlockedcompareexchange _InterlockedCompareExchange +#define interlockedexchange _InterlockedExchange +#endif /* Win32 */ +#endif /* USE_LOCKS */ + +/* Declarations for bit scanning on win32 */ +#if defined(_MSC_VER) && _MSC_VER>=1300 +#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +unsigned char _BitScanForward(unsigned long *index, unsigned long mask); +unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#define BitScanForward _BitScanForward +#define BitScanReverse _BitScanReverse +#pragma intrinsic(_BitScanForward) +#pragma intrinsic(_BitScanReverse) +#endif /* BitScanForward */ +#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ + +#ifndef WIN32 +#ifndef malloc_getpagesize +# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ +# ifndef _SC_PAGE_SIZE +# define _SC_PAGE_SIZE _SC_PAGESIZE +# endif +# endif +# ifdef _SC_PAGE_SIZE +# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) +# else +# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) + extern size_t getpagesize(); +# define malloc_getpagesize getpagesize() +# else +# ifdef WIN32 /* use supplied emulation of getpagesize */ +# define malloc_getpagesize getpagesize() +# else +# ifndef LACKS_SYS_PARAM_H +# include <sys/param.h> +# endif +# ifdef EXEC_PAGESIZE +# define malloc_getpagesize EXEC_PAGESIZE +# else +# ifdef NBPG +# ifndef CLSIZE +# define malloc_getpagesize NBPG +# else +# define malloc_getpagesize (NBPG * CLSIZE) +# endif +# else +# ifdef NBPC +# define malloc_getpagesize NBPC +# else +# ifdef PAGESIZE +# define malloc_getpagesize PAGESIZE +# else /* just guess */ +# define malloc_getpagesize ((size_t)4096U) +# endif +# endif +# endif +# endif +# endif +# endif +# endif +#endif +#endif + + + +/* ------------------- size_t and alignment properties -------------------- */ + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ +/* Annoying but necessary to avoid errors on some platforms */ +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define SIZE_T_FOUR ((size_t)4) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* True if address a has acceptable alignment */ +#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + +/* -------------------------- MMAP preliminaries ------------------------- */ + +/* + If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and + checks to fail so compiler optimizer can delete code rather than + using so many "#if"s. +*/ + + +/* MORECORE and MMAP must return MFAIL on failure */ +#define MFAIL ((void*)(MAX_SIZE_T)) +#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ + +#if !HAVE_MMAP +#define IS_MMAPPED_BIT (SIZE_T_ZERO) +#define USE_MMAP_BIT (SIZE_T_ZERO) +#define CALL_MMAP(s) MFAIL +#define CALL_MUNMAP(a, s) (-1) +#define DIRECT_MMAP(s) MFAIL + +#else /* HAVE_MMAP */ +#define IS_MMAPPED_BIT (SIZE_T_ONE) +#define USE_MMAP_BIT (SIZE_T_ONE) + +#ifndef WIN32 +#define CALL_MUNMAP(a, s) munmap((a), (s)) +#define MMAP_PROT (PROT_READ|PROT_WRITE) +#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) +#define MAP_ANONYMOUS MAP_ANON +#endif /* MAP_ANON */ +#ifdef MAP_ANONYMOUS +#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) +#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) +#else /* MAP_ANONYMOUS */ +/* + Nearly all versions of mmap support MAP_ANONYMOUS, so the following + is unlikely to be needed, but is supplied just in case. +*/ +#define MMAP_FLAGS (MAP_PRIVATE) +static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ +#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ + (dev_zero_fd = open("/dev/zero", O_RDWR), \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) +#endif /* MAP_ANONYMOUS */ + +#define DIRECT_MMAP(s) CALL_MMAP(s) +#else /* WIN32 */ + +/* Win32 MMAP via VirtualAlloc */ +static FORCEINLINE void* win32mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ +static FORCEINLINE void* win32direct_mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, + PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* This function supports releasing coalesed segments */ +static FORCEINLINE int win32munmap(void* ptr, size_t size) { + MEMORY_BASIC_INFORMATION minfo; + char* cptr = (char*)ptr; + while (size) { + if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) + return -1; + if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || + minfo.State != MEM_COMMIT || minfo.RegionSize > size) + return -1; + if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) + return -1; + cptr += minfo.RegionSize; + size -= minfo.RegionSize; + } + return 0; +} + +#define CALL_MMAP(s) win32mmap(s) +#define CALL_MUNMAP(a, s) win32munmap((a), (s)) +#define DIRECT_MMAP(s) win32direct_mmap(s) +#endif /* WIN32 */ +#endif /* HAVE_MMAP */ + +#if HAVE_MMAP && HAVE_MREMAP +#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) +#else /* HAVE_MMAP && HAVE_MREMAP */ +#define CALL_MREMAP(addr, osz, nsz, mv) ((void)(addr),(void)(osz), \ + (void)(nsz), (void)(mv),MFAIL) +#endif /* HAVE_MMAP && HAVE_MREMAP */ + +#if HAVE_MORECORE +#define CALL_MORECORE(S) MORECORE(S) +#else /* HAVE_MORECORE */ +#define CALL_MORECORE(S) MFAIL +#endif /* HAVE_MORECORE */ + +/* mstate bit set if continguous morecore disabled or failed */ +#define USE_NONCONTIGUOUS_BIT (4U) + +/* segment bit set in create_mspace_with_base */ +#define EXTERN_BIT (8U) + + +/* --------------------------- Lock preliminaries ------------------------ */ + +/* + When locks are defined, there are up to two global locks: + + * If HAVE_MORECORE, morecore_mutex protects sequences of calls to + MORECORE. In many cases sys_alloc requires two calls, that should + not be interleaved with calls by other threads. This does not + protect against direct calls to MORECORE by other threads not + using this lock, so there is still code to cope the best we can on + interference. + + * magic_init_mutex ensures that mparams.magic and other + unique mparams values are initialized only once. + + To enable use in layered extensions, locks are reentrant. + + Because lock-protected regions generally have bounded times, we use + the supplied simple spinlocks in the custom versions for x86. + + If USE_LOCKS is > 1, the definitions of lock routines here are + bypassed, in which case you will need to define at least + INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK, and + NULL_LOCK_INITIALIZER, and possibly TRY_LOCK and IS_LOCKED + (The latter two are not used in this malloc, but are + commonly needed in extensions.) +*/ + +#if USE_LOCKS == 1 + +#if USE_SPIN_LOCKS +#ifndef WIN32 +/* Custom pthread-style spin locks on x86 and x64 for gcc */ +struct pthread_mlock_t +{ + volatile pthread_t threadid; + volatile unsigned int c; + volatile unsigned int l; +}; +#define MLOCK_T struct pthread_mlock_t +#define CURRENT_THREAD pthread_self() +#define SPINS_PER_YIELD 63 +static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { + if(CURRENT_THREAD==sl->threadid) + ++sl->c; + else { + int spins = 0; + for (;;) { + int ret; + __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0)); + if(!ret) { + assert(!sl->threadid); + sl->threadid=CURRENT_THREAD; + sl->c=1; + break; + } + if ((++spins & SPINS_PER_YIELD) == 0) { +#if defined (__SVR4) && defined (__sun) /* solaris */ + thr_yield(); +#else +#ifdef linux + sched_yield(); +#else /* no-op yield on unknown systems */ + ; +#endif /* linux */ +#endif /* solaris */ + } + } + } + + return 0; +} + +static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { + int ret; + assert(CURRENT_THREAD==sl->threadid); + if (!--sl->c) { + sl->threadid=0; + __asm__ __volatile__ ("xchgl %2,(%1)" : "=r" (ret) : "r" (&sl->l), "0" (0)); + } +} + +static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { + int ret; + __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0)); + if(!ret){ + assert(!sl->threadid); + sl->threadid=CURRENT_THREAD; + sl->c=1; + return 1; + } + return 0; +} + +#define INITIAL_LOCK(sl) (memset((sl), 0, sizeof(MLOCK_T)), 0) +#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl) +#define RELEASE_LOCK(sl) pthread_release_lock(sl) +#define TRY_LOCK(sl) pthread_try_lock(sl) +#define IS_LOCKED(sl) ((sl)->l) + +static MLOCK_T magic_init_mutex = {0, 0, 0 }; +#if HAVE_MORECORE +static MLOCK_T morecore_mutex = {0, 0, 0 }; +#endif /* HAVE_MORECORE */ + +#else /* WIN32 */ +/* Custom win32-style spin locks on x86 and x64 for MSC */ +struct win32_mlock_t +{ + volatile long threadid; + volatile unsigned int c; + long l; +}; +#define MLOCK_T struct win32_mlock_t +#define CURRENT_THREAD GetCurrentThreadId() +#define SPINS_PER_YIELD 63 +static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) { + long mythreadid=CURRENT_THREAD; + if(mythreadid==sl->threadid) + ++sl->c; + else { + int spins = 0; + for (;;) { + if (!interlockedexchange(&sl->l, 1)) { + assert(!sl->threadid); + sl->threadid=mythreadid; + sl->c=1; + break; + } + if ((++spins & SPINS_PER_YIELD) == 0) + SleepEx(0, FALSE); + } + } + return 0; +} + +static FORCEINLINE void win32_release_lock (MLOCK_T *sl) { + assert(CURRENT_THREAD==sl->threadid); + if (!--sl->c) { + sl->threadid=0; + interlockedexchange (&sl->l, 0); + } +} + +static FORCEINLINE int win32_try_lock (MLOCK_T *sl) { + if (!interlockedexchange(&sl->l, 1)){ + assert(!sl->threadid); + sl->threadid=CURRENT_THREAD; + sl->c=1; + return 1; + } + return 0; +} + +#define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0) +#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl) +#define RELEASE_LOCK(sl) win32_release_lock(sl) +#define TRY_LOCK(sl) win32_try_lock(sl) +#define IS_LOCKED(sl) ((sl)->l) + +static MLOCK_T magic_init_mutex = {0, 0 }; +#if HAVE_MORECORE +static MLOCK_T morecore_mutex = {0, 0 }; +#endif /* HAVE_MORECORE */ + +#endif /* WIN32 */ +#else /* USE_SPIN_LOCKS */ + +#ifndef WIN32 +/* pthreads-based locks */ +struct pthread_mlock_t +{ + volatile unsigned int c; + pthread_mutex_t l; +}; +#define MLOCK_T struct pthread_mlock_t +#define CURRENT_THREAD pthread_self() +static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { + if(!pthread_mutex_lock(&(sl)->l)){ + sl->c++; + return 0; + } + return 1; +} + +static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { + --sl->c; + pthread_mutex_unlock(&(sl)->l); +} + +static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { + if(!pthread_mutex_trylock(&(sl)->l)){ + sl->c++; + return 1; + } + return 0; +} + +static FORCEINLINE int pthread_init_lock (MLOCK_T *sl) { + pthread_mutexattr_t attr; + sl->c=0; + if(pthread_mutexattr_init(&attr)) return 1; + if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; + if(pthread_mutex_init(&sl->l, &attr)) return 1; + pthread_mutexattr_destroy(&attr); + return 0; +} + +static FORCEINLINE int pthread_islocked (MLOCK_T *sl) { + if(!pthread_try_lock(sl)){ + int ret = (sl->c != 0); + pthread_mutex_unlock(sl); + return ret; + } + return 0; +} + +#define INITIAL_LOCK(sl) pthread_init_lock(sl) +#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl) +#define RELEASE_LOCK(sl) pthread_release_lock(sl) +#define TRY_LOCK(sl) pthread_try_lock(sl) +#define IS_LOCKED(sl) pthread_islocked(sl) + +static MLOCK_T magic_init_mutex = {0, PTHREAD_MUTEX_INITIALIZER }; +#if HAVE_MORECORE +static MLOCK_T morecore_mutex = {0, PTHREAD_MUTEX_INITIALIZER }; +#endif /* HAVE_MORECORE */ + +#else /* WIN32 */ +/* Win32 critical sections */ +#define MLOCK_T CRITICAL_SECTION +#define CURRENT_THREAD GetCurrentThreadId() +#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 4000) +#define ACQUIRE_LOCK(s) ( (!((s))->DebugInfo ? INITIAL_LOCK((s)) : 0), !EnterCriticalSection((s)), 0) +#define RELEASE_LOCK(s) ( LeaveCriticalSection((s)), 0 ) +#define TRY_LOCK(s) ( TryEnterCriticalSection((s)) ) +#define IS_LOCKED(s) ( (s)->LockCount >= 0 ) +#define NULL_LOCK_INITIALIZER +static MLOCK_T magic_init_mutex; +#if HAVE_MORECORE +static MLOCK_T morecore_mutex; +#endif /* HAVE_MORECORE */ +#endif /* WIN32 */ +#endif /* USE_SPIN_LOCKS */ +#endif /* USE_LOCKS == 1 */ + +/* ----------------------- User-defined locks ------------------------ */ + +#if USE_LOCKS > 1 +/* Define your own lock implementation here */ +/* #define INITIAL_LOCK(sl) ... */ +/* #define ACQUIRE_LOCK(sl) ... */ +/* #define RELEASE_LOCK(sl) ... */ +/* #define TRY_LOCK(sl) ... */ +/* #define IS_LOCKED(sl) ... */ +/* #define NULL_LOCK_INITIALIZER ... */ + +static MLOCK_T magic_init_mutex = NULL_LOCK_INITIALIZER; +#if HAVE_MORECORE +static MLOCK_T morecore_mutex = NULL_LOCK_INITIALIZER; +#endif /* HAVE_MORECORE */ +#endif /* USE_LOCKS > 1 */ + +/* ----------------------- Lock-based state ------------------------ */ + + +#if USE_LOCKS +#define USE_LOCK_BIT (2U) +#else /* USE_LOCKS */ +#define USE_LOCK_BIT (0U) +#define INITIAL_LOCK(l) +#endif /* USE_LOCKS */ + +#if USE_LOCKS && HAVE_MORECORE +#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); +#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); +#else /* USE_LOCKS && HAVE_MORECORE */ +#define ACQUIRE_MORECORE_LOCK() +#define RELEASE_MORECORE_LOCK() +#endif /* USE_LOCKS && HAVE_MORECORE */ + +#if USE_LOCKS +#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); +#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); +#else /* USE_LOCKS */ +#define ACQUIRE_MAGIC_INIT_LOCK() +#define RELEASE_MAGIC_INIT_LOCK() +#endif /* USE_LOCKS */ + + +/* ----------------------- Chunk representations ------------------------ */ + +/* + (The following includes lightly edited explanations by Colin Plumb.) + + The malloc_chunk declaration below is misleading (but accurate and + necessary). It declares a "view" into memory allowing access to + necessary fields at known offsets from a given base. + + Chunks of memory are maintained using a `boundary tag' method as + originally described by Knuth. (See the paper by Paul Wilson + ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such + techniques.) Sizes of free chunks are stored both in the front of + each chunk and at the end. This makes consolidating fragmented + chunks into bigger chunks fast. The head fields also hold bits + representing whether chunks are free or in use. + + Here are some pictures to make it clearer. They are "exploded" to + show that the state of a chunk can be thought of as extending from + the high 31 bits of the head field of its header through the + prev_foot and PINUSE_BIT bit of the following chunk header. + + A chunk that's in use looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk (if P = 1) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 1| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | + +- -+ + | | + +- -+ + | : + +- size - sizeof(size_t) available payload bytes -+ + : | + chunk-> +- -+ + | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| + | Size of next chunk (may or may not be in use) | +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + And if it's free, it looks like this: + + chunk-> +- -+ + | User payload (must be in use, or we would have merged!) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 0| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Next pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Prev pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- size - sizeof(struct chunk) unused bytes -+ + : | + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| + | Size of next chunk (must be in use, or we would have merged)| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- User payload -+ + : | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |0| + +-+ + Note that since we always merge adjacent free chunks, the chunks + adjacent to a free chunk must be in use. + + Given a pointer to a chunk (which can be derived trivially from the + payload pointer) we can, in O(1) time, find out whether the adjacent + chunks are free, and if so, unlink them from the lists that they + are on and merge them with the current chunk. + + Chunks always begin on even word boundaries, so the mem portion + (which is returned to the user) is also on an even word boundary, and + thus at least double-word aligned. + + The P (PINUSE_BIT) bit, stored in the unused low-order bit of the + chunk size (which is always a multiple of two words), is an in-use + bit for the *previous* chunk. If that bit is *clear*, then the + word before the current chunk size contains the previous chunk + size, and can be used to find the front of the previous chunk. + The very first chunk allocated always has this bit set, preventing + access to non-existent (or non-owned) memory. If pinuse is set for + any given chunk, then you CANNOT determine the size of the + previous chunk, and might even get a memory addressing fault when + trying to do so. + + The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of + the chunk size redundantly records whether the current chunk is + inuse. This redundancy enables usage checks within free and realloc, + and reduces indirection when freeing and consolidating chunks. + + Each freshly allocated chunk must have both cinuse and pinuse set. + That is, each allocated chunk borders either a previously allocated + and still in-use chunk, or the base of its memory arena. This is + ensured by making all allocations from the the `lowest' part of any + found chunk. Further, no free chunk physically borders another one, + so each free chunk is known to be preceded and followed by either + inuse chunks or the ends of memory. + + Note that the `foot' of the current chunk is actually represented + as the prev_foot of the NEXT chunk. This makes it easier to + deal with alignments etc but can be very confusing when trying + to extend or adapt this code. + + The exceptions to all this are + + 1. The special chunk `top' is the top-most available chunk (i.e., + the one bordering the end of available memory). It is treated + specially. Top is never included in any bin, is used only if + no other chunk is available, and is released back to the + system if it is very large (see M_TRIM_THRESHOLD). In effect, + the top chunk is treated as larger (and thus less well + fitting) than any other available chunk. The top chunk + doesn't update its trailing size field since there is no next + contiguous chunk that would have to index off it. However, + space is still allocated for it (TOP_FOOT_SIZE) to enable + separation or merging when space is extended. + + 3. Chunks allocated via mmap, which have the lowest-order bit + (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set + PINUSE_BIT in their head fields. Because they are allocated + one-by-one, each must carry its own prev_foot field, which is + also used to hold the offset this chunk has within its mmapped + region, which is needed to preserve alignment. Each mmapped + chunk is trailed by the first two fields of a fake next-chunk + for sake of usage checks. + +*/ + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; +typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ +typedef unsigned int bindex_t; /* Described below */ +typedef unsigned int binmap_t; /* Described below */ +typedef unsigned int flag_t; /* The type of various bit flag sets */ + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +#if FOOTERS +#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +#else /* FOOTERS */ +#define CHUNK_OVERHEAD (SIZE_T_SIZE) +#endif /* FOOTERS */ + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* Bounds on request (not chunk) sizes. */ +#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) +#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* pad request, checking for minimum (but not maximum) */ +#define request2size(req) \ + (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) + + +/* ------------------ Operations on head and foot fields ----------------- */ + +/* + The head field of a chunk is or'ed with PINUSE_BIT when previous + adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in + use. If the chunk was obtained with mmap, the prev_foot field has + IS_MMAPPED_BIT set, otherwise holding the offset of the base of the + mmapped region to the base of the chunk. + + FLAG4_BIT is not used by this malloc, but might be useful in extensions. +*/ + +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define FLAG4_BIT (SIZE_T_FOUR) +#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) +#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) + +/* Head value for fenceposts */ +#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) + +/* extraction of fields from head words */ +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define chunksize(p) ((p)->head & ~(FLAG_BITS)) + +#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) +#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) + +/* Treat space at ptr +/- offset as a chunk */ +#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) +#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) + +/* Ptr to next or previous physical malloc_chunk. */ +#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) +#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) + +/* extract next chunk's pinuse bit */ +#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) + +/* Get/set size at footer */ +#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) +#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) + +/* Set size, pinuse bit, and foot */ +#define set_size_and_pinuse_of_free_chunk(p, s)\ + ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) + +/* Set size, pinuse bit, foot, and clear next pinuse */ +#define set_free_with_pinuse(p, s, n)\ + (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) + +#define is_mmapped(p)\ + (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + +/* Return true if malloced space is not necessarily cleared */ +#if MMAP_CLEARS +#define calloc_must_clear(p) (!is_mmapped(p)) +#else /* MMAP_CLEARS */ +#define calloc_must_clear(p) (1) +#endif /* MMAP_CLEARS */ + +/* ---------------------- Overlaid data structures ----------------------- */ + +/* + When chunks are not in use, they are treated as nodes of either + lists or trees. + + "Small" chunks are stored in circular doubly-linked lists, and look + like this: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space (may be 0 bytes long) . + . . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Larger chunks are kept in a form of bitwise digital trees (aka + tries) keyed on chunksizes. Because malloc_tree_chunks are only for + free chunks greater than 256 bytes, their size doesn't impose any + constraints on user chunk sizes. Each node looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to left child (child[0]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to right child (child[1]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to parent | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | bin index of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Each tree holding treenodes is a tree of unique chunk sizes. Chunks + of the same size are arranged in a circularly-linked list, with only + the oldest chunk (the next to be used, in our FIFO ordering) + actually in the tree. (Tree members are distinguished by a non-null + parent pointer.) If a chunk with the same size an an existing node + is inserted, it is linked off the existing node using pointers that + work in the same way as fd/bk pointers of small chunks. + + Each tree contains a power of 2 sized range of chunk sizes (the + smallest is 0x100 <= x < 0x180), which is is divided in half at each + tree level, with the chunks in the smaller half of the range (0x100 + <= x < 0x140 for the top nose) in the left subtree and the larger + half (0x140 <= x < 0x180) in the right subtree. This is, of course, + done by inspecting individual bits. + + Using these rules, each node's left subtree contains all smaller + sizes than its right subtree. However, the node at the root of each + subtree has no particular ordering relationship to either. (The + dividing line between the subtree sizes is based on trie relation.) + If we remove the last chunk of a given size from the interior of the + tree, we need to replace it with a leaf node. The tree ordering + rules permit a node to be replaced by any leaf below it. + + The smallest chunk in a tree (a common operation in a best-fit + allocator) can be found by walking a path to the leftmost leaf in + the tree. Unlike a usual binary tree, where we follow left child + pointers until we reach a null, here we follow the right child + pointer any time the left one is null, until we reach a leaf with + both child pointers null. The smallest chunk in the tree will be + somewhere along that path. + + The worst case number of steps to add, find, or remove a node is + bounded by the number of bits differentiating chunks within + bins. Under current bin calculations, this ranges from 6 up to 21 + (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case + is of course much better. +*/ + +struct malloc_tree_chunk { + /* The first four fields must be compatible with malloc_chunk */ + size_t prev_foot; + size_t head; + struct malloc_tree_chunk* fd; + struct malloc_tree_chunk* bk; + + struct malloc_tree_chunk* child[2]; + struct malloc_tree_chunk* parent; + bindex_t index; +}; + +typedef struct malloc_tree_chunk tchunk; +typedef struct malloc_tree_chunk* tchunkptr; +typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ + +/* A little helper macro for trees */ +#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) + +/* ----------------------------- Segments -------------------------------- */ + +/* + Each malloc space may include non-contiguous segments, held in a + list headed by an embedded malloc_segment record representing the + top-most space. Segments also include flags holding properties of + the space. Large chunks that are directly allocated by mmap are not + included in this list. They are instead independently created and + destroyed without otherwise keeping track of them. + + Segment management mainly comes into play for spaces allocated by + MMAP. Any call to MMAP might or might not return memory that is + adjacent to an existing segment. MORECORE normally contiguously + extends the current space, so this space is almost always adjacent, + which is simpler and faster to deal with. (This is why MORECORE is + used preferentially to MMAP when both are available -- see + sys_alloc.) When allocating using MMAP, we don't use any of the + hinting mechanisms (inconsistently) supported in various + implementations of unix mmap, or distinguish reserving from + committing memory. Instead, we just ask for space, and exploit + contiguity when we get it. It is probably possible to do + better than this on some systems, but no general scheme seems + to be significantly better. + + Management entails a simpler variant of the consolidation scheme + used for chunks to reduce fragmentation -- new adjacent memory is + normally prepended or appended to an existing segment. However, + there are limitations compared to chunk consolidation that mostly + reflect the fact that segment processing is relatively infrequent + (occurring only when getting memory from system) and that we + don't expect to have huge numbers of segments: + + * Segments are not indexed, so traversal requires linear scans. (It + would be possible to index these, but is not worth the extra + overhead and complexity for most programs on most platforms.) + * New segments are only appended to old ones when holding top-most + memory; if they cannot be prepended to others, they are held in + different segments. + + Except for the top-most segment of an mstate, each segment record + is kept at the tail of its segment. Segments are added by pushing + segment records onto the list headed by &mstate.seg for the + containing mstate. + + Segment flags control allocation/merge/deallocation policies: + * If EXTERN_BIT set, then we did not allocate this segment, + and so should not try to deallocate or merge with others. + (This currently holds only for the initial segment passed + into create_mspace_with_base.) + * If IS_MMAPPED_BIT set, the segment may be merged with + other surrounding mmapped segments and trimmed/de-allocated + using munmap. + * If neither bit is set, then the segment was obtained using + MORECORE so can be merged with surrounding MORECORE'd segments + and deallocated/trimmed using MORECORE with negative arguments. +*/ + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ + flag_t sflags; /* mmap and extern flag */ +}; + +#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT) +#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) + +typedef struct malloc_segment msegment; +typedef struct malloc_segment* msegmentptr; + +/* ---------------------------- malloc_state ----------------------------- */ + +/* + A malloc_state holds all of the bookkeeping for a space. + The main fields are: + + Top + The topmost chunk of the currently active segment. Its size is + cached in topsize. The actual size of topmost space is + topsize+TOP_FOOT_SIZE, which includes space reserved for adding + fenceposts and segment records if necessary when getting more + space from the system. The size at which to autotrim top is + cached from mparams in trim_check, except that it is disabled if + an autotrim fails. + + Designated victim (dv) + This is the preferred chunk for servicing small requests that + don't have exact fits. It is normally the chunk split off most + recently to service another small request. Its size is cached in + dvsize. The link fields of this chunk are not maintained since it + is not kept in a bin. + + SmallBins + An array of bin headers for free chunks. These bins hold chunks + with sizes less than MIN_LARGE_SIZE bytes. Each bin contains + chunks of all the same size, spaced 8 bytes apart. To simplify + use in double-linked lists, each bin header acts as a malloc_chunk + pointing to the real first node, if it exists (else pointing to + itself). This avoids special-casing for headers. But to avoid + waste, we allocate only the fd/bk pointers of bins, and then use + repositioning tricks to treat these as the fields of a chunk. + + TreeBins + Treebins are pointers to the roots of trees holding a range of + sizes. There are 2 equally spaced treebins for each power of two + from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything + larger. + + Bin maps + There is one bit map for small bins ("smallmap") and one for + treebins ("treemap). Each bin sets its bit when non-empty, and + clears the bit when empty. Bit operations are then used to avoid + bin-by-bin searching -- nearly all "search" is done without ever + looking at bins that won't be selected. The bit maps + conservatively use 32 bits per map word, even if on 64bit system. + For a good description of some of the bit-based techniques used + here, see Henry S. Warren Jr's book "Hacker's Delight" (and + supplement at http://hackersdelight.org/). Many of these are + intended to reduce the branchiness of paths through malloc etc, as + well as to reduce the number of memory locations read or written. + + Segments + A list of segments headed by an embedded malloc_segment record + representing the initial space. + + Address check support + The least_addr field is the least address ever obtained from + MORECORE or MMAP. Attempted frees and reallocs of any address less + than this are trapped (unless INSECURE is defined). + + Magic tag + A cross-check field that should always hold same value as mparams.magic. + + Flags + Bits recording whether to use MMAP, locks, or contiguous MORECORE + + Statistics + Each space keeps track of current and maximum system memory + obtained via MORECORE or MMAP. + + Trim support + Fields holding the amount of unused topmost memory that should trigger + timming, and a counter to force periodic scanning to release unused + non-topmost segments. + + Locking + If USE_LOCKS is defined, the "mutex" lock is acquired and released + around every public call using this mspace. + + Extension support + A void* pointer and a size_t field that can be used to help implement + extensions to this malloc. +*/ + +/* Bin types, widths and sizes */ +#define NSMALLBINS (32U) +#define NTREEBINS (32U) +#define SMALLBIN_SHIFT (3U) +#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) +#define TREEBIN_SHIFT (8U) +#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) +#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) +#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t release_checks; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + flag_t mflags; +#if USE_LOCKS + MLOCK_T mutex; /* locate lock among fields that rarely change */ +#endif /* USE_LOCKS */ + msegment seg; + void* extp; /* Unused but available for extensions */ + size_t exts; +}; + +typedef struct malloc_state* mstate; + +/* ------------- Global malloc_state and malloc_params ------------------- */ + +/* + malloc_params holds global properties, including those that can be + dynamically set using mallopt. There is a single instance, mparams, + initialized in init_mparams. +*/ + +struct malloc_params { + size_t magic; + size_t page_size; + size_t granularity; + size_t mmap_threshold; + size_t trim_threshold; + flag_t default_mflags; +}; + +static struct malloc_params mparams; + +#if !ONLY_MSPACES + +/* The global malloc_state used for all non-"mspace" calls */ +static struct malloc_state _gm_; +#define gm (&_gm_) +#define is_global(M) ((M) == &_gm_) + +#endif /* !ONLY_MSPACES */ + +#define is_initialized(M) ((M)->top != 0) + +/* -------------------------- system alloc setup ------------------------- */ + +/* Operations on mflags */ + +#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) +#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) +#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) + +#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) +#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) +#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) + +#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) +#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) + +#define set_lock(M,L)\ + ((M)->mflags = (L)?\ + ((M)->mflags | USE_LOCK_BIT) :\ + ((M)->mflags & ~USE_LOCK_BIT)) + +/* page-align a size */ +#define page_align(S)\ + (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) + +/* granularity-align a size */ +#define granularity_align(S)\ + (((S) + (mparams.granularity - SIZE_T_ONE))\ + & ~(mparams.granularity - SIZE_T_ONE)) + + +/* For mmap, use granularity alignment on windows, else page-align */ +#ifdef WIN32 +#define mmap_align(S) granularity_align(S) +#else +#define mmap_align(S) page_align(S) +#endif + +#define is_page_aligned(S)\ + (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) +#define is_granularity_aligned(S)\ + (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) + +/* True if segment S holds address A */ +#define segment_holds(S, A)\ + ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) + +/* Return segment holding given address */ +static msegmentptr segment_holding(mstate m, char* addr) { + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= sp->base && addr < sp->base + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} + +/* Return true if segment contains a segment link */ +static int has_segment_link(mstate m, msegmentptr ss) { + msegmentptr sp = &m->seg; + for (;;) { + if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) + return 1; + if ((sp = sp->next) == 0) + return 0; + } +} + +#ifndef MORECORE_CANNOT_TRIM +#define should_trim(M,s) ((s) > (M)->trim_check) +#else /* MORECORE_CANNOT_TRIM */ +#define should_trim(M,s) (0) +#endif /* MORECORE_CANNOT_TRIM */ + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + + +/* ------------------------------- Hooks -------------------------------- */ + +/* + PREACTION should be defined to return 0 on success, and nonzero on + failure. If you are not using locking, you can redefine these to do + anything you like. +*/ + +#if USE_LOCKS + +/* Ensure locks are initialized */ +#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) + +#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) +#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } +#else /* USE_LOCKS */ + +#ifndef PREACTION +#define PREACTION(M) (0) +#endif /* PREACTION */ + +#ifndef POSTACTION +#define POSTACTION(M) +#endif /* POSTACTION */ + +#endif /* USE_LOCKS */ + +/* + CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. + USAGE_ERROR_ACTION is triggered on detected bad frees and + reallocs. The argument p is an address that might have triggered the + fault. It is ignored by the two predefined actions, but might be + useful in custom actions that try to help diagnose errors. +*/ + +#if PROCEED_ON_ERROR + +/* A count of the number of corruption errors causing resets */ +int malloc_corruption_error_count; + +/* default corruption action */ +static void reset_on_error(mstate m); + +#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) +#define USAGE_ERROR_ACTION(m, p) + +#else /* PROCEED_ON_ERROR */ + +#ifndef CORRUPTION_ERROR_ACTION +#define CORRUPTION_ERROR_ACTION(m) ABORT +#endif /* CORRUPTION_ERROR_ACTION */ + +#ifndef USAGE_ERROR_ACTION +#define USAGE_ERROR_ACTION(m,p) ABORT +#endif /* USAGE_ERROR_ACTION */ + +#endif /* PROCEED_ON_ERROR */ + +/* -------------------------- Debugging setup ---------------------------- */ + +#if ! DEBUG + +#define check_free_chunk(M,P) +#define check_inuse_chunk(M,P) +#define check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) +#define check_malloc_state(M) +#define check_top_chunk(M,P) + +#else /* DEBUG */ +#define check_free_chunk(M,P) do_check_free_chunk(M,P) +#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) +#define check_top_chunk(M,P) do_check_top_chunk(M,P) +#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) +#define check_malloc_state(M) do_check_malloc_state(M) + +static void do_check_any_chunk(mstate m, mchunkptr p); +static void do_check_top_chunk(mstate m, mchunkptr p); +static void do_check_mmapped_chunk(mstate m, mchunkptr p); +static void do_check_inuse_chunk(mstate m, mchunkptr p); +static void do_check_free_chunk(mstate m, mchunkptr p); +static void do_check_malloced_chunk(mstate m, void* mem, size_t s); +static void do_check_tree(mstate m, tchunkptr t); +static void do_check_treebin(mstate m, bindex_t i); +static void do_check_smallbin(mstate m, bindex_t i); +static void do_check_malloc_state(mstate m); +static int bin_find(mstate m, mchunkptr x); +static size_t traverse_and_check(mstate m); +#endif /* DEBUG */ + +/* ---------------------------- Indexing Bins ---------------------------- */ + +#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) +#define small_index(s) ((s) >> SMALLBIN_SHIFT) +#define small_index2size(i) ((i) << SMALLBIN_SHIFT) +#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) + +/* addressing by index. See above about smallbin repositioning */ +#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) +#define treebin_at(M,i) (&((M)->treebins[i])) + +/* assign tree index for size S to variable I */ +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_tree_index(S, I)\ +{\ + unsigned int X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + _BitScanReverse((DWORD *) &K, X);\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} +#else /* GNUC */ +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int Y = (unsigned int)X;\ + unsigned int N = ((Y - 0x100) >> 16) & 8;\ + unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ + N += K;\ + N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ + K = 14 - N + ((Y <<= K) >> 15);\ + I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ + }\ +} +#endif /* GNUC */ + +/* Bit representing maximum resolved size in a treebin at i */ +#define bit_for_tree_index(i) \ + (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) + +/* Shift placing maximum resolved bit in a treebin at i as sign bit */ +#define leftshift_for_tree_index(i) \ + ((i == NTREEBINS-1)? 0 : \ + ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) + +/* The size of the smallest chunk held in bin with index i */ +#define minsize_for_tree_index(i) \ + ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ + (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) + + +/* ------------------------ Operations on bin maps ----------------------- */ + +/* bit corresponding to given index */ +#define idx2bit(i) ((binmap_t)(1) << (i)) + +/* Mark/Clear bits with given index */ +#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) +#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) +#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) + +#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) +#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) +#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) + +/* index corresponding to given bit */ + +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\ + I = (bindex_t)J;\ +} +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + _BitScanForward((DWORD *) &J, X);\ + I = (bindex_t)J;\ +} + +#else /* GNUC */ +#if USE_BUILTIN_FFS +#define compute_bit2idx(X, I) I = ffs(X)-1 + +#else /* USE_BUILTIN_FFS */ +#define compute_bit2idx(X, I)\ +{\ + unsigned int Y = X - 1;\ + unsigned int K = Y >> (16-4) & 16;\ + unsigned int N = K; Y >>= K;\ + N += K = Y >> (8-3) & 8; Y >>= K;\ + N += K = Y >> (4-2) & 4; Y >>= K;\ + N += K = Y >> (2-1) & 2; Y >>= K;\ + N += K = Y >> (1-0) & 1; Y >>= K;\ + I = (bindex_t)(N + Y);\ +} +#endif /* USE_BUILTIN_FFS */ +#endif /* GNUC */ + +/* isolate the least set bit of a bitmap */ +#define least_bit(x) ((x) & -(x)) + +/* mask with all bits to left of least bit of x on */ +#define left_bits(x) ((x<<1) | -(x<<1)) + +/* mask with all bits to left of or equal to least bit of x on */ +#define same_or_left_bits(x) ((x) | -(x)) + + +/* ----------------------- Runtime Check Support ------------------------- */ + +/* + For security, the main invariant is that malloc/free/etc never + writes to a static address other than malloc_state, unless static + malloc_state itself has been corrupted, which cannot occur via + malloc (because of these checks). In essence this means that we + believe all pointers, sizes, maps etc held in malloc_state, but + check all of those linked or offsetted from other embedded data + structures. These checks are interspersed with main code in a way + that tends to minimize their run-time cost. + + When FOOTERS is defined, in addition to range checking, we also + verify footer fields of inuse chunks, which can be used guarantee + that the mstate controlling malloc/free is intact. This is a + streamlined version of the approach described by William Robertson + et al in "Run-time Detection of Heap-based Overflows" LISA'03 + http://www.usenix.org/events/lisa03/tech/robertson.html The footer + of an inuse chunk holds the xor of its mstate and a random seed, + that is checked upon calls to free() and realloc(). This is + (probablistically) unguessable from outside the program, but can be + computed by any code successfully malloc'ing any chunk, so does not + itself provide protection against code that has already broken + security through some other means. Unlike Robertson et al, we + always dynamically check addresses of all offset chunks (previous, + next, etc). This turns out to be cheaper than relying on hashes. +*/ + +#if !INSECURE +/* Check if address a is at least as high as any from MORECORE or MMAP */ +#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) +/* Check if address of next chunk n is higher than base chunk p */ +#define ok_next(p, n) ((char*)(p) < (char*)(n)) +/* Check if p has its cinuse bit on */ +#define ok_cinuse(p) cinuse(p) +/* Check if p has its pinuse bit on */ +#define ok_pinuse(p) pinuse(p) + +#else /* !INSECURE */ +#define ok_address(M, a) (1) +#define ok_next(b, n) (1) +#define ok_cinuse(p) (1) +#define ok_pinuse(p) (1) +#endif /* !INSECURE */ + +#if (FOOTERS && !INSECURE) +/* Check if (alleged) mstate m has expected magic field */ +#define ok_magic(M) ((M)->magic == mparams.magic) +#else /* (FOOTERS && !INSECURE) */ +#define ok_magic(M) (1) +#endif /* (FOOTERS && !INSECURE) */ + + +/* In gcc, use __builtin_expect to minimize impact of checks */ +#if !INSECURE +#if defined(__GNUC__) && __GNUC__ >= 3 +#define RTCHECK(e) __builtin_expect(e, 1) +#else /* GNUC */ +#define RTCHECK(e) (e) +#endif /* GNUC */ +#else /* !INSECURE */ +#define RTCHECK(e) (1) +#endif /* !INSECURE */ + +/* macros to set up inuse chunks with or without footers */ + +#if !FOOTERS + +#define mark_inuse_foot(M,p,s) + +/* Set cinuse bit and pinuse bit of next chunk */ +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set size, cinuse and pinuse bit of this chunk */ +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) + +#else /* FOOTERS */ + +/* Set foot of inuse chunk to be xor of mstate and seed */ +#define mark_inuse_foot(M,p,s)\ + (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) + +#define get_mstate_for(p)\ + ((mstate)(((mchunkptr)((char*)(p) +\ + (chunksize(p))))->prev_foot ^ mparams.magic)) + +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ + mark_inuse_foot(M,p,s)) + +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ + mark_inuse_foot(M,p,s)) + +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + mark_inuse_foot(M, p, s)) + +#endif /* !FOOTERS */ + +/* ---------------------------- setting mparams -------------------------- */ + +/* Initialize mparams */ +static int init_mparams(void) { + if (mparams.page_size == 0) { + size_t s; + + mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; + mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; +#if MORECORE_CONTIGUOUS + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; +#else /* MORECORE_CONTIGUOUS */ + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; +#endif /* MORECORE_CONTIGUOUS */ + +#if (FOOTERS && !INSECURE) + { +#if USE_DEV_RANDOM + int fd; + unsigned char buf[sizeof(size_t)]; + /* Try to use /dev/urandom, else fall back on using time */ + if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && + read(fd, buf, sizeof(buf)) == sizeof(buf)) { + s = *((size_t *) buf); + close(fd); + } + else +#endif /* USE_DEV_RANDOM */ + s = (size_t)(time(0) ^ (size_t)0x55555555U); + + s |= (size_t)8U; /* ensure nonzero */ + s &= ~(size_t)7U; /* improve chances of fault for bad values */ + + } +#else /* (FOOTERS && !INSECURE) */ + s = (size_t)0x58585858U; +#endif /* (FOOTERS && !INSECURE) */ + ACQUIRE_MAGIC_INIT_LOCK(); + if (mparams.magic == 0) { + mparams.magic = s; +#if !ONLY_MSPACES + /* Set up lock for main malloc area */ + INITIAL_LOCK(&gm->mutex); + gm->mflags = mparams.default_mflags; +#endif + } + RELEASE_MAGIC_INIT_LOCK(); + +#ifndef WIN32 + mparams.page_size = malloc_getpagesize; + mparams.granularity = ((DEFAULT_GRANULARITY != 0)? + DEFAULT_GRANULARITY : mparams.page_size); +#else /* WIN32 */ + { + SYSTEM_INFO system_info; + GetSystemInfo(&system_info); + mparams.page_size = system_info.dwPageSize; + mparams.granularity = system_info.dwAllocationGranularity; + } +#endif /* WIN32 */ + + /* Sanity-check configuration: + size_t must be unsigned and as wide as pointer type. + ints must be at least 4 bytes. + alignment must be at least 8. + Alignment, min chunk size, and page size must all be powers of 2. + */ + if ((sizeof(size_t) != sizeof(char*)) || + (MAX_SIZE_T < MIN_CHUNK_SIZE) || + (sizeof(int) < 4) || + (MALLOC_ALIGNMENT < (size_t)8U) || + ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || + ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || + ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || + ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) + ABORT; + } + return 0; +} + +/* support for mallopt */ +static int change_mparam(int param_number, int value) { + size_t val = (size_t)value; + init_mparams(); + switch(param_number) { + case M_TRIM_THRESHOLD: + mparams.trim_threshold = val; + return 1; + case M_GRANULARITY: + if (val >= mparams.page_size && ((val & (val-1)) == 0)) { + mparams.granularity = val; + return 1; + } + else + return 0; + case M_MMAP_THRESHOLD: + mparams.mmap_threshold = val; + return 1; + default: + return 0; + } +} + +#if DEBUG +/* ------------------------- Debugging Support --------------------------- */ + +/* Check properties of any chunk, whether free, inuse, mmapped etc */ +static void do_check_any_chunk(mstate m, mchunkptr p) { + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); +} + +/* Check properties of top chunk */ +static void do_check_top_chunk(mstate m, mchunkptr p) { + msegmentptr sp = segment_holding(m, (char*)p); + size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ + assert(sp != 0); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(sz == m->topsize); + assert(sz > 0); + assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); + assert(pinuse(p)); + assert(!pinuse(chunk_plus_offset(p, sz))); +} + +/* Check properties of (inuse) mmapped chunks */ +static void do_check_mmapped_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); + assert(is_mmapped(p)); + assert(use_mmap(m)); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(!is_small(sz)); + assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); + assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); + assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); +} + +/* Check properties of inuse chunks */ +static void do_check_inuse_chunk(mstate m, mchunkptr p) { + do_check_any_chunk(m, p); + assert(cinuse(p)); + assert(next_pinuse(p)); + /* If not pinuse and not mmapped, previous chunk has OK offset */ + assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); + if (is_mmapped(p)) + do_check_mmapped_chunk(m, p); +} + +/* Check properties of free chunks */ +static void do_check_free_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + mchunkptr next = chunk_plus_offset(p, sz); + do_check_any_chunk(m, p); + assert(!cinuse(p)); + assert(!next_pinuse(p)); + assert (!is_mmapped(p)); + if (p != m->dv && p != m->top) { + if (sz >= MIN_CHUNK_SIZE) { + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(is_aligned(chunk2mem(p))); + assert(next->prev_foot == sz); + assert(pinuse(p)); + assert (next == m->top || cinuse(next)); + assert(p->fd->bk == p); + assert(p->bk->fd == p); + } + else /* markers are always of size SIZE_T_SIZE */ + assert(sz == SIZE_T_SIZE); + } +} + +/* Check properties of malloced chunks at the point they are malloced */ +static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); + do_check_inuse_chunk(m, p); + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(sz >= MIN_CHUNK_SIZE); + assert(sz >= s); + /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ + assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); + } +} + +/* Check a tree and its subtrees. */ +static void do_check_tree(mstate m, tchunkptr t) { + tchunkptr head = 0; + tchunkptr u = t; + bindex_t tindex = t->index; + size_t tsize = chunksize(t); + bindex_t idx; + compute_tree_index(tsize, idx); + assert(tindex == idx); + assert(tsize >= MIN_LARGE_SIZE); + assert(tsize >= minsize_for_tree_index(idx)); + assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); + + do { /* traverse through chain of same-sized nodes */ + do_check_any_chunk(m, ((mchunkptr)u)); + assert(u->index == tindex); + assert(chunksize(u) == tsize); + assert(!cinuse(u)); + assert(!next_pinuse(u)); + assert(u->fd->bk == u); + assert(u->bk->fd == u); + if (u->parent == 0) { + assert(u->child[0] == 0); + assert(u->child[1] == 0); + } + else { + assert(head == 0); /* only one node on chain has parent */ + head = u; + assert(u->parent != u); + assert (u->parent->child[0] == u || + u->parent->child[1] == u || + *((tbinptr*)(u->parent)) == u); + if (u->child[0] != 0) { + assert(u->child[0]->parent == u); + assert(u->child[0] != u); + do_check_tree(m, u->child[0]); + } + if (u->child[1] != 0) { + assert(u->child[1]->parent == u); + assert(u->child[1] != u); + do_check_tree(m, u->child[1]); + } + if (u->child[0] != 0 && u->child[1] != 0) { + assert(chunksize(u->child[0]) < chunksize(u->child[1])); + } + } + u = u->fd; + } while (u != t); + assert(head != 0); +} + +/* Check all the chunks in a treebin. */ +static void do_check_treebin(mstate m, bindex_t i) { + tbinptr* tb = treebin_at(m, i); + tchunkptr t = *tb; + int empty = (m->treemap & (1U << i)) == 0; + if (t == 0) + assert(empty); + if (!empty) + do_check_tree(m, t); +} + +/* Check all the chunks in a smallbin. */ +static void do_check_smallbin(mstate m, bindex_t i) { + sbinptr b = smallbin_at(m, i); + mchunkptr p = b->bk; + unsigned int empty = (m->smallmap & (1U << i)) == 0; + if (p == b) + assert(empty); + if (!empty) { + for (; p != b; p = p->bk) { + size_t size = chunksize(p); + mchunkptr q; + /* each chunk claims to be free */ + do_check_free_chunk(m, p); + /* chunk belongs in bin */ + assert(small_index(size) == i); + assert(p->bk == b || chunksize(p->bk) == chunksize(p)); + /* chunk is followed by an inuse chunk */ + q = next_chunk(p); + if (q->head != FENCEPOST_HEAD) + do_check_inuse_chunk(m, q); + } + } +} + +/* Find x in a bin. Used in other check functions. */ +static int bin_find(mstate m, mchunkptr x) { + size_t size = chunksize(x); + if (is_small(size)) { + bindex_t sidx = small_index(size); + sbinptr b = smallbin_at(m, sidx); + if (smallmap_is_marked(m, sidx)) { + mchunkptr p = b; + do { + if (p == x) + return 1; + } while ((p = p->fd) != b); + } + } + else { + bindex_t tidx; + compute_tree_index(size, tidx); + if (treemap_is_marked(m, tidx)) { + tchunkptr t = *treebin_at(m, tidx); + size_t sizebits = size << leftshift_for_tree_index(tidx); + while (t != 0 && chunksize(t) != size) { + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + sizebits <<= 1; + } + if (t != 0) { + tchunkptr u = t; + do { + if (u == (tchunkptr)x) + return 1; + } while ((u = u->fd) != t); + } + } + } + return 0; +} + +/* Traverse each chunk and check it; return total */ +static size_t traverse_and_check(mstate m) { + size_t sum = 0; + if (is_initialized(m)) { + msegmentptr s = &m->seg; + sum += m->topsize + TOP_FOOT_SIZE; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + mchunkptr lastq = 0; + assert(pinuse(q)); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + sum += chunksize(q); + if (cinuse(q)) { + assert(!bin_find(m, q)); + do_check_inuse_chunk(m, q); + } + else { + assert(q == m->dv || bin_find(m, q)); + assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ + do_check_free_chunk(m, q); + } + lastq = q; + q = next_chunk(q); + } + s = s->next; + } + } + return sum; +} + +/* Check all properties of malloc_state. */ +static void do_check_malloc_state(mstate m) { + bindex_t i; + size_t total; + /* check bins */ + for (i = 0; i < NSMALLBINS; ++i) + do_check_smallbin(m, i); + for (i = 0; i < NTREEBINS; ++i) + do_check_treebin(m, i); + + if (m->dvsize != 0) { /* check dv chunk */ + do_check_any_chunk(m, m->dv); + assert(m->dvsize == chunksize(m->dv)); + assert(m->dvsize >= MIN_CHUNK_SIZE); + assert(bin_find(m, m->dv) == 0); + } + + if (m->top != 0) { /* check top chunk */ + do_check_top_chunk(m, m->top); + /*assert(m->topsize == chunksize(m->top)); redundant */ + assert(m->topsize > 0); + assert(bin_find(m, m->top) == 0); + } + + total = traverse_and_check(m); + assert(total <= m->footprint); + assert(m->footprint <= m->max_footprint); +} +#endif /* DEBUG */ + +/* ----------------------------- statistics ------------------------------ */ + +#if !NO_MALLINFO +static struct mallinfo internal_mallinfo(mstate m) { + struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + if (!PREACTION(m)) { + check_malloc_state(m); + if (is_initialized(m)) { + size_t nfree = SIZE_T_ONE; /* top always free */ + size_t mfree = m->topsize + TOP_FOOT_SIZE; + size_t sum = mfree; + msegmentptr s = &m->seg; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + size_t sz = chunksize(q); + sum += sz; + if (!cinuse(q)) { + mfree += sz; + ++nfree; + } + q = next_chunk(q); + } + s = s->next; + } + + nm.arena = sum; + nm.ordblks = nfree; + nm.hblkhd = m->footprint - sum; + nm.usmblks = m->max_footprint; + nm.uordblks = m->footprint - mfree; + nm.fordblks = mfree; + nm.keepcost = m->topsize; + } + + POSTACTION(m); + } + return nm; +} +#endif /* !NO_MALLINFO */ + +static void internal_malloc_stats(mstate m) { + if (!PREACTION(m)) { + size_t maxfp = 0; + size_t fp = 0; + size_t used = 0; + check_malloc_state(m); + if (is_initialized(m)) { + msegmentptr s = &m->seg; + maxfp = m->max_footprint; + fp = m->footprint; + used = fp - (m->topsize + TOP_FOOT_SIZE); + + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + if (!cinuse(q)) + used -= chunksize(q); + q = next_chunk(q); + } + s = s->next; + } + } + + fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); + fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); + fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); + + POSTACTION(m); + } +} + +/* ----------------------- Operations on smallbins ----------------------- */ + +/* + Various forms of linking and unlinking are defined as macros. Even + the ones for trees, which are very long but have very short typical + paths. This is ugly but reduces reliance on inlining support of + compilers. +*/ + +/* Link a free chunk into a smallbin */ +#define insert_small_chunk(M, P, S) {\ + bindex_t I = small_index(S);\ + mchunkptr B = smallbin_at(M, I);\ + mchunkptr F = B;\ + assert(S >= MIN_CHUNK_SIZE);\ + if (!smallmap_is_marked(M, I))\ + mark_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, B->fd)))\ + F = B->fd;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + B->fd = P;\ + F->bk = P;\ + P->fd = F;\ + P->bk = B;\ +} + +/* Unlink a chunk from a smallbin */ +#define unlink_small_chunk(M, P, S) {\ + mchunkptr F = P->fd;\ + mchunkptr B = P->bk;\ + bindex_t I = small_index(S);\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (F == B)\ + clear_smallmap(M, I);\ + else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ + (B == smallbin_at(M,I) || ok_address(M, B)))) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Unlink the first chunk from a smallbin */ +#define unlink_first_small_chunk(M, B, P, I) {\ + mchunkptr F = P->fd;\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (B == F)\ + clear_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, F))) {\ + B->fd = F;\ + F->bk = B;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Replace dv node, binning the old one */ +/* Used only when dvsize known to be small */ +#define replace_dv(M, P, S) {\ + size_t DVS = M->dvsize;\ + if (DVS != 0) {\ + mchunkptr DV = M->dv;\ + assert(is_small(DVS));\ + insert_small_chunk(M, DV, DVS);\ + }\ + M->dvsize = S;\ + M->dv = P;\ +} + +/* ------------------------- Operations on trees ------------------------- */ + +/* Insert chunk into tree */ +#define insert_large_chunk(M, X, S) {\ + tbinptr* H;\ + bindex_t I;\ + compute_tree_index(S, I);\ + H = treebin_at(M, I);\ + X->index = I;\ + X->child[0] = X->child[1] = 0;\ + if (!treemap_is_marked(M, I)) {\ + mark_treemap(M, I);\ + *H = X;\ + X->parent = (tchunkptr)H;\ + X->fd = X->bk = X;\ + }\ + else {\ + tchunkptr T = *H;\ + size_t K = S << leftshift_for_tree_index(I);\ + for (;;) {\ + if (chunksize(T) != S) {\ + tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ + K <<= 1;\ + if (*C != 0)\ + T = *C;\ + else if (RTCHECK(ok_address(M, C))) {\ + *C = X;\ + X->parent = T;\ + X->fd = X->bk = X;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + else {\ + tchunkptr F = T->fd;\ + if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ + T->fd = F->bk = X;\ + X->fd = F;\ + X->bk = T;\ + X->parent = 0;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + }\ + }\ +} + +/* + Unlink steps: + + 1. If x is a chained node, unlink it from its same-sized fd/bk links + and choose its bk node as its replacement. + 2. If x was the last node of its size, but not a leaf node, it must + be replaced with a leaf node (not merely one with an open left or + right), to make sure that lefts and rights of descendents + correspond properly to bit masks. We use the rightmost descendent + of x. We could use any other leaf, but this is easy to locate and + tends to counteract removal of leftmosts elsewhere, and so keeps + paths shorter than minimally guaranteed. This doesn't loop much + because on average a node in a tree is near the bottom. + 3. If x is the base of a chain (i.e., has parent links) relink + x's parent and children to x's replacement (or null if none). +*/ + +#define unlink_large_chunk(M, X) {\ + tchunkptr XP = X->parent;\ + tchunkptr R;\ + if (X->bk != X) {\ + tchunkptr F = X->fd;\ + R = X->bk;\ + if (RTCHECK(ok_address(M, F))) {\ + F->bk = R;\ + R->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + tchunkptr* RP;\ + if (((R = *(RP = &(X->child[1]))) != 0) ||\ + ((R = *(RP = &(X->child[0]))) != 0)) {\ + tchunkptr* CP;\ + while ((*(CP = &(R->child[1])) != 0) ||\ + (*(CP = &(R->child[0])) != 0)) {\ + R = *(RP = CP);\ + }\ + if (RTCHECK(ok_address(M, RP)))\ + *RP = 0;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + }\ + if (XP != 0) {\ + tbinptr* H = treebin_at(M, X->index);\ + if (X == *H) {\ + if ((*H = R) == 0) \ + clear_treemap(M, X->index);\ + }\ + else if (RTCHECK(ok_address(M, XP))) {\ + if (XP->child[0] == X) \ + XP->child[0] = R;\ + else \ + XP->child[1] = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + if (R != 0) {\ + if (RTCHECK(ok_address(M, R))) {\ + tchunkptr C0, C1;\ + R->parent = XP;\ + if ((C0 = X->child[0]) != 0) {\ + if (RTCHECK(ok_address(M, C0))) {\ + R->child[0] = C0;\ + C0->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + if ((C1 = X->child[1]) != 0) {\ + if (RTCHECK(ok_address(M, C1))) {\ + R->child[1] = C1;\ + C1->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ +} + +/* Relays to large vs small bin operations */ + +#define insert_chunk(M, P, S)\ + if (is_small(S)) insert_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } + +#define unlink_chunk(M, P, S)\ + if (is_small(S)) unlink_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } + + +/* Relays to internal calls to malloc/free from realloc, memalign etc */ + +#if ONLY_MSPACES +#define internal_malloc(m, b) mspace_malloc(m, b) +#define internal_free(m, mem) mspace_free(m,mem); +#else /* ONLY_MSPACES */ +#if MSPACES +#define internal_malloc(m, b)\ + (m == gm)? dlmalloc(b) : mspace_malloc(m, b) +#define internal_free(m, mem)\ + if (m == gm) dlfree(mem); else mspace_free(m,mem); +#else /* MSPACES */ +#define internal_malloc(m, b) dlmalloc(b) +#define internal_free(m, mem) dlfree(mem) +#endif /* MSPACES */ +#endif /* ONLY_MSPACES */ + +/* ----------------------- Direct-mmapping chunks ----------------------- */ + +/* + Directly mmapped chunks are set up with an offset to the start of + the mmapped region stored in the prev_foot field of the chunk. This + allows reconstruction of the required argument to MUNMAP when freed, + and also allows adjustment of the returned chunk to meet alignment + requirements (especially in memalign). There is also enough space + allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain + the PINUSE bit so frees can be checked. +*/ + +/* Malloc using mmap */ +static void* mmap_alloc(mstate m, size_t nb) { + size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + if (mmsize > nb) { /* Check for wrap around 0 */ + char* mm = (char*)(DIRECT_MMAP(mmsize)); + if (mm != CMFAIL) { + size_t offset = align_offset(chunk2mem(mm)); + size_t psize = mmsize - offset - MMAP_FOOT_PAD; + mchunkptr p = (mchunkptr)(mm + offset); + p->prev_foot = offset | IS_MMAPPED_BIT; + (p)->head = (psize|CINUSE_BIT); + mark_inuse_foot(m, p, psize); + chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; + + if (mm < m->least_addr) + m->least_addr = mm; + if ((m->footprint += mmsize) > m->max_footprint) + m->max_footprint = m->footprint; + assert(is_aligned(chunk2mem(p))); + check_mmapped_chunk(m, p); + return chunk2mem(p); + } + } + return 0; +} + +/* Realloc using mmap */ +static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { + size_t oldsize = chunksize(oldp); + if (is_small(nb)) /* Can't shrink mmap regions below small size */ + return 0; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= nb + SIZE_T_SIZE && + (oldsize - nb) <= (mparams.granularity << 1)) + return oldp; + else { + size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, 1); + if (cp != CMFAIL) { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = (psize|CINUSE_BIT); + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + return newp; + } + } + return 0; +} + +/* -------------------------- mspace management -------------------------- */ + +/* Initialize top chunk and its size */ +static void init_top(mstate m, mchunkptr p, size_t psize) { + /* Ensure alignment */ + size_t offset = align_offset(chunk2mem(p)); + p = (mchunkptr)((char*)p + offset); + psize -= offset; + + m->top = p; + m->topsize = psize; + p->head = psize | PINUSE_BIT; + /* set size of fake trailing chunk holding overhead space only once */ + chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; + m->trim_check = mparams.trim_threshold; /* reset on each update */ +} + +/* Initialize bins for a new mstate that is otherwise zeroed out */ +static void init_bins(mstate m) { + /* Establish circular links for smallbins */ + bindex_t i; + for (i = 0; i < NSMALLBINS; ++i) { + sbinptr bin = smallbin_at(m,i); + bin->fd = bin->bk = bin; + } +} + +#if PROCEED_ON_ERROR + +/* default corruption action */ +static void reset_on_error(mstate m) { + int i; + ++malloc_corruption_error_count; + /* Reinitialize fields to forget about all memory */ + m->smallbins = m->treebins = 0; + m->dvsize = m->topsize = 0; + m->seg.base = 0; + m->seg.size = 0; + m->seg.next = 0; + m->top = m->dv = 0; + for (i = 0; i < NTREEBINS; ++i) + *treebin_at(m, i) = 0; + init_bins(m); +} +#endif /* PROCEED_ON_ERROR */ + +/* Allocate chunk and prepend remainder with chunk in successor base. */ +static void* prepend_alloc(mstate m, char* newbase, char* oldbase, + size_t nb) { + mchunkptr p = align_as_chunk(newbase); + mchunkptr oldfirst = align_as_chunk(oldbase); + size_t psize = (char*)oldfirst - (char*)p; + mchunkptr q = chunk_plus_offset(p, nb); + size_t qsize = psize - nb; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + + assert((char*)oldfirst > (char*)q); + assert(pinuse(oldfirst)); + assert(qsize >= MIN_CHUNK_SIZE); + + /* consolidate remainder with first chunk of old base */ + if (oldfirst == m->top) { + size_t tsize = m->topsize += qsize; + m->top = q; + q->head = tsize | PINUSE_BIT; + check_top_chunk(m, q); + } + else if (oldfirst == m->dv) { + size_t dsize = m->dvsize += qsize; + m->dv = q; + set_size_and_pinuse_of_free_chunk(q, dsize); + } + else { + if (!cinuse(oldfirst)) { + size_t nsize = chunksize(oldfirst); + unlink_chunk(m, oldfirst, nsize); + oldfirst = chunk_plus_offset(oldfirst, nsize); + qsize += nsize; + } + set_free_with_pinuse(q, qsize, oldfirst); + insert_chunk(m, q, qsize); + check_free_chunk(m, q); + } + + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); +} + +/* Add a segment to hold a new noncontiguous region */ +static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { + /* Determine locations and sizes of segment, fenceposts, old top */ + char* old_top = (char*)m->top; + msegmentptr oldsp = segment_holding(m, old_top); + char* old_end = oldsp->base + oldsp->size; + size_t ssize = pad_request(sizeof(struct malloc_segment)); + char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + size_t offset = align_offset(chunk2mem(rawsp)); + char* asp = rawsp + offset; + char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; + mchunkptr sp = (mchunkptr)csp; + msegmentptr ss = (msegmentptr)(chunk2mem(sp)); + mchunkptr tnext = chunk_plus_offset(sp, ssize); + mchunkptr p = tnext; + int nfences = 0; + + /* reset top to new space */ + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + + /* Set up segment record */ + assert(is_aligned(ss)); + set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); + *ss = m->seg; /* Push current record */ + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmapped; + m->seg.next = ss; + + /* Insert trailing fenceposts */ + for (;;) { + mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); + p->head = FENCEPOST_HEAD; + ++nfences; + if ((char*)(&(nextp->head)) < old_end) + p = nextp; + else + break; + } + assert(nfences >= 2); + + /* Insert the rest of old top into a bin as an ordinary free chunk */ + if (csp != old_top) { + mchunkptr q = (mchunkptr)old_top; + size_t psize = csp - old_top; + mchunkptr tn = chunk_plus_offset(q, psize); + set_free_with_pinuse(q, psize, tn); + insert_chunk(m, q, psize); + } + + check_top_chunk(m, m->top); +} + +/* -------------------------- System allocation -------------------------- */ + +/* Get memory from system using MORECORE or MMAP */ +static void* sys_alloc(mstate m, size_t nb) { + char* tbase = CMFAIL; + size_t tsize = 0; + flag_t mmap_flag = 0; + + init_mparams(); + + /* Directly map large chunks */ + if (use_mmap(m) && nb >= mparams.mmap_threshold) { + void* mem = mmap_alloc(m, nb); + if (mem != 0) + return mem; + } + + /* + Try getting memory in any of three ways (in most-preferred to + least-preferred order): + 1. A call to MORECORE that can normally contiguously extend memory. + (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or + or main space is mmapped or a previous contiguous call failed) + 2. A call to MMAP new space (disabled if not HAVE_MMAP). + Note that under the default settings, if MORECORE is unable to + fulfill a request, and HAVE_MMAP is true, then mmap is + used as a noncontiguous system allocator. This is a useful backup + strategy for systems with holes in address spaces -- in this case + sbrk cannot contiguously expand the heap, but mmap may be able to + find space. + 3. A call to MORECORE that cannot usually contiguously extend memory. + (disabled if not HAVE_MORECORE) + */ + + if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { + char* br = CMFAIL; + msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); + size_t asize = 0; + ACQUIRE_MORECORE_LOCK(); + + if (ss == 0) { /* First time through or recovery */ + char* base = (char*)CALL_MORECORE(0); + if (base != CMFAIL) { + asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); + /* Adjust to end on a page boundary */ + if (!is_page_aligned(base)) + asize += (page_align((size_t)base) - (size_t)base); + /* Can't call MORECORE if size is negative when treated as signed */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == base) { + tbase = base; + tsize = asize; + } + } + } + else { + /* Subtract out existing available top space from MORECORE request. */ + asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE); + /* Use mem here only if it did continuously extend old space */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { + tbase = br; + tsize = asize; + } + } + + if (tbase == CMFAIL) { /* Cope with partial failure */ + if (br != CMFAIL) { /* Try to use/extend the space we did get */ + if (asize < HALF_MAX_SIZE_T && + asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) { + size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize); + if (esize < HALF_MAX_SIZE_T) { + char* end = (char*)CALL_MORECORE(esize); + if (end != CMFAIL) + asize += esize; + else { /* Can't use; try to release */ + (void) CALL_MORECORE(-asize); + br = CMFAIL; + } + } + } + } + if (br != CMFAIL) { /* Use the space we did get */ + tbase = br; + tsize = asize; + } + else + disable_contiguous(m); /* Don't try contiguous path in the future */ + } + + RELEASE_MORECORE_LOCK(); + } + + if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ + size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; + size_t rsize = granularity_align(req); + if (rsize > nb) { /* Fail if wraps around zero */ + char* mp = (char*)(CALL_MMAP(rsize)); + if (mp != CMFAIL) { + tbase = mp; + tsize = rsize; + mmap_flag = IS_MMAPPED_BIT; + } + } + } + + if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ + size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); + if (asize < HALF_MAX_SIZE_T) { + char* br = CMFAIL; + char* end = CMFAIL; + ACQUIRE_MORECORE_LOCK(); + br = (char*)(CALL_MORECORE(asize)); + end = (char*)(CALL_MORECORE(0)); + RELEASE_MORECORE_LOCK(); + if (br != CMFAIL && end != CMFAIL && br < end) { + size_t ssize = end - br; + if (ssize > nb + TOP_FOOT_SIZE) { + tbase = br; + tsize = ssize; + } + } + } + } + + if (tbase != CMFAIL) { + + if ((m->footprint += tsize) > m->max_footprint) + m->max_footprint = m->footprint; + + if (!is_initialized(m)) { /* first-time initialization */ + m->seg.base = m->least_addr = tbase; + m->seg.size = tsize; + m->seg.sflags = mmap_flag; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + init_bins(m); +#if !ONLY_MSPACES + if (is_global(m)) + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + else +#endif + { + /* Offset top by embedded malloc_state */ + mchunkptr mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); + } + } + + else { + /* Try to merge with an existing segment */ + msegmentptr sp = &m->seg; + /* Only consider most recent segment if traversal suppressed */ + while (sp != 0 && tbase != sp->base + sp->size) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & IS_MMAPPED_BIT) == mmap_flag && + segment_holds(sp, m->top)) { /* append */ + sp->size += tsize; + init_top(m, m->top, m->topsize + tsize); + } + else { + if (tbase < m->least_addr) + m->least_addr = tbase; + sp = &m->seg; + while (sp != 0 && sp->base != tbase + tsize) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) { + char* oldbase = sp->base; + sp->base = tbase; + sp->size += tsize; + return prepend_alloc(m, tbase, oldbase, nb); + } + else + add_segment(m, tbase, tsize, mmap_flag); + } + } + + if (nb < m->topsize) { /* Allocate from new or extended top space */ + size_t rsize = m->topsize -= nb; + mchunkptr p = m->top; + mchunkptr r = m->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + check_top_chunk(m, m->top); + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); + } + } + + MALLOC_FAILURE_ACTION; + return 0; +} + +/* ----------------------- system deallocation -------------------------- */ + +/* Unmap and unlink any mmapped segments that don't contain used chunks */ +static size_t release_unused_segments(mstate m) { + size_t released = 0; + int nsegs = 0; + msegmentptr pred = &m->seg; + msegmentptr sp = pred->next; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + msegmentptr next = sp->next; + ++nsegs; + if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { + mchunkptr p = align_as_chunk(base); + size_t psize = chunksize(p); + /* Can unmap if first chunk holds entire segment and not pinned */ + if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { + tchunkptr tp = (tchunkptr)p; + assert(segment_holds(sp, (char*)sp)); + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + else { + unlink_large_chunk(m, tp); + } + if (CALL_MUNMAP(base, size) == 0) { + released += size; + m->footprint -= size; + /* unlink obsoleted record */ + sp = pred; + sp->next = next; + } + else { /* back out if cannot unmap */ + insert_large_chunk(m, tp, psize); + } + } + } + if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ + break; + pred = sp; + sp = next; + } + /* Reset check counter */ + m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)? + nsegs : MAX_RELEASE_CHECK_RATE); + return released; +} + +static int sys_trim(mstate m, size_t pad) { + size_t released = 0; + if (pad < MAX_REQUEST && is_initialized(m)) { + pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ + + if (m->topsize > pad) { + /* Shrink top space in granularity-size units, keeping at least one */ + size_t unit = mparams.granularity; + size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - + SIZE_T_ONE) * unit; + msegmentptr sp = segment_holding(m, (char*)m->top); + + if (!is_extern_segment(sp)) { + if (is_mmapped_segment(sp)) { + if (HAVE_MMAP && + sp->size >= extra && + !has_segment_link(m, sp)) { /* can't shrink if pinned */ + size_t newsize = sp->size - extra; + /* Prefer mremap, fall back to munmap */ + if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || + (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { + released = extra; + } + } + } + else if (HAVE_MORECORE) { + if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ + extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; + ACQUIRE_MORECORE_LOCK(); + { + /* Make sure end of memory is where we last set it. */ + char* old_br = (char*)(CALL_MORECORE(0)); + if (old_br == sp->base + sp->size) { + char* rel_br = (char*)(CALL_MORECORE(-extra)); + char* new_br = (char*)(CALL_MORECORE(0)); + if (rel_br != CMFAIL && new_br < old_br) + released = old_br - new_br; + } + } + RELEASE_MORECORE_LOCK(); + } + } + + if (released != 0) { + sp->size -= released; + m->footprint -= released; + init_top(m, m->top, m->topsize - released); + check_top_chunk(m, m->top); + } + } + + /* Unmap any unused mmapped segments */ + if (HAVE_MMAP) + released += release_unused_segments(m); + + /* On failure, disable autotrim to avoid repeated failed future calls */ + if (released == 0 && m->topsize > m->trim_check) + m->trim_check = MAX_SIZE_T; + } + + return (released != 0)? 1 : 0; +} + +/* ---------------------------- malloc support --------------------------- */ + +/* allocate a large request from the best fitting chunk in a treebin */ +static void* tmalloc_large(mstate m, size_t nb) { + tchunkptr v = 0; + size_t rsize = -nb; /* Unsigned negation */ + tchunkptr t; + bindex_t idx; + compute_tree_index(nb, idx); + + if ((t = *treebin_at(m, idx)) != 0) { + /* Traverse tree for this bin looking for node with size == nb */ + size_t sizebits = nb << leftshift_for_tree_index(idx); + tchunkptr rst = 0; /* The deepest untaken right subtree */ + for (;;) { + tchunkptr rt; + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + v = t; + if ((rsize = trem) == 0) + break; + } + rt = t->child[1]; + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + if (rt != 0 && rt != t) + rst = rt; + if (t == 0) { + t = rst; /* set t to least subtree holding sizes > nb */ + break; + } + sizebits <<= 1; + } + } + + if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ + binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; + if (leftbits != 0) { + bindex_t i; + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + t = *treebin_at(m, i); + } + } + + while (t != 0) { /* find smallest of tree or subtree */ + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + t = leftmost_child(t); + } + + /* If dv is a better fit, return 0 so malloc will use it */ + if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { + if (RTCHECK(ok_address(m, v))) { /* split */ + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + insert_chunk(m, r, rsize); + } + return chunk2mem(v); + } + } + CORRUPTION_ERROR_ACTION(m); + } + return 0; +} + +/* allocate a small request from the best fitting chunk in a treebin */ +static void* tmalloc_small(mstate m, size_t nb) { + tchunkptr t, v; + size_t rsize; + bindex_t i; + binmap_t leastbit = least_bit(m->treemap); + compute_bit2idx(leastbit, i); + + v = t = *treebin_at(m, i); + rsize = chunksize(t) - nb; + + while ((t = leftmost_child(t)) != 0) { + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + } + + if (RTCHECK(ok_address(m, v))) { + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(m, r, rsize); + } + return chunk2mem(v); + } + } + + CORRUPTION_ERROR_ACTION(m); + return 0; +} + +/* --------------------------- realloc support --------------------------- */ + +static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + return 0; + } + if (!PREACTION(m)) { + mchunkptr oldp = mem2chunk(oldmem); + size_t oldsize = chunksize(oldp); + mchunkptr next = chunk_plus_offset(oldp, oldsize); + mchunkptr newp = 0; + void* extra = 0; + + /* Try to either shrink or extend into top. Else malloc-copy-free */ + + if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && + ok_next(oldp, next) && ok_pinuse(next))) { + size_t nb = request2size(bytes); + if (is_mmapped(oldp)) + newp = mmap_resize(m, oldp, nb); + else if (oldsize >= nb) { /* already big enough */ + size_t rsize = oldsize - nb; + newp = oldp; + if (rsize >= MIN_CHUNK_SIZE) { + mchunkptr remainder = chunk_plus_offset(newp, nb); + set_inuse(m, newp, nb); + set_inuse(m, remainder, rsize); + extra = chunk2mem(remainder); + } + } + else if (next == m->top && oldsize + m->topsize > nb) { + /* Expand into top */ + size_t newsize = oldsize + m->topsize; + size_t newtopsize = newsize - nb; + mchunkptr newtop = chunk_plus_offset(oldp, nb); + set_inuse(m, oldp, nb); + newtop->head = newtopsize |PINUSE_BIT; + m->top = newtop; + m->topsize = newtopsize; + newp = oldp; + } + } + else { + USAGE_ERROR_ACTION(m, oldmem); + POSTACTION(m); + return 0; + } + + POSTACTION(m); + + if (newp != 0) { + if (extra != 0) { + internal_free(m, extra); + } + check_inuse_chunk(m, newp); + return chunk2mem(newp); + } + else { + void* newmem = internal_malloc(m, bytes); + if (newmem != 0) { + size_t oc = oldsize - overhead_for(oldp); + memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); + internal_free(m, oldmem); + } + return newmem; + } + } + return 0; +} + +/* --------------------------- memalign support -------------------------- */ + +static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { + if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ + return internal_malloc(m, bytes); + if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ + alignment = MIN_CHUNK_SIZE; + if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ + size_t a = MALLOC_ALIGNMENT << 1; + while (a < alignment) a <<= 1; + alignment = a; + } + + if (bytes >= MAX_REQUEST - alignment) { + if (m != 0) { /* Test isn't needed but avoids compiler warning */ + MALLOC_FAILURE_ACTION; + } + } + else { + size_t nb = request2size(bytes); + size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; + char* mem = (char*)internal_malloc(m, req); + if (mem != 0) { + void* leader = 0; + void* trailer = 0; + mchunkptr p = mem2chunk(mem); + + if (PREACTION(m)) return 0; + if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ + /* + Find an aligned spot inside chunk. Since we need to give + back leading space in a chunk of at least MIN_CHUNK_SIZE, if + the first calculation places us at a spot with less than + MIN_CHUNK_SIZE leader, we can move to the next aligned spot. + We've allocated enough total room so that this is always + possible. + */ + char* br = (char*)mem2chunk((size_t)(((size_t)(mem + + alignment - + SIZE_T_ONE)) & + -alignment)); + char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? + br : br+alignment; + mchunkptr newp = (mchunkptr)pos; + size_t leadsize = pos - (char*)(p); + size_t newsize = chunksize(p) - leadsize; + + if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ + newp->prev_foot = p->prev_foot + leadsize; + newp->head = (newsize|CINUSE_BIT); + } + else { /* Otherwise, give back leader, use the rest */ + set_inuse(m, newp, newsize); + set_inuse(m, p, leadsize); + leader = chunk2mem(p); + } + p = newp; + } + + /* Give back spare room at the end */ + if (!is_mmapped(p)) { + size_t size = chunksize(p); + if (size > nb + MIN_CHUNK_SIZE) { + size_t remainder_size = size - nb; + mchunkptr remainder = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, remainder, remainder_size); + trailer = chunk2mem(remainder); + } + } + + assert (chunksize(p) >= nb); + assert((((size_t)(chunk2mem(p))) % alignment) == 0); + check_inuse_chunk(m, p); + POSTACTION(m); + if (leader != 0) { + internal_free(m, leader); + } + if (trailer != 0) { + internal_free(m, trailer); + } + return chunk2mem(p); + } + } + return 0; +} + +/* ------------------------ comalloc/coalloc support --------------------- */ + +static void** ialloc(mstate m, + size_t n_elements, + size_t* sizes, + int opts, + void* chunks[]) { + /* + This provides common support for independent_X routines, handling + all of the combinations that can result. + + The opts arg has: + bit 0 set if all elements are same size (using sizes[0]) + bit 1 set if elements should be zeroed + */ + + size_t element_size; /* chunksize of each element, if all same */ + size_t contents_size; /* total size of elements */ + size_t array_size; /* request size of pointer array */ + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + void** marray; /* either "chunks" or malloced ptr array */ + mchunkptr array_chunk; /* chunk for malloced ptr array */ + flag_t was_enabled; /* to disable mmap */ + size_t size; + size_t i; + + /* compute array length, if needed */ + if (chunks != 0) { + if (n_elements == 0) + return chunks; /* nothing to do */ + marray = chunks; + array_size = 0; + } + else { + /* if empty req, must still return chunk representing empty array */ + if (n_elements == 0) + return (void**)internal_malloc(m, 0); + marray = 0; + array_size = request2size(n_elements * (sizeof(void*))); + } + + /* compute total element size */ + if (opts & 0x1) { /* all-same-size */ + element_size = request2size(*sizes); + contents_size = n_elements * element_size; + } + else { /* add up all the sizes */ + element_size = 0; + contents_size = 0; + for (i = 0; i != n_elements; ++i) + contents_size += request2size(sizes[i]); + } + + size = contents_size + array_size; + + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + mem = internal_malloc(m, size - CHUNK_OVERHEAD); + if (was_enabled) + enable_mmap(m); + if (mem == 0) + return 0; + + if (PREACTION(m)) return 0; + p = mem2chunk(mem); + remainder_size = chunksize(p); + + assert(!is_mmapped(p)); + + if (opts & 0x2) { /* optionally clear the elements */ + memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); + } + + /* If not provided, allocate the pointer array as final part of chunk */ + if (marray == 0) { + size_t array_chunk_size; + array_chunk = chunk_plus_offset(p, contents_size); + array_chunk_size = remainder_size - contents_size; + marray = (void**) (chunk2mem(array_chunk)); + set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); + remainder_size = contents_size; + } + + /* split out elements */ + for (i = 0; ; ++i) { + marray[i] = chunk2mem(p); + if (i != n_elements-1) { + if (element_size != 0) + size = element_size; + else + size = request2size(sizes[i]); + remainder_size -= size; + set_size_and_pinuse_of_inuse_chunk(m, p, size); + p = chunk_plus_offset(p, size); + } + else { /* the final element absorbs any overallocation slop */ + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + break; + } + } + +#if DEBUG + if (marray != chunks) { + /* final element must have exactly exhausted chunk */ + if (element_size != 0) { + assert(remainder_size == element_size); + } + else { + assert(remainder_size == request2size(sizes[i])); + } + check_inuse_chunk(m, mem2chunk(marray)); + } + for (i = 0; i != n_elements; ++i) + check_inuse_chunk(m, mem2chunk(marray[i])); + +#endif /* DEBUG */ + + POSTACTION(m); + return marray; +} + + +/* -------------------------- public routines ---------------------------- */ + +#if !ONLY_MSPACES + +void* dlmalloc(size_t bytes) { + /* + Basic algorithm: + If a small request (< 256 bytes minus per-chunk overhead): + 1. If one exists, use a remainderless chunk in associated smallbin. + (Remainderless means that there are too few excess bytes to + represent as a chunk.) + 2. If it is big enough, use the dv chunk, which is normally the + chunk adjacent to the one used for the most recent small request. + 3. If one exists, split the smallest available chunk in a bin, + saving remainder in dv. + 4. If it is big enough, use the top chunk. + 5. If available, get memory from system and use it + Otherwise, for a large request: + 1. Find the smallest available binned chunk that fits, and use it + if it is better fitting than dv chunk, splitting if necessary. + 2. If better fitting than any binned chunk, use the dv chunk. + 3. If it is big enough, use the top chunk. + 4. If request size >= mmap threshold, try to directly mmap this chunk. + 5. If available, get memory from system and use it + + The ugly goto's here ensure that postaction occurs along all paths. + */ + + if (!PREACTION(gm)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = gm->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(gm, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(gm, b, p, idx); + set_inuse_and_pinuse(gm, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb > gm->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(gm, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(gm, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(gm, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(gm, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + + if (nb <= gm->dvsize) { + size_t rsize = gm->dvsize - nb; + mchunkptr p = gm->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = gm->dv = chunk_plus_offset(p, nb); + gm->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + } + else { /* exhaust dv */ + size_t dvs = gm->dvsize; + gm->dvsize = 0; + gm->dv = 0; + set_inuse_and_pinuse(gm, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb < gm->topsize) { /* Split top */ + size_t rsize = gm->topsize -= nb; + mchunkptr p = gm->top; + mchunkptr r = gm->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + mem = chunk2mem(p); + check_top_chunk(gm, gm->top); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + mem = sys_alloc(gm, nb); + + postaction: + POSTACTION(gm); + return mem; + } + + return 0; +} + +void dlfree(void* mem) { + /* + Consolidate freed chunks with preceeding or succeeding bordering + free chunks, if they exist, and then place in a bin. Intermixed + with special cases for top, dv, mmapped chunks, and usage errors. + */ + + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } +#else /* FOOTERS */ +#define fm gm +#endif /* FOOTERS */ + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if ((prevsize & IS_MMAPPED_BIT) != 0) { + prevsize &= ~IS_MMAPPED_BIT; + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +#if !FOOTERS +#undef fm +#endif /* FOOTERS */ +} + +void* dlcalloc(size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = dlmalloc(req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* dlrealloc(void* oldmem, size_t bytes) { + if (oldmem == 0) + return dlmalloc(bytes); +#ifdef REALLOC_ZERO_BYTES_FREES + if (bytes == 0) { + dlfree(oldmem); + return 0; + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(mem2chunk(oldmem)); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + return internal_realloc(m, oldmem, bytes); + } +} + +void* dlmemalign(size_t alignment, size_t bytes) { + return internal_memalign(gm, alignment, bytes); +} + +void** dlindependent_calloc(size_t n_elements, size_t elem_size, + void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + return ialloc(gm, n_elements, &sz, 3, chunks); +} + +void** dlindependent_comalloc(size_t n_elements, size_t sizes[], + void* chunks[]) { + return ialloc(gm, n_elements, sizes, 0, chunks); +} + +void* dlvalloc(size_t bytes) { + size_t pagesz; + init_mparams(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, bytes); +} + +void* dlpvalloc(size_t bytes) { + size_t pagesz; + init_mparams(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); +} + +int dlmalloc_trim(size_t pad) { + int result = 0; + if (!PREACTION(gm)) { + result = sys_trim(gm, pad); + POSTACTION(gm); + } + return result; +} + +size_t dlmalloc_footprint(void) { + return gm->footprint; +} + +size_t dlmalloc_max_footprint(void) { + return gm->max_footprint; +} + +#if !NO_MALLINFO +struct mallinfo dlmallinfo(void) { + return internal_mallinfo(gm); +} +#endif /* NO_MALLINFO */ + +void dlmalloc_stats() { + internal_malloc_stats(gm); +} + +size_t dlmalloc_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (cinuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int dlmallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* !ONLY_MSPACES */ + +/* ----------------------------- user mspaces ---------------------------- */ + +#if MSPACES + +static mstate init_user_mstate(char* tbase, size_t tsize) { + size_t msize = pad_request(sizeof(struct malloc_state)); + mchunkptr mn; + mchunkptr msp = align_as_chunk(tbase); + mstate m = (mstate)(chunk2mem(msp)); + memset(m, 0, msize); + INITIAL_LOCK(&m->mutex); + msp->head = (msize|PINUSE_BIT|CINUSE_BIT); + m->seg.base = m->least_addr = tbase; + m->seg.size = m->footprint = m->max_footprint = tsize; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + m->mflags = mparams.default_mflags; + m->extp = 0; + m->exts = 0; + disable_contiguous(m); + init_bins(m); + mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); + check_top_chunk(m, m->top); + return m; +} + +mspace create_mspace(size_t capacity, int locked) { + mstate m = 0; + size_t msize = pad_request(sizeof(struct malloc_state)); + init_mparams(); /* Ensure pagesize etc initialized */ + + if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + size_t rs = ((capacity == 0)? mparams.granularity : + (capacity + TOP_FOOT_SIZE + msize)); + size_t tsize = granularity_align(rs); + char* tbase = (char*)(CALL_MMAP(tsize)); + if (tbase != CMFAIL) { + m = init_user_mstate(tbase, tsize); + m->seg.sflags = IS_MMAPPED_BIT; + set_lock(m, locked); + } + } + return (mspace)m; +} + +mspace create_mspace_with_base(void* base, size_t capacity, int locked) { + mstate m = 0; + size_t msize = pad_request(sizeof(struct malloc_state)); + init_mparams(); /* Ensure pagesize etc initialized */ + + if (capacity > msize + TOP_FOOT_SIZE && + capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + m = init_user_mstate((char*)base, capacity); + m->seg.sflags = EXTERN_BIT; + set_lock(m, locked); + } + return (mspace)m; +} + +size_t destroy_mspace(mspace msp) { + size_t freed = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + msegmentptr sp = &ms->seg; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + flag_t flag = sp->sflags; + sp = sp->next; + if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) && + CALL_MUNMAP(base, size) == 0) + freed += size; + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return freed; +} + +/* + mspace versions of routines are near-clones of the global + versions. This is not so nice but better than the alternatives. +*/ + + +void* mspace_malloc(mspace msp, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (!PREACTION(ms)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = ms->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(ms, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(ms, b, p, idx); + set_inuse_and_pinuse(ms, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb > ms->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(ms, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(ms, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(ms, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(ms, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + + if (nb <= ms->dvsize) { + size_t rsize = ms->dvsize - nb; + mchunkptr p = ms->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = ms->dv = chunk_plus_offset(p, nb); + ms->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + } + else { /* exhaust dv */ + size_t dvs = ms->dvsize; + ms->dvsize = 0; + ms->dv = 0; + set_inuse_and_pinuse(ms, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb < ms->topsize) { /* Split top */ + size_t rsize = ms->topsize -= nb; + mchunkptr p = ms->top; + mchunkptr r = ms->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + mem = chunk2mem(p); + check_top_chunk(ms, ms->top); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + mem = sys_alloc(ms, nb); + + postaction: + POSTACTION(ms); + return mem; + } + + return 0; +} + +void mspace_free(mspace msp, void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); +#else /* FOOTERS */ + mstate fm = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if ((prevsize & IS_MMAPPED_BIT) != 0) { + prevsize &= ~IS_MMAPPED_BIT; + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +} + +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = internal_malloc(ms, req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { + if (oldmem == 0) + return mspace_malloc(msp, bytes); +#ifdef REALLOC_ZERO_BYTES_FREES + if (bytes == 0) { + mspace_free(msp, oldmem); + return 0; + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { +#if FOOTERS + mchunkptr p = mem2chunk(oldmem); + mstate ms = get_mstate_for(p); +#else /* FOOTERS */ + mstate ms = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return internal_realloc(ms, oldmem, bytes); + } +} + +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return internal_memalign(ms, alignment, bytes); +} + +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, &sz, 3, chunks); +} + +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, sizes, 0, chunks); +} + +int mspace_trim(mspace msp, size_t pad) { + int result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + result = sys_trim(ms, pad); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +void mspace_malloc_stats(mspace msp) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + internal_malloc_stats(ms); + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} + +size_t mspace_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + + +size_t mspace_max_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->max_footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + + +#if !NO_MALLINFO +struct mallinfo mspace_mallinfo(mspace msp) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + return internal_mallinfo(ms); +} +#endif /* NO_MALLINFO */ + +size_t mspace_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (cinuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int mspace_mallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* MSPACES */ + +/* -------------------- Alternative MORECORE functions ------------------- */ + +/* + Guidelines for creating a custom version of MORECORE: + + * For best performance, MORECORE should allocate in multiples of pagesize. + * MORECORE may allocate more memory than requested. (Or even less, + but this will usually result in a malloc failure.) + * MORECORE must not allocate memory when given argument zero, but + instead return one past the end address of memory from previous + nonzero call. + * For best performance, consecutive calls to MORECORE with positive + arguments should return increasing addresses, indicating that + space has been contiguously extended. + * Even though consecutive calls to MORECORE need not return contiguous + addresses, it must be OK for malloc'ed chunks to span multiple + regions in those cases where they do happen to be contiguous. + * MORECORE need not handle negative arguments -- it may instead + just return MFAIL when given negative arguments. + Negative arguments are always multiples of pagesize. MORECORE + must not misinterpret negative args as large positive unsigned + args. You can suppress all such calls from even occurring by defining + MORECORE_CANNOT_TRIM, + + As an example alternative MORECORE, here is a custom allocator + kindly contributed for pre-OSX macOS. It uses virtually but not + necessarily physically contiguous non-paged memory (locked in, + present and won't get swapped out). You can use it by uncommenting + this section, adding some #includes, and setting up the appropriate + defines above: + + #define MORECORE osMoreCore + + There is also a shutdown routine that should somehow be called for + cleanup upon program exit. + + #define MAX_POOL_ENTRIES 100 + #define MINIMUM_MORECORE_SIZE (64 * 1024U) + static int next_os_pool; + void *our_os_pools[MAX_POOL_ENTRIES]; + + void *osMoreCore(int size) + { + void *ptr = 0; + static void *sbrk_top = 0; + + if (size > 0) + { + if (size < MINIMUM_MORECORE_SIZE) + size = MINIMUM_MORECORE_SIZE; + if (CurrentExecutionLevel() == kTaskLevel) + ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); + if (ptr == 0) + { + return (void *) MFAIL; + } + // save ptrs so they can be freed during cleanup + our_os_pools[next_os_pool] = ptr; + next_os_pool++; + ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); + sbrk_top = (char *) ptr + size; + return ptr; + } + else if (size < 0) + { + // we don't currently support shrink behavior + return (void *) MFAIL; + } + else + { + return sbrk_top; + } + } + + // cleanup any allocated memory pools + // called as last thing before shutting down driver + + void osCleanupMem(void) + { + void **ptr; + + for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) + if (*ptr) + { + PoolDeallocate(*ptr); + *ptr = 0; + } + } + +*/ + + +/* ----------------------------------------------------------------------- +History: + V2.8.4 (not yet released) + * Fix bad error check in mspace_footprint + * Adaptations for ptmalloc, courtesy of Wolfram Gloger. + * Reentrant spin locks, courtesy of Earl Chew and others + * Win32 improvements, courtesy of Niall Douglas and Earl Chew + * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options + * Various small adjustments to reduce warnings on some compilers + * Extension hook in malloc_state + + V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) + * Add max_footprint functions + * Ensure all appropriate literals are size_t + * Fix conditional compilation problem for some #define settings + * Avoid concatenating segments with the one provided + in create_mspace_with_base + * Rename some variables to avoid compiler shadowing warnings + * Use explicit lock initialization. + * Better handling of sbrk interference. + * Simplify and fix segment insertion, trimming and mspace_destroy + * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x + * Thanks especially to Dennis Flanagan for help on these. + + V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) + * Fix memalign brace error. + + V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) + * Fix improper #endif nesting in C++ + * Add explicit casts needed for C++ + + V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) + * Use trees for large bins + * Support mspaces + * Use segments to unify sbrk-based and mmap-based system allocation, + removing need for emulation on most platforms without sbrk. + * Default safety checks + * Optional footer checks. Thanks to William Robertson for the idea. + * Internal code refactoring + * Incorporate suggestions and platform-specific changes. + Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, + Aaron Bachmann, Emery Berger, and others. + * Speed up non-fastbin processing enough to remove fastbins. + * Remove useless cfree() to avoid conflicts with other apps. + * Remove internal memcpy, memset. Compilers handle builtins better. + * Remove some options that no one ever used and rename others. + + V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) + * Fix malloc_state bitmap array misdeclaration + + V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) + * Allow tuning of FIRST_SORTED_BIN_SIZE + * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. + * Better detection and support for non-contiguousness of MORECORE. + Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger + * Bypass most of malloc if no frees. Thanks To Emery Berger. + * Fix freeing of old top non-contiguous chunk im sysmalloc. + * Raised default trim and map thresholds to 256K. + * Fix mmap-related #defines. Thanks to Lubos Lunak. + * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. + * Branch-free bin calculation + * Default trim and mmap thresholds now 256K. + + V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) + * Introduce independent_comalloc and independent_calloc. + Thanks to Michael Pachos for motivation and help. + * Make optional .h file available + * Allow > 2GB requests on 32bit systems. + * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. + Thanks also to Andreas Mueller <a.mueller at paradatec.de>, + and Anonymous. + * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for + helping test this.) + * memalign: check alignment arg + * realloc: don't try to shift chunks backwards, since this + leads to more fragmentation in some programs and doesn't + seem to help in any others. + * Collect all cases in malloc requiring system memory into sysmalloc + * Use mmap as backup to sbrk + * Place all internal state in malloc_state + * Introduce fastbins (although similar to 2.5.1) + * Many minor tunings and cosmetic improvements + * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK + * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS + Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. + * Include errno.h to support default failure action. + + V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) + * return null for negative arguments + * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> + * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' + (e.g. WIN32 platforms) + * Cleanup header file inclusion for WIN32 platforms + * Cleanup code to avoid Microsoft Visual C++ compiler complaints + * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing + memory allocation routines + * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) + * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to + usage of 'assert' in non-WIN32 code + * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to + avoid infinite loop + * Always call 'fREe()' rather than 'free()' + + V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) + * Fixed ordering problem with boundary-stamping + + V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) + * Added pvalloc, as recommended by H.J. Liu + * Added 64bit pointer support mainly from Wolfram Gloger + * Added anonymously donated WIN32 sbrk emulation + * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen + * malloc_extend_top: fix mask error that caused wastage after + foreign sbrks + * Add linux mremap support code from HJ Liu + + V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) + * Integrated most documentation with the code. + * Add support for mmap, with help from + Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Use last_remainder in more cases. + * Pack bins using idea from colin@nyx10.cs.du.edu + * Use ordered bins instead of best-fit threshhold + * Eliminate block-local decls to simplify tracing and debugging. + * Support another case of realloc via move into top + * Fix error occuring when initial sbrk_base not word-aligned. + * Rely on page size for units instead of SBRK_UNIT to + avoid surprises about sbrk alignment conventions. + * Add mallinfo, mallopt. Thanks to Raymond Nijssen + (raymond@es.ele.tue.nl) for the suggestion. + * Add `pad' argument to malloc_trim and top_pad mallopt parameter. + * More precautions for cases where other routines call sbrk, + courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Added macros etc., allowing use in linux libc from + H.J. Lu (hjl@gnu.ai.mit.edu) + * Inverted this history list + + V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) + * Re-tuned and fixed to behave more nicely with V2.6.0 changes. + * Removed all preallocation code since under current scheme + the work required to undo bad preallocations exceeds + the work saved in good cases for most test programs. + * No longer use return list or unconsolidated bins since + no scheme using them consistently outperforms those that don't + given above changes. + * Use best fit for very large chunks to prevent some worst-cases. + * Added some support for debugging + + V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) + * Removed footers when chunks are in use. Thanks to + Paul Wilson (wilson@cs.texas.edu) for the suggestion. + + V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) + * Added malloc_trim, with help from Wolfram Gloger + (wmglo@Dent.MED.Uni-Muenchen.DE). + + V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) + + V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) + * realloc: try to expand in both directions + * malloc: swap order of clean-bin strategy; + * realloc: only conditionally expand backwards + * Try not to scavenge used bins + * Use bin counts as a guide to preallocation + * Occasionally bin return list chunks in first scan + * Add a few optimizations from colin@nyx10.cs.du.edu + + V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) + * faster bin computation & slightly different binning + * merged all consolidations to one part of malloc proper + (eliminating old malloc_find_space & malloc_clean_bin) + * Scan 2 returns chunks (not just 1) + * Propagate failure in realloc if malloc returns 0 + * Add stuff to allow compilation on non-ANSI compilers + from kpv@research.att.com + + V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) + * removed potential for odd address access in prev_chunk + * removed dependency on getpagesize.h + * misc cosmetics and a bit more internal documentation + * anticosmetics: mangled names in macros to evade debugger strangeness + * tested on sparc, hp-700, dec-mips, rs6000 + with gcc & native cc (hp, dec only) allowing + Detlefs & Zorn comparison study (in SIGPLAN Notices.) + + Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) + * Based loosely on libg++-1.2X malloc. (It retains some of the overall + structure of old version, but most details differ.) + +*/ + + diff --git a/src/3rdparty/ptmalloc/ptmalloc3.c b/src/3rdparty/ptmalloc/ptmalloc3.c new file mode 100644 index 0000000..1291404 --- /dev/null +++ b/src/3rdparty/ptmalloc/ptmalloc3.c @@ -0,0 +1,1135 @@ +/* + * $Id: ptmalloc3.c,v 1.8 2006/03/31 15:57:28 wg Exp $ + * + +ptmalloc3 -- wrapper for Doug Lea's malloc-2.8.3 with concurrent + allocations + +Copyright (c) 2005, 2006 Wolfram Gloger <ptmalloc@malloc.de> + +Permission to use, copy, modify, distribute, and sell this software +and its documentation for any purpose is hereby granted without fee, +provided that (i) the above copyright notices and this permission +notice appear in all copies of the software and related documentation, +and (ii) the name of Wolfram Gloger may not be used in any advertising +or publicity relating to the software. + +THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, +EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY +WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +IN NO EVENT SHALL WOLFRAM GLOGER BE LIABLE FOR ANY SPECIAL, +INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY +DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, +WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY +OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THIS SOFTWARE. + + */ + +/* + * TODO: optimization / better integration with malloc.c (partly done) + * malloc_{get,set}_state (probably hard to keep compatibility) + * debugging hooks + * better mstats + */ + +#include <sys/types.h> /* For size_t */ +#include <sys/mman.h> /* for mmap */ +#include <errno.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> /* for memset */ + +#include <malloc-machine.h> + +#include "malloc-2.8.3.h" + +/* ----------------------------------------------------------------------- */ + +/* The following section is replicated from malloc.c */ + +#include "malloc-private.h" + +/* end of definitions replicated from malloc.c */ + +#define munmap_chunk(mst, p) do { \ + size_t prevsize = (p)->prev_foot & ~IS_MMAPPED_BIT; \ + size_t psize = chunksize(p) + prevsize + MMAP_FOOT_PAD; \ + if (CALL_MUNMAP((char*)(p) - prevsize, psize) == 0) \ + ((struct malloc_state*)(mst))->footprint -= psize; \ +} while (0) + +/* ---------------------------------------------------------------------- */ + +/* Minimum size for a newly created arena. */ +#ifndef ARENA_SIZE_MIN +# define ARENA_SIZE_MIN (128*1024) +#endif +#define HAVE_MEMCPY 1 + +/* If THREAD_STATS is non-zero, some statistics on mutex locking are + computed. */ +#ifndef THREAD_STATS +# define THREAD_STATS 0 +#endif + +#ifndef MALLOC_DEBUG +# define MALLOC_DEBUG 0 +#endif + +#define my_powerof2(x) ((((x)-1)&(x))==0) + +/* Already initialized? */ +int __malloc_initialized = -1; + +#ifndef RETURN_ADDRESS +# define RETURN_ADDRESS(X_) (NULL) +#endif + +#if THREAD_STATS +# define THREAD_STAT(x) x +#else +# define THREAD_STAT(x) do ; while(0) +#endif + +#ifdef _LIBC + +/* Special defines for the GNU C library. */ +#define public_cALLOc __libc_calloc +#define public_fREe __libc_free +#define public_cFREe __libc_cfree +#define public_mALLOc __libc_malloc +#define public_mEMALIGn __libc_memalign +#define public_rEALLOc __libc_realloc +#define public_vALLOc __libc_valloc +#define public_pVALLOc __libc_pvalloc +#define public_pMEMALIGn __posix_memalign +#define public_mALLINFo __libc_mallinfo +#define public_mALLOPt __libc_mallopt +#define public_mTRIm __malloc_trim +#define public_mSTATs __malloc_stats +#define public_mUSABLe __malloc_usable_size +#define public_iCALLOc __libc_independent_calloc +#define public_iCOMALLOc __libc_independent_comalloc +#define public_gET_STATe __malloc_get_state +#define public_sET_STATe __malloc_set_state +#define malloc_getpagesize __getpagesize() +#define open __open +#define mmap __mmap +#define munmap __munmap +#define mremap __mremap +#define mprotect __mprotect +#define MORECORE (*__morecore) +#define MORECORE_FAILURE 0 + +void * __default_morecore (ptrdiff_t); +void *(*__morecore)(ptrdiff_t) = __default_morecore; + +#else /* !_LIBC */ + +#define public_cALLOc calloc +#define public_fREe free +#define public_cFREe cfree +#define public_mALLOc malloc +#define public_mEMALIGn memalign +#define public_rEALLOc realloc +#define public_vALLOc valloc +#define public_pVALLOc pvalloc +#define public_pMEMALIGn posix_memalign +#define public_mALLINFo mallinfo +#define public_mALLOPt mallopt +#define public_mTRIm malloc_trim +#define public_mSTATs malloc_stats +#define public_mUSABLe malloc_usable_size +#define public_iCALLOc independent_calloc +#define public_iCOMALLOc independent_comalloc +#define public_gET_STATe malloc_get_state +#define public_sET_STATe malloc_set_state + +#endif /* _LIBC */ + +#if !defined _LIBC && (!defined __GNUC__ || __GNUC__<3) +#define __builtin_expect(expr, val) (expr) +#endif + +#if MALLOC_DEBUG +#include <assert.h> +#else +#undef assert +#define assert(x) ((void)0) +#endif + +/* USE_STARTER determines if and when the special "starter" hook + functions are used: not at all (0), during ptmalloc_init (first bit + set), or from the beginning until an explicit call to ptmalloc_init + (second bit set). This is necessary if thread-related + initialization functions (e.g. pthread_key_create) require + malloc() calls (set USE_STARTER=1), or if those functions initially + cannot be used at all (set USE_STARTER=2 and perform an explicit + ptmalloc_init() when the thread library is ready, typically at the + start of main()). */ + +#ifndef USE_STARTER +# ifndef _LIBC +# define USE_STARTER 1 +# else +# if USE___THREAD || (defined USE_TLS && !defined SHARED) + /* These routines are never needed in this configuration. */ +# define USE_STARTER 0 +# else +# define USE_STARTER (USE_TLS ? 4 : 1) +# endif +# endif +#endif + +/*----------------------------------------------------------------------*/ + +/* Arenas */ +static tsd_key_t arena_key; +static mutex_t list_lock; + +/* Arena structure */ +struct malloc_arena { + /* Serialize access. */ + mutex_t mutex; + + /* Statistics for locking. Only used if THREAD_STATS is defined. */ + long stat_lock_direct, stat_lock_loop, stat_lock_wait; + long stat_starter; + + /* Linked list */ + struct malloc_arena *next; + + /* Space for mstate. The size is just the minimum such that + create_mspace_with_base can be successfully called. */ + char buf_[pad_request(sizeof(struct malloc_state)) + TOP_FOOT_SIZE + + CHUNK_ALIGN_MASK + 1]; +}; +#define MSPACE_OFFSET (((offsetof(struct malloc_arena, buf_) \ + + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)) +#define arena_to_mspace(a) ((void *)chunk2mem((char*)(a) + MSPACE_OFFSET)) + +/* check for chunk from non-main arena */ +#define chunk_non_main_arena(p) ((p)->head & NON_MAIN_ARENA) + +static struct malloc_arena* _int_new_arena(size_t size); + +/* Buffer for the main arena. */ +static struct malloc_arena main_arena; + +/* For now, store arena in footer. This means typically 4bytes more + overhead for each non-main-arena chunk, but is fast and easy to + compute. Note that the pointer stored in the extra footer must be + properly aligned, though. */ +#define FOOTER_OVERHEAD \ + (2*sizeof(struct malloc_arena*) - SIZE_T_SIZE) + +#define arena_for_chunk(ptr) \ + (chunk_non_main_arena(ptr) ? *(struct malloc_arena**) \ + ((char*)(ptr) + chunksize(ptr) - (FOOTER_OVERHEAD - SIZE_T_SIZE)) \ + : &main_arena) + +/* special because of extra overhead */ +#define arena_for_mmap_chunk(ptr) \ + (chunk_non_main_arena(ptr) ? *(struct malloc_arena**) \ + ((char*)(ptr) + chunksize(ptr) - sizeof(struct malloc_arena*)) \ + : &main_arena) + +#define set_non_main_arena(mem, ar_ptr) do { \ + mchunkptr P = mem2chunk(mem); \ + size_t SZ = chunksize(P) - (is_mmapped(P) ? sizeof(struct malloc_arena*) \ + : (FOOTER_OVERHEAD - SIZE_T_SIZE)); \ + assert((unsigned long)((char*)(P) + SZ)%sizeof(struct malloc_arena*) == 0); \ + *(struct malloc_arena**)((char*)(P) + SZ) = (ar_ptr); \ + P->head |= NON_MAIN_ARENA; \ +} while (0) + +/* arena_get() acquires an arena and locks the corresponding mutex. + First, try the one last locked successfully by this thread. (This + is the common case and handled with a macro for speed.) Then, loop + once over the circularly linked list of arenas. If no arena is + readily available, create a new one. In this latter case, `size' + is just a hint as to how much memory will be required immediately + in the new arena. */ + +#define arena_get(ptr, size) do { \ + void *vptr = NULL; \ + ptr = (struct malloc_arena*)tsd_getspecific(arena_key, vptr); \ + if(ptr && !mutex_trylock(&ptr->mutex)) { \ + THREAD_STAT(++(ptr->stat_lock_direct)); \ + } else \ + ptr = arena_get2(ptr, (size)); \ +} while(0) + +static struct malloc_arena* +arena_get2(struct malloc_arena* a_tsd, size_t size) +{ + struct malloc_arena* a; + int err; + + if(!a_tsd) + a = a_tsd = &main_arena; + else { + a = a_tsd->next; + if(!a) { + /* This can only happen while initializing the new arena. */ + (void)mutex_lock(&main_arena.mutex); + THREAD_STAT(++(main_arena.stat_lock_wait)); + return &main_arena; + } + } + + /* Check the global, circularly linked list for available arenas. */ + repeat: + do { + if(!mutex_trylock(&a->mutex)) { + THREAD_STAT(++(a->stat_lock_loop)); + tsd_setspecific(arena_key, (void *)a); + return a; + } + a = a->next; + } while(a != a_tsd); + + /* If not even the list_lock can be obtained, try again. This can + happen during `atfork', or for example on systems where thread + creation makes it temporarily impossible to obtain _any_ + locks. */ + if(mutex_trylock(&list_lock)) { + a = a_tsd; + goto repeat; + } + (void)mutex_unlock(&list_lock); + + /* Nothing immediately available, so generate a new arena. */ + a = _int_new_arena(size); + if(!a) + return 0; + + tsd_setspecific(arena_key, (void *)a); + mutex_init(&a->mutex); + err = mutex_lock(&a->mutex); /* remember result */ + + /* Add the new arena to the global list. */ + (void)mutex_lock(&list_lock); + a->next = main_arena.next; + atomic_write_barrier (); + main_arena.next = a; + (void)mutex_unlock(&list_lock); + + if(err) /* locking failed; keep arena for further attempts later */ + return 0; + + THREAD_STAT(++(a->stat_lock_loop)); + return a; +} + +/* Create a new arena with room for a chunk of size "size". */ + +static struct malloc_arena* +_int_new_arena(size_t size) +{ + struct malloc_arena* a; + size_t mmap_sz = sizeof(*a) + pad_request(size); + void *m; + + if (mmap_sz < ARENA_SIZE_MIN) + mmap_sz = ARENA_SIZE_MIN; + /* conservative estimate for page size */ + mmap_sz = (mmap_sz + 8191) & ~(size_t)8191; + a = CALL_MMAP(mmap_sz); + if ((char*)a == (char*)-1) + return 0; + + m = create_mspace_with_base((char*)a + MSPACE_OFFSET, + mmap_sz - MSPACE_OFFSET, + 0); + + if (!m) { + CALL_MUNMAP(a, mmap_sz); + a = 0; + } else { + /*a->next = NULL;*/ + /*a->system_mem = a->max_system_mem = h->size;*/ + } + + return a; +} + +/*------------------------------------------------------------------------*/ + +/* Hook mechanism for proper initialization and atfork support. */ + +/* Define and initialize the hook variables. These weak definitions must + appear before any use of the variables in a function. */ +#ifndef weak_variable +#ifndef _LIBC +#define weak_variable /**/ +#else +/* In GNU libc we want the hook variables to be weak definitions to + avoid a problem with Emacs. */ +#define weak_variable weak_function +#endif +#endif + +#if !(USE_STARTER & 2) +# define free_hook_ini NULL +/* Forward declarations. */ +static void* malloc_hook_ini (size_t sz, const void *caller); +static void* realloc_hook_ini (void* ptr, size_t sz, const void* caller); +static void* memalign_hook_ini (size_t alignment, size_t sz, + const void* caller); +#else +# define free_hook_ini free_starter +# define malloc_hook_ini malloc_starter +# define realloc_hook_ini NULL +# define memalign_hook_ini memalign_starter +#endif + +void weak_variable (*__malloc_initialize_hook) (void) = NULL; +void weak_variable (*__free_hook) (void * __ptr, const void *) + = free_hook_ini; +void * weak_variable (*__malloc_hook) (size_t __size, const void *) + = malloc_hook_ini; +void * weak_variable (*__realloc_hook) + (void * __ptr, size_t __size, const void *) = realloc_hook_ini; +void * weak_variable (*__memalign_hook) + (size_t __alignment, size_t __size, const void *) = memalign_hook_ini; +/*void weak_variable (*__after_morecore_hook) (void) = NULL;*/ + +/* The initial hooks just call the initialization routine, then do the + normal work. */ + +#if !(USE_STARTER & 2) +static +#endif +void ptmalloc_init(void); + +#if !(USE_STARTER & 2) + +static void* +malloc_hook_ini(size_t sz, const void * caller) +{ + __malloc_hook = NULL; + ptmalloc_init(); + return public_mALLOc(sz); +} + +static void * +realloc_hook_ini(void *ptr, size_t sz, const void * caller) +{ + __malloc_hook = NULL; + __realloc_hook = NULL; + ptmalloc_init(); + return public_rEALLOc(ptr, sz); +} + +static void* +memalign_hook_ini(size_t alignment, size_t sz, const void * caller) +{ + __memalign_hook = NULL; + ptmalloc_init(); + return public_mEMALIGn(alignment, sz); +} + +#endif /* !(USE_STARTER & 2) */ + +/*----------------------------------------------------------------------*/ + +#if !defined NO_THREADS && USE_STARTER + +/* The following hooks are used when the global initialization in + ptmalloc_init() hasn't completed yet. */ + +static void* +malloc_starter(size_t sz, const void *caller) +{ + void* victim; + + /*ptmalloc_init_minimal();*/ + victim = mspace_malloc(arena_to_mspace(&main_arena), sz); + THREAD_STAT(++main_arena.stat_starter); + + return victim; +} + +static void* +memalign_starter(size_t align, size_t sz, const void *caller) +{ + void* victim; + + /*ptmalloc_init_minimal();*/ + victim = mspace_memalign(arena_to_mspace(&main_arena), align, sz); + THREAD_STAT(++main_arena.stat_starter); + + return victim; +} + +static void +free_starter(void* mem, const void *caller) +{ + if (mem) { + mchunkptr p = mem2chunk(mem); + void *msp = arena_to_mspace(&main_arena); + if (is_mmapped(p)) + munmap_chunk(msp, p); + else + mspace_free(msp, mem); + } + THREAD_STAT(++main_arena.stat_starter); +} + +#endif /* !defined NO_THREADS && USE_STARTER */ + +/*----------------------------------------------------------------------*/ + +#ifndef NO_THREADS + +/* atfork support. */ + +static void * (*save_malloc_hook) (size_t __size, const void *); +# if !defined _LIBC || !defined USE_TLS || (defined SHARED && !USE___THREAD) +static void * (*save_memalign_hook) (size_t __align, size_t __size, + const void *); +# endif +static void (*save_free_hook) (void * __ptr, const void *); +static void* save_arena; + +/* Magic value for the thread-specific arena pointer when + malloc_atfork() is in use. */ + +#define ATFORK_ARENA_PTR ((void*)-1) + +/* The following hooks are used while the `atfork' handling mechanism + is active. */ + +static void* +malloc_atfork(size_t sz, const void *caller) +{ + void *vptr = NULL; + + tsd_getspecific(arena_key, vptr); + if(vptr == ATFORK_ARENA_PTR) { + /* We are the only thread that may allocate at all. */ + return mspace_malloc(arena_to_mspace(&main_arena), sz); + } else { + /* Suspend the thread until the `atfork' handlers have completed. + By that time, the hooks will have been reset as well, so that + mALLOc() can be used again. */ + (void)mutex_lock(&list_lock); + (void)mutex_unlock(&list_lock); + return public_mALLOc(sz); + } +} + +static void +free_atfork(void* mem, const void *caller) +{ + void *vptr = NULL; + struct malloc_arena *ar_ptr; + mchunkptr p; /* chunk corresponding to mem */ + + if (mem == 0) /* free(0) has no effect */ + return; + + p = mem2chunk(mem); + + if (is_mmapped(p)) { /* release mmapped memory. */ + ar_ptr = arena_for_mmap_chunk(p); + munmap_chunk(arena_to_mspace(ar_ptr), p); + return; + } + + ar_ptr = arena_for_chunk(p); + tsd_getspecific(arena_key, vptr); + if(vptr != ATFORK_ARENA_PTR) + (void)mutex_lock(&ar_ptr->mutex); + mspace_free(arena_to_mspace(ar_ptr), mem); + if(vptr != ATFORK_ARENA_PTR) + (void)mutex_unlock(&ar_ptr->mutex); +} + +/* The following two functions are registered via thread_atfork() to + make sure that the mutexes remain in a consistent state in the + fork()ed version of a thread. Also adapt the malloc and free hooks + temporarily, because the `atfork' handler mechanism may use + malloc/free internally (e.g. in LinuxThreads). */ + +static void +ptmalloc_lock_all (void) +{ + struct malloc_arena* ar_ptr; + + if(__malloc_initialized < 1) + return; + (void)mutex_lock(&list_lock); + for(ar_ptr = &main_arena;;) { + (void)mutex_lock(&ar_ptr->mutex); + ar_ptr = ar_ptr->next; + if(ar_ptr == &main_arena) + break; + } + save_malloc_hook = __malloc_hook; + save_free_hook = __free_hook; + __malloc_hook = malloc_atfork; + __free_hook = free_atfork; + /* Only the current thread may perform malloc/free calls now. */ + tsd_getspecific(arena_key, save_arena); + tsd_setspecific(arena_key, ATFORK_ARENA_PTR); +} + +static void +ptmalloc_unlock_all (void) +{ + struct malloc_arena *ar_ptr; + + if(__malloc_initialized < 1) + return; + tsd_setspecific(arena_key, save_arena); + __malloc_hook = save_malloc_hook; + __free_hook = save_free_hook; + for(ar_ptr = &main_arena;;) { + (void)mutex_unlock(&ar_ptr->mutex); + ar_ptr = ar_ptr->next; + if(ar_ptr == &main_arena) break; + } + (void)mutex_unlock(&list_lock); +} + +#ifdef __linux__ + +/* In LinuxThreads, unlocking a mutex in the child process after a + fork() is currently unsafe, whereas re-initializing it is safe and + does not leak resources. Therefore, a special atfork handler is + installed for the child. */ + +static void +ptmalloc_unlock_all2(void) +{ + struct malloc_arena *ar_ptr; + + if(__malloc_initialized < 1) + return; +#if defined _LIBC || 1 /*defined MALLOC_HOOKS*/ + tsd_setspecific(arena_key, save_arena); + __malloc_hook = save_malloc_hook; + __free_hook = save_free_hook; +#endif + for(ar_ptr = &main_arena;;) { + (void)mutex_init(&ar_ptr->mutex); + ar_ptr = ar_ptr->next; + if(ar_ptr == &main_arena) break; + } + (void)mutex_init(&list_lock); +} + +#else + +#define ptmalloc_unlock_all2 ptmalloc_unlock_all + +#endif + +#endif /* !defined NO_THREADS */ + +/*---------------------------------------------------------------------*/ + +#if !(USE_STARTER & 2) +static +#endif +void +ptmalloc_init(void) +{ + const char* s; + int secure = 0; + void *mspace; + + if(__malloc_initialized >= 0) return; + __malloc_initialized = 0; + + /*if (mp_.pagesize == 0) + ptmalloc_init_minimal();*/ + +#ifndef NO_THREADS +# if USE_STARTER & 1 + /* With some threads implementations, creating thread-specific data + or initializing a mutex may call malloc() itself. Provide a + simple starter version (realloc() won't work). */ + save_malloc_hook = __malloc_hook; + save_memalign_hook = __memalign_hook; + save_free_hook = __free_hook; + __malloc_hook = malloc_starter; + __memalign_hook = memalign_starter; + __free_hook = free_starter; +# ifdef _LIBC + /* Initialize the pthreads interface. */ + if (__pthread_initialize != NULL) + __pthread_initialize(); +# endif /* !defined _LIBC */ +# endif /* USE_STARTER & 1 */ +#endif /* !defined NO_THREADS */ + mutex_init(&main_arena.mutex); + main_arena.next = &main_arena; + mspace = create_mspace_with_base((char*)&main_arena + MSPACE_OFFSET, + sizeof(main_arena) - MSPACE_OFFSET, + 0); + assert(mspace == arena_to_mspace(&main_arena)); + + mutex_init(&list_lock); + tsd_key_create(&arena_key, NULL); + tsd_setspecific(arena_key, (void *)&main_arena); + thread_atfork(ptmalloc_lock_all, ptmalloc_unlock_all, ptmalloc_unlock_all2); +#ifndef NO_THREADS +# if USE_STARTER & 1 + __malloc_hook = save_malloc_hook; + __memalign_hook = save_memalign_hook; + __free_hook = save_free_hook; +# endif +# if USE_STARTER & 2 + __malloc_hook = 0; + __memalign_hook = 0; + __free_hook = 0; +# endif +#endif +#ifdef _LIBC + secure = __libc_enable_secure; +#else + if (! secure) { + if ((s = getenv("MALLOC_TRIM_THRESHOLD_"))) + public_mALLOPt(M_TRIM_THRESHOLD, atoi(s)); + if ((s = getenv("MALLOC_TOP_PAD_")) || + (s = getenv("MALLOC_GRANULARITY_"))) + public_mALLOPt(M_GRANULARITY, atoi(s)); + if ((s = getenv("MALLOC_MMAP_THRESHOLD_"))) + public_mALLOPt(M_MMAP_THRESHOLD, atoi(s)); + /*if ((s = getenv("MALLOC_MMAP_MAX_"))) this is no longer available + public_mALLOPt(M_MMAP_MAX, atoi(s));*/ + } + s = getenv("MALLOC_CHECK_"); +#endif + if (s) { + /*if(s[0]) mALLOPt(M_CHECK_ACTION, (int)(s[0] - '0')); + __malloc_check_init();*/ + } + if (__malloc_initialize_hook != NULL) + (*__malloc_initialize_hook)(); + __malloc_initialized = 1; +} + +/*------------------------ Public wrappers. --------------------------------*/ + +void* +public_mALLOc(size_t bytes) +{ + struct malloc_arena* ar_ptr; + void *victim; + + void * (*hook) (size_t, const void *) = __malloc_hook; + if (hook != NULL) + return (*hook)(bytes, RETURN_ADDRESS (0)); + + arena_get(ar_ptr, bytes + FOOTER_OVERHEAD); + if (!ar_ptr) + return 0; + if (ar_ptr != &main_arena) + bytes += FOOTER_OVERHEAD; + victim = mspace_malloc(arena_to_mspace(ar_ptr), bytes); + if (victim && ar_ptr != &main_arena) + set_non_main_arena(victim, ar_ptr); + (void)mutex_unlock(&ar_ptr->mutex); + assert(!victim || is_mmapped(mem2chunk(victim)) || + ar_ptr == arena_for_chunk(mem2chunk(victim))); + return victim; +} +#ifdef libc_hidden_def +libc_hidden_def(public_mALLOc) +#endif + +void +public_fREe(void* mem) +{ + struct malloc_arena* ar_ptr; + mchunkptr p; /* chunk corresponding to mem */ + + void (*hook) (void *, const void *) = __free_hook; + if (hook != NULL) { + (*hook)(mem, RETURN_ADDRESS (0)); + return; + } + + if (mem == 0) /* free(0) has no effect */ + return; + + p = mem2chunk(mem); + + if (is_mmapped(p)) { /* release mmapped memory. */ + ar_ptr = arena_for_mmap_chunk(p); + munmap_chunk(arena_to_mspace(ar_ptr), p); + return; + } + + ar_ptr = arena_for_chunk(p); +#if THREAD_STATS + if(!mutex_trylock(&ar_ptr->mutex)) + ++(ar_ptr->stat_lock_direct); + else { + (void)mutex_lock(&ar_ptr->mutex); + ++(ar_ptr->stat_lock_wait); + } +#else + (void)mutex_lock(&ar_ptr->mutex); +#endif + mspace_free(arena_to_mspace(ar_ptr), mem); + (void)mutex_unlock(&ar_ptr->mutex); +} +#ifdef libc_hidden_def +libc_hidden_def (public_fREe) +#endif + +void* +public_rEALLOc(void* oldmem, size_t bytes) +{ + struct malloc_arena* ar_ptr; + + mchunkptr oldp; /* chunk corresponding to oldmem */ + + void* newp; /* chunk to return */ + + void * (*hook) (void *, size_t, const void *) = __realloc_hook; + if (hook != NULL) + return (*hook)(oldmem, bytes, RETURN_ADDRESS (0)); + +#if REALLOC_ZERO_BYTES_FREES + if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; } +#endif + + /* realloc of null is supposed to be same as malloc */ + if (oldmem == 0) + return public_mALLOc(bytes); + + oldp = mem2chunk(oldmem); + if (is_mmapped(oldp)) + ar_ptr = arena_for_mmap_chunk(oldp); /* FIXME: use mmap_resize */ + else + ar_ptr = arena_for_chunk(oldp); +#if THREAD_STATS + if(!mutex_trylock(&ar_ptr->mutex)) + ++(ar_ptr->stat_lock_direct); + else { + (void)mutex_lock(&ar_ptr->mutex); + ++(ar_ptr->stat_lock_wait); + } +#else + (void)mutex_lock(&ar_ptr->mutex); +#endif + +#ifndef NO_THREADS + /* As in malloc(), remember this arena for the next allocation. */ + tsd_setspecific(arena_key, (void *)ar_ptr); +#endif + + if (ar_ptr != &main_arena) + bytes += FOOTER_OVERHEAD; + newp = mspace_realloc(arena_to_mspace(ar_ptr), oldmem, bytes); + + if (newp && ar_ptr != &main_arena) + set_non_main_arena(newp, ar_ptr); + (void)mutex_unlock(&ar_ptr->mutex); + + assert(!newp || is_mmapped(mem2chunk(newp)) || + ar_ptr == arena_for_chunk(mem2chunk(newp))); + return newp; +} +#ifdef libc_hidden_def +libc_hidden_def (public_rEALLOc) +#endif + +void* +public_mEMALIGn(size_t alignment, size_t bytes) +{ + struct malloc_arena* ar_ptr; + void *p; + + void * (*hook) (size_t, size_t, const void *) = __memalign_hook; + if (hook != NULL) + return (*hook)(alignment, bytes, RETURN_ADDRESS (0)); + + /* If need less alignment than we give anyway, just relay to malloc */ + if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes); + + /* Otherwise, ensure that it is at least a minimum chunk size */ + if (alignment < MIN_CHUNK_SIZE) + alignment = MIN_CHUNK_SIZE; + + arena_get(ar_ptr, + bytes + FOOTER_OVERHEAD + alignment + MIN_CHUNK_SIZE); + if(!ar_ptr) + return 0; + + if (ar_ptr != &main_arena) + bytes += FOOTER_OVERHEAD; + p = mspace_memalign(arena_to_mspace(ar_ptr), alignment, bytes); + + if (p && ar_ptr != &main_arena) + set_non_main_arena(p, ar_ptr); + (void)mutex_unlock(&ar_ptr->mutex); + + assert(!p || is_mmapped(mem2chunk(p)) || + ar_ptr == arena_for_chunk(mem2chunk(p))); + return p; +} +#ifdef libc_hidden_def +libc_hidden_def (public_mEMALIGn) +#endif + +void* +public_vALLOc(size_t bytes) +{ + struct malloc_arena* ar_ptr; + void *p; + + if(__malloc_initialized < 0) + ptmalloc_init (); + arena_get(ar_ptr, bytes + FOOTER_OVERHEAD + MIN_CHUNK_SIZE); + if(!ar_ptr) + return 0; + if (ar_ptr != &main_arena) + bytes += FOOTER_OVERHEAD; + p = mspace_memalign(arena_to_mspace(ar_ptr), 4096, bytes); + + if (p && ar_ptr != &main_arena) + set_non_main_arena(p, ar_ptr); + (void)mutex_unlock(&ar_ptr->mutex); + return p; +} + +int +public_pMEMALIGn (void **memptr, size_t alignment, size_t size) +{ + void *mem; + + /* Test whether the SIZE argument is valid. It must be a power of + two multiple of sizeof (void *). */ + if (alignment % sizeof (void *) != 0 + || !my_powerof2 (alignment / sizeof (void *)) != 0 + || alignment == 0) + return EINVAL; + + mem = public_mEMALIGn (alignment, size); + + if (mem != NULL) { + *memptr = mem; + return 0; + } + + return ENOMEM; +} + +void* +public_cALLOc(size_t n_elements, size_t elem_size) +{ + struct malloc_arena* ar_ptr; + size_t bytes, sz; + void* mem; + void * (*hook) (size_t, const void *) = __malloc_hook; + + /* size_t is unsigned so the behavior on overflow is defined. */ + bytes = n_elements * elem_size; +#define HALF_INTERNAL_SIZE_T \ + (((size_t) 1) << (8 * sizeof (size_t) / 2)) + if (__builtin_expect ((n_elements | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) { + if (elem_size != 0 && bytes / elem_size != n_elements) { + /*MALLOC_FAILURE_ACTION;*/ + return 0; + } + } + + if (hook != NULL) { + sz = bytes; + mem = (*hook)(sz, RETURN_ADDRESS (0)); + if(mem == 0) + return 0; +#ifdef HAVE_MEMCPY + return memset(mem, 0, sz); +#else + while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */ + return mem; +#endif + } + + arena_get(ar_ptr, bytes + FOOTER_OVERHEAD); + if(!ar_ptr) + return 0; + + if (ar_ptr != &main_arena) + bytes += FOOTER_OVERHEAD; + mem = mspace_calloc(arena_to_mspace(ar_ptr), bytes, 1); + + if (mem && ar_ptr != &main_arena) + set_non_main_arena(mem, ar_ptr); + (void)mutex_unlock(&ar_ptr->mutex); + + assert(!mem || is_mmapped(mem2chunk(mem)) || + ar_ptr == arena_for_chunk(mem2chunk(mem))); + + return mem; +} + +void** +public_iCALLOc(size_t n, size_t elem_size, void* chunks[]) +{ + struct malloc_arena* ar_ptr; + void** m; + + arena_get(ar_ptr, n*(elem_size + FOOTER_OVERHEAD)); + if (!ar_ptr) + return 0; + + if (ar_ptr != &main_arena) + elem_size += FOOTER_OVERHEAD; + m = mspace_independent_calloc(arena_to_mspace(ar_ptr), n, elem_size, chunks); + + if (m && ar_ptr != &main_arena) { + while (n > 0) + set_non_main_arena(m[--n], ar_ptr); + } + (void)mutex_unlock(&ar_ptr->mutex); + return m; +} + +void** +public_iCOMALLOc(size_t n, size_t sizes[], void* chunks[]) +{ + struct malloc_arena* ar_ptr; + size_t* m_sizes; + size_t i; + void** m; + + arena_get(ar_ptr, n*sizeof(size_t)); + if (!ar_ptr) + return 0; + + if (ar_ptr != &main_arena) { + /* Temporary m_sizes[] array is ugly but it would be surprising to + change the original sizes[]... */ + m_sizes = mspace_malloc(arena_to_mspace(ar_ptr), n*sizeof(size_t)); + if (!m_sizes) { + (void)mutex_unlock(&ar_ptr->mutex); + return 0; + } + for (i=0; i<n; ++i) + m_sizes[i] = sizes[i] + FOOTER_OVERHEAD; + if (!chunks) { + chunks = mspace_malloc(arena_to_mspace(ar_ptr), + n*sizeof(void*)+FOOTER_OVERHEAD); + if (!chunks) { + mspace_free(arena_to_mspace(ar_ptr), m_sizes); + (void)mutex_unlock(&ar_ptr->mutex); + return 0; + } + set_non_main_arena(chunks, ar_ptr); + } + } else + m_sizes = sizes; + + m = mspace_independent_comalloc(arena_to_mspace(ar_ptr), n, m_sizes, chunks); + + if (ar_ptr != &main_arena) { + mspace_free(arena_to_mspace(ar_ptr), m_sizes); + if (m) + for (i=0; i<n; ++i) + set_non_main_arena(m[i], ar_ptr); + } + (void)mutex_unlock(&ar_ptr->mutex); + return m; +} + +#if 0 && !defined _LIBC + +void +public_cFREe(void* m) +{ + public_fREe(m); +} + +#endif /* _LIBC */ + +int +public_mTRIm(size_t s) +{ + int result; + + (void)mutex_lock(&main_arena.mutex); + result = mspace_trim(arena_to_mspace(&main_arena), s); + (void)mutex_unlock(&main_arena.mutex); + return result; +} + +size_t +public_mUSABLe(void* mem) +{ + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (cinuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int +public_mALLOPt(int p, int v) +{ + int result; + result = mspace_mallopt(p, v); + return result; +} + +void +public_mSTATs(void) +{ + int i; + struct malloc_arena* ar_ptr; + /*unsigned long in_use_b, system_b, avail_b;*/ +#if THREAD_STATS + long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0; +#endif + + if(__malloc_initialized < 0) + ptmalloc_init (); + for (i=0, ar_ptr = &main_arena;; ++i) { + struct malloc_state* msp = arena_to_mspace(ar_ptr); + + fprintf(stderr, "Arena %d:\n", i); + mspace_malloc_stats(msp); +#if THREAD_STATS + stat_lock_direct += ar_ptr->stat_lock_direct; + stat_lock_loop += ar_ptr->stat_lock_loop; + stat_lock_wait += ar_ptr->stat_lock_wait; +#endif + if (MALLOC_DEBUG > 1) { + struct malloc_segment* mseg = &msp->seg; + while (mseg) { + fprintf(stderr, " seg %08lx-%08lx\n", (unsigned long)mseg->base, + (unsigned long)(mseg->base + mseg->size)); + mseg = mseg->next; + } + } + ar_ptr = ar_ptr->next; + if (ar_ptr == &main_arena) + break; + } +#if THREAD_STATS + fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct); + fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop); + fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait); + fprintf(stderr, "locked total = %10ld\n", + stat_lock_direct + stat_lock_loop + stat_lock_wait); + if (main_arena.stat_starter > 0) + fprintf(stderr, "starter hooks = %10ld\n", main_arena.stat_starter); +#endif +} + +/* + * Local variables: + * c-basic-offset: 2 + * End: + */ diff --git a/src/3rdparty/ptmalloc/sysdeps/generic/atomic.h b/src/3rdparty/ptmalloc/sysdeps/generic/atomic.h new file mode 100644 index 0000000..a3aeed1 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/generic/atomic.h @@ -0,0 +1 @@ +/* Empty placeholder */ diff --git a/src/3rdparty/ptmalloc/sysdeps/generic/malloc-machine.h b/src/3rdparty/ptmalloc/sysdeps/generic/malloc-machine.h new file mode 100644 index 0000000..3451370 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/generic/malloc-machine.h @@ -0,0 +1,68 @@ +/* Basic platform-independent macro definitions for mutexes, + thread-specific data and parameters for malloc. + Copyright (C) 2003 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA + 02111-1307 USA. */ + +#ifndef _GENERIC_MALLOC_MACHINE_H +#define _GENERIC_MALLOC_MACHINE_H + +#include <atomic.h> + +#ifndef mutex_init /* No threads, provide dummy macros */ + +# define NO_THREADS + +/* The mutex functions used to do absolutely nothing, i.e. lock, + trylock and unlock would always just return 0. However, even + without any concurrently active threads, a mutex can be used + legitimately as an `in use' flag. To make the code that is + protected by a mutex async-signal safe, these macros would have to + be based on atomic test-and-set operations, for example. */ +typedef int mutex_t; + +# define mutex_init(m) (*(m) = 0) +# define mutex_lock(m) ((*(m) = 1), 0) +# define mutex_trylock(m) (*(m) ? 1 : ((*(m) = 1), 0)) +# define mutex_unlock(m) (*(m) = 0) + +typedef void *tsd_key_t; +# define tsd_key_create(key, destr) do {} while(0) +# define tsd_setspecific(key, data) ((key) = (data)) +# define tsd_getspecific(key, vptr) (vptr = (key)) + +# define thread_atfork(prepare, parent, child) do {} while(0) + +#endif /* !defined mutex_init */ + +#ifndef atomic_full_barrier +# define atomic_full_barrier() __asm ("" ::: "memory") +#endif + +#ifndef atomic_read_barrier +# define atomic_read_barrier() atomic_full_barrier () +#endif + +#ifndef atomic_write_barrier +# define atomic_write_barrier() atomic_full_barrier () +#endif + +#ifndef DEFAULT_TOP_PAD +# define DEFAULT_TOP_PAD 131072 +#endif + +#endif /* !defined(_GENERIC_MALLOC_MACHINE_H) */ diff --git a/src/3rdparty/ptmalloc/sysdeps/generic/thread-st.h b/src/3rdparty/ptmalloc/sysdeps/generic/thread-st.h new file mode 100644 index 0000000..0243774 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/generic/thread-st.h @@ -0,0 +1,48 @@ +/* + * $Id:$ + * Generic version: no threads. + * by Wolfram Gloger 2004 + */ + +#include <stdio.h> + +struct thread_st { + char *sp; /* stack pointer, can be 0 */ + void (*func)(struct thread_st* st); /* must be set by user */ + int id; + int flags; + struct user_data u; +}; + +static void +thread_init(void) +{ + printf("No threads.\n"); +} + +/* Create a thread. */ +static int +thread_create(struct thread_st *st) +{ + st->flags = 0; + st->id = 1; + st->func(st); + return 0; +} + +/* Wait for one of several subthreads to finish. */ +static void +wait_for_thread(struct thread_st st[], int n_thr, + int (*end_thr)(struct thread_st*)) +{ + int i; + for(i=0; i<n_thr; i++) + if(end_thr) + end_thr(&st[i]); +} + +/* + * Local variables: + * tab-width: 4 + * End: + */ diff --git a/src/3rdparty/ptmalloc/sysdeps/pthread/malloc-machine.h b/src/3rdparty/ptmalloc/sysdeps/pthread/malloc-machine.h new file mode 100644 index 0000000..137a711 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/pthread/malloc-machine.h @@ -0,0 +1,131 @@ +/* Basic platform-independent macro definitions for mutexes, + thread-specific data and parameters for malloc. + Posix threads (pthreads) version. + Copyright (C) 2004 Wolfram Gloger <wg@malloc.de>. + +Permission to use, copy, modify, distribute, and sell this software +and its documentation for any purpose is hereby granted without fee, +provided that (i) the above copyright notices and this permission +notice appear in all copies of the software and related documentation, +and (ii) the name of Wolfram Gloger may not be used in any advertising +or publicity relating to the software. + +THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, +EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY +WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +IN NO EVENT SHALL WOLFRAM GLOGER BE LIABLE FOR ANY SPECIAL, +INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY +DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, +WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY +OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THIS SOFTWARE. +*/ + +#ifndef _PTHREAD_MALLOC_MACHINE_H +#define _PTHREAD_MALLOC_MACHINE_H + +#include <pthread.h> + +#undef thread_atfork_static + +/* Use fast inline spinlocks with gcc. */ +#if (defined __i386__ || defined __x86_64__) && defined __GNUC__ && \ + !defined USE_NO_SPINLOCKS + +#include <time.h> +#include <sched.h> + +typedef struct { + volatile unsigned int lock; + int pad0_; +} mutex_t; + +#define MUTEX_INITIALIZER { 0 } +#define mutex_init(m) ((m)->lock = 0) +static inline int mutex_lock(mutex_t *m) { + int cnt = 0, r; + struct timespec tm; + + for(;;) { + __asm__ __volatile__ + ("xchgl %0, %1" + : "=r"(r), "=m"(m->lock) + : "0"(1), "m"(m->lock) + : "memory"); + if(!r) + return 0; + if(cnt < 50) { + sched_yield(); + cnt++; + } else { + tm.tv_sec = 0; + tm.tv_nsec = 2000001; + nanosleep(&tm, NULL); + cnt = 0; + } + } +} +static inline int mutex_trylock(mutex_t *m) { + int r; + + __asm__ __volatile__ + ("xchgl %0, %1" + : "=r"(r), "=m"(m->lock) + : "0"(1), "m"(m->lock) + : "memory"); + return r; +} +static inline int mutex_unlock(mutex_t *m) { + __asm__ __volatile__ ("movl %1, %0" : "=m" (m->lock) : "g"(0) : "memory"); + return 0; +} + +#else + +/* Normal pthread mutex. */ +typedef pthread_mutex_t mutex_t; + +#define MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER +#define mutex_init(m) pthread_mutex_init(m, NULL) +#define mutex_lock(m) pthread_mutex_lock(m) +#define mutex_trylock(m) pthread_mutex_trylock(m) +#define mutex_unlock(m) pthread_mutex_unlock(m) + +#endif /* (__i386__ || __x86_64__) && __GNUC__ && !USE_NO_SPINLOCKS */ + +/* thread specific data */ +#if defined(__sgi) || defined(USE_TSD_DATA_HACK) + +/* Hack for thread-specific data, e.g. on Irix 6.x. We can't use + pthread_setspecific because that function calls malloc() itself. + The hack only works when pthread_t can be converted to an integral + type. */ + +typedef void *tsd_key_t[256]; +#define tsd_key_create(key, destr) do { \ + int i; \ + for(i=0; i<256; i++) (*key)[i] = 0; \ +} while(0) +#define tsd_setspecific(key, data) \ + (key[(unsigned)pthread_self() % 256] = (data)) +#define tsd_getspecific(key, vptr) \ + (vptr = key[(unsigned)pthread_self() % 256]) + +#else + +typedef pthread_key_t tsd_key_t; + +#define tsd_key_create(key, destr) pthread_key_create(key, destr) +#define tsd_setspecific(key, data) pthread_setspecific(key, data) +#define tsd_getspecific(key, vptr) (vptr = pthread_getspecific(key)) + +#endif + +/* at fork */ +#define thread_atfork(prepare, parent, child) \ + pthread_atfork(prepare, parent, child) + +#include <sysdeps/generic/malloc-machine.h> + +#endif /* !defined(_MALLOC_MACHINE_H) */ diff --git a/src/3rdparty/ptmalloc/sysdeps/pthread/thread-st.h b/src/3rdparty/ptmalloc/sysdeps/pthread/thread-st.h new file mode 100644 index 0000000..f97a0a3 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/pthread/thread-st.h @@ -0,0 +1,111 @@ +/* + * $Id: thread-st.h$ + * pthread version + * by Wolfram Gloger 2004 + */ + +#include <pthread.h> +#include <stdio.h> + +pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER; +pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER; + +#ifndef USE_PTHREADS_STACKS +#define USE_PTHREADS_STACKS 0 +#endif + +#ifndef STACKSIZE +#define STACKSIZE 32768 +#endif + +struct thread_st { + char *sp; /* stack pointer, can be 0 */ + void (*func)(struct thread_st* st); /* must be set by user */ + pthread_t id; + int flags; + struct user_data u; +}; + +static void +thread_init(void) +{ + printf("Using posix threads.\n"); + pthread_cond_init(&finish_cond, NULL); + pthread_mutex_init(&finish_mutex, NULL); +} + +static void * +thread_wrapper(void *ptr) +{ + struct thread_st *st = (struct thread_st*)ptr; + + /*printf("begin %p\n", st->sp);*/ + st->func(st); + pthread_mutex_lock(&finish_mutex); + st->flags = 1; + pthread_mutex_unlock(&finish_mutex); + pthread_cond_signal(&finish_cond); + /*printf("end %p\n", st->sp);*/ + return NULL; +} + +/* Create a thread. */ +static int +thread_create(struct thread_st *st) +{ + st->flags = 0; + { + pthread_attr_t* attr_p = 0; +#if USE_PTHREADS_STACKS + pthread_attr_t attr; + + pthread_attr_init (&attr); + if(!st->sp) + st->sp = malloc(STACKSIZE+16); + if(!st->sp) + return -1; + if(pthread_attr_setstacksize(&attr, STACKSIZE)) + fprintf(stderr, "error setting stacksize"); + else + pthread_attr_setstackaddr(&attr, st->sp + STACKSIZE); + /*printf("create %p\n", st->sp);*/ + attr_p = &attr; +#endif + return pthread_create(&st->id, attr_p, thread_wrapper, st); + } + return 0; +} + +/* Wait for one of several subthreads to finish. */ +static void +wait_for_thread(struct thread_st st[], int n_thr, + int (*end_thr)(struct thread_st*)) +{ + int i; + + pthread_mutex_lock(&finish_mutex); + for(;;) { + int term = 0; + for(i=0; i<n_thr; i++) + if(st[i].flags) { + /*printf("joining %p\n", st[i].sp);*/ + if(pthread_join(st[i].id, NULL) == 0) { + st[i].flags = 0; + if(end_thr) + end_thr(&st[i]); + } else + fprintf(stderr, "can't join\n"); + ++term; + } + if(term > 0) + break; + pthread_cond_wait(&finish_cond, &finish_mutex); + } + pthread_mutex_unlock(&finish_mutex); +} + +/* + * Local variables: + * tab-width: 4 + * End: + */ diff --git a/src/3rdparty/ptmalloc/sysdeps/solaris/malloc-machine.h b/src/3rdparty/ptmalloc/sysdeps/solaris/malloc-machine.h new file mode 100644 index 0000000..00e33b0 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/solaris/malloc-machine.h @@ -0,0 +1,51 @@ +/* Basic platform-independent macro definitions for mutexes, + thread-specific data and parameters for malloc. + Solaris threads version. + Copyright (C) 2004 Wolfram Gloger <wg@malloc.de>. + +Permission to use, copy, modify, distribute, and sell this software +and its documentation for any purpose is hereby granted without fee, +provided that (i) the above copyright notices and this permission +notice appear in all copies of the software and related documentation, +and (ii) the name of Wolfram Gloger may not be used in any advertising +or publicity relating to the software. + +THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, +EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY +WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +IN NO EVENT SHALL WOLFRAM GLOGER BE LIABLE FOR ANY SPECIAL, +INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY +DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, +WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY +OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THIS SOFTWARE. +*/ + +#ifndef _SOLARIS_MALLOC_MACHINE_H +#define _SOLARIS_MALLOC_MACHINE_H + +#include <thread.h> + +typedef thread_t thread_id; + +#define MUTEX_INITIALIZER { 0 } +#define mutex_init(m) mutex_init(m, USYNC_THREAD, NULL) + +/* + * Hack for thread-specific data on Solaris. We can't use thr_setspecific + * because that function calls malloc() itself. + */ +typedef void *tsd_key_t[256]; +#define tsd_key_create(key, destr) do { \ + int i; \ + for(i=0; i<256; i++) (*key)[i] = 0; \ +} while(0) +#define tsd_setspecific(key, data) (key[(unsigned)thr_self() % 256] = (data)) +#define tsd_getspecific(key, vptr) (vptr = key[(unsigned)thr_self() % 256]) + +#define thread_atfork(prepare, parent, child) do {} while(0) + +#include <sysdeps/generic/malloc-machine.h> + +#endif /* !defined(_SOLARIS_MALLOC_MACHINE_H) */ diff --git a/src/3rdparty/ptmalloc/sysdeps/solaris/thread-st.h b/src/3rdparty/ptmalloc/sysdeps/solaris/thread-st.h new file mode 100644 index 0000000..dbb4b09 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/solaris/thread-st.h @@ -0,0 +1,72 @@ +/* + * $Id:$ + * Solaris version + * by Wolfram Gloger 2004 + */ + +#include <thread.h> +#include <stdio.h> + +#ifndef STACKSIZE +#define STACKSIZE 32768 +#endif + +struct thread_st { + char *sp; /* stack pointer, can be 0 */ + void (*func)(struct thread_st* st); /* must be set by user */ + thread_id id; + int flags; + struct user_data u; +}; + +static void +thread_init(void) +{ + printf("Using Solaris threads.\n"); +} + +static void * +thread_wrapper(void *ptr) +{ + struct thread_st *st = (struct thread_st*)ptr; + + /*printf("begin %p\n", st->sp);*/ + st->func(st); + /*printf("end %p\n", st->sp);*/ + return NULL; +} + +/* Create a thread. */ +static int +thread_create(struct thread_st *st) +{ + st->flags = 0; + if(!st->sp) + st->sp = malloc(STACKSIZE); + if(!st->sp) return -1; + thr_create(st->sp, STACKSIZE, thread_wrapper, st, THR_NEW_LWP, &st->id); + return 0; +} + +/* Wait for one of several subthreads to finish. */ +static void +wait_for_thread(struct thread_st st[], int n_thr, + int (*end_thr)(struct thread_st*)) +{ + int i; + thread_t id; + + thr_join(0, &id, NULL); + for(i=0; i<n_thr; i++) + if(id == st[i].id) { + if(end_thr) + end_thr(&st[i]); + break; + } +} + +/* + * Local variables: + * tab-width: 4 + * End: + */ diff --git a/src/3rdparty/ptmalloc/sysdeps/sproc/malloc-machine.h b/src/3rdparty/ptmalloc/sysdeps/sproc/malloc-machine.h new file mode 100644 index 0000000..dcccea3 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/sproc/malloc-machine.h @@ -0,0 +1,51 @@ +/* Basic platform-independent macro definitions for mutexes, + thread-specific data and parameters for malloc. + SGI threads (sprocs) version. + Copyright (C) 2004 Wolfram Gloger <wg@malloc.de>. + +Permission to use, copy, modify, distribute, and sell this software +and its documentation for any purpose is hereby granted without fee, +provided that (i) the above copyright notices and this permission +notice appear in all copies of the software and related documentation, +and (ii) the name of Wolfram Gloger may not be used in any advertising +or publicity relating to the software. + +THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, +EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY +WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +IN NO EVENT SHALL WOLFRAM GLOGER BE LIABLE FOR ANY SPECIAL, +INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY +DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, +WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY +OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THIS SOFTWARE. +*/ + +#ifndef _SPROC_MALLOC_MACHINE_H +#define _SPROC_MALLOC_MACHINE_H + +#include <sys/wait.h> +#include <sys/types.h> +#include <sys/prctl.h> +#include <abi_mutex.h> + +typedef abilock_t mutex_t; + +#define MUTEX_INITIALIZER { 0 } +#define mutex_init(m) init_lock(m) +#define mutex_lock(m) (spin_lock(m), 0) +#define mutex_trylock(m) acquire_lock(m) +#define mutex_unlock(m) release_lock(m) + +typedef int tsd_key_t; +int tsd_key_next; +#define tsd_key_create(key, destr) ((*key) = tsd_key_next++) +#define tsd_setspecific(key, data) (((void **)(&PRDA->usr_prda))[key] = data) +#define tsd_getspecific(key, vptr) (vptr = ((void **)(&PRDA->usr_prda))[key]) + +#define thread_atfork(prepare, parent, child) do {} while(0) + +#include <sysdeps/generic/malloc-machine.h> + +#endif /* !defined(_SPROC_MALLOC_MACHINE_H) */ diff --git a/src/3rdparty/ptmalloc/sysdeps/sproc/thread-st.h b/src/3rdparty/ptmalloc/sysdeps/sproc/thread-st.h new file mode 100644 index 0000000..3559a48 --- /dev/null +++ b/src/3rdparty/ptmalloc/sysdeps/sproc/thread-st.h @@ -0,0 +1,85 @@ +/* + * $Id:$ + * sproc version + * by Wolfram Gloger 2001, 2004, 2006 + */ + +#include <stdio.h> +#include <sys/wait.h> +#include <sys/types.h> +#include <sys/prctl.h> + +#ifndef STACKSIZE +#define STACKSIZE 32768 +#endif + +struct thread_st { + char *sp; /* stack pointer, can be 0 */ + void (*func)(struct thread_st* st); /* must be set by user */ + int id; + int flags; + struct user_data u; +}; + +static void +thread_init(void) +{ + printf("Using sproc() threads.\n"); +} + +static void +thread_wrapper(void *ptr, size_t stack_len) +{ + struct thread_st *st = (struct thread_st*)ptr; + + /*printf("begin %p\n", st->sp);*/ + st->func(st); + /*printf("end %p\n", st->sp);*/ +} + +/* Create a thread. */ +static int +thread_create(struct thread_st *st) +{ + st->flags = 0; + if(!st->sp) + st->sp = malloc(STACKSIZE); + if(!st->sp) return -1; + st->id = sprocsp(thread_wrapper, PR_SALL, st, st->sp+STACKSIZE, STACKSIZE); + if(st->id < 0) { + return -1; + } + return 0; +} + +/* Wait for one of several subthreads to finish. */ +static void +wait_for_thread(struct thread_st st[], int n_thr, + int (*end_thr)(struct thread_st*)) +{ + int i; + int id; + + int status = 0; + id = wait(&status); + if(status != 0) { + if(WIFSIGNALED(status)) + printf("thread %id terminated by signal %d\n", + id, WTERMSIG(status)); + else + printf("thread %id exited with status %d\n", + id, WEXITSTATUS(status)); + } + for(i=0; i<n_thr; i++) + if(id == st[i].id) { + if(end_thr) + end_thr(&st[i]); + break; + } +} + +/* + * Local variables: + * tab-width: 4 + * End: + */ |