summaryrefslogtreecommitdiffstats
path: root/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gui/graphicsview/qgraphicsanchorlayout_p.cpp')
-rw-r--r--src/gui/graphicsview/qgraphicsanchorlayout_p.cpp2104
1 files changed, 2104 insertions, 0 deletions
diff --git a/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp b/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
new file mode 100644
index 0000000..c137de3
--- /dev/null
+++ b/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
@@ -0,0 +1,2104 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the either Technology Preview License Agreement or the
+** Beta Release License Agreement.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain
+** additional rights. These rights are described in the Nokia Qt LGPL
+** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
+** package.
+**
+** GNU General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU
+** General Public License version 3.0 as published by the Free Software
+** Foundation and appearing in the file LICENSE.GPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU General Public License version 3.0 requirements will be
+** met: http://www.gnu.org/copyleft/gpl.html.
+**
+** If you are unsure which license is appropriate for your use, please
+** contact the sales department at qt-sales@nokia.com.
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include <QtGui/qwidget.h>
+#include <QtCore/qlinkedlist.h>
+#include <QtCore/qstack.h>
+
+#ifdef QT_DEBUG
+#include <QtCore/qfile.h>
+#endif
+
+#include "qgraphicsanchorlayout_p.h"
+
+QT_BEGIN_NAMESPACE
+
+void AnchorData::refreshSizeHints(qreal effectiveSpacing)
+{
+ if (!isLayoutAnchor && from->m_item == to->m_item) {
+ bool hasCenter = false;
+ QGraphicsLayoutItem *item = from->m_item;
+
+ if (QGraphicsAnchorLayoutPrivate::edgeOrientation(from->m_edge)
+ == QGraphicsAnchorLayoutPrivate::Horizontal) {
+ minSize = item->minimumWidth();
+ prefSize = item->preferredWidth();
+ maxSize = item->maximumWidth();
+ hasCenter = (from->m_edge == Qt::AnchorHorizontalCenter
+ || to->m_edge == Qt::AnchorHorizontalCenter);
+ } else {
+ minSize = item->minimumHeight();
+ prefSize = item->preferredHeight();
+ maxSize = item->maximumHeight();
+ hasCenter = (from->m_edge == Qt::AnchorVerticalCenter
+ || to->m_edge == Qt::AnchorVerticalCenter);
+ }
+
+ if (hasCenter) {
+ minSize /= 2;
+ prefSize /= 2;
+ maxSize /= 2;
+ }
+
+ // Set the anchor effective sizes to preferred.
+ //
+ // Note: The idea here is that all items should remain at their
+ // preferred size unless where that's impossible. In cases where
+ // the item is subject to restrictions (anchored to the layout
+ // edges, for instance), the simplex solver will be run to
+ // recalculate and override the values we set here.
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+
+ } else if (!hasSize) {
+ // Anchor has no size defined, use given default information
+ minSize = effectiveSpacing;
+ prefSize = effectiveSpacing;
+ maxSize = effectiveSpacing;
+
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+ }
+}
+
+void ParallelAnchorData::updateChildrenSizes()
+{
+ firstEdge->sizeAtMinimum = secondEdge->sizeAtMinimum = sizeAtMinimum;
+ firstEdge->sizeAtPreferred = secondEdge->sizeAtPreferred = sizeAtPreferred;
+ firstEdge->sizeAtMaximum = secondEdge->sizeAtMaximum = sizeAtMaximum;
+
+ firstEdge->updateChildrenSizes();
+ secondEdge->updateChildrenSizes();
+}
+
+void ParallelAnchorData::refreshSizeHints(qreal effectiveSpacing)
+{
+ // First refresh children information
+ firstEdge->refreshSizeHints(effectiveSpacing);
+ secondEdge->refreshSizeHints(effectiveSpacing);
+
+ // ### should we warn if the parallel connection is invalid?
+ // e.g. 1-2-3 with 10-20-30, the minimum of the latter is
+ // bigger than the maximum of the former.
+
+ minSize = qMax(firstEdge->minSize, secondEdge->minSize);
+ maxSize = qMin(firstEdge->maxSize, secondEdge->maxSize);
+
+ prefSize = qMax(firstEdge->prefSize, secondEdge->prefSize);
+ prefSize = qMin(prefSize, maxSize);
+
+ // See comment in AnchorData::refreshSizeHints() about sizeAt* values
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+}
+
+/*!
+ \internal
+ returns the factor in the interval [-1, 1].
+ -1 is at Minimum
+ 0 is at Preferred
+ 1 is at Maximum
+*/
+static qreal getFactor(qreal value, qreal min, qreal pref, qreal max)
+{
+ // ### Maybe remove some of the assertions? (since outside is asserting us)
+ Q_ASSERT(value > min || qFuzzyCompare(value, min));
+ Q_ASSERT(value < max || qFuzzyCompare(value, max));
+
+ if (qFuzzyCompare(value, min)) {
+ return -1.0;
+ } else if (qFuzzyCompare(value, pref)) {
+ return 0.0;
+ } else if (qFuzzyCompare(value, max)) {
+ return 1.0;
+ } else if (value < pref) {
+ // Since value < pref and value != pref and min <= value,
+ // we can assert that min < pref.
+ Q_ASSERT(min < pref);
+ return (value - min) / (pref - min) - 1;
+ } else {
+ // Since value > pref and value != pref and max >= value,
+ // we can assert that max > pref.
+ Q_ASSERT(max > pref);
+ return (value - pref) / (max - pref);
+ }
+}
+
+void SequentialAnchorData::updateChildrenSizes()
+{
+ // ### REMOVE ME
+ // ### check whether we are guarantee to get those or we need to warn stuff at this
+ // point.
+ Q_ASSERT(sizeAtMinimum > minSize || qFuzzyCompare(sizeAtMinimum, minSize));
+ Q_ASSERT(sizeAtMinimum < maxSize || qFuzzyCompare(sizeAtMinimum, maxSize));
+ Q_ASSERT(sizeAtPreferred > minSize || qFuzzyCompare(sizeAtPreferred, minSize));
+ Q_ASSERT(sizeAtPreferred < maxSize || qFuzzyCompare(sizeAtPreferred, maxSize));
+ Q_ASSERT(sizeAtMaximum > minSize || qFuzzyCompare(sizeAtMaximum, minSize));
+ Q_ASSERT(sizeAtMaximum < maxSize || qFuzzyCompare(sizeAtMaximum, maxSize));
+
+ // Band here refers if the value is in the Minimum To Preferred
+ // band (the lower band) or the Preferred To Maximum (the upper band).
+
+ qreal minFactor = getFactor(sizeAtMinimum, minSize, prefSize, maxSize);
+ qreal prefFactor = getFactor(sizeAtPreferred, minSize, prefSize, maxSize);
+ qreal maxFactor = getFactor(sizeAtMaximum, minSize, prefSize, maxSize);
+
+ for (int i = 0; i < m_edges.count(); ++i) {
+ AnchorData *e = m_edges.at(i);
+
+ qreal bandSize = minFactor > 0 ? e->maxSize - e->prefSize : e->prefSize - e->minSize;
+ e->sizeAtMinimum = e->prefSize + bandSize * minFactor;
+
+ bandSize = prefFactor > 0 ? e->maxSize - e->prefSize : e->prefSize - e->minSize;
+ e->sizeAtPreferred = e->prefSize + bandSize * prefFactor;
+
+ bandSize = maxFactor > 0 ? e->maxSize - e->prefSize : e->prefSize - e->minSize;
+ e->sizeAtMaximum = e->prefSize + bandSize * maxFactor;
+
+ e->updateChildrenSizes();
+ }
+}
+
+void SequentialAnchorData::refreshSizeHints(qreal effectiveSpacing)
+{
+ minSize = 0;
+ prefSize = 0;
+ maxSize = 0;
+
+ for (int i = 0; i < m_edges.count(); ++i) {
+ AnchorData *edge = m_edges.at(i);
+
+ // First refresh children information
+ edge->refreshSizeHints(effectiveSpacing);
+
+ minSize += edge->minSize;
+ prefSize += edge->prefSize;
+ maxSize += edge->maxSize;
+ }
+
+ // See comment in AnchorData::refreshSizeHints() about sizeAt* values
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+}
+
+#ifdef QT_DEBUG
+void AnchorData::dump(int indent) {
+ if (type == Parallel) {
+ qDebug("%*s type: parallel:", indent, "");
+ ParallelAnchorData *p = static_cast<ParallelAnchorData *>(this);
+ p->firstEdge->dump(indent+2);
+ p->secondEdge->dump(indent+2);
+ } else if (type == Sequential) {
+ SequentialAnchorData *s = static_cast<SequentialAnchorData *>(this);
+ int kids = s->m_edges.count();
+ qDebug("%*s type: sequential(%d):", indent, "", kids);
+ for (int i = 0; i < kids; ++i) {
+ s->m_edges.at(i)->dump(indent+2);
+ }
+ } else {
+ qDebug("%*s type: Normal:", indent, "");
+ }
+}
+
+#endif
+
+QSimplexConstraint *GraphPath::constraint(const GraphPath &path) const
+{
+ // Calculate
+ QSet<AnchorData *> cPositives;
+ QSet<AnchorData *> cNegatives;
+ QSet<AnchorData *> intersection;
+
+ cPositives = positives + path.negatives;
+ cNegatives = negatives + path.positives;
+
+ intersection = cPositives & cNegatives;
+
+ cPositives -= intersection;
+ cNegatives -= intersection;
+
+ // Fill
+ QSimplexConstraint *c = new QSimplexConstraint;
+ QSet<AnchorData *>::iterator i;
+ for (i = cPositives.begin(); i != cPositives.end(); ++i)
+ c->variables.insert(*i, 1.0);
+
+ for (i = cNegatives.begin(); i != cNegatives.end(); ++i)
+ c->variables.insert(*i, -1.0);
+
+ return c;
+}
+
+#ifdef QT_DEBUG
+QString GraphPath::toString() const
+{
+ QString string(QLatin1String("Path: "));
+ foreach(AnchorData *edge, positives)
+ string += QString::fromAscii(" (+++) %1").arg(edge->toString());
+
+ foreach(AnchorData *edge, negatives)
+ string += QString::fromAscii(" (---) %1").arg(edge->toString());
+
+ return string;
+}
+#endif
+
+QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate()
+ : calculateGraphCacheDirty(1)
+{
+ for (int i = 0; i < NOrientations; ++i) {
+ spacings[i] = -1;
+ graphSimplified[i] = false;
+ }
+}
+
+Qt::AnchorPoint QGraphicsAnchorLayoutPrivate::oppositeEdge(Qt::AnchorPoint edge)
+{
+ switch (edge) {
+ case Qt::AnchorLeft:
+ edge = Qt::AnchorRight;
+ break;
+ case Qt::AnchorRight:
+ edge = Qt::AnchorLeft;
+ break;
+ case Qt::AnchorTop:
+ edge = Qt::AnchorBottom;
+ break;
+ case Qt::AnchorBottom:
+ edge = Qt::AnchorTop;
+ break;
+ default:
+ break;
+ }
+ return edge;
+}
+
+
+/*!
+ * \internal
+ *
+ * helper function in order to avoid overflowing anchor sizes
+ * the returned size will never be larger than FLT_MAX
+ *
+ */
+inline static qreal checkAdd(qreal a, qreal b)
+{
+ if (FLT_MAX - b < a)
+ return FLT_MAX;
+ return a + b;
+}
+
+/*!
+ * \internal
+ *
+ * Takes the sequence of vertices described by (\a before, \a vertices, \a after) and replaces
+ * all anchors connected to the vertices in \a vertices with one simplified anchor between
+ * \a before and \a after. The simplified anchor will be a placeholder for all the previous
+ * anchors between \a before and \a after, and can be restored back to the anchors it is a
+ * placeholder for.
+ */
+static bool simplifySequentialChunk(Graph<AnchorVertex, AnchorData> *graph,
+ AnchorVertex *before,
+ const QVector<AnchorVertex*> &vertices,
+ AnchorVertex *after)
+{
+ int i;
+#if defined(QT_DEBUG) && 0
+ QString strVertices;
+ for (i = 0; i < vertices.count(); ++i)
+ strVertices += QString::fromAscii("%1 - ").arg(vertices.at(i)->toString());
+ QString strPath = QString::fromAscii("%1 - %2%3").arg(before->toString(), strVertices, after->toString());
+ qDebug("simplifying [%s] to [%s - %s]", qPrintable(strPath), qPrintable(before->toString()), qPrintable(after->toString()));
+#endif
+
+ qreal min = 0;
+ qreal pref = 0;
+ qreal max = 0;
+
+ SequentialAnchorData *sequence = new SequentialAnchorData;
+ AnchorVertex *prev = before;
+ AnchorData *data;
+ for (i = 0; i <= vertices.count(); ++i) {
+ AnchorVertex *next = (i < vertices.count()) ? vertices.at(i) : after;
+ data = graph->takeEdge(prev, next);
+ min += data->minSize;
+ pref += data->prefSize;
+ max = checkAdd(max, data->maxSize);
+ sequence->m_edges.append(data);
+ prev = next;
+ }
+
+ // insert new
+ sequence->minSize = min;
+ sequence->prefSize = pref;
+ sequence->maxSize = max;
+
+ // Unless these values are overhidden by the simplex solver later-on,
+ // anchors will keep their own preferred size.
+ sequence->sizeAtMinimum = pref;
+ sequence->sizeAtPreferred = pref;
+ sequence->sizeAtMaximum = pref;
+
+ sequence->setVertices(vertices);
+
+ sequence->from = before;
+ sequence->to = after;
+
+ // data here is the last edge in the sequence
+ // ### this seems to be here for supporting reverse order sequences,
+ // but doesnt seem to be used right now
+ if (data->from != vertices.last())
+ qSwap(sequence->from, sequence->to);
+
+ // Note that since layout 'edges' can't be simplified away from
+ // the graph, it's safe to assume that if there's a layout
+ // 'edge', it'll be in the boundaries of the sequence.
+ sequence->isLayoutAnchor = (sequence->m_edges.first()->isLayoutAnchor
+ || sequence->m_edges.last()->isLayoutAnchor);
+
+ AnchorData *newAnchor = sequence;
+ if (AnchorData *oldAnchor = graph->takeEdge(before, after)) {
+ newAnchor = new ParallelAnchorData(oldAnchor, sequence);
+
+ newAnchor->isLayoutAnchor = (oldAnchor->isLayoutAnchor
+ || sequence->isLayoutAnchor);
+
+ min = qMax(oldAnchor->minSize, sequence->minSize);
+ max = qMin(oldAnchor->maxSize, sequence->maxSize);
+
+ pref = qMax(oldAnchor->prefSize, sequence->prefSize);
+ pref = qMin(pref, max);
+
+ newAnchor->minSize = min;
+ newAnchor->prefSize = pref;
+ newAnchor->maxSize = max;
+
+ // Same as above, by default, keep preferred size.
+ newAnchor->sizeAtMinimum = pref;
+ newAnchor->sizeAtPreferred = pref;
+ newAnchor->sizeAtMaximum = pref;
+ }
+ graph->createEdge(before, after, newAnchor);
+
+ // True if we created a parallel anchor
+ return newAnchor != sequence;
+}
+
+/*!
+ \internal
+
+ The purpose of this function is to simplify the graph.
+ Simplification serves two purposes:
+ 1. Reduce the number of edges in the graph, (thus the number of variables to the equation
+ solver is reduced, and the solver performs better).
+ 2. Be able to do distribution of sequences of edges more intelligently (esp. with sequential
+ anchors)
+
+ It is essential that it must be possible to restore simplified anchors back to their "original"
+ form. This is done by restoreSimplifiedAnchor().
+
+ There are two types of simplification that can be done:
+ 1. Sequential simplification
+ Sequential simplification means that all sequences of anchors will be merged into one single
+ anchor. Only anhcors that points in the same direction will be merged.
+ 2. Parallel simplification
+ If a simplified sequential anchor is about to be inserted between two vertices in the graph
+ and there already exist an anchor between those two vertices, a parallel anchor will be
+ created that serves as a placeholder for the sequential anchor and the anchor that was
+ already between the two vertices.
+
+ The process of simplification can be described as:
+
+ 1. Simplify all sequences of anchors into one anchor.
+ If no further simplification was done, go to (3)
+ - If there already exist an anchor where the sequential anchor is supposed to be inserted,
+ take that anchor out of the graph
+ - Then create a parallel anchor that holds the sequential anchor and the anchor just taken
+ out of the graph.
+ 2. Go to (1)
+ 3. Done
+
+
+ * Gathering sequential anchors *
+ The algorithm walks the graph in depth-first order, and only collects vertices that has two
+ edges connected to it. If the vertex does not have two edges or if it is a layout edge,
+ it will take all the previously collected vertices and try to create a simplified sequential
+ anchor representing all the previously collected vertices.
+ Once the simplified anchor is inserted, the collected list is cleared in order to find the next
+ sequence to simplify.
+ Note that there are some catches to this that are not covered by the above explanation.
+*/
+void QGraphicsAnchorLayoutPrivate::simplifyGraph(Orientation orientation)
+{
+ static bool noSimplification = !qgetenv("QT_ANCHORLAYOUT_NO_SIMPLIFICATION").isEmpty();
+ if (noSimplification)
+ return;
+
+ if (graphSimplified[orientation])
+ return;
+ graphSimplified[orientation] = true;
+
+#if 0
+ qDebug("Simplifying Graph for %s",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+#endif
+
+ AnchorVertex *rootVertex = graph[orientation].rootVertex();
+
+ if (!rootVertex)
+ return;
+
+ bool dirty;
+ do {
+ dirty = simplifyGraphIteration(orientation);
+ } while (dirty);
+}
+
+bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutPrivate::Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ AnchorVertex *v = g.rootVertex();
+
+ QSet<AnchorVertex *> visited;
+ QStack<AnchorVertex *> stack;
+ stack.push(v);
+ QVector<AnchorVertex*> candidates;
+
+ const Qt::AnchorPoint centerEdge = pickEdge(Qt::AnchorHorizontalCenter, orientation);
+ const Qt::AnchorPoint layoutEdge = oppositeEdge(v->m_edge);
+
+ bool dirty = false;
+
+ // walk depth-first.
+ while (!stack.isEmpty()) {
+ v = stack.pop();
+ QList<AnchorVertex *> vertices = g.adjacentVertices(v);
+ const int count = vertices.count();
+ bool endOfSequence = (v->m_item == q && v->m_edge == layoutEdge) || count != 2;
+ if (count == 2 && v->m_item != q) {
+ candidates.append(v);
+ if (visited.contains(vertices.first()) && visited.contains(vertices.last())) {
+ // in case of a cycle
+ endOfSequence = true;
+ }
+ }
+ if (endOfSequence && candidates.count() >= 2) {
+ int i;
+ AnchorVertex *afterSequence= 0;
+ QList<AnchorVertex *> adjacentOfSecondLastVertex = g.adjacentVertices(candidates.last());
+ Q_ASSERT(adjacentOfSecondLastVertex.count() == 2);
+ if (adjacentOfSecondLastVertex.first() == candidates.at(candidates.count() - 2))
+ afterSequence = adjacentOfSecondLastVertex.last();
+ else
+ afterSequence = adjacentOfSecondLastVertex.first();
+
+ AnchorVertex *beforeSequence = 0;
+ QList<AnchorVertex *> adjacentOfSecondVertex = g.adjacentVertices(candidates.first());
+ Q_ASSERT(adjacentOfSecondVertex.count() == 2);
+ if (adjacentOfSecondVertex.first() == candidates.at(1))
+ beforeSequence = adjacentOfSecondVertex.last();
+ else
+ beforeSequence = adjacentOfSecondVertex.first();
+ // The complete path of the sequence to simplify is: beforeSequence, <candidates>, afterSequence
+ // where beforeSequence and afterSequence are the endpoints where the anchor is inserted
+ // between.
+#if defined(QT_DEBUG) && 0
+ // ### DEBUG
+ QString strCandidates;
+ for (i = 0; i < candidates.count(); ++i)
+ strCandidates += QString::fromAscii("%1 - ").arg(candidates.at(i)->toString());
+ QString strPath = QString::fromAscii("%1 - %2%3").arg(beforeSequence->toString(), strCandidates, afterSequence->toString());
+ qDebug("candidate list for sequential simplification:\n[%s]", qPrintable(strPath));
+#endif
+
+ bool forward;
+ AnchorVertex *prev = beforeSequence;
+ int intervalFrom = 0;
+
+ // Check for directionality (from). We don't want to destroy that information,
+ // thus we only combine anchors with the same direction.
+
+ // "i" is the index *including* the beforeSequence and afterSequence vertices.
+ for (i = 1; i <= candidates.count() + 1; ++i) {
+ bool atVertexAfter = i > candidates.count();
+ AnchorVertex *v1 = atVertexAfter ? afterSequence : candidates.at(i - 1);
+ AnchorData *data = g.edgeData(prev, v1);
+ Q_ASSERT(data);
+ if (i == 1) {
+ forward = (prev == data->from ? true : false);
+ } else if (forward != (prev == data->from) || atVertexAfter) {
+ int intervalTo = i;
+ if (forward != (prev == data->from))
+ --intervalTo;
+
+ // intervalFrom and intervalTo should now be indices to the vertex before and
+ // after the sequential anchor.
+ if (intervalTo - intervalFrom >= 2) {
+ // simplify in the range [intervalFrom, intervalTo]
+
+ // Trim off internal center anchors (Left-Center/Center-Right) from the
+ // start and the end of the sequence. We never want to simplify internal
+ // center anchors where there is an external anchor connected to the center.
+ AnchorVertex *intervalVertexFrom = intervalFrom == 0 ? beforeSequence : candidates.at(intervalFrom - 1);
+ if (intervalVertexFrom->m_edge == centerEdge
+ && intervalVertexFrom->m_item == candidates.at(intervalFrom)->m_item) {
+ ++intervalFrom;
+ intervalVertexFrom = candidates.at(intervalFrom - 1);
+ }
+ AnchorVertex *intervalVertexTo = intervalTo <= candidates.count() ? candidates.at(intervalTo - 1) : afterSequence;
+ if (intervalVertexTo->m_edge == centerEdge
+ && intervalVertexTo->m_item == candidates.at(intervalTo - 2)->m_item) {
+ --intervalTo;
+ intervalVertexTo = candidates.at(intervalTo - 1);
+ }
+
+ QVector<AnchorVertex*> subCandidates;
+ if (forward) {
+ subCandidates = candidates.mid(intervalFrom, intervalTo - intervalFrom - 1);
+ } else {
+ // reverse the order of the candidates.
+ qSwap(intervalVertexFrom, intervalVertexTo);
+ do {
+ ++intervalFrom;
+ subCandidates.prepend(candidates.at(intervalFrom - 1));
+ } while (intervalFrom < intervalTo - 1);
+ }
+ if (simplifySequentialChunk(&g, intervalVertexFrom, subCandidates, intervalVertexTo)) {
+ dirty = true;
+ break;
+ }
+ // finished simplification of chunk with same direction
+ }
+ if (forward == (prev == data->from))
+ --intervalTo;
+ intervalFrom = intervalTo;
+
+ forward = !forward;
+ }
+ prev = v1;
+ }
+
+ if (dirty)
+ break;
+ }
+
+ if (endOfSequence)
+ candidates.clear();
+
+ for (int i = 0; i < count; ++i) {
+ AnchorVertex *next = vertices.at(i);
+ if (next->m_item == q && next->m_edge == centerEdge)
+ continue;
+ if (visited.contains(next))
+ continue;
+ stack.push(next);
+ }
+
+ visited.insert(v);
+ }
+
+ return dirty;
+}
+
+static void restoreSimplifiedAnchor(Graph<AnchorVertex, AnchorData> &g,
+ AnchorData *edge,
+ AnchorVertex *before,
+ AnchorVertex *after)
+{
+ Q_ASSERT(edge->type != AnchorData::Normal);
+#if 0
+ static const char *anchortypes[] = {"Normal",
+ "Sequential",
+ "Parallel"};
+ qDebug("Restoring %s edge.", anchortypes[int(edge->type)]);
+#endif
+ if (edge->type == AnchorData::Sequential) {
+ SequentialAnchorData* seqEdge = static_cast<SequentialAnchorData*>(edge);
+ // restore the sequential anchor
+ AnchorVertex *prev = before;
+ AnchorVertex *last = after;
+ if (edge->from != prev)
+ qSwap(last, prev);
+
+ for (int i = 0; i < seqEdge->m_edges.count(); ++i) {
+ AnchorVertex *v1 = (i < seqEdge->m_children.count()) ? seqEdge->m_children.at(i) : last;
+ AnchorData *data = seqEdge->m_edges.at(i);
+ if (data->type != AnchorData::Normal) {
+ restoreSimplifiedAnchor(g, data, prev, v1);
+ } else {
+ g.createEdge(prev, v1, data);
+ }
+ prev = v1;
+ }
+ } else if (edge->type == AnchorData::Parallel) {
+ ParallelAnchorData* parallelEdge = static_cast<ParallelAnchorData*>(edge);
+ AnchorData *parallelEdges[2] = {parallelEdge->firstEdge,
+ parallelEdge->secondEdge};
+ for (int i = 0; i < 2; ++i) {
+ AnchorData *data = parallelEdges[i];
+ if (data->type == AnchorData::Normal) {
+ g.createEdge(before, after, data);
+ } else {
+ restoreSimplifiedAnchor(g, data, before, after);
+ }
+ }
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Orientation orientation)
+{
+ if (!graphSimplified[orientation])
+ return;
+ graphSimplified[orientation] = false;
+
+#if 0
+ qDebug("Restoring Simplified Graph for %s",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+#endif
+
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+
+ QList<QPair<AnchorVertex*, AnchorVertex*> > connections = g.connections();
+ for (int i = 0; i < connections.count(); ++i) {
+ AnchorVertex *v1 = connections.at(i).first;
+ AnchorVertex *v2 = connections.at(i).second;
+ AnchorData *edge = g.edgeData(v1, v2);
+ if (edge->type != AnchorData::Normal) {
+ AnchorData *oldEdge = g.takeEdge(v1, v2);
+ restoreSimplifiedAnchor(g, edge, v1, v2);
+ delete oldEdge;
+ }
+ }
+}
+
+QGraphicsAnchorLayoutPrivate::Orientation
+QGraphicsAnchorLayoutPrivate::edgeOrientation(Qt::AnchorPoint edge)
+{
+ return edge > Qt::AnchorRight ? Vertical : Horizontal;
+}
+
+/*!
+ \internal
+
+ Create internal anchors to connect the layout edges (Left to Right and
+ Top to Bottom).
+
+ These anchors doesn't have size restrictions, that will be enforced by
+ other anchors and items in the layout.
+*/
+void QGraphicsAnchorLayoutPrivate::createLayoutEdges()
+{
+ Q_Q(QGraphicsAnchorLayout);
+ QGraphicsLayoutItem *layout = q;
+
+ // Horizontal
+ AnchorData *data = new AnchorData(0, 0, QWIDGETSIZE_MAX);
+ addAnchor(layout, Qt::AnchorLeft, layout,
+ Qt::AnchorRight, data);
+ data->skipInPreferred = 1;
+
+ // Set the Layout Left edge as the root of the horizontal graph.
+ AnchorVertex *v = internalVertex(layout, Qt::AnchorLeft);
+ graph[Horizontal].setRootVertex(v);
+
+ // Vertical
+ data = new AnchorData(0, 0, QWIDGETSIZE_MAX);
+ addAnchor(layout, Qt::AnchorTop, layout,
+ Qt::AnchorBottom, data);
+ data->skipInPreferred = 1;
+
+ // Set the Layout Top edge as the root of the vertical graph.
+ v = internalVertex(layout, Qt::AnchorTop);
+ graph[Vertical].setRootVertex(v);
+}
+
+void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges()
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Q_ASSERT(internalVertex(q, Qt::AnchorHorizontalCenter) == NULL);
+ Q_ASSERT(internalVertex(q, Qt::AnchorVerticalCenter) == NULL);
+
+ removeAnchor(q, Qt::AnchorLeft, q, Qt::AnchorRight);
+ removeAnchor(q, Qt::AnchorTop, q, Qt::AnchorBottom);
+}
+
+void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item)
+{
+ Q_ASSERT(!graphSimplified[Horizontal] && !graphSimplified[Vertical]);
+
+ items.append(item);
+
+ // Horizontal
+ int minimumSize = item->minimumWidth();
+ int preferredSize = item->preferredWidth();
+ int maximumSize = item->maximumWidth();
+
+ AnchorData *data = new AnchorData(minimumSize, preferredSize, maximumSize);
+ addAnchor(item, Qt::AnchorLeft, item,
+ Qt::AnchorRight, data);
+
+ // Vertical
+ minimumSize = item->minimumHeight();
+ preferredSize = item->preferredHeight();
+ maximumSize = item->maximumHeight();
+
+ data = new AnchorData(minimumSize, preferredSize, maximumSize);
+ addAnchor(item, Qt::AnchorTop, item,
+ Qt::AnchorBottom, data);
+}
+
+/*!
+ \internal
+
+ By default, each item in the layout is represented internally as
+ a single anchor in each direction. For instance, from Left to Right.
+
+ However, to support anchorage of items to the center of items, we
+ must split this internal anchor into two half-anchors. From Left
+ to Center and then from Center to Right, with the restriction that
+ these anchors must have the same time at all times.
+*/
+void QGraphicsAnchorLayoutPrivate::createCenterAnchors(
+ QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge)
+{
+ Orientation orientation;
+ switch (centerEdge) {
+ case Qt::AnchorHorizontalCenter:
+ orientation = Horizontal;
+ break;
+ case Qt::AnchorVerticalCenter:
+ orientation = Vertical;
+ break;
+ default:
+ // Don't create center edges unless needed
+ return;
+ }
+
+ Q_ASSERT(!graphSimplified[orientation]);
+
+ // Check if vertex already exists
+ if (internalVertex(item, centerEdge))
+ return;
+
+ // Orientation code
+ Qt::AnchorPoint firstEdge;
+ Qt::AnchorPoint lastEdge;
+
+ if (orientation == Horizontal) {
+ firstEdge = Qt::AnchorLeft;
+ lastEdge = Qt::AnchorRight;
+ } else {
+ firstEdge = Qt::AnchorTop;
+ lastEdge = Qt::AnchorBottom;
+ }
+
+ AnchorVertex *first = internalVertex(item, firstEdge);
+ AnchorVertex *last = internalVertex(item, lastEdge);
+ Q_ASSERT(first && last);
+
+ // Create new anchors
+ AnchorData *oldData = graph[orientation].edgeData(first, last);
+
+ int minimumSize = oldData->minSize / 2;
+ int preferredSize = oldData->prefSize / 2;
+ int maximumSize = oldData->maxSize / 2;
+
+ QSimplexConstraint *c = new QSimplexConstraint;
+ AnchorData *data = new AnchorData(minimumSize, preferredSize, maximumSize);
+ c->variables.insert(data, 1.0);
+ addAnchor(item, firstEdge, item, centerEdge, data);
+
+ data = new AnchorData(minimumSize, preferredSize, maximumSize);
+ c->variables.insert(data, -1.0);
+ addAnchor(item, centerEdge, item, lastEdge, data);
+
+ itemCenterConstraints[orientation].append(c);
+
+ // Remove old one
+ removeAnchor(item, firstEdge, item, lastEdge);
+}
+
+void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
+ QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge,
+ bool substitute)
+{
+ Orientation orientation;
+ switch (centerEdge) {
+ case Qt::AnchorHorizontalCenter:
+ orientation = Horizontal;
+ break;
+ case Qt::AnchorVerticalCenter:
+ orientation = Vertical;
+ break;
+ default:
+ // Don't remove edges that not the center ones
+ return;
+ }
+
+ Q_ASSERT(!graphSimplified[orientation]);
+
+ // Orientation code
+ Qt::AnchorPoint firstEdge;
+ Qt::AnchorPoint lastEdge;
+
+ if (orientation == Horizontal) {
+ firstEdge = Qt::AnchorLeft;
+ lastEdge = Qt::AnchorRight;
+ } else {
+ firstEdge = Qt::AnchorTop;
+ lastEdge = Qt::AnchorBottom;
+ }
+
+ AnchorVertex *center = internalVertex(item, centerEdge);
+ if (!center)
+ return;
+ AnchorVertex *first = internalVertex(item, firstEdge);
+
+ Q_ASSERT(first);
+ Q_ASSERT(center);
+
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+
+
+ AnchorData *oldData = g.edgeData(first, center);
+ // Remove center constraint
+ for (int i = itemCenterConstraints[orientation].count() - 1; i >= 0; --i) {
+ if (itemCenterConstraints[orientation][i]->variables.contains(oldData)) {
+ delete itemCenterConstraints[orientation].takeAt(i);
+ break;
+ }
+ }
+
+ if (substitute) {
+ // Create the new anchor that should substitute the left-center-right anchors.
+ AnchorData *oldData = g.edgeData(first, center);
+
+ int minimumSize = oldData->minSize * 2;
+ int preferredSize = oldData->prefSize * 2;
+ int maximumSize = oldData->maxSize * 2;
+
+ AnchorData *data = new AnchorData(minimumSize, preferredSize, maximumSize);
+ addAnchor(item, firstEdge, item, lastEdge, data);
+
+ // Remove old anchors
+ removeAnchor(item, firstEdge, item, centerEdge);
+ removeAnchor(item, centerEdge, item, lastEdge);
+
+ } else {
+ // this is only called from removeAnchors()
+ // first, remove all non-internal anchors
+ QList<AnchorVertex*> adjacents = g.adjacentVertices(center);
+ for (int i = 0; i < adjacents.count(); ++i) {
+ AnchorVertex *v = adjacents.at(i);
+ if (v->m_item != item) {
+ removeAnchor(item, centerEdge, v->m_item, v->m_edge);
+ }
+ }
+ // when all non-internal anchors is removed it will automatically merge the
+ // center anchor into a left-right (or top-bottom) anchor. We must also delete that.
+ // by this time, the center vertex is deleted and merged into a non-centered internal anchor
+ removeAnchor(item, firstEdge, item, lastEdge);
+ }
+}
+
+
+void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *item,
+ Orientation orientation)
+{
+ Q_ASSERT(!graphSimplified[orientation]);
+
+ // Remove the item center constraints associated to this item
+ // ### This is a temporary solution. We should probably use a better
+ // data structure to hold items and/or their associated constraints
+ // so that we can remove those easily
+
+ AnchorVertex *first = internalVertex(item, orientation == Horizontal ?
+ Qt::AnchorLeft :
+ Qt::AnchorTop);
+ AnchorVertex *center = internalVertex(item, orientation == Horizontal ?
+ Qt::AnchorHorizontalCenter :
+ Qt::AnchorVerticalCenter);
+
+ // Skip if no center constraints exist
+ if (!center)
+ return;
+
+ Q_ASSERT(first);
+ AnchorData *internalAnchor = graph[orientation].edgeData(first, center);
+
+ // Look for our anchor in all item center constraints, then remove it
+ for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) {
+ if (itemCenterConstraints[orientation][i]->variables.contains(internalAnchor)) {
+ delete itemCenterConstraints[orientation].takeAt(i);
+ break;
+ }
+ }
+}
+
+/*!
+ * \internal
+ *
+ * Helper function that is called from the anchor functions in the public API.
+ * If \a spacing is 0, it will pick up the spacing defined by the style.
+ */
+void QGraphicsAnchorLayoutPrivate::anchor(QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge,
+ qreal *spacing)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ if ((firstItem == 0) || (secondItem == 0)) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "Cannot anchor NULL items");
+ return;
+ }
+
+ if (firstItem == secondItem) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "Cannot anchor the item to itself");
+ return;
+ }
+
+ if (edgeOrientation(secondEdge) != edgeOrientation(firstEdge)) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "Cannot anchor edges of different orientations");
+ return;
+ }
+
+ // Guarantee that the graph is no simplified when adding this anchor,
+ // anchor manipulation always happen in the full graph
+ restoreSimplifiedGraph(edgeOrientation(firstEdge));
+
+ // In QGraphicsAnchorLayout, items are represented in its internal
+ // graph as four anchors that connect:
+ // - Left -> HCenter
+ // - HCenter-> Right
+ // - Top -> VCenter
+ // - VCenter -> Bottom
+
+ // Ensure that the internal anchors have been created for both items.
+ if (firstItem != q && !items.contains(firstItem)) {
+ restoreSimplifiedGraph(edgeOrientation(firstEdge) == Horizontal ? Vertical : Horizontal);
+ createItemEdges(firstItem);
+ addChildLayoutItem(firstItem);
+ }
+ if (secondItem != q && !items.contains(secondItem)) {
+ restoreSimplifiedGraph(edgeOrientation(firstEdge) == Horizontal ? Vertical : Horizontal);
+ createItemEdges(secondItem);
+ addChildLayoutItem(secondItem);
+ }
+
+ // Create center edges if needed
+ createCenterAnchors(firstItem, firstEdge);
+ createCenterAnchors(secondItem, secondEdge);
+
+ // Use heuristics to find out what the user meant with this anchor.
+ correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge);
+
+ AnchorData *data;
+ if (!spacing) {
+ // If firstItem or secondItem is the layout itself, the spacing will default to 0.
+ // Otherwise, the following matrix is used (questionmark means that the spacing
+ // is queried from the style):
+ // from
+ // to Left HCenter Right
+ // Left 0 0 ?
+ // HCenter 0 0 0
+ // Right ? 0 0
+ if (firstItem != q
+ && secondItem != q
+ && pickEdge(firstEdge, Horizontal) != Qt::AnchorHorizontalCenter
+ && oppositeEdge(firstEdge) == secondEdge) {
+ data = new AnchorData; // ask the style later
+ } else {
+ data = new AnchorData(0); // spacing should be 0
+ }
+ addAnchor(firstItem, firstEdge, secondItem, secondEdge, data);
+ } else if (*spacing >= 0) {
+ data = new AnchorData(*spacing);
+ addAnchor(firstItem, firstEdge, secondItem, secondEdge, data);
+ } else {
+ data = new AnchorData(-*spacing);
+ addAnchor(secondItem, secondEdge, firstItem, firstEdge, data);
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::addAnchor(QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge,
+ AnchorData *data)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ // Guarantee that the graph is no simplified when adding this anchor,
+ // anchor manipulation always happen in the full graph
+ restoreSimplifiedGraph(edgeOrientation(firstEdge));
+
+ // Is the Vertex (firstItem, firstEdge) already represented in our
+ // internal structure?
+ AnchorVertex *v1 = addInternalVertex(firstItem, firstEdge);
+ AnchorVertex *v2 = addInternalVertex(secondItem, secondEdge);
+
+ // Remove previous anchor
+ // ### Could we update the existing edgeData rather than creating a new one?
+ if (graph[edgeOrientation(firstEdge)].edgeData(v1, v2))
+ removeAnchor(firstItem, firstEdge, secondItem, secondEdge);
+
+ // Create a bi-directional edge in the sense it can be transversed both
+ // from v1 or v2. "data" however is shared between the two references
+ // so we still know that the anchor direction is from 1 to 2.
+ data->from = v1;
+ data->to = v2;
+#ifdef QT_DEBUG
+ data->name = QString::fromAscii("%1 --to--> %2").arg(v1->toString()).arg(v2->toString());
+#endif
+ // Keep track of anchors that are connected to the layout 'edges'
+ data->isLayoutAnchor = (v1->m_item == q || v2->m_item == q);
+
+ graph[edgeOrientation(firstEdge)].createEdge(v1, v2, data);
+}
+
+void QGraphicsAnchorLayoutPrivate::removeAnchor(QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge)
+{
+ // Guarantee that the graph is no simplified when adding this anchor,
+ // anchor manipulation always happen in the full graph
+ restoreSimplifiedGraph(edgeOrientation(firstEdge));
+
+ // Look for both vertices
+ AnchorVertex *v1 = internalVertex(firstItem, firstEdge);
+ AnchorVertex *v2 = internalVertex(secondItem, secondEdge);
+
+ Q_ASSERT(v1 && v2);
+
+ // Remove edge from graph
+ graph[edgeOrientation(firstEdge)].removeEdge(v1, v2);
+
+ // Decrease vertices reference count (may trigger a deletion)
+ removeInternalVertex(firstItem, firstEdge);
+ removeInternalVertex(secondItem, secondEdge);
+}
+
+bool QGraphicsAnchorLayoutPrivate::setAnchorSize(const QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ const QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge,
+ const qreal *anchorSize)
+{
+ // ### we can avoid restoration if we really want to, but we would have to
+ // search recursively through all composite anchors
+ restoreSimplifiedGraph(edgeOrientation(firstEdge));
+ AnchorVertex *v1 = internalVertex(firstItem, firstEdge);
+ AnchorVertex *v2 = internalVertex(secondItem, secondEdge);
+
+ AnchorData *data = graph[edgeOrientation(firstEdge)].edgeData(v1, v2);
+ if (data) {
+ if (anchorSize) {
+ data->setFixedSize(*anchorSize);
+ } else {
+ data->unsetSize();
+ }
+ }
+
+ return data;
+}
+
+bool QGraphicsAnchorLayoutPrivate::anchorSize(const QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ const QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge,
+ qreal *minSize,
+ qreal *prefSize,
+ qreal *maxSize) const
+{
+ Q_ASSERT(minSize || prefSize || maxSize);
+ QGraphicsAnchorLayoutPrivate *that = const_cast<QGraphicsAnchorLayoutPrivate *>(this);
+ that->restoreSimplifiedGraph(edgeOrientation(firstEdge));
+ AnchorVertex *v1 = internalVertex(firstItem, firstEdge);
+ AnchorVertex *v2 = internalVertex(secondItem, secondEdge);
+
+ AnchorData *data = that->graph[edgeOrientation(firstEdge)].edgeData(v1, v2);
+ if (data) {
+ if (minSize)
+ *minSize = data->minSize;
+ if (prefSize)
+ *prefSize = data->prefSize;
+ if (maxSize)
+ *maxSize = data->maxSize;
+ }
+ return data;
+}
+
+AnchorVertex *QGraphicsAnchorLayoutPrivate::addInternalVertex(QGraphicsLayoutItem *item,
+ Qt::AnchorPoint edge)
+{
+ QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
+ QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
+
+ if (!v.first) {
+ Q_ASSERT(v.second == 0);
+ v.first = new AnchorVertex(item, edge);
+ }
+ v.second++;
+ m_vertexList.insert(pair, v);
+ return v.first;
+}
+
+/**
+ * \internal
+ *
+ * returns the AnchorVertex that was dereferenced, also when it was removed.
+ * returns 0 if it did not exist.
+ */
+void QGraphicsAnchorLayoutPrivate::removeInternalVertex(QGraphicsLayoutItem *item,
+ Qt::AnchorPoint edge)
+{
+ QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
+ QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
+
+ if (!v.first) {
+ qWarning("This item with this edge is not in the graph");
+ return;
+ }
+
+ v.second--;
+ if (v.second == 0) {
+ // Remove reference and delete vertex
+ m_vertexList.remove(pair);
+ delete v.first;
+ } else {
+ // Update reference count
+ m_vertexList.insert(pair, v);
+
+ if ((v.second == 2) &&
+ ((edge == Qt::AnchorHorizontalCenter) ||
+ (edge == Qt::AnchorVerticalCenter))) {
+ removeCenterAnchors(item, edge, true);
+ }
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::removeVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge)
+{
+ if (AnchorVertex *v = internalVertex(item, edge)) {
+ Graph<AnchorVertex, AnchorData> &g = graph[edgeOrientation(edge)];
+ const QList<AnchorVertex *> allVertices = graph[edgeOrientation(edge)].adjacentVertices(v);
+ AnchorVertex *v2;
+ foreach (v2, allVertices) {
+ g.removeEdge(v, v2);
+ removeInternalVertex(item, edge);
+ removeInternalVertex(v2->m_item, v2->m_edge);
+ }
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::removeAnchors(QGraphicsLayoutItem *item)
+{
+ Q_ASSERT(!graphSimplified[Horizontal] && !graphSimplified[Vertical]);
+
+ // remove the center anchor first!!
+ removeCenterAnchors(item, Qt::AnchorHorizontalCenter, false);
+ removeVertex(item, Qt::AnchorLeft);
+ removeVertex(item, Qt::AnchorRight);
+
+ removeCenterAnchors(item, Qt::AnchorVerticalCenter, false);
+ removeVertex(item, Qt::AnchorTop);
+ removeVertex(item, Qt::AnchorBottom);
+}
+
+/*!
+ \internal
+
+ Use heuristics to determine the correct orientation of a given anchor.
+
+ After API discussions, we decided we would like expressions like
+ anchor(A, Left, B, Right) to mean the same as anchor(B, Right, A, Left).
+ The problem with this is that anchors could become ambiguous, for
+ instance, what does the anchor A, B of size X mean?
+
+ "pos(B) = pos(A) + X" or "pos(A) = pos(B) + X" ?
+
+ To keep the API user friendly and at the same time, keep our algorithm
+ deterministic, we use an heuristic to determine a direction for each
+ added anchor and then keep it. The heuristic is based on the fact
+ that people usually avoid overlapping items, therefore:
+
+ "A, RIGHT to B, LEFT" means that B is to the LEFT of A.
+ "B, LEFT to A, RIGHT" is corrected to the above anchor.
+
+ Special correction is also applied when one of the items is the
+ layout. We handle Layout Left as if it was another items's Right
+ and Layout Right as another item's Left.
+*/
+void QGraphicsAnchorLayoutPrivate::correctEdgeDirection(QGraphicsLayoutItem *&firstItem,
+ Qt::AnchorPoint &firstEdge,
+ QGraphicsLayoutItem *&secondItem,
+ Qt::AnchorPoint &secondEdge)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Qt::AnchorPoint effectiveFirst = firstEdge;
+ Qt::AnchorPoint effectiveSecond = secondEdge;
+
+ if (firstItem == q)
+ effectiveFirst = QGraphicsAnchorLayoutPrivate::oppositeEdge(firstEdge);
+ if (secondItem == q)
+ effectiveSecond = QGraphicsAnchorLayoutPrivate::oppositeEdge(secondEdge);
+
+ if (effectiveFirst < effectiveSecond) {
+
+ // ### DEBUG
+ /* printf("Swapping Anchor from %s %d --to--> %s %d\n",
+ firstItem->isLayout() ? "<layout>" :
+ qPrintable(static_cast<QGraphicsWidget *>(firstItem)->data(0).toString()),
+ firstEdge,
+ secondItem->isLayout() ? "<layout>" :
+ qPrintable(static_cast<QGraphicsWidget *>(secondItem)->data(0).toString()),
+ secondEdge);
+ */
+ qSwap(firstItem, secondItem);
+ qSwap(firstEdge, secondEdge);
+ }
+}
+
+qreal QGraphicsAnchorLayoutPrivate::effectiveSpacing(Orientation orientation) const
+{
+ Q_Q(const QGraphicsAnchorLayout);
+ qreal s = spacings[orientation];
+ if (s < 0) {
+ // ### make sure behaviour is the same as in QGraphicsGridLayout
+ QGraphicsLayoutItem *parent = q->parentLayoutItem();
+ while (parent && parent->isLayout()) {
+ parent = parent->parentLayoutItem();
+ }
+ if (parent) {
+ QGraphicsItem *parentItem = parent->graphicsItem();
+ if (parentItem && parentItem->isWidget()) {
+ QGraphicsWidget *w = static_cast<QGraphicsWidget*>(parentItem);
+ s = w->style()->pixelMetric(orientation == Horizontal
+ ? QStyle::PM_LayoutHorizontalSpacing
+ : QStyle::PM_LayoutVerticalSpacing);
+ }
+ }
+ }
+ return s;
+}
+
+/*!
+ \internal
+
+ Called on activation. Uses Linear Programming to define minimum, preferred
+ and maximum sizes for the layout. Also calculates the sizes that each item
+ should assume when the layout is in one of such situations.
+*/
+void QGraphicsAnchorLayoutPrivate::calculateGraphs()
+{
+ if (!calculateGraphCacheDirty)
+ return;
+
+ calculateGraphs(Horizontal);
+ calculateGraphs(Vertical);
+
+ calculateGraphCacheDirty = 0;
+}
+
+// ### remove me:
+QList<AnchorData *> getVariables(QList<QSimplexConstraint *> constraints)
+{
+ QSet<AnchorData *> variableSet;
+ for (int i = 0; i < constraints.count(); ++i) {
+ const QSimplexConstraint *c = constraints[i];
+ foreach (QSimplexVariable *var, c->variables.keys()) {
+ variableSet += static_cast<AnchorData *>(var);
+ }
+ }
+ return variableSet.toList();
+}
+
+/*!
+ \internal
+
+ Calculate graphs is the method that puts together all the helper routines
+ so that the AnchorLayout can calculate the sizes of each item.
+
+ In a nutshell it should do:
+
+ 1) Update anchor nominal sizes, that is, the size that each anchor would
+ have if no other restrictions applied. This is done by quering the
+ layout style and the sizeHints of the items belonging to the layout.
+
+ 2) Simplify the graph by grouping together parallel and sequential anchors
+ into "group anchors". These have equivalent minimum, preferred and maximum
+ sizeHints as the anchors they replace.
+
+ 3) Check if we got to a trivial case. In some cases, the whole graph can be
+ simplified into a single anchor. If so, use this information. If not,
+ then call the Simplex solver to calculate the anchors sizes.
+
+ 4) Once the root anchors had its sizes calculated, propagate that to the
+ anchors they represent.
+*/
+void QGraphicsAnchorLayoutPrivate::calculateGraphs(
+ QGraphicsAnchorLayoutPrivate::Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ // Simplify the graph
+ simplifyGraph(orientation);
+
+ // Reset the nominal sizes of each anchor based on the current item sizes
+ setAnchorSizeHintsFromItems(orientation);
+
+ // Traverse all graph edges and store the possible paths to each vertex
+ findPaths(orientation);
+
+ // From the paths calculated above, extract the constraints that the current
+ // anchor setup impose, to our Linear Programming problem.
+ constraintsFromPaths(orientation);
+
+ // Split the constraints and anchors into groups that should be fed to the
+ // simplex solver independently. Currently we find two groups:
+ //
+ // 1) The "trunk", that is, the set of anchors (items) that are connected
+ // to the two opposite sides of our layout, and thus need to stretch in
+ // order to fit in the current layout size.
+ //
+ // 2) The floating or semi-floating anchors (items) that are those which
+ // are connected to only one (or none) of the layout sides, thus are not
+ // influenced by the layout size.
+ QList<QList<QSimplexConstraint *> > parts;
+ parts = getGraphParts(orientation);
+
+ // Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes
+ // of the "trunk" set of constraints and variables.
+ // ### does trunk always exist? empty = trunk is the layout left->center->right
+ QList<QSimplexConstraint *> trunkConstraints = parts[0];
+ QList<QSimplexConstraint *> sizeHintConstraints;
+ sizeHintConstraints = constraintsFromSizeHints(getVariables(trunkConstraints));
+ trunkConstraints += sizeHintConstraints;
+
+ // For minimum and maximum, use the path between the two layout sides as the
+ // objective function.
+
+ // Retrieve that path
+ AnchorVertex *v = internalVertex(q, pickEdge(Qt::AnchorRight, orientation));
+ GraphPath trunkPath = graphPaths[orientation].value(v);
+
+ if (!trunkConstraints.isEmpty()) {
+#if 0
+ qDebug("Simplex used for trunk of %s",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+#endif
+
+ // Solve min and max size hints for trunk
+ QPair<qreal, qreal> minMax = solveMinMax(trunkConstraints, trunkPath);
+ sizeHints[orientation][Qt::MinimumSize] = minMax.first;
+ sizeHints[orientation][Qt::MaximumSize] = minMax.second;
+
+ // Solve for preferred. The objective function is calculated from the constraints
+ // and variables internally.
+ solvePreferred(trunkConstraints);
+
+ // Propagate the new sizes down the simplified graph, ie. tell the
+ // group anchors to set their children anchors sizes.
+
+ // ### we calculated variables already a few times, can't we reuse that?
+ QList<AnchorData *> trunkVariables = getVariables(trunkConstraints);
+
+ for (int i = 0; i < trunkVariables.count(); ++i)
+ trunkVariables.at(i)->updateChildrenSizes();
+
+ // Calculate and set the preferred size for the layout from the edge sizes that
+ // were calculated above.
+ qreal pref(0.0);
+ foreach (const AnchorData *ad, trunkPath.positives) {
+ pref += ad->sizeAtPreferred;
+ }
+ foreach (const AnchorData *ad, trunkPath.negatives) {
+ pref -= ad->sizeAtPreferred;
+ }
+ sizeHints[orientation][Qt::PreferredSize] = pref;
+ } else {
+#if 0
+ qDebug("Simplex NOT used for trunk of %s",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+#endif
+
+ // No Simplex is necessary because the path was simplified all the way to a single
+ // anchor.
+ Q_ASSERT(trunkPath.positives.count() == 1);
+ Q_ASSERT(trunkPath.negatives.count() == 0);
+
+ AnchorData *ad = trunkPath.positives.toList()[0];
+ ad->sizeAtMinimum = ad->minSize;
+ ad->sizeAtPreferred = ad->prefSize;
+ ad->sizeAtMaximum = ad->maxSize;
+
+ // Propagate
+ ad->updateChildrenSizes();
+
+ sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum;
+ sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred;
+ sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum;
+ }
+
+ // Delete the constraints, we won't use them anymore.
+ qDeleteAll(sizeHintConstraints);
+ sizeHintConstraints.clear();
+
+ // For the other parts that not the trunk, solve only for the preferred size
+ // that is the size they will remain at, since they are not stretched by the
+ // layout.
+
+ // Solve the other only for preferred, skip trunk
+ for (int i = 1; i < parts.count(); ++i) {
+ QList<QSimplexConstraint *> partConstraints = parts[i];
+ QList<AnchorData *> partVariables = getVariables(partConstraints);
+ Q_ASSERT(!partVariables.isEmpty());
+
+ sizeHintConstraints = constraintsFromSizeHints(partVariables);
+ partConstraints += sizeHintConstraints;
+ solvePreferred(partConstraints);
+
+ // Propagate size at preferred to other sizes. Semi-floats
+ // always will be in their sizeAtPreferred.
+ for (int j = 0; j < partVariables.count(); ++j) {
+ AnchorData *ad = partVariables[j];
+ Q_ASSERT(ad);
+ ad->sizeAtMinimum = ad->sizeAtPreferred;
+ ad->sizeAtMaximum = ad->sizeAtPreferred;
+ ad->updateChildrenSizes();
+ }
+
+ // Delete the constraints, we won't use them anymore.
+ qDeleteAll(sizeHintConstraints);
+ sizeHintConstraints.clear();
+ }
+
+ // Clean up our data structures. They are not needed anymore since
+ // distribution uses just interpolation.
+ qDeleteAll(constraints[orientation]);
+ constraints[orientation].clear();
+ graphPaths[orientation].clear(); // ###
+}
+
+/*!
+ \internal
+
+ For graph edges ("anchors") that represent items, this method updates their
+ intrinsic size restrictions, based on the item size hints.
+*/
+void QGraphicsAnchorLayoutPrivate::setAnchorSizeHintsFromItems(Orientation orientation)
+{
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ QList<QPair<AnchorVertex *, AnchorVertex *> > vertices = g.connections();
+
+ qreal spacing = effectiveSpacing(orientation);
+
+ for (int i = 0; i < vertices.count(); ++i) {
+ AnchorData *data = g.edgeData(vertices.at(i).first, vertices.at(i).second);;
+ Q_ASSERT(data->from && data->to);
+ data->refreshSizeHints(spacing);
+ }
+}
+
+/*!
+ \internal
+
+ This method walks the graph using a breadth-first search to find paths
+ between the root vertex and each vertex on the graph. The edges
+ directions in each path are considered and they are stored as a
+ positive edge (left-to-right) or negative edge (right-to-left).
+
+ The list of paths is used later to generate a list of constraints.
+ */
+void QGraphicsAnchorLayoutPrivate::findPaths(Orientation orientation)
+{
+ QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
+
+ QSet<AnchorData *> visited;
+
+ AnchorVertex *root = graph[orientation].rootVertex();
+
+ graphPaths[orientation].insert(root, GraphPath());
+
+ foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
+ queue.enqueue(qMakePair(root, v));
+ }
+
+ while(!queue.isEmpty()) {
+ QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
+ AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
+
+ if (visited.contains(edge))
+ continue;
+
+ visited.insert(edge);
+ GraphPath current = graphPaths[orientation].value(pair.first);
+
+ if (edge->from == pair.first)
+ current.positives.insert(edge);
+ else
+ current.negatives.insert(edge);
+
+ graphPaths[orientation].insert(pair.second, current);
+
+ foreach (AnchorVertex *v,
+ graph[orientation].adjacentVertices(pair.second)) {
+ queue.enqueue(qMakePair(pair.second, v));
+ }
+ }
+}
+
+/*!
+ \internal
+
+ Each vertex on the graph that has more than one path to it
+ represents a contra int to the sizes of the items in these paths.
+
+ This method walks the list of paths to each vertex, generate
+ the constraints and store them in a list so they can be used later
+ by the Simplex solver.
+*/
+void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Orientation orientation)
+{
+ foreach (AnchorVertex *vertex, graphPaths[orientation].uniqueKeys())
+ {
+ int valueCount = graphPaths[orientation].count(vertex);
+ if (valueCount == 1)
+ continue;
+
+ QList<GraphPath> pathsToVertex = graphPaths[orientation].values(vertex);
+ for (int i = 1; i < valueCount; ++i) {
+ constraints[orientation] += \
+ pathsToVertex[0].constraint(pathsToVertex[i]);
+ }
+ }
+}
+
+/*!
+ \internal
+
+ Create LP constraints for each anchor based on its minimum and maximum
+ sizes, as specified in its size hints
+*/
+QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints(
+ const QList<AnchorData *> &anchors)
+{
+ QList<QSimplexConstraint *> anchorConstraints;
+ for (int i = 0; i < anchors.size(); ++i) {
+ QSimplexConstraint *c = new QSimplexConstraint;
+ c->variables.insert(anchors[i], 1.0);
+ c->constant = anchors[i]->minSize;
+ c->ratio = QSimplexConstraint::MoreOrEqual;
+ anchorConstraints += c;
+
+ c = new QSimplexConstraint;
+ c->variables.insert(anchors[i], 1.0);
+ c->constant = anchors[i]->maxSize;
+ c->ratio = QSimplexConstraint::LessOrEqual;
+ anchorConstraints += c;
+ }
+
+ return anchorConstraints;
+}
+
+/*!
+ \Internal
+*/
+QList< QList<QSimplexConstraint *> >
+QGraphicsAnchorLayoutPrivate::getGraphParts(Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ // Find layout vertices and edges for the current orientation.
+ AnchorVertex *layoutFirstVertex = \
+ internalVertex(q, pickEdge(Qt::AnchorLeft, orientation));
+
+ AnchorVertex *layoutCentralVertex = \
+ internalVertex(q, pickEdge(Qt::AnchorHorizontalCenter, orientation));
+
+ AnchorVertex *layoutLastVertex = \
+ internalVertex(q, pickEdge(Qt::AnchorRight, orientation));
+
+ Q_ASSERT(layoutFirstVertex && layoutLastVertex);
+
+ AnchorData *edgeL1 = NULL;
+ AnchorData *edgeL2 = NULL;
+
+ // The layout may have a single anchor between Left and Right or two half anchors
+ // passing through the center
+ if (layoutCentralVertex) {
+ edgeL1 = graph[orientation].edgeData(layoutFirstVertex, layoutCentralVertex);
+ edgeL2 = graph[orientation].edgeData(layoutCentralVertex, layoutLastVertex);
+ } else {
+ edgeL1 = graph[orientation].edgeData(layoutFirstVertex, layoutLastVertex);
+ }
+
+ QLinkedList<QSimplexConstraint *> remainingConstraints;
+ for (int i = 0; i < constraints[orientation].count(); ++i) {
+ remainingConstraints += constraints[orientation][i];
+ }
+ for (int i = 0; i < itemCenterConstraints[orientation].count(); ++i) {
+ remainingConstraints += itemCenterConstraints[orientation][i];
+ }
+
+ QList<QSimplexConstraint *> trunkConstraints;
+ QSet<QSimplexVariable *> trunkVariables;
+
+ trunkVariables += edgeL1;
+ if (edgeL2)
+ trunkVariables += edgeL2;
+
+ bool dirty;
+ do {
+ dirty = false;
+
+ QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
+ while (it != remainingConstraints.end()) {
+ QSimplexConstraint *c = *it;
+ bool match = false;
+
+ // Check if this constraint have some overlap with current
+ // trunk variables...
+ foreach (QSimplexVariable *ad, trunkVariables) {
+ if (c->variables.contains(ad)) {
+ match = true;
+ break;
+ }
+ }
+
+ // If so, we add it to trunk, and erase it from the
+ // remaining constraints.
+ if (match) {
+ trunkConstraints += c;
+ trunkVariables += QSet<QSimplexVariable *>::fromList(c->variables.keys());
+ it = remainingConstraints.erase(it);
+ dirty = true;
+ } else {
+ // Note that we don't erase the constraint if it's not
+ // a match, since in a next iteration of a do-while we
+ // can pass on it again and it will be a match.
+ //
+ // For example: if trunk share a variable with
+ // remainingConstraints[1] and it shares with
+ // remainingConstraints[0], we need a second iteration
+ // of the do-while loop to match both.
+ ++it;
+ }
+ }
+ } while (dirty);
+
+ QList< QList<QSimplexConstraint *> > result;
+ result += trunkConstraints;
+
+ if (!remainingConstraints.isEmpty()) {
+ QList<QSimplexConstraint *> nonTrunkConstraints;
+ QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
+ while (it != remainingConstraints.end()) {
+ nonTrunkConstraints += *it;
+ ++it;
+ }
+ result += nonTrunkConstraints;
+ }
+
+ return result;
+}
+
+/*!
+ \internal
+
+ Use the current vertices distance to calculate and set the geometry of
+ each item.
+*/
+void QGraphicsAnchorLayoutPrivate::setItemsGeometries()
+{
+ AnchorVertex *firstH, *secondH, *firstV, *secondV;
+
+ foreach (QGraphicsLayoutItem *item, items) {
+ firstH = internalVertex(item, Qt::AnchorLeft);
+ secondH = internalVertex(item, Qt::AnchorRight);
+ firstV = internalVertex(item, Qt::AnchorTop);
+ secondV = internalVertex(item, Qt::AnchorBottom);
+
+ QPointF topLeft(firstH->distance, firstV->distance);
+ QPointF bottomRight(secondH->distance, secondV->distance);
+
+ item->setGeometry(QRectF(topLeft, bottomRight));
+ }
+}
+
+/*!
+ \internal
+
+ Calculate the position of each vertex based on the paths to each of
+ them as well as the current edges sizes.
+*/
+void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(
+ QGraphicsAnchorLayoutPrivate::Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
+ QSet<AnchorVertex *> visited;
+
+ // Get root vertex
+ AnchorVertex *root = graph[orientation].rootVertex();
+
+ qreal widgetMargin;
+ qreal layoutMargin;
+
+ // Initialize the first vertex
+ if (orientation == Horizontal) {
+ widgetMargin = q->geometry().x();
+ q->getContentsMargins(&layoutMargin, 0, 0, 0);
+ } else {
+ // Root position is equal to the top margin
+ widgetMargin = q->geometry().y();
+ q->getContentsMargins(0, &layoutMargin, 0, 0);
+ }
+ root->distance = widgetMargin + layoutMargin;
+ visited.insert(root);
+
+ // Add initial edges to the queue
+ foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
+ queue.enqueue(qMakePair(root, v));
+ }
+
+ // Do initial calculation required by "interpolateEdge()"
+ setupEdgesInterpolation(orientation);
+
+ // Traverse the graph and calculate vertex positions, we need to
+ // visit all pairs since each of them could have a sequential
+ // anchor inside, which hides more vertices.
+ while (!queue.isEmpty()) {
+ QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
+ AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
+
+ // Both vertices were interpolated, and the anchor itself can't have other
+ // anchors inside (it's not a complex anchor).
+ if (edge->type == AnchorData::Normal && visited.contains(pair.second))
+ continue;
+
+ visited.insert(pair.second);
+ interpolateEdge(pair.first, edge, orientation);
+
+ QList<AnchorVertex *> adjacents = graph[orientation].adjacentVertices(pair.second);
+ for (int i = 0; i < adjacents.count(); ++i) {
+ if (!visited.contains(adjacents.at(i)))
+ queue.enqueue(qMakePair(pair.second, adjacents.at(i)));
+ }
+ }
+}
+
+/*!
+ \internal
+
+ Calculate interpolation parameters based on current Layout Size.
+ Must once before calling "interpolateEdgeSize()" for each edge.
+*/
+void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
+ Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ qreal lower, upper, current;
+
+ if (orientation == Horizontal) {
+ current = q->contentsRect().width();
+ } else {
+ current = q->contentsRect().height();
+ }
+
+ if (current < sizeHints[orientation][Qt::PreferredSize]) {
+ interpolationInterval[orientation] = MinToPreferred;
+ lower = sizeHints[orientation][Qt::MinimumSize];
+ upper = sizeHints[orientation][Qt::PreferredSize];
+ } else {
+ interpolationInterval[orientation] = PreferredToMax;
+ lower = sizeHints[orientation][Qt::PreferredSize];
+ upper = sizeHints[orientation][Qt::MaximumSize];
+ }
+
+ if (upper == lower) {
+ interpolationProgress[orientation] = 0;
+ } else {
+ interpolationProgress[orientation] = (current - lower) / (upper - lower);
+ }
+}
+
+/*!
+ \internal
+
+ Calculate the current Edge size based on the current Layout size and the
+ size the edge is supposed to have when:
+
+ - the layout is at its minimum size.
+ - the layout is at its preferred size.
+ - the layout is at its maximum size.
+
+ These three key values are calculated in advance using linear
+ programming (more expensive) or the simplification algorithm, then
+ subsequential resizes of the parent layout require a simple
+ interpolation.
+
+ If the edge is sequential or parallel, it's possible to have more
+ vertices to be initalized, so it calls specialized functions that
+ will recurse back to interpolateEdge().
+ */
+void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base,
+ AnchorData *edge,
+ Orientation orientation)
+{
+ qreal lower, upper;
+
+ if (interpolationInterval[orientation] == MinToPreferred) {
+ lower = edge->sizeAtMinimum;
+ upper = edge->sizeAtPreferred;
+ } else {
+ lower = edge->sizeAtPreferred;
+ upper = edge->sizeAtMaximum;
+ }
+
+ qreal edgeDistance = (interpolationProgress[orientation] * (upper - lower)) + lower;
+
+ Q_ASSERT(edge->from == base || edge->to == base);
+
+ if (edge->from == base)
+ edge->to->distance = base->distance + edgeDistance;
+ else
+ edge->from->distance = base->distance - edgeDistance;
+
+ // Process child anchors
+ if (edge->type == AnchorData::Sequential)
+ interpolateSequentialEdges(edge->from,
+ static_cast<SequentialAnchorData *>(edge),
+ orientation);
+ else if (edge->type == AnchorData::Parallel)
+ interpolateParallelEdges(edge->from,
+ static_cast<ParallelAnchorData *>(edge),
+ orientation);
+}
+
+void QGraphicsAnchorLayoutPrivate::interpolateParallelEdges(
+ AnchorVertex *base, ParallelAnchorData *data, Orientation orientation)
+{
+ // In parallels the boundary vertices are already calculate, we
+ // just need to look for sequential groups inside, because only
+ // them may have new vertices associated.
+
+ // First edge
+ if (data->firstEdge->type == AnchorData::Sequential)
+ interpolateSequentialEdges(base,
+ static_cast<SequentialAnchorData *>(data->firstEdge),
+ orientation);
+ else if (data->firstEdge->type == AnchorData::Parallel)
+ interpolateParallelEdges(base,
+ static_cast<ParallelAnchorData *>(data->firstEdge),
+ orientation);
+
+ // Second edge
+ if (data->secondEdge->type == AnchorData::Sequential)
+ interpolateSequentialEdges(base,
+ static_cast<SequentialAnchorData *>(data->secondEdge),
+ orientation);
+ else if (data->secondEdge->type == AnchorData::Parallel)
+ interpolateParallelEdges(base,
+ static_cast<ParallelAnchorData *>(data->secondEdge),
+ orientation);
+}
+
+void QGraphicsAnchorLayoutPrivate::interpolateSequentialEdges(
+ AnchorVertex *base, SequentialAnchorData *data, Orientation orientation)
+{
+ AnchorVertex *prev = base;
+
+ // ### I'm not sure whether this assumption is safe. If not,
+ // consider that m_edges.last() could be used instead (so
+ // at(0) would be the one to be treated specially).
+ Q_ASSERT(base == data->m_edges.at(0)->to || base == data->m_edges.at(0)->from);
+
+ // Skip the last
+ for (int i = 0; i < data->m_edges.count() - 1; ++i) {
+ AnchorData *child = data->m_edges.at(i);
+ interpolateEdge(prev, child, orientation);
+ prev = child->to;
+ }
+
+ // Treat the last specially, since we already calculated it's end
+ // vertex, so it's only interesting if it's a complex one
+ if (data->m_edges.last()->type != AnchorData::Normal)
+ interpolateEdge(prev, data->m_edges.last(), orientation);
+}
+
+QPair<qreal, qreal>
+QGraphicsAnchorLayoutPrivate::solveMinMax(QList<QSimplexConstraint *> constraints,
+ GraphPath path)
+{
+ QSimplex simplex;
+ simplex.setConstraints(constraints);
+
+ // Obtain the objective constraint
+ QSimplexConstraint objective;
+ QSet<AnchorData *>::const_iterator iter;
+ for (iter = path.positives.constBegin(); iter != path.positives.constEnd(); ++iter)
+ objective.variables.insert(*iter, 1.0);
+
+ for (iter = path.negatives.constBegin(); iter != path.negatives.constEnd(); ++iter)
+ objective.variables.insert(*iter, -1.0);
+
+ simplex.setObjective(&objective);
+
+ // Calculate minimum values
+ qreal min = simplex.solveMin();
+
+ // Save sizeAtMinimum results
+ QList<QSimplexVariable *> variables = simplex.constraintsVariables();
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = static_cast<AnchorData *>(variables[i]);
+ ad->sizeAtMinimum = ad->result;
+ }
+
+ // Calculate maximum values
+ qreal max = simplex.solveMax();
+
+ // Save sizeAtMaximum results
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = static_cast<AnchorData *>(variables[i]);
+ ad->sizeAtMaximum = ad->result;
+ }
+
+ return qMakePair<qreal, qreal>(min, max);
+}
+
+void QGraphicsAnchorLayoutPrivate::solvePreferred(QList<QSimplexConstraint *> constraints)
+{
+ QList<AnchorData *> variables = getVariables(constraints);
+ QList<QSimplexConstraint *> preferredConstraints;
+ QList<QSimplexVariable *> preferredVariables;
+ QSimplexConstraint objective;
+
+ // Fill the objective coefficients for this variable. In the
+ // end the objective function will be
+ //
+ // z = n * (A_shrink + B_shrink + ...) + (A_grower + B_grower + ...)
+ //
+ // where n is the number of variables that have
+ // slacks. Note that here we use the number of variables
+ // as coefficient, this is to mark the "shrinker slack
+ // variable" less likely to get value than the "grower
+ // slack variable".
+
+ // This will fill the values for the structural constraints
+ // and we now fill the values for the slack constraints (one per variable),
+ // which have this form (the constant A_pref was set when creating the slacks):
+ //
+ // A + A_shrinker - A_grower = A_pref
+ //
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = static_cast<AnchorData *>(variables[i]);
+ if (ad->skipInPreferred)
+ continue;
+
+ QSimplexVariable *grower = new QSimplexVariable;
+ QSimplexVariable *shrinker = new QSimplexVariable;
+ QSimplexConstraint *c = new QSimplexConstraint;
+ c->variables.insert(ad, 1.0);
+ c->variables.insert(shrinker, 1.0);
+ c->variables.insert(grower, -1.0);
+ c->constant = ad->prefSize;
+
+ preferredConstraints += c;
+ preferredVariables += grower;
+ preferredVariables += shrinker;
+
+ objective.variables.insert(grower, 1.0);
+ objective.variables.insert(shrinker, variables.size());
+ }
+
+
+ QSimplex *simplex = new QSimplex;
+ simplex->setConstraints(constraints + preferredConstraints);
+ simplex->setObjective(&objective);
+
+ // Calculate minimum values
+ simplex->solveMin();
+
+ // Save sizeAtPreferred results
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = static_cast<AnchorData *>(variables[i]);
+ ad->sizeAtPreferred = ad->result;
+ }
+
+ // Make sure we delete the simplex solver -before- we delete the
+ // constraints used by it.
+ delete simplex;
+
+ // Delete constraints and variables we created.
+ qDeleteAll(preferredConstraints);
+ qDeleteAll(preferredVariables);
+}
+
+#ifdef QT_DEBUG
+void QGraphicsAnchorLayoutPrivate::dumpGraph()
+{
+ QFile file(QString::fromAscii("anchorlayout.dot"));
+ if (!file.open(QIODevice::WriteOnly | QIODevice::Text | QIODevice::Truncate))
+ qWarning("Could not write to %s", file.fileName().toLocal8Bit().constData());
+
+ QString str = QString::fromAscii("digraph anchorlayout {\nnode [shape=\"rect\"]\n%1}");
+ QString dotContents = graph[0].serializeToDot();
+ dotContents += graph[1].serializeToDot();
+ file.write(str.arg(dotContents).toLocal8Bit());
+
+ file.close();
+}
+#endif
+
+QT_END_NAMESPACE