summaryrefslogtreecommitdiffstats
path: root/src/gui/image/qimage.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gui/image/qimage.cpp')
-rw-r--r--src/gui/image/qimage.cpp6119
1 files changed, 6119 insertions, 0 deletions
diff --git a/src/gui/image/qimage.cpp b/src/gui/image/qimage.cpp
new file mode 100644
index 0000000..558d574
--- /dev/null
+++ b/src/gui/image/qimage.cpp
@@ -0,0 +1,6119 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the either Technology Preview License Agreement or the
+** Beta Release License Agreement.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain
+** additional rights. These rights are described in the Nokia Qt LGPL
+** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
+** package.
+**
+** GNU General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU
+** General Public License version 3.0 as published by the Free Software
+** Foundation and appearing in the file LICENSE.GPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU General Public License version 3.0 requirements will be
+** met: http://www.gnu.org/copyleft/gpl.html.
+**
+** If you are unsure which license is appropriate for your use, please
+** contact the sales department at qt-sales@nokia.com.
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include "qimage.h"
+#include "qdatastream.h"
+#include "qbuffer.h"
+#include "qmap.h"
+#include "qmatrix.h"
+#include "qtransform.h"
+#include "qimagereader.h"
+#include "qimagewriter.h"
+#include "qstringlist.h"
+#include "qvariant.h"
+#include <ctype.h>
+#include <stdlib.h>
+#include <limits.h>
+#include <math.h>
+#include <private/qdrawhelper_p.h>
+#include <private/qmemrotate_p.h>
+#include <private/qpixmapdata_p.h>
+#include <private/qimagescale_p.h>
+
+#include <qhash.h>
+
+#ifdef QT_RASTER_IMAGEENGINE
+#include <private/qpaintengine_raster_p.h>
+#else
+#include <qpaintengine.h>
+#endif
+
+#include <private/qimage_p.h>
+
+QT_BEGIN_NAMESPACE
+
+static inline bool checkPixelSize(const QImage::Format format)
+{
+ switch (format) {
+ case QImage::Format_ARGB8565_Premultiplied:
+ return (sizeof(qargb8565) == 3);
+ case QImage::Format_RGB666:
+ return (sizeof(qrgb666) == 3);
+ case QImage::Format_ARGB6666_Premultiplied:
+ return (sizeof(qargb6666) == 3);
+ case QImage::Format_RGB555:
+ return (sizeof(qrgb555) == 2);
+ case QImage::Format_ARGB8555_Premultiplied:
+ return (sizeof(qargb8555) == 3);
+ case QImage::Format_RGB888:
+ return (sizeof(qrgb888) == 3);
+ case QImage::Format_RGB444:
+ return (sizeof(qrgb444) == 2);
+ case QImage::Format_ARGB4444_Premultiplied:
+ return (sizeof(qargb4444) == 2);
+ default:
+ return true;
+ }
+}
+
+#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001)
+#pragma message disable narrowptr
+#endif
+
+
+#define QIMAGE_SANITYCHECK_MEMORY(image) \
+ if ((image).isNull()) { \
+ qWarning("QImage: out of memory, returning null image"); \
+ return QImage(); \
+ }
+
+
+// ### Qt 5: remove
+typedef void (*_qt_image_cleanup_hook)(int);
+Q_GUI_EXPORT _qt_image_cleanup_hook qt_image_cleanup_hook = 0;
+
+// ### Qt 5: rename
+typedef void (*_qt_image_cleanup_hook_64)(qint64);
+Q_GUI_EXPORT _qt_image_cleanup_hook_64 qt_image_cleanup_hook_64 = 0;
+
+static QImage rotated90(const QImage &src);
+static QImage rotated180(const QImage &src);
+static QImage rotated270(const QImage &src);
+
+// ### Qt 5: remove
+Q_GUI_EXPORT qint64 qt_image_id(const QImage &image)
+{
+ return image.cacheKey();
+}
+
+const QVector<QRgb> *qt_image_colortable(const QImage &image)
+{
+ return &image.d->colortable;
+}
+
+extern int qt_defaultDpiX();
+extern int qt_defaultDpiY();
+
+QBasicAtomicInt qimage_serial_number = Q_BASIC_ATOMIC_INITIALIZER(1);
+
+QImageData::QImageData()
+ : ref(0), width(0), height(0), depth(0), nbytes(0), data(0),
+#ifdef QT3_SUPPORT
+ jumptable(0),
+#endif
+ format(QImage::Format_ARGB32), bytes_per_line(0),
+ ser_no(qimage_serial_number.fetchAndAddRelaxed(1)),
+ detach_no(0),
+ dpmx(qt_defaultDpiX() * 100 / qreal(2.54)),
+ dpmy(qt_defaultDpiY() * 100 / qreal(2.54)),
+ offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false),
+ is_cached(false), paintEngine(0)
+{
+}
+
+static int depthForFormat(QImage::Format format)
+{
+ int depth = 0;
+ switch(format) {
+ case QImage::Format_Invalid:
+ case QImage::NImageFormats:
+ Q_ASSERT(false);
+ case QImage::Format_Mono:
+ case QImage::Format_MonoLSB:
+ depth = 1;
+ break;
+ case QImage::Format_Indexed8:
+ depth = 8;
+ break;
+ case QImage::Format_RGB32:
+ case QImage::Format_ARGB32:
+ case QImage::Format_ARGB32_Premultiplied:
+ depth = 32;
+ break;
+ case QImage::Format_RGB555:
+ case QImage::Format_RGB16:
+ case QImage::Format_RGB444:
+ case QImage::Format_ARGB4444_Premultiplied:
+ depth = 16;
+ break;
+ case QImage::Format_RGB666:
+ case QImage::Format_ARGB6666_Premultiplied:
+ case QImage::Format_ARGB8565_Premultiplied:
+ case QImage::Format_ARGB8555_Premultiplied:
+ case QImage::Format_RGB888:
+ depth = 24;
+ break;
+ }
+ return depth;
+}
+
+QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)
+{
+ if (!size.isValid() || numColors < 0 || format == QImage::Format_Invalid)
+ return 0; // invalid parameter(s)
+
+ if (!checkPixelSize(format)) {
+ qWarning("QImageData::create(): Invalid pixel size for format %i",
+ format);
+ return 0;
+ }
+
+ uint width = size.width();
+ uint height = size.height();
+ uint depth = depthForFormat(format);
+
+ switch (format) {
+ case QImage::Format_Mono:
+ case QImage::Format_MonoLSB:
+ numColors = 2;
+ break;
+ case QImage::Format_Indexed8:
+ numColors = qBound(0, numColors, 256);
+ break;
+ default:
+ numColors = 0;
+ break;
+ }
+
+ const int bytes_per_line = ((width * depth + 31) >> 5) << 2; // bytes per scanline (must be multiple of 8)
+
+ // sanity check for potential overflows
+ if (INT_MAX/depth < width
+ || bytes_per_line <= 0
+ || height <= 0
+ || INT_MAX/uint(bytes_per_line) < height
+ || INT_MAX/sizeof(uchar *) < uint(height))
+ return 0;
+
+ QImageData *d = new QImageData;
+ d->colortable.resize(numColors);
+ if (depth == 1) {
+ d->colortable[0] = QColor(Qt::black).rgba();
+ d->colortable[1] = QColor(Qt::white).rgba();
+ } else {
+ for (int i = 0; i < numColors; ++i)
+ d->colortable[i] = 0;
+ }
+
+ d->width = width;
+ d->height = height;
+ d->depth = depth;
+ d->format = format;
+ d->has_alpha_clut = false;
+ d->is_cached = false;
+
+ d->bytes_per_line = bytes_per_line;
+
+ d->nbytes = d->bytes_per_line*height;
+ d->data = (uchar *)malloc(d->nbytes);
+
+ if (!d->data) {
+ delete d;
+ return 0;
+ }
+
+ d->ref.ref();
+ return d;
+
+}
+
+QImageData::~QImageData()
+{
+ if (is_cached && qt_image_cleanup_hook_64)
+ qt_image_cleanup_hook_64((((qint64) ser_no) << 32) | ((qint64) detach_no));
+ delete paintEngine;
+ if (data && own_data)
+ free(data);
+#ifdef QT3_SUPPORT
+ if (jumptable)
+ free(jumptable);
+ jumptable = 0;
+#endif
+ data = 0;
+}
+
+
+bool QImageData::checkForAlphaPixels() const
+{
+ bool has_alpha_pixels = false;
+
+ switch (format) {
+
+ case QImage::Format_Indexed8:
+ has_alpha_pixels = has_alpha_clut;
+ break;
+
+ case QImage::Format_ARGB32:
+ case QImage::Format_ARGB32_Premultiplied: {
+ uchar *bits = data;
+ for (int y=0; y<height && !has_alpha_pixels; ++y) {
+ for (int x=0; x<width; ++x)
+ has_alpha_pixels |= (((uint *)bits)[x] & 0xff000000) != 0xff000000;
+ bits += bytes_per_line;
+ }
+ } break;
+
+ case QImage::Format_ARGB8555_Premultiplied:
+ case QImage::Format_ARGB8565_Premultiplied: {
+ uchar *bits = data;
+ uchar *end_bits = data + bytes_per_line;
+
+ for (int y=0; y<height && !has_alpha_pixels; ++y) {
+ while (bits < end_bits) {
+ has_alpha_pixels |= bits[0] != 0;
+ bits += 3;
+ }
+ bits = end_bits;
+ end_bits += bytes_per_line;
+ }
+ } break;
+
+ case QImage::Format_ARGB6666_Premultiplied: {
+ uchar *bits = data;
+ uchar *end_bits = data + bytes_per_line;
+
+ for (int y=0; y<height && !has_alpha_pixels; ++y) {
+ while (bits < end_bits) {
+ has_alpha_pixels |= (bits[0] & 0xfc) != 0;
+ bits += 3;
+ }
+ bits = end_bits;
+ end_bits += bytes_per_line;
+ }
+ } break;
+
+ case QImage::Format_ARGB4444_Premultiplied: {
+ uchar *bits = data;
+ uchar *end_bits = data + bytes_per_line;
+
+ for (int y=0; y<height && !has_alpha_pixels; ++y) {
+ while (bits < end_bits) {
+ has_alpha_pixels |= (bits[0] & 0xf0) != 0;
+ bits += 2;
+ }
+ bits = end_bits;
+ end_bits += bytes_per_line;
+ }
+ } break;
+
+ default:
+ break;
+ }
+
+ return has_alpha_pixels;
+}
+
+/*!
+ \class QImage
+
+ \ingroup multimedia
+ \ingroup shared
+ \mainclass
+ \reentrant
+
+ \brief The QImage class provides a hardware-independent image
+ representation that allows direct access to the pixel data, and
+ can be used as a paint device.
+
+ Qt provides four classes for handling image data: QImage, QPixmap,
+ QBitmap and QPicture. QImage is designed and optimized for I/O,
+ and for direct pixel access and manipulation, while QPixmap is
+ designed and optimized for showing images on screen. QBitmap is
+ only a convenience class that inherits QPixmap, ensuring a
+ depth of 1. Finally, the QPicture class is a paint device that
+ records and replays QPainter commands.
+
+ Because QImage is a QPaintDevice subclass, QPainter can be used to
+ draw directly onto images. When using QPainter on a QImage, the
+ painting can be performed in another thread than the current GUI
+ thread.
+
+ The QImage class supports several image formats described by the
+ \l Format enum. These include monochrome, 8-bit, 32-bit and
+ alpha-blended images which are available in all versions of Qt
+ 4.x.
+
+ QImage provides a collection of functions that can be used to
+ obtain a variety of information about the image. There are also
+ several functions that enables transformation of the image.
+
+ QImage objects can be passed around by value since the QImage
+ class uses \l{Implicit Data Sharing}{implicit data
+ sharing}. QImage objects can also be streamed and compared.
+
+ \note If you would like to load QImage objects in a static build of Qt,
+ refer to the \l{How To Create Qt Plugins#Static Plugins}{Plugin HowTo}.
+
+ \tableofcontents
+
+ \section1 Reading and Writing Image Files
+
+ QImage provides several ways of loading an image file: The file
+ can be loaded when constructing the QImage object, or by using the
+ load() or loadFromData() functions later on. QImage also provides
+ the static fromData() function, constructing a QImage from the
+ given data. When loading an image, the file name can either refer
+ to an actual file on disk or to one of the application's embedded
+ resources. See \l{The Qt Resource System} overview for details
+ on how to embed images and other resource files in the
+ application's executable.
+
+ Simply call the save() function to save a QImage object.
+
+ The complete list of supported file formats are available through
+ the QImageReader::supportedImageFormats() and
+ QImageWriter::supportedImageFormats() functions. New file formats
+ can be added as plugins. By default, Qt supports the following
+ formats:
+
+ \table
+ \header \o Format \o Description \o Qt's support
+ \row \o BMP \o Windows Bitmap \o Read/write
+ \row \o GIF \o Graphic Interchange Format (optional) \o Read
+ \row \o JPG \o Joint Photographic Experts Group \o Read/write
+ \row \o JPEG \o Joint Photographic Experts Group \o Read/write
+ \row \o PNG \o Portable Network Graphics \o Read/write
+ \row \o PBM \o Portable Bitmap \o Read
+ \row \o PGM \o Portable Graymap \o Read
+ \row \o PPM \o Portable Pixmap \o Read/write
+ \row \o TIFF \o Tagged Image File Format \o Read/write
+ \row \o XBM \o X11 Bitmap \o Read/write
+ \row \o XPM \o X11 Pixmap \o Read/write
+ \endtable
+
+ \section1 Image Information
+
+ QImage provides a collection of functions that can be used to
+ obtain a variety of information about the image:
+
+ \table
+ \header
+ \o \o Available Functions
+
+ \row
+ \o Geometry
+ \o
+
+ The size(), width(), height(), dotsPerMeterX(), and
+ dotsPerMeterY() functions provide information about the image size
+ and aspect ratio.
+
+ The rect() function returns the image's enclosing rectangle. The
+ valid() function tells if a given pair of coordinates is within
+ this rectangle. The offset() function returns the number of pixels
+ by which the image is intended to be offset by when positioned
+ relative to other images, which also can be manipulated using the
+ setOffset() function.
+
+ \row
+ \o Colors
+ \o
+
+ The color of a pixel can be retrieved by passing its coordinates
+ to the pixel() function. The pixel() function returns the color
+ as a QRgb value indepedent of the image's format.
+
+ In case of monochrome and 8-bit images, the numColors() and
+ colorTable() functions provide information about the color
+ components used to store the image data: The colorTable() function
+ returns the image's entire color table. To obtain a single entry,
+ use the pixelIndex() function to retrieve the pixel index for a
+ given pair of coordinates, then use the color() function to
+ retrieve the color. Note that if you create an 8-bit image
+ manually, you have to set a valid color table on the image as
+ well.
+
+ The hasAlphaChannel() function tells if the image's format
+ respects the alpha channel, or not. The allGray() and
+ isGrayscale() functions tell whether an image's colors are all
+ shades of gray.
+
+ See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation}
+ and \l {QImage#Image Transformations}{Image Transformations}
+ sections.
+
+ \row
+ \o Text
+ \o
+
+ The text() function returns the image text associated with the
+ given text key. An image's text keys can be retrieved using the
+ textKeys() function. Use the setText() function to alter an
+ image's text.
+
+ \row
+ \o Low-level information
+ \o
+ The depth() function returns the depth of the image. The supported
+ depths are 1 (monochrome), 8 and 32 (for more information see the
+ \l {QImage#Image Formats}{Image Formats} section).
+
+ The format(), bytesPerLine(), and numBytes() functions provide
+ low-level information about the data stored in the image.
+
+ The cacheKey() function returns a number that uniquely
+ identifies the contents of this QImage object.
+ \endtable
+
+ \section1 Pixel Manipulation
+
+ The functions used to manipulate an image's pixels depend on the
+ image format. The reason is that monochrome and 8-bit images are
+ index-based and use a color lookup table, while 32-bit images
+ store ARGB values directly. For more information on image formats,
+ see the \l {Image Formats} section.
+
+ In case of a 32-bit image, the setPixel() function can be used to
+ alter the color of the pixel at the given coordinates to any other
+ color specified as an ARGB quadruplet. To make a suitable QRgb
+ value, use the qRgb() (adding a default alpha component to the
+ given RGB values, i.e. creating an opaque color) or qRgba()
+ function. For example:
+
+ \table
+ \row
+ \o \inlineimage qimage-32bit_scaled.png
+ \o
+ \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 0
+ \header
+ \o {2,1}32-bit
+ \endtable
+
+ In case of a 8-bit and monchrome images, the pixel value is only
+ an index from the image's color table. So the setPixel() function
+ can only be used to alter the color of the pixel at the given
+ coordinates to a predefined color from the image's color table,
+ i.e. it can only change the pixel's index value. To alter or add a
+ color to an image's color table, use the setColor() function.
+
+ An entry in the color table is an ARGB quadruplet encoded as an
+ QRgb value. Use the qRgb() and qRgba() functions to make a
+ suitable QRgb value for use with the setColor() function. For
+ example:
+
+ \table
+ \row
+ \o \inlineimage qimage-8bit_scaled.png
+ \o
+ \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 1
+ \header
+ \o {2,1} 8-bit
+ \endtable
+
+ QImage also provide the scanLine() function which returns a
+ pointer to the pixel data at the scanline with the given index,
+ and the bits() function which returns a pointer to the first pixel
+ data (this is equivalent to \c scanLine(0)).
+
+ \section1 Image Formats
+
+ Each pixel stored in a QImage is represented by an integer. The
+ size of the integer varies depending on the format. QImage
+ supports several image formats described by the \l Format
+ enum. The monochrome (1-bit), 8-bit and 32-bit images are
+ available in all versions of Qt. In addition Qt for Embedded Linux
+ also supports 2-bit, 4-bit, and 16-bit images. For more information
+ about the Qt Extended specific formats, see the documentation of the \l
+ Format enum.
+
+ Monochrome images are stored using 1-bit indexes into a color table
+ with at most two colors. There are two different types of
+ monochrome images: big endian (MSB first) or little endian (LSB
+ first) bit order.
+
+ 8-bit images are stored using 8-bit indexes into a color table,
+ i.e. they have a single byte per pixel. The color table is a
+ QVector<QRgb>, and the QRgb typedef is equivalent to an unsigned
+ int containing an ARGB quadruplet on the format 0xAARRGGBB.
+
+ 32-bit images have no color table; instead, each pixel contains an
+ QRgb value. There are three different types of 32-bit images
+ storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB
+ values respectively. In the premultiplied format the red, green,
+ and blue channels are multiplied by the alpha component divided by
+ 255.
+
+ An image's format can be retrieved using the format()
+ function. Use the convertToFormat() functions to convert an image
+ into another format. The allGray() and isGrayscale() functions
+ tell whether a color image can safely be converted to a grayscale
+ image.
+
+ \section1 Image Transformations
+
+ QImage supports a number of functions for creating a new image
+ that is a transformed version of the original: The
+ createAlphaMask() function builds and returns a 1-bpp mask from
+ the alpha buffer in this image, and the createHeuristicMask()
+ function creates and returns a 1-bpp heuristic mask for this
+ image. The latter function works by selecting a color from one of
+ the corners, then chipping away pixels of that color starting at
+ all the edges.
+
+ The mirrored() function returns a mirror of the image in the
+ desired direction, the scaled() returns a copy of the image scaled
+ to a rectangle of the desired measures, the rgbSwapped() function
+ constructs a BGR image from a RGB image, and the alphaChannel()
+ function constructs an image from this image's alpha channel.
+
+ The scaledToWidth() and scaledToHeight() functions return scaled
+ copies of the image.
+
+ The transformed() function returns a copy of the image that is
+ transformed with the given transformation matrix and
+ transformation mode: Internally, the transformation matrix is
+ adjusted to compensate for unwanted translation,
+ i.e. transformed() returns the smallest image containing all
+ transformed points of the original image. The static trueMatrix()
+ function returns the actual matrix used for transforming the
+ image.
+
+ There are also functions for changing attributes of an image
+ in-place:
+
+ \table
+ \header \o Function \o Description
+ \row
+ \o setAlphaChannel()
+ \o Sets the alpha channel of the image.
+ \row
+ \o setDotsPerMeterX()
+ \o Defines the aspect ratio by setting the number of pixels that fit
+ horizontally in a physical meter.
+ \row
+ \o setDotsPerMeterY()
+ \o Defines the aspect ratio by setting the number of pixels that fit
+ vertically in a physical meter.
+ \row
+ \o fill()
+ \o Fills the entire image with the given pixel value.
+ \row
+ \o invertPixels()
+ \o Inverts all pixel values in the image using the given InvertMode value.
+ \row
+ \o setColorTable()
+ \o Sets the color table used to translate color indexes. Only
+ monochrome and 8-bit formats.
+ \row
+ \o setNumColors()
+ \o Resizes the color table. Only monochrome and 8-bit formats.
+
+ \endtable
+
+ \section1 Legal Information
+
+ For smooth scaling, the transformed() functions use code based on
+ smooth scaling algorithm by Daniel M. Duley.
+
+ \legalese
+ Copyright (C) 2004, 2005 Daniel M. Duley
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ 1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ \endlegalese
+
+ \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example},
+ {Image Viewer Example}, {Scribble Example}, {Pixelator Example}
+*/
+
+/*!
+ \enum QImage::Endian
+ \compat
+
+ This enum type is used to describe the endianness of the CPU and
+ graphics hardware. It is provided here for compatibility with earlier versions of Qt.
+
+ Use the \l Format enum instead. The \l Format enum specify the
+ endianess for monchrome formats, but for other formats the
+ endianess is not relevant.
+
+ \value IgnoreEndian Endianness does not matter. Useful for some
+ operations that are independent of endianness.
+ \value BigEndian Most significant bit first or network byte order, as on SPARC, PowerPC, and Motorola CPUs.
+ \value LittleEndian Least significant bit first or little endian byte order, as on Intel x86.
+*/
+
+/*!
+ \enum QImage::InvertMode
+
+ This enum type is used to describe how pixel values should be
+ inverted in the invertPixels() function.
+
+ \value InvertRgb Invert only the RGB values and leave the alpha
+ channel unchanged.
+
+ \value InvertRgba Invert all channels, including the alpha channel.
+
+ \sa invertPixels()
+*/
+
+/*!
+ \enum QImage::Format
+
+ The following image formats are available in all versions of Qt:
+
+ \value Format_Invalid The image is invalid.
+ \value Format_Mono The image is stored using 1-bit per pixel. Bytes are
+ packed with the most significant bit (MSB) first.
+ \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are
+ packed with the less significant bit (LSB) first.
+ \value Format_Indexed8 The image is stored using 8-bit indexes into a colormap.
+ \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB).
+ \value Format_ARGB32 The image is stored using a 32-bit ARGB format (0xAARRGGBB).
+ \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit
+ ARGB format (0xAARRGGBB), i.e. the red,
+ green, and blue channels are multiplied
+ by the alpha component divided by 255. (If RR, GG, or BB
+ has a higher value than the alpha channel, the results are
+ undefined.) Certain operations (such as image composition
+ using alpha blending) are faster using premultiplied ARGB32
+ than with plain ARGB32.
+ \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5).
+ \value Format_ARGB8565_Premultiplied The image is stored using a
+ premultiplied 24-bit ARGB format (8-5-6-5).
+ \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6).
+ The unused most significant bits is always zero.
+ \value Format_ARGB6666_Premultiplied The image is stored using a
+ premultiplied 24-bit ARGB format (6-6-6-6).
+ \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5).
+ The unused most significant bit is always zero.
+ \value Format_ARGB8555_Premultiplied The image is stored using a
+ premultiplied 24-bit ARGB format (8-5-5-5).
+ \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8).
+ \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4).
+ The unused bits are always zero.
+ \value Format_ARGB4444_Premultiplied The image is stored using a
+ premultiplied 16-bit ARGB format (4-4-4-4).
+
+ \sa format(), convertToFormat()
+*/
+
+/*****************************************************************************
+ QImage member functions
+ *****************************************************************************/
+
+// table to flip bits
+static const uchar bitflip[256] = {
+ /*
+ open OUT, "| fmt";
+ for $i (0..255) {
+ print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) |
+ (($i >> 3) & 0x04) | (($i >> 1) & 0x08) |
+ (($i << 7) & 0x80) | (($i << 5) & 0x40) |
+ (($i << 3) & 0x20) | (($i << 1) & 0x10), ", ";
+ }
+ close OUT;
+ */
+ 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
+ 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
+ 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
+ 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
+ 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
+ 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
+ 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
+ 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
+ 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
+ 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
+ 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
+ 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
+ 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
+ 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
+ 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
+ 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
+};
+
+const uchar *qt_get_bitflip_array() // called from QPixmap code
+{
+ return bitflip;
+}
+
+#if defined(QT3_SUPPORT)
+static QImage::Format formatFor(int depth, QImage::Endian bitOrder)
+{
+ QImage::Format format;
+ if (depth == 1) {
+ format = bitOrder == QImage::BigEndian ? QImage::Format_Mono : QImage::Format_MonoLSB;
+ } else if (depth == 8) {
+ format = QImage::Format_Indexed8;
+ } else if (depth == 32) {
+ format = QImage::Format_RGB32;
+ } else if (depth == 24) {
+ format = QImage::Format_RGB888;
+ } else if (depth == 16) {
+ format = QImage::Format_RGB16;
+ } else {
+ qWarning("QImage: Depth %d not supported", depth);
+ format = QImage::Format_Invalid;
+ }
+ return format;
+}
+#endif
+
+/*!
+ Constructs a null image.
+
+ \sa isNull()
+*/
+
+QImage::QImage()
+ : QPaintDevice()
+{
+ d = 0;
+}
+
+/*!
+ Constructs an image with the given \a width, \a height and \a
+ format.
+
+ \warning This will create a QImage with uninitialized data. Call
+ fill() to fill the image with an appropriate pixel value before
+ drawing onto it with QPainter.
+*/
+QImage::QImage(int width, int height, Format format)
+ : QPaintDevice()
+{
+ d = QImageData::create(QSize(width, height), format, 0);
+}
+
+/*!
+ Constructs an image with the given \a size and \a format.
+
+ \warning This will create a QImage with uninitialized data. Call
+ fill() to fill the image with an appropriate pixel value before
+ drawing onto it with QPainter.
+*/
+QImage::QImage(const QSize &size, Format format)
+ : QPaintDevice()
+{
+ d = QImageData::create(size, format, 0);
+}
+
+
+
+QImageData *QImageData::create(uchar *data, int width, int height, int bpl, QImage::Format format, bool readOnly)
+{
+ QImageData *d = 0;
+
+ if (format == QImage::Format_Invalid)
+ return d;
+
+ if (!checkPixelSize(format)) {
+ qWarning("QImageData::create(): Invalid pixel size for format %i",
+ format);
+ return 0;
+ }
+
+ const int depth = depthForFormat(format);
+ const int calc_bytes_per_line = ((width * depth + 31)/32) * 4;
+ const int min_bytes_per_line = (width * depth + 7)/8;
+
+ if (bpl <= 0)
+ bpl = calc_bytes_per_line;
+
+ if (width <= 0 || height <= 0 || !data
+ || INT_MAX/sizeof(uchar *) < uint(height)
+ || INT_MAX/uint(depth) < uint(width)
+ || bpl <= 0
+ || height <= 0
+ || bpl < min_bytes_per_line
+ || INT_MAX/uint(bpl) < uint(height))
+ return d; // invalid parameter(s)
+
+ d = new QImageData;
+ d->ref.ref();
+
+ d->own_data = false;
+ d->ro_data = readOnly;
+ d->data = data;
+ d->width = width;
+ d->height = height;
+ d->depth = depth;
+ d->format = format;
+
+ d->bytes_per_line = bpl;
+ d->nbytes = d->bytes_per_line * height;
+
+ return d;
+}
+
+/*!
+ Constructs an image with the given \a width, \a height and \a
+ format, that uses an existing memory buffer, \a data. The \a width
+ and \a height must be specified in pixels, \a data must be 32-bit aligned,
+ and each scanline of data in the image must also be 32-bit aligned.
+
+ The buffer must remain valid throughout the life of the
+ QImage. The image does not delete the buffer at destruction.
+
+ If \a format is an indexed color format, the image color table is
+ initially empty and must be sufficiently expanded with
+ setNumColors() or setColorTable() before the image is used.
+*/
+QImage::QImage(uchar* data, int width, int height, Format format)
+ : QPaintDevice()
+{
+ d = QImageData::create(data, width, height, 0, format, false);
+}
+
+/*!
+ Constructs an image with the given \a width, \a height and \a
+ format, that uses an existing read-only memory buffer, \a
+ data. The \a width and \a height must be specified in pixels, \a
+ data must be 32-bit aligned, and each scanline of data in the
+ image must also be 32-bit aligned.
+
+ The buffer must remain valid throughout the life of the QImage and
+ all copies that have not been modified or otherwise detached from
+ the original buffer. The image does not delete the buffer at
+ destruction.
+
+ If \a format is an indexed color format, the image color table is
+ initially empty and must be sufficiently expanded with
+ setNumColors() or setColorTable() before the image is used.
+
+ Unlike the similar QImage constructor that takes a non-const data buffer,
+ this version will never alter the contents of the buffer. For example,
+ calling QImage::bits() will return a deep copy of the image, rather than
+ the buffer passed to the constructor. This allows for the efficiency of
+ constructing a QImage from raw data, without the possibility of the raw
+ data being changed.
+*/
+QImage::QImage(const uchar* data, int width, int height, Format format)
+ : QPaintDevice()
+{
+ d = QImageData::create(const_cast<uchar*>(data), width, height, 0, format, true);
+}
+
+/*!
+ Constructs an image with the given \a width, \a height and \a
+ format, that uses an existing memory buffer, \a data. The \a width
+ and \a height must be specified in pixels. \a bytesPerLine
+ specifies the number of bytes per line (stride).
+
+ The buffer must remain valid throughout the life of the
+ QImage. The image does not delete the buffer at destruction.
+
+ If \a format is an indexed color format, the image color table is
+ initially empty and must be sufficiently expanded with
+ setNumColors() or setColorTable() before the image is used.
+*/
+QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format)
+ :QPaintDevice()
+{
+ d = QImageData::create(data, width, height, bytesPerLine, format, false);
+}
+
+
+/*!
+ Constructs an image with the given \a width, \a height and \a
+ format, that uses an existing memory buffer, \a data. The \a width
+ and \a height must be specified in pixels. \a bytesPerLine
+ specifies the number of bytes per line (stride).
+
+ The buffer must remain valid throughout the life of the
+ QImage. The image does not delete the buffer at destruction.
+
+ If \a format is an indexed color format, the image color table is
+ initially empty and must be sufficiently expanded with
+ setNumColors() or setColorTable() before the image is used.
+
+ Unlike the similar QImage constructor that takes a non-const data buffer,
+ this version will never alter the contents of the buffer. For example,
+ calling QImage::bits() will return a deep copy of the image, rather than
+ the buffer passed to the constructor. This allows for the efficiency of
+ constructing a QImage from raw data, without the possibility of the raw
+ data being changed.
+*/
+
+QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format)
+ :QPaintDevice()
+{
+ d = QImageData::create(const_cast<uchar*>(data), width, height, bytesPerLine, format, true);
+}
+
+/*!
+ Constructs an image and tries to load the image from the file with
+ the given \a fileName.
+
+ The loader attempts to read the image using the specified \a
+ format. If the \a format is not specified (which is the default),
+ the loader probes the file for a header to guess the file format.
+
+ If the loading of the image failed, this object is a null image.
+
+ The file name can either refer to an actual file on disk or to one
+ of the application's embedded resources. See the
+ \l{resources.html}{Resource System} overview for details on how to
+ embed images and other resource files in the application's
+ executable.
+
+ \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+*/
+
+QImage::QImage(const QString &fileName, const char *format)
+ : QPaintDevice()
+{
+ d = 0;
+ load(fileName, format);
+}
+
+/*!
+ Constructs an image and tries to load the image from the file with
+ the given \a fileName.
+
+ The loader attempts to read the image using the specified \a
+ format. If the \a format is not specified (which is the default),
+ the loader probes the file for a header to guess the file format.
+
+ If the loading of the image failed, this object is a null image.
+
+ The file name can either refer to an actual file on disk or to one
+ of the application's embedded resources. See the
+ \l{resources.html}{Resource System} overview for details on how to
+ embed images and other resource files in the application's
+ executable.
+
+ You can disable this constructor by defining \c
+ QT_NO_CAST_FROM_ASCII when you compile your applications. This can
+ be useful, for example, if you want to ensure that all
+ user-visible strings go through QObject::tr().
+
+ \sa QString::fromAscii(), isNull(), {QImage#Reading and Writing
+ Image Files}{Reading and Writing Image Files}
+*/
+#ifndef QT_NO_CAST_FROM_ASCII
+QImage::QImage(const char *fileName, const char *format)
+ : QPaintDevice()
+{
+ // ### Qt 5: if you remove the QImage(const QByteArray &) QT3_SUPPORT
+ // constructor, remove this constructor as well. The constructor here
+ // exists so that QImage("foo.png") compiles without ambiguity.
+ d = 0;
+ load(QString::fromAscii(fileName), format);
+}
+#endif
+
+#ifndef QT_NO_IMAGEFORMAT_XPM
+extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image);
+
+/*!
+ Constructs an image from the given \a xpm image.
+
+ Make sure that the image is a valid XPM image. Errors are silently
+ ignored.
+
+ Note that it's possible to squeeze the XPM variable a little bit
+ by using an unusual declaration:
+
+ \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 2
+
+ The extra \c const makes the entire definition read-only, which is
+ slightly more efficient (e.g., when the code is in a shared
+ library) and able to be stored in ROM with the application.
+*/
+
+QImage::QImage(const char * const xpm[])
+ : QPaintDevice()
+{
+ d = 0;
+ if (!xpm)
+ return;
+ if (!qt_read_xpm_image_or_array(0, xpm, *this))
+ // Issue: Warning because the constructor may be ambigious
+ qWarning("QImage::QImage(), XPM is not supported");
+}
+#endif // QT_NO_IMAGEFORMAT_XPM
+
+/*!
+ \fn QImage::QImage(const QByteArray &data)
+
+ Use the static fromData() function instead.
+
+ \oldcode
+ QByteArray data;
+ ...
+ QImage image(data);
+ \newcode
+ QByteArray data;
+ ...
+ QImage image = QImage::fromData(data);
+ \endcode
+*/
+
+
+/*!
+ Constructs a shallow copy of the given \a image.
+
+ For more information about shallow copies, see the \l {Implicit
+ Data Sharing} documentation.
+
+ \sa copy()
+*/
+
+QImage::QImage(const QImage &image)
+ : QPaintDevice()
+{
+ d = image.d;
+ if (d)
+ d->ref.ref();
+}
+
+#ifdef QT3_SUPPORT
+/*!
+ \fn QImage::QImage(int width, int height, int depth, int numColors, Endian bitOrder)
+
+ Constructs an image with the given \a width, \a height, \a depth,
+ \a numColors colors and \a bitOrder.
+
+ Use the constructor that accepts a width, a height and a format
+ (i.e. specifying the depth and bit order), in combination with the
+ setNumColors() function, instead.
+
+ \oldcode
+ QImage image(width, height, depth, numColors);
+ \newcode
+ QImage image(width, height, format);
+
+ // For 8 bit images the default number of colors is 256. If
+ // another number of colors is required it can be specified
+ // using the setNumColors() function.
+ image.setNumColors(numColors);
+ \endcode
+*/
+
+QImage::QImage(int w, int h, int depth, int numColors, Endian bitOrder)
+ : QPaintDevice()
+{
+ d = QImageData::create(QSize(w, h), formatFor(depth, bitOrder), numColors);
+}
+
+/*!
+ Constructs an image with the given \a size, \a depth, \a numColors
+ and \a bitOrder.
+
+ Use the constructor that accepts a size and a format
+ (i.e. specifying the depth and bit order), in combination with the
+ setNumColors() function, instead.
+
+ \oldcode
+ QSize mySize(width, height);
+ QImage image(mySize, depth, numColors);
+ \newcode
+ QSize mySize(width, height);
+ QImage image(mySize, format);
+
+ // For 8 bit images the default number of colors is 256. If
+ // another number of colors is required it can be specified
+ // using the setNumColors() function.
+ image.setNumColors(numColors);
+ \endcode
+*/
+QImage::QImage(const QSize& size, int depth, int numColors, Endian bitOrder)
+ : QPaintDevice()
+{
+ d = QImageData::create(size, formatFor(depth, bitOrder), numColors);
+}
+
+/*!
+ \fn QImage::QImage(uchar* data, int width, int height, int depth, const QRgb* colortable, int numColors, Endian bitOrder)
+
+ Constructs an image with the given \a width, \a height, depth, \a
+ colortable, \a numColors and \a bitOrder, that uses an existing
+ memory buffer, \a data.
+
+ Use the constructor that accepts a uchar pointer, a width, a
+ height and a format (i.e. specifying the depth and bit order), in
+ combination with the setColorTable() function, instead.
+
+ \oldcode
+ uchar *myData;
+ QRgb *myColorTable;
+
+ QImage image(myData, width, height, depth,
+ myColorTable, numColors, IgnoreEndian);
+ \newcode
+ uchar *myData;
+ QVector<QRgb> myColorTable;
+
+ QImage image(myData, width, height, format);
+ image.setColorTable(myColorTable);
+ \endcode
+*/
+QImage::QImage(uchar* data, int w, int h, int depth, const QRgb* colortable, int numColors, Endian bitOrder)
+ : QPaintDevice()
+{
+ d = 0;
+ Format f = formatFor(depth, bitOrder);
+ if (f == Format_Invalid)
+ return;
+
+ const int bytes_per_line = ((w*depth+31)/32)*4; // bytes per scanline
+ if (w <= 0 || h <= 0 || numColors < 0 || !data
+ || INT_MAX/sizeof(uchar *) < uint(h)
+ || INT_MAX/uint(depth) < uint(w)
+ || bytes_per_line <= 0
+ || INT_MAX/uint(bytes_per_line) < uint(h))
+ return; // invalid parameter(s)
+ d = new QImageData;
+ d->ref.ref();
+
+ d->own_data = false;
+ d->data = data;
+ d->width = w;
+ d->height = h;
+ d->depth = depth;
+ d->format = f;
+ if (depth == 32)
+ numColors = 0;
+
+ d->bytes_per_line = bytes_per_line;
+ d->nbytes = d->bytes_per_line * h;
+ if (colortable) {
+ d->colortable.resize(numColors);
+ for (int i = 0; i < numColors; ++i)
+ d->colortable[i] = colortable[i];
+ } else if (numColors) {
+ setNumColors(numColors);
+ }
+}
+
+#ifdef Q_WS_QWS
+
+/*!
+ \fn QImage::QImage(uchar* data, int width, int height, int depth, int bytesPerLine, const QRgb* colortable, int numColors, Endian bitOrder)
+
+ Constructs an image with the given \a width, \a height, \a depth,
+ \a bytesPerLine, \a colortable, \a numColors and \a bitOrder, that
+ uses an existing memory buffer, \a data. The image does not delete
+ the buffer at destruction.
+
+ \warning This constructor is only available in Qt for Embedded Linux.
+
+ The data has to be 32-bit aligned, and each scanline of data in the image
+ must also be 32-bit aligned, so it's no longer possible to specify a custom
+ \a bytesPerLine value.
+*/
+QImage::QImage(uchar* data, int w, int h, int depth, int bpl, const QRgb* colortable, int numColors, Endian bitOrder)
+ : QPaintDevice()
+{
+ d = 0;
+ Format f = formatFor(depth, bitOrder);
+ if (f == Format_Invalid)
+ return;
+ if (!data || w <= 0 || h <= 0 || depth <= 0 || numColors < 0
+ || INT_MAX/sizeof(uchar *) < uint(h)
+ || INT_MAX/uint(depth) < uint(w)
+ || bpl <= 0
+ || INT_MAX/uint(bpl) < uint(h))
+ return; // invalid parameter(s)
+
+ d = new QImageData;
+ d->ref.ref();
+ d->own_data = false;
+ d->data = data;
+ d->width = w;
+ d->height = h;
+ d->depth = depth;
+ d->format = f;
+ if (depth == 32)
+ numColors = 0;
+ d->bytes_per_line = bpl;
+ d->nbytes = d->bytes_per_line * h;
+ if (colortable) {
+ d->colortable.resize(numColors);
+ for (int i = 0; i < numColors; ++i)
+ d->colortable[i] = colortable[i];
+ } else if (numColors) {
+ setNumColors(numColors);
+ }
+}
+#endif // Q_WS_QWS
+#endif // QT3_SUPPORT
+
+/*!
+ Destroys the image and cleans up.
+*/
+
+QImage::~QImage()
+{
+ if (d && !d->ref.deref())
+ delete d;
+}
+
+/*!
+ Assigns a shallow copy of the given \a image to this image and
+ returns a reference to this image.
+
+ For more information about shallow copies, see the \l {Implicit
+ Data Sharing} documentation.
+
+ \sa copy(), QImage()
+*/
+
+QImage &QImage::operator=(const QImage &image)
+{
+ if (image.d)
+ image.d->ref.ref();
+ if (d && !d->ref.deref())
+ delete d;
+ d = image.d;
+ return *this;
+}
+
+/*!
+ \internal
+*/
+int QImage::devType() const
+{
+ return QInternal::Image;
+}
+
+/*!
+ Returns the image as a QVariant.
+*/
+QImage::operator QVariant() const
+{
+ return QVariant(QVariant::Image, this);
+}
+
+/*!
+ \internal
+
+ If multiple images share common data, this image makes a copy of
+ the data and detaches itself from the sharing mechanism, making
+ sure that this image is the only one referring to the data.
+
+ Nothing is done if there is just a single reference.
+
+ \sa copy(), isDetached(), {Implicit Data Sharing}
+*/
+void QImage::detach()
+{
+ if (d) {
+ if (d->is_cached && qt_image_cleanup_hook_64 && d->ref == 1)
+ qt_image_cleanup_hook_64(cacheKey());
+
+ if (d->ref != 1 || d->ro_data)
+ *this = copy();
+
+ if (d)
+ ++d->detach_no;
+ }
+}
+
+
+/*!
+ \fn QImage QImage::copy(int x, int y, int width, int height) const
+ \overload
+
+ The returned image is copied from the position (\a x, \a y) in
+ this image, and will always have the given \a width and \a height.
+ In areas beyond this image, pixels are set to 0.
+
+*/
+
+/*!
+ \fn QImage QImage::copy(const QRect& rectangle) const
+
+ Returns a sub-area of the image as a new image.
+
+ The returned image is copied from the position (\a
+ {rectangle}.x(), \a{rectangle}.y()) in this image, and will always
+ have the size of the given \a rectangle.
+
+ In areas beyond this image, pixels are set to 0. For 32-bit RGB
+ images, this means black; for 32-bit ARGB images, this means
+ transparent black; for 8-bit images, this means the color with
+ index 0 in the color table which can be anything; for 1-bit
+ images, this means Qt::color0.
+
+ If the given \a rectangle is a null rectangle the entire image is
+ copied.
+
+ \sa QImage()
+*/
+QImage QImage::copy(const QRect& r) const
+{
+ if (!d)
+ return QImage();
+
+ if (r.isNull()) {
+ QImage image(d->width, d->height, d->format);
+ if (image.isNull())
+ return image;
+
+ // Qt for Embedded Linux can create images with non-default bpl
+ // make sure we don't crash.
+ if (image.d->nbytes != d->nbytes) {
+ int bpl = image.bytesPerLine();
+ for (int i = 0; i < height(); i++)
+ memcpy(image.scanLine(i), scanLine(i), bpl);
+ } else
+ memcpy(image.bits(), bits(), d->nbytes);
+ image.d->colortable = d->colortable;
+ image.d->dpmx = d->dpmx;
+ image.d->dpmy = d->dpmy;
+ image.d->offset = d->offset;
+ image.d->has_alpha_clut = d->has_alpha_clut;
+#ifndef QT_NO_IMAGE_TEXT
+ image.d->text = d->text;
+#endif
+ return image;
+ }
+
+ int x = r.x();
+ int y = r.y();
+ int w = r.width();
+ int h = r.height();
+
+ int dx = 0;
+ int dy = 0;
+ if (w <= 0 || h <= 0)
+ return QImage();
+
+ QImage image(w, h, d->format);
+ if (image.isNull())
+ return image;
+
+ if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) {
+ // bitBlt will not cover entire image - clear it.
+ image.fill(0);
+ if (x < 0) {
+ dx = -x;
+ x = 0;
+ }
+ if (y < 0) {
+ dy = -y;
+ y = 0;
+ }
+ }
+
+ image.d->colortable = d->colortable;
+
+ int pixels_to_copy = qMax(w - dx, 0);
+ if (x > d->width)
+ pixels_to_copy = 0;
+ else if (pixels_to_copy > d->width - x)
+ pixels_to_copy = d->width - x;
+ int lines_to_copy = qMax(h - dy, 0);
+ if (y > d->height)
+ lines_to_copy = 0;
+ else if (lines_to_copy > d->height - y)
+ lines_to_copy = d->height - y;
+
+ bool byteAligned = true;
+ if (d->format == Format_Mono || d->format == Format_MonoLSB)
+ byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7);
+
+ if (byteAligned) {
+ const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line;
+ uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line;
+ const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3;
+ for (int i = 0; i < lines_to_copy; ++i) {
+ memcpy(dest, src, bytes_to_copy);
+ src += d->bytes_per_line;
+ dest += image.d->bytes_per_line;
+ }
+ } else if (d->format == Format_Mono) {
+ const uchar *src = d->data + y * d->bytes_per_line;
+ uchar *dest = image.d->data + dy * image.d->bytes_per_line;
+ for (int i = 0; i < lines_to_copy; ++i) {
+ for (int j = 0; j < pixels_to_copy; ++j) {
+ if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7)))
+ dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7));
+ else
+ dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7));
+ }
+ src += d->bytes_per_line;
+ dest += image.d->bytes_per_line;
+ }
+ } else { // Format_MonoLSB
+ Q_ASSERT(d->format == Format_MonoLSB);
+ const uchar *src = d->data + y * d->bytes_per_line;
+ uchar *dest = image.d->data + dy * image.d->bytes_per_line;
+ for (int i = 0; i < lines_to_copy; ++i) {
+ for (int j = 0; j < pixels_to_copy; ++j) {
+ if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7)))
+ dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7));
+ else
+ dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7));
+ }
+ src += d->bytes_per_line;
+ dest += image.d->bytes_per_line;
+ }
+ }
+
+ image.d->dpmx = dotsPerMeterX();
+ image.d->dpmy = dotsPerMeterY();
+ image.d->offset = offset();
+ image.d->has_alpha_clut = d->has_alpha_clut;
+#ifndef QT_NO_IMAGE_TEXT
+ image.d->text = d->text;
+#endif
+ return image;
+}
+
+
+/*!
+ \fn bool QImage::isNull() const
+
+ Returns true if it is a null image, otherwise returns false.
+
+ A null image has all parameters set to zero and no allocated data.
+*/
+bool QImage::isNull() const
+{
+ return !d;
+}
+
+/*!
+ \fn int QImage::width() const
+
+ Returns the width of the image.
+
+ \sa {QImage#Image Information}{Image Information}
+*/
+int QImage::width() const
+{
+ return d ? d->width : 0;
+}
+
+/*!
+ \fn int QImage::height() const
+
+ Returns the height of the image.
+
+ \sa {QImage#Image Information}{Image Information}
+*/
+int QImage::height() const
+{
+ return d ? d->height : 0;
+}
+
+/*!
+ \fn QSize QImage::size() const
+
+ Returns the size of the image, i.e. its width() and height().
+
+ \sa {QImage#Image Information}{Image Information}
+*/
+QSize QImage::size() const
+{
+ return d ? QSize(d->width, d->height) : QSize(0, 0);
+}
+
+/*!
+ \fn QRect QImage::rect() const
+
+ Returns the enclosing rectangle (0, 0, width(), height()) of the
+ image.
+
+ \sa {QImage#Image Information}{Image Information}
+*/
+QRect QImage::rect() const
+{
+ return d ? QRect(0, 0, d->width, d->height) : QRect();
+}
+
+/*!
+ Returns the depth of the image.
+
+ The image depth is the number of bits used to encode a single
+ pixel, also called bits per pixel (bpp).
+
+ The supported depths are 1, 8, 16, 24 and 32.
+
+ \sa convertToFormat(), {QImage#Image Formats}{Image Formats},
+ {QImage#Image Information}{Image Information}
+
+*/
+int QImage::depth() const
+{
+ return d ? d->depth : 0;
+}
+
+/*!
+ \fn int QImage::numColors() const
+
+ Returns the size of the color table for the image.
+
+ Notice that numColors() returns 0 for 32-bpp images because these
+ images do not use color tables, but instead encode pixel values as
+ ARGB quadruplets.
+
+ \sa setNumColors(), {QImage#Image Information}{Image Information}
+*/
+int QImage::numColors() const
+{
+ return d ? d->colortable.size() : 0;
+}
+
+
+#ifdef QT3_SUPPORT
+/*!
+ \fn QImage::Endian QImage::bitOrder() const
+
+ Returns the bit order for the image. If it is a 1-bpp image, this
+ function returns either QImage::BigEndian or
+ QImage::LittleEndian. Otherwise, this function returns
+ QImage::IgnoreEndian.
+
+ Use the format() function instead for the monochrome formats. For
+ non-monochrome formats the bit order is irrelevant.
+*/
+
+/*!
+ Returns a pointer to the scanline pointer table. This is the
+ beginning of the data block for the image.
+
+ Use the bits() or scanLine() function instead.
+*/
+uchar **QImage::jumpTable()
+{
+ if (!d)
+ return 0;
+ detach();
+
+ // in case detach() ran out of memory..
+ if (!d)
+ return 0;
+
+ if (!d->jumptable) {
+ d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));
+ uchar *data = d->data;
+ int height = d->height;
+ uchar **p = d->jumptable;
+ while (height--) {
+ *p++ = data;
+ data += d->bytes_per_line;
+ }
+ }
+ return d->jumptable;
+}
+
+/*!
+ \overload
+*/
+const uchar * const *QImage::jumpTable() const
+{
+ if (!d)
+ return 0;
+ if (!d->jumptable) {
+ d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));
+ uchar *data = d->data;
+ int height = d->height;
+ uchar **p = d->jumptable;
+ while (height--) {
+ *p++ = data;
+ data += d->bytes_per_line;
+ }
+ }
+ return d->jumptable;
+}
+#endif
+
+/*!
+ Sets the color table used to translate color indexes to QRgb
+ values, to the specified \a colors.
+
+ When the image is used, the color table must be large enough to
+ have entries for all the pixel/index values present in the image,
+ otherwise the results are undefined.
+
+ \sa colorTable(), setColor(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+void QImage::setColorTable(const QVector<QRgb> colors)
+{
+ if (!d)
+ return;
+ detach();
+
+ // In case detach() ran out of memory
+ if (!d)
+ return;
+
+ d->colortable = colors;
+ d->has_alpha_clut = false;
+ for (int i = 0; i < d->colortable.size(); ++i)
+ d->has_alpha_clut |= (qAlpha(d->colortable.at(i)) != 255);
+}
+
+/*!
+ Returns a list of the colors contained in the image's color table,
+ or an empty list if the image does not have a color table
+
+ \sa setColorTable(), numColors(), color()
+*/
+QVector<QRgb> QImage::colorTable() const
+{
+ return d ? d->colortable : QVector<QRgb>();
+}
+
+
+/*!
+ Returns the number of bytes occupied by the image data.
+
+ \sa bytesPerLine(), bits(), {QImage#Image Information}{Image
+ Information}
+*/
+int QImage::numBytes() const
+{
+ return d ? d->nbytes : 0;
+}
+
+/*!
+ Returns the number of bytes per image scanline.
+
+ This is equivalent to numBytes()/ height().
+
+ \sa scanLine()
+*/
+int QImage::bytesPerLine() const
+{
+ return (d && d->height) ? d->nbytes / d->height : 0;
+}
+
+
+/*!
+ Returns the color in the color table at index \a i. The first
+ color is at index 0.
+
+ The colors in an image's color table are specified as ARGB
+ quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and
+ qBlue() functions to get the color value components.
+
+ \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel
+ Manipulation}
+*/
+QRgb QImage::color(int i) const
+{
+ Q_ASSERT(i < numColors());
+ return d ? d->colortable.at(i) : QRgb(uint(-1));
+}
+
+/*!
+ \fn void QImage::setColor(int index, QRgb colorValue)
+
+ Sets the color at the given \a index in the color table, to the
+ given to \a colorValue. The color value is an ARGB quadruplet.
+
+ If \a index is outside the current size of the color table, it is
+ expanded with setNumColors().
+
+ \sa color(), numColors(), setColorTable(), {QImage#Pixel Manipulation}{Pixel
+ Manipulation}
+*/
+void QImage::setColor(int i, QRgb c)
+{
+ if (!d)
+ return;
+ if (i < 0 || d->depth > 8 || i >= 1<<d->depth) {
+ qWarning("QImage::setColor: Index out of bound %d", i);
+ return;
+ }
+ detach();
+
+ // In case detach() run out of memory
+ if (!d)
+ return;
+
+ if (i >= d->colortable.size())
+ setNumColors(i+1);
+ d->colortable[i] = c;
+ d->has_alpha_clut |= (qAlpha(c) != 255);
+}
+
+/*!
+ Returns a pointer to the pixel data at the scanline with index \a
+ i. The first scanline is at index 0.
+
+ The scanline data is aligned on a 32-bit boundary.
+
+ \warning If you are accessing 32-bpp image data, cast the returned
+ pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to
+ read/write the pixel value. You cannot use the \c{uchar*} pointer
+ directly, because the pixel format depends on the byte order on
+ the underlying platform. Use qRed(), qGreen(), qBlue(), and
+ qAlpha() to access the pixels.
+
+ \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel
+ Manipulation}
+*/
+uchar *QImage::scanLine(int i)
+{
+ if (!d)
+ return 0;
+
+ detach();
+
+ // In case detach() ran out of memory
+ if (!d)
+ return 0;
+
+ return d->data + i * d->bytes_per_line;
+}
+
+/*!
+ \overload
+*/
+const uchar *QImage::scanLine(int i) const
+{
+ if (!d)
+ return 0;
+
+ Q_ASSERT(i >= 0 && i < height());
+ return d->data + i * d->bytes_per_line;
+}
+
+
+/*!
+ Returns a pointer to the first pixel data. This is equivalent to
+ scanLine(0).
+
+ Note that QImage uses \l{Implicit Data Sharing} {implicit data
+ sharing}. This function performs a deep copy of the shared pixel
+ data, thus ensuring that this QImage is the only one using the
+ current return value.
+
+ \sa scanLine(), numBytes()
+*/
+uchar *QImage::bits()
+{
+ if (!d)
+ return 0;
+ detach();
+
+ // In case detach ran out of memory...
+ if (!d)
+ return 0;
+
+ return d->data;
+}
+
+/*!
+ \overload
+
+ Note that QImage uses \l{Implicit Data Sharing} {implicit data
+ sharing}, but this function does \e not perform a deep copy of the
+ shared pixel data, because the returned data is const.
+*/
+const uchar *QImage::bits() const
+{
+ return d ? d->data : 0;
+}
+
+
+
+/*!
+ \fn void QImage::reset()
+
+ Resets all image parameters and deallocates the image data.
+
+ Assign a null image instead.
+
+ \oldcode
+ QImage image;
+ image.reset();
+ \newcode
+ QImage image;
+ image = QImage();
+ \endcode
+*/
+
+/*!
+ \fn void QImage::fill(uint pixelValue)
+
+ Fills the entire image with the given \a pixelValue.
+
+ If the depth of this image is 1, only the lowest bit is used. If
+ you say fill(0), fill(2), etc., the image is filled with 0s. If
+ you say fill(1), fill(3), etc., the image is filled with 1s. If
+ the depth is 8, the lowest 8 bits are used and if the depth is 16
+ the lowest 16 bits are used.
+
+ Note: QImage::pixel() returns the color of the pixel at the given
+ coordinates while QColor::pixel() returns the pixel value of the
+ underlying window system (essentially an index value), so normally
+ you will want to use QImage::pixel() to use a color from an
+ existing image or QColor::rgb() to use a specific color.
+
+ \sa depth(), {QImage#Image Transformations}{Image Transformations}
+*/
+
+void QImage::fill(uint pixel)
+{
+ if (!d)
+ return;
+
+ detach();
+
+ // In case detach() ran out of memory
+ if (!d)
+ return;
+
+ if (d->depth == 1 || d->depth == 8) {
+ int w = d->width;
+ if (d->depth == 1) {
+ if (pixel & 1)
+ pixel = 0xffffffff;
+ else
+ pixel = 0;
+ w = (w + 7) / 8;
+ } else {
+ pixel &= 0xff;
+ }
+ qt_rectfill<quint8>(d->data, pixel, 0, 0,
+ w, d->height, d->bytes_per_line);
+ return;
+ } else if (d->depth == 16) {
+ qt_rectfill<quint16>(reinterpret_cast<quint16*>(d->data), pixel,
+ 0, 0, d->width, d->height, d->bytes_per_line);
+ return;
+ } else if (d->depth == 24) {
+ qt_rectfill<quint24>(reinterpret_cast<quint24*>(d->data), pixel,
+ 0, 0, d->width, d->height, d->bytes_per_line);
+ return;
+ }
+
+ if (d->format == Format_RGB32)
+ pixel |= 0xff000000;
+
+ qt_rectfill<uint>(reinterpret_cast<uint*>(d->data), pixel,
+ 0, 0, d->width, d->height, d->bytes_per_line);
+}
+
+/*!
+ Inverts all pixel values in the image.
+
+ The given invert \a mode only have a meaning when the image's
+ depth is 32. The default \a mode is InvertRgb, which leaves the
+ alpha channel unchanged. If the \a mode is InvertRgba, the alpha
+ bits are also inverted.
+
+ Inverting an 8-bit image means to replace all pixels using color
+ index \e i with a pixel using color index 255 minus \e i. The same
+ is the case for a 1-bit image. Note that the color table is \e not
+ changed.
+
+ \sa {QImage#Image Transformations}{Image Transformations}
+*/
+
+void QImage::invertPixels(InvertMode mode)
+{
+ if (!d)
+ return;
+
+ detach();
+
+ // In case detach() ran out of memory
+ if (!d)
+ return;
+
+ if (depth() != 32) {
+ // number of used bytes pr line
+ int bpl = (d->width * d->depth + 7) / 8;
+ int pad = d->bytes_per_line - bpl;
+ uchar *sl = d->data;
+ for (int y=0; y<d->height; ++y) {
+ for (int x=0; x<bpl; ++x)
+ *sl++ ^= 0xff;
+ sl += pad;
+ }
+ } else {
+ quint32 *p = (quint32*)d->data;
+ quint32 *end = (quint32*)(d->data + d->nbytes);
+ uint xorbits = (mode == InvertRgba) ? 0xffffffff : 0x00ffffff;
+ while (p < end)
+ *p++ ^= xorbits;
+ }
+}
+
+/*!
+ \fn void QImage::invertPixels(bool invertAlpha)
+
+ Use the invertPixels() function that takes a QImage::InvertMode
+ parameter instead.
+*/
+
+/*! \fn QImage::Endian QImage::systemByteOrder()
+
+ Determines the host computer byte order. Returns
+ QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).
+
+ This function is no longer relevant for QImage. Use QSysInfo
+ instead.
+*/
+
+// Windows defines these
+#if defined(write)
+# undef write
+#endif
+#if defined(close)
+# undef close
+#endif
+#if defined(read)
+# undef read
+#endif
+
+/*!
+ Resizes the color table to contain \a numColors entries.
+
+ If the color table is expanded, all the extra colors will be set to
+ transparent (i.e qRgba(0, 0, 0, 0)).
+
+ When the image is used, the color table must be large enough to
+ have entries for all the pixel/index values present in the image,
+ otherwise the results are undefined.
+
+ \sa numColors(), colorTable(), setColor(), {QImage#Image
+ Transformations}{Image Transformations}
+*/
+
+void QImage::setNumColors(int numColors)
+{
+ if (!d) {
+ qWarning("QImage::setNumColors: null image");
+ return;
+ }
+
+ detach();
+
+ // In case detach() ran out of memory
+ if (!d)
+ return;
+
+ if (numColors == d->colortable.size())
+ return;
+ if (numColors <= 0) { // use no color table
+ d->colortable = QVector<QRgb>();
+ return;
+ }
+ int nc = d->colortable.size();
+ d->colortable.resize(numColors);
+ for (int i = nc; i < numColors; ++i)
+ d->colortable[i] = 0;
+
+}
+
+/*!
+ Returns the format of the image.
+
+ \sa {QImage#Image Formats}{Image Formats}
+*/
+QImage::Format QImage::format() const
+{
+ return d ? d->format : Format_Invalid;
+}
+
+
+#ifdef QT3_SUPPORT
+/*!
+ Returns true if alpha buffer mode is enabled; otherwise returns
+ false.
+
+ Use the hasAlphaChannel() function instead.
+
+*/
+bool QImage::hasAlphaBuffer() const
+{
+ if (!d)
+ return false;
+
+ switch (d->format) {
+ case Format_ARGB32:
+ case Format_ARGB32_Premultiplied:
+ case Format_ARGB8565_Premultiplied:
+ case Format_ARGB8555_Premultiplied:
+ case Format_ARGB6666_Premultiplied:
+ case Format_ARGB4444_Premultiplied:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/*!
+ Enables alpha buffer mode if \a enable is true, otherwise disables
+ it. The alpha buffer is used to set a mask when a QImage is
+ translated to a QPixmap.
+
+ If a monochrome or indexed 8-bit image has alpha channels in their
+ color tables they will automatically detect that they have an
+ alpha channel, so this function is not required. To force alpha
+ channels on 32-bit images, use the convertToFormat() function.
+*/
+
+void QImage::setAlphaBuffer(bool enable)
+{
+ if (!d
+ || d->format == Format_Mono
+ || d->format == Format_MonoLSB
+ || d->format == Format_Indexed8)
+ return;
+ if (enable && (d->format == Format_ARGB32 ||
+ d->format == Format_ARGB32_Premultiplied ||
+ d->format == Format_ARGB8565_Premultiplied ||
+ d->format == Format_ARGB6666_Premultiplied ||
+ d->format == Format_ARGB8555_Premultiplied ||
+ d->format == Format_ARGB4444_Premultiplied))
+ {
+ return;
+ }
+ if (!enable && (d->format == Format_RGB32 ||
+ d->format == Format_RGB555 ||
+ d->format == Format_RGB666 ||
+ d->format == Format_RGB888 ||
+ d->format == Format_RGB444))
+ {
+ return;
+ }
+ detach();
+ d->format = (enable ? Format_ARGB32 : Format_RGB32);
+}
+
+
+/*!
+ \fn bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)
+
+ Sets the image \a width, \a height, \a depth, its number of colors
+ (in \a numColors), and bit order. Returns true if successful, or
+ false if the parameters are incorrect or if memory cannot be
+ allocated.
+
+ The \a width and \a height is limited to 32767. \a depth must be
+ 1, 8, or 32. If \a depth is 1, \a bitOrder must be set to
+ either QImage::LittleEndian or QImage::BigEndian. For other depths
+ \a bitOrder must be QImage::IgnoreEndian.
+
+ This function allocates a color table and a buffer for the image
+ data. The image data is not initialized. The image buffer is
+ allocated as a single block that consists of a table of scanLine()
+ pointers (jumpTable()) and the image data (bits()).
+
+ Use a QImage constructor instead.
+*/
+bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)
+{
+ if (d && !d->ref.deref())
+ delete d;
+ d = QImageData::create(QSize(width, height), formatFor(depth, bitOrder), numColors);
+ return true;
+}
+
+/*!
+ \fn bool QImage::create(const QSize& size, int depth, int numColors, Endian bitOrder)
+ \overload
+
+ The width and height are specified in the \a size argument.
+
+ Use a QImage constructor instead.
+*/
+bool QImage::create(const QSize& size, int depth, int numColors, QImage::Endian bitOrder)
+{
+ if (d && !d->ref.deref())
+ delete d;
+ d = QImageData::create(size, formatFor(depth, bitOrder), numColors);
+ return true;
+}
+#endif // QT3_SUPPORT
+
+/*****************************************************************************
+ Internal routines for converting image depth.
+ *****************************************************************************/
+
+typedef void (*Image_Converter)(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags);
+
+static void convert_ARGB_to_ARGB_PM(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_ARGB32);
+ Q_ASSERT(dest->format == QImage::Format_ARGB32_Premultiplied);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ const int src_pad = (src->bytes_per_line >> 2) - src->width;
+ const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+ const QRgb *src_data = (QRgb *) src->data;
+ QRgb *dest_data = (QRgb *) dest->data;
+
+ for (int i = 0; i < src->height; ++i) {
+ const QRgb *end = src_data + src->width;
+ while (src_data < end) {
+ *dest_data = PREMUL(*src_data);
+ ++src_data;
+ ++dest_data;
+ }
+ src_data += src_pad;
+ dest_data += dest_pad;
+ }
+}
+
+static void convert_ARGB_PM_to_ARGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);
+ Q_ASSERT(dest->format == QImage::Format_ARGB32);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ const int src_pad = (src->bytes_per_line >> 2) - src->width;
+ const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+ const QRgb *src_data = (QRgb *) src->data;
+ QRgb *dest_data = (QRgb *) dest->data;
+
+ for (int i = 0; i < src->height; ++i) {
+ const QRgb *end = src_data + src->width;
+ while (src_data < end) {
+ *dest_data = INV_PREMUL(*src_data);
+ ++src_data;
+ ++dest_data;
+ }
+ src_data += src_pad;
+ dest_data += dest_pad;
+ }
+}
+
+static void convert_ARGB_PM_to_RGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);
+ Q_ASSERT(dest->format == QImage::Format_RGB32);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ const int src_pad = (src->bytes_per_line >> 2) - src->width;
+ const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+ const QRgb *src_data = (QRgb *) src->data;
+ QRgb *dest_data = (QRgb *) dest->data;
+
+ for (int i = 0; i < src->height; ++i) {
+ const QRgb *end = src_data + src->width;
+ while (src_data < end) {
+ *dest_data = 0xff000000 | INV_PREMUL(*src_data);
+ ++src_data;
+ ++dest_data;
+ }
+ src_data += src_pad;
+ dest_data += dest_pad;
+ }
+}
+
+static void swap_bit_order(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
+ Q_ASSERT(dest->format == QImage::Format_Mono || dest->format == QImage::Format_MonoLSB);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+ Q_ASSERT(src->nbytes == dest->nbytes);
+ Q_ASSERT(src->bytes_per_line == dest->bytes_per_line);
+
+ dest->colortable = src->colortable;
+
+ const uchar *src_data = src->data;
+ const uchar *end = src->data + src->nbytes;
+ uchar *dest_data = dest->data;
+ while (src_data < end) {
+ *dest_data = bitflip[*src_data];
+ ++src_data;
+ ++dest_data;
+ }
+}
+
+static void mask_alpha_converter(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ const int src_pad = (src->bytes_per_line >> 2) - src->width;
+ const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+ const uint *src_data = (const uint *)src->data;
+ uint *dest_data = (uint *)dest->data;
+
+ for (int i = 0; i < src->height; ++i) {
+ const uint *end = src_data + src->width;
+ while (src_data < end) {
+ *dest_data = *src_data | 0xff000000;
+ ++src_data;
+ ++dest_data;
+ }
+ src_data += src_pad;
+ dest_data += dest_pad;
+ }
+}
+
+static QVector<QRgb> fix_color_table(const QVector<QRgb> &ctbl, QImage::Format format)
+{
+ QVector<QRgb> colorTable = ctbl;
+ if (format == QImage::Format_RGB32) {
+ // check if the color table has alpha
+ for (int i = 0; i < colorTable.size(); ++i)
+ if (qAlpha(colorTable.at(i) != 0xff))
+ colorTable[i] = colorTable.at(i) | 0xff000000;
+ } else if (format == QImage::Format_ARGB32_Premultiplied) {
+ // check if the color table has alpha
+ for (int i = 0; i < colorTable.size(); ++i)
+ colorTable[i] = PREMUL(colorTable.at(i));
+ }
+ return colorTable;
+}
+
+//
+// dither_to_1: Uses selected dithering algorithm.
+//
+
+static void dither_to_Mono(QImageData *dst, const QImageData *src,
+ Qt::ImageConversionFlags flags, bool fromalpha)
+{
+ Q_ASSERT(src->width == dst->width);
+ Q_ASSERT(src->height == dst->height);
+ Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB);
+
+ dst->colortable.clear();
+ dst->colortable.append(0xffffffff);
+ dst->colortable.append(0xff000000);
+
+ enum { Threshold, Ordered, Diffuse } dithermode;
+
+ if (fromalpha) {
+ if ((flags & Qt::AlphaDither_Mask) == Qt::DiffuseAlphaDither)
+ dithermode = Diffuse;
+ else if ((flags & Qt::AlphaDither_Mask) == Qt::OrderedAlphaDither)
+ dithermode = Ordered;
+ else
+ dithermode = Threshold;
+ } else {
+ if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither)
+ dithermode = Threshold;
+ else if ((flags & Qt::Dither_Mask) == Qt::OrderedDither)
+ dithermode = Ordered;
+ else
+ dithermode = Diffuse;
+ }
+
+ int w = src->width;
+ int h = src->height;
+ int d = src->depth;
+ uchar gray[256]; // gray map for 8 bit images
+ bool use_gray = (d == 8);
+ if (use_gray) { // make gray map
+ if (fromalpha) {
+ // Alpha 0x00 -> 0 pixels (white)
+ // Alpha 0xFF -> 1 pixels (black)
+ for (int i = 0; i < src->colortable.size(); i++)
+ gray[i] = (255 - (src->colortable.at(i) >> 24));
+ } else {
+ // Pixel 0x00 -> 1 pixels (black)
+ // Pixel 0xFF -> 0 pixels (white)
+ for (int i = 0; i < src->colortable.size(); i++)
+ gray[i] = qGray(src->colortable.at(i));
+ }
+ }
+
+ uchar *dst_data = dst->data;
+ int dst_bpl = dst->bytes_per_line;
+ const uchar *src_data = src->data;
+ int src_bpl = src->bytes_per_line;
+
+ switch (dithermode) {
+ case Diffuse: {
+ int *line1 = new int[w];
+ int *line2 = new int[w];
+ int bmwidth = (w+7)/8;
+
+ int *b1, *b2;
+ int wbytes = w * (d/8);
+ register const uchar *p = src->data;
+ const uchar *end = p + wbytes;
+ b2 = line2;
+ if (use_gray) { // 8 bit image
+ while (p < end)
+ *b2++ = gray[*p++];
+ } else { // 32 bit image
+ if (fromalpha) {
+ while (p < end) {
+ *b2++ = 255 - (*(uint*)p >> 24);
+ p += 4;
+ }
+ } else {
+ while (p < end) {
+ *b2++ = qGray(*(uint*)p);
+ p += 4;
+ }
+ }
+ }
+ for (int y=0; y<h; y++) { // for each scan line...
+ int *tmp = line1; line1 = line2; line2 = tmp;
+ bool not_last_line = y < h - 1;
+ if (not_last_line) { // calc. grayvals for next line
+ p = src->data + (y+1)*src->bytes_per_line;
+ end = p + wbytes;
+ b2 = line2;
+ if (use_gray) { // 8 bit image
+ while (p < end)
+ *b2++ = gray[*p++];
+ } else { // 24 bit image
+ if (fromalpha) {
+ while (p < end) {
+ *b2++ = 255 - (*(uint*)p >> 24);
+ p += 4;
+ }
+ } else {
+ while (p < end) {
+ *b2++ = qGray(*(uint*)p);
+ p += 4;
+ }
+ }
+ }
+ }
+
+ int err;
+ uchar *p = dst->data + y*dst->bytes_per_line;
+ memset(p, 0, bmwidth);
+ b1 = line1;
+ b2 = line2;
+ int bit = 7;
+ for (int x=1; x<=w; x++) {
+ if (*b1 < 128) { // black pixel
+ err = *b1++;
+ *p |= 1 << bit;
+ } else { // white pixel
+ err = *b1++ - 255;
+ }
+ if (bit == 0) {
+ p++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ if (x < w)
+ *b1 += (err*7)>>4; // spread error to right pixel
+ if (not_last_line) {
+ b2[0] += (err*5)>>4; // pixel below
+ if (x > 1)
+ b2[-1] += (err*3)>>4; // pixel below left
+ if (x < w)
+ b2[1] += err>>4; // pixel below right
+ }
+ b2++;
+ }
+ }
+ delete [] line1;
+ delete [] line2;
+ } break;
+ case Ordered: {
+
+ memset(dst->data, 0, dst->nbytes);
+ if (d == 32) {
+ for (int i=0; i<h; i++) {
+ const uint *p = (const uint *)src_data;
+ const uint *end = p + w;
+ uchar *m = dst_data;
+ int bit = 7;
+ int j = 0;
+ if (fromalpha) {
+ while (p < end) {
+ if ((*p++ >> 24) >= qt_bayer_matrix[j++&15][i&15])
+ *m |= 1 << bit;
+ if (bit == 0) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ } else {
+ while (p < end) {
+ if ((uint)qGray(*p++) < qt_bayer_matrix[j++&15][i&15])
+ *m |= 1 << bit;
+ if (bit == 0) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ }
+ dst_data += dst_bpl;
+ src_data += src_bpl;
+ }
+ } else
+ /* (d == 8) */ {
+ for (int i=0; i<h; i++) {
+ const uchar *p = src_data;
+ const uchar *end = p + w;
+ uchar *m = dst_data;
+ int bit = 7;
+ int j = 0;
+ while (p < end) {
+ if ((uint)gray[*p++] < qt_bayer_matrix[j++&15][i&15])
+ *m |= 1 << bit;
+ if (bit == 0) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ dst_data += dst_bpl;
+ src_data += src_bpl;
+ }
+ }
+ } break;
+ default: { // Threshold:
+ memset(dst->data, 0, dst->nbytes);
+ if (d == 32) {
+ for (int i=0; i<h; i++) {
+ const uint *p = (const uint *)src_data;
+ const uint *end = p + w;
+ uchar *m = dst_data;
+ int bit = 7;
+ if (fromalpha) {
+ while (p < end) {
+ if ((*p++ >> 24) >= 128)
+ *m |= 1 << bit; // Set mask "on"
+ if (bit == 0) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ } else {
+ while (p < end) {
+ if (qGray(*p++) < 128)
+ *m |= 1 << bit; // Set pixel "black"
+ if (bit == 0) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ }
+ dst_data += dst_bpl;
+ src_data += src_bpl;
+ }
+ } else
+ if (d == 8) {
+ for (int i=0; i<h; i++) {
+ const uchar *p = src_data;
+ const uchar *end = p + w;
+ uchar *m = dst_data;
+ int bit = 7;
+ while (p < end) {
+ if (gray[*p++] < 128)
+ *m |= 1 << bit; // Set mask "on"/ pixel "black"
+ if (bit == 0) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ dst_data += dst_bpl;
+ src_data += src_bpl;
+ }
+ }
+ }
+ }
+
+ if (dst->format == QImage::Format_MonoLSB) {
+ // need to swap bit order
+ uchar *sl = dst->data;
+ int bpl = (dst->width + 7) * dst->depth / 8;
+ int pad = dst->bytes_per_line - bpl;
+ for (int y=0; y<dst->height; ++y) {
+ for (int x=0; x<bpl; ++x) {
+ *sl = bitflip[*sl];
+ ++sl;
+ }
+ sl += pad;
+ }
+ }
+}
+
+static void convert_X_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+ dither_to_Mono(dst, src, flags, false);
+}
+
+static void convert_ARGB_PM_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+ QImageData *tmp = QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32);
+ convert_ARGB_PM_to_ARGB(tmp, src, flags);
+ dither_to_Mono(dst, tmp, flags, false);
+ delete tmp;
+}
+
+//
+// convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit
+// image with a colormap. If the 32 bit image has more than 256 colors,
+// we convert the red,green and blue bytes into a single byte encoded
+// as 6 shades of each of red, green and blue.
+//
+// if dithering is needed, only 1 color at most is available for alpha.
+//
+struct QRgbMap {
+ inline QRgbMap() : used(0) { }
+ uchar pix;
+ uchar used;
+ QRgb rgb;
+};
+
+static void convert_RGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+ Q_ASSERT(src->format == QImage::Format_RGB32 || src->format == QImage::Format_ARGB32);
+ Q_ASSERT(dst->format == QImage::Format_Indexed8);
+ Q_ASSERT(src->width == dst->width);
+ Q_ASSERT(src->height == dst->height);
+
+ bool do_quant = (flags & Qt::DitherMode_Mask) == Qt::PreferDither
+ || src->format == QImage::Format_ARGB32;
+ uint alpha_mask = src->format == QImage::Format_RGB32 ? 0xff000000 : 0;
+
+ const int tablesize = 997; // prime
+ QRgbMap table[tablesize];
+ int pix=0;
+
+ if (!dst->colortable.isEmpty()) {
+ QVector<QRgb> ctbl = dst->colortable;
+ dst->colortable.resize(256);
+ // Preload palette into table.
+ // Almost same code as pixel insertion below
+ for (int i = 0; i < dst->colortable.size(); ++i) {
+ // Find in table...
+ QRgb p = ctbl.at(i) | alpha_mask;
+ int hash = p % tablesize;
+ for (;;) {
+ if (table[hash].used) {
+ if (table[hash].rgb == p) {
+ // Found previous insertion - use it
+ break;
+ } else {
+ // Keep searching...
+ if (++hash == tablesize) hash = 0;
+ }
+ } else {
+ // Cannot be in table
+ Q_ASSERT (pix != 256); // too many colors
+ // Insert into table at this unused position
+ dst->colortable[pix] = p;
+ table[hash].pix = pix++;
+ table[hash].rgb = p;
+ table[hash].used = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ if ((flags & Qt::DitherMode_Mask) != Qt::PreferDither) {
+ dst->colortable.resize(256);
+ const uchar *src_data = src->data;
+ uchar *dest_data = dst->data;
+ for (int y = 0; y < src->height; y++) { // check if <= 256 colors
+ const QRgb *s = (const QRgb *)src_data;
+ uchar *b = dest_data;
+ for (int x = 0; x < src->width; ++x) {
+ QRgb p = s[x] | alpha_mask;
+ int hash = p % tablesize;
+ for (;;) {
+ if (table[hash].used) {
+ if (table[hash].rgb == (p)) {
+ // Found previous insertion - use it
+ break;
+ } else {
+ // Keep searching...
+ if (++hash == tablesize) hash = 0;
+ }
+ } else {
+ // Cannot be in table
+ if (pix == 256) { // too many colors
+ do_quant = true;
+ // Break right out
+ x = src->width;
+ y = src->height;
+ } else {
+ // Insert into table at this unused position
+ dst->colortable[pix] = p;
+ table[hash].pix = pix++;
+ table[hash].rgb = p;
+ table[hash].used = 1;
+ }
+ break;
+ }
+ }
+ *b++ = table[hash].pix; // May occur once incorrectly
+ }
+ src_data += src->bytes_per_line;
+ dest_data += dst->bytes_per_line;
+ }
+ }
+ int numColors = do_quant ? 256 : pix;
+
+ dst->colortable.resize(numColors);
+
+ if (do_quant) { // quantization needed
+
+#define MAX_R 5
+#define MAX_G 5
+#define MAX_B 5
+#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))
+
+ for (int rc=0; rc<=MAX_R; rc++) // build 6x6x6 color cube
+ for (int gc=0; gc<=MAX_G; gc++)
+ for (int bc=0; bc<=MAX_B; bc++)
+ dst->colortable[INDEXOF(rc,gc,bc)] = 0xff000000 | qRgb(rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B);
+
+ const uchar *src_data = src->data;
+ uchar *dest_data = dst->data;
+ if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither) {
+ for (int y = 0; y < src->height; y++) {
+ const QRgb *p = (const QRgb *)src_data;
+ const QRgb *end = p + src->width;
+ uchar *b = dest_data;
+
+ while (p < end) {
+#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255))
+ *b++ =
+ INDEXOF(
+ DITHER(qRed(*p), MAX_R),
+ DITHER(qGreen(*p), MAX_G),
+ DITHER(qBlue(*p), MAX_B)
+ );
+#undef DITHER
+ p++;
+ }
+ src_data += src->bytes_per_line;
+ dest_data += dst->bytes_per_line;
+ }
+ } else if ((flags & Qt::Dither_Mask) == Qt::DiffuseDither) {
+ int* line1[3];
+ int* line2[3];
+ int* pv[3];
+ line1[0] = new int[src->width];
+ line2[0] = new int[src->width];
+ line1[1] = new int[src->width];
+ line2[1] = new int[src->width];
+ line1[2] = new int[src->width];
+ line2[2] = new int[src->width];
+ pv[0] = new int[src->width];
+ pv[1] = new int[src->width];
+ pv[2] = new int[src->width];
+
+ int endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian);
+ for (int y = 0; y < src->height; y++) {
+ const uchar* q = src_data;
+ const uchar* q2 = y < src->height - 1 ? q + src->bytes_per_line : src->data;
+ uchar *b = dest_data;
+ for (int chan = 0; chan < 3; chan++) {
+ int *l1 = (y&1) ? line2[chan] : line1[chan];
+ int *l2 = (y&1) ? line1[chan] : line2[chan];
+ if (y == 0) {
+ for (int i = 0; i < src->width; i++)
+ l1[i] = q[i*4+chan+endian];
+ }
+ if (y+1 < src->height) {
+ for (int i = 0; i < src->width; i++)
+ l2[i] = q2[i*4+chan+endian];
+ }
+ // Bi-directional error diffusion
+ if (y&1) {
+ for (int x = 0; x < src->width; x++) {
+ int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);
+ int err = l1[x] - pix * 255 / 5;
+ pv[chan][x] = pix;
+
+ // Spread the error around...
+ if (x + 1< src->width) {
+ l1[x+1] += (err*7)>>4;
+ l2[x+1] += err>>4;
+ }
+ l2[x]+=(err*5)>>4;
+ if (x>1)
+ l2[x-1]+=(err*3)>>4;
+ }
+ } else {
+ for (int x = src->width; x-- > 0;) {
+ int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);
+ int err = l1[x] - pix * 255 / 5;
+ pv[chan][x] = pix;
+
+ // Spread the error around...
+ if (x > 0) {
+ l1[x-1] += (err*7)>>4;
+ l2[x-1] += err>>4;
+ }
+ l2[x]+=(err*5)>>4;
+ if (x + 1 < src->width)
+ l2[x+1]+=(err*3)>>4;
+ }
+ }
+ }
+ if (endian) {
+ for (int x = 0; x < src->width; x++) {
+ *b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);
+ }
+ } else {
+ for (int x = 0; x < src->width; x++) {
+ *b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);
+ }
+ }
+ src_data += src->bytes_per_line;
+ dest_data += dst->bytes_per_line;
+ }
+ delete [] line1[0];
+ delete [] line2[0];
+ delete [] line1[1];
+ delete [] line2[1];
+ delete [] line1[2];
+ delete [] line2[2];
+ delete [] pv[0];
+ delete [] pv[1];
+ delete [] pv[2];
+ } else { // OrderedDither
+ for (int y = 0; y < src->height; y++) {
+ const QRgb *p = (const QRgb *)src_data;
+ const QRgb *end = p + src->width;
+ uchar *b = dest_data;
+
+ int x = 0;
+ while (p < end) {
+ uint d = qt_bayer_matrix[y & 15][x & 15] << 8;
+
+#define DITHER(p, d, m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) >> 16))
+ *b++ =
+ INDEXOF(
+ DITHER(qRed(*p), d, MAX_R),
+ DITHER(qGreen(*p), d, MAX_G),
+ DITHER(qBlue(*p), d, MAX_B)
+ );
+#undef DITHER
+
+ p++;
+ x++;
+ }
+ src_data += src->bytes_per_line;
+ dest_data += dst->bytes_per_line;
+ }
+ }
+
+ if (src->format != QImage::Format_RGB32
+ && src->format != QImage::Format_RGB16) {
+ const int trans = 216;
+ Q_ASSERT(dst->colortable.size() > trans);
+ dst->colortable[trans] = 0;
+ QImageData *mask = QImageData::create(QSize(src->width, src->height), QImage::Format_Mono);
+ dither_to_Mono(mask, src, flags, true);
+ uchar *dst_data = dst->data;
+ const uchar *mask_data = mask->data;
+ for (int y = 0; y < src->height; y++) {
+ for (int x = 0; x < src->width ; x++) {
+ if (!(mask_data[x>>3] & (0x80 >> (x & 7))))
+ dst_data[x] = trans;
+ }
+ mask_data += mask->bytes_per_line;
+ dst_data += dst->bytes_per_line;
+ }
+ dst->has_alpha_clut = true;
+ delete mask;
+ }
+
+#undef MAX_R
+#undef MAX_G
+#undef MAX_B
+#undef INDEXOF
+
+ }
+}
+
+static void convert_ARGB_PM_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+ QImageData *tmp = QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32);
+ convert_ARGB_PM_to_ARGB(tmp, src, flags);
+ convert_RGB_to_Indexed8(dst, tmp, flags);
+ delete tmp;
+}
+
+static void convert_ARGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+ convert_RGB_to_Indexed8(dst, src, flags);
+}
+
+static void convert_Indexed8_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_Indexed8);
+ Q_ASSERT(dest->format == QImage::Format_RGB32
+ || dest->format == QImage::Format_ARGB32
+ || dest->format == QImage::Format_ARGB32_Premultiplied);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);
+
+ int w = src->width;
+ const uchar *src_data = src->data;
+ uchar *dest_data = dest->data;
+ for (int y = 0; y < src->height; y++) {
+ uint *p = (uint *)dest_data;
+ const uchar *b = src_data;
+ uint *end = p + w;
+
+ while (p < end)
+ *p++ = colorTable.at(*b++);
+
+ src_data += src->bytes_per_line;
+ dest_data += dest->bytes_per_line;
+ }
+}
+
+static void convert_Mono_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
+ Q_ASSERT(dest->format == QImage::Format_RGB32
+ || dest->format == QImage::Format_ARGB32
+ || dest->format == QImage::Format_ARGB32_Premultiplied);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);
+
+ // Default to black / white colors
+ if (colorTable.size() < 2) {
+ if (colorTable.size() == 0)
+ colorTable << 0xff000000;
+ colorTable << 0xffffffff;
+ }
+
+ const uchar *src_data = src->data;
+ uchar *dest_data = dest->data;
+ if (src->format == QImage::Format_Mono) {
+ for (int y = 0; y < dest->height; y++) {
+ register uint *p = (uint *)dest_data;
+ for (int x = 0; x < dest->width; x++)
+ *p++ = colorTable.at((src_data[x>>3] >> (7 - (x & 7))) & 1);
+
+ src_data += src->bytes_per_line;
+ dest_data += dest->bytes_per_line;
+ }
+ } else {
+ for (int y = 0; y < dest->height; y++) {
+ register uint *p = (uint *)dest_data;
+ for (int x = 0; x < dest->width; x++)
+ *p++ = colorTable.at((src_data[x>>3] >> (x & 7)) & 1);
+
+ src_data += src->bytes_per_line;
+ dest_data += dest->bytes_per_line;
+ }
+ }
+}
+
+
+static void convert_Mono_to_Indexed8(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+ Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
+ Q_ASSERT(dest->format == QImage::Format_Indexed8);
+ Q_ASSERT(src->width == dest->width);
+ Q_ASSERT(src->height == dest->height);
+
+ QVector<QRgb> ctbl = src->colortable;
+ if (ctbl.size() > 2) {
+ ctbl.resize(2);
+ } else if (ctbl.size() < 2) {
+ if (ctbl.size() == 0)
+ ctbl << 0xff000000;
+ ctbl << 0xffffffff;
+ }
+ dest->colortable = ctbl;
+ dest->has_alpha_clut = src->has_alpha_clut;
+
+
+ const uchar *src_data = src->data;
+ uchar *dest_data = dest->data;
+ if (src->format == QImage::Format_Mono) {
+ for (int y = 0; y < dest->height; y++) {
+ register uchar *p = dest_data;
+ for (int x = 0; x < dest->width; x++)
+ *p++ = (src_data[x>>3] >> (7 - (x & 7))) & 1;
+ src_data += src->bytes_per_line;
+ dest_data += dest->bytes_per_line;
+ }
+ } else {
+ for (int y = 0; y < dest->height; y++) {
+ register uchar *p = dest_data;
+ for (int x = 0; x < dest->width; x++)
+ *p++ = (src_data[x>>3] >> (x & 7)) & 1;
+ src_data += src->bytes_per_line;
+ dest_data += dest->bytes_per_line;
+ }
+ }
+}
+
+#define CONVERT_DECL(DST, SRC) \
+ static void convert_##SRC##_to_##DST(QImageData *dest, \
+ const QImageData *src, \
+ Qt::ImageConversionFlags) \
+ { \
+ qt_rectconvert<DST, SRC>(reinterpret_cast<DST*>(dest->data), \
+ reinterpret_cast<const SRC*>(src->data), \
+ 0, 0, src->width, src->height, \
+ dest->bytes_per_line, src->bytes_per_line); \
+ }
+
+CONVERT_DECL(quint32, quint16)
+CONVERT_DECL(quint16, quint32)
+CONVERT_DECL(quint32, qargb8565)
+CONVERT_DECL(qargb8565, quint32)
+CONVERT_DECL(quint32, qrgb555)
+CONVERT_DECL(qrgb666, quint32)
+CONVERT_DECL(quint32, qrgb666)
+CONVERT_DECL(qargb6666, quint32)
+CONVERT_DECL(quint32, qargb6666)
+CONVERT_DECL(qrgb555, quint32)
+#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
+CONVERT_DECL(quint16, qrgb555)
+CONVERT_DECL(qrgb555, quint16)
+#endif
+CONVERT_DECL(quint32, qrgb888)
+CONVERT_DECL(qrgb888, quint32)
+CONVERT_DECL(quint32, qargb8555)
+CONVERT_DECL(qargb8555, quint32)
+CONVERT_DECL(quint32, qrgb444)
+CONVERT_DECL(qrgb444, quint32)
+CONVERT_DECL(quint32, qargb4444)
+CONVERT_DECL(qargb4444, quint32)
+#undef CONVERT_DECL
+#define CONVERT_PTR(DST, SRC) convert_##SRC##_to_##DST
+
+/*
+ Format_Invalid,
+ Format_Mono,
+ Format_MonoLSB,
+ Format_Indexed8,
+ Format_RGB32,
+ Format_ARGB32,
+ Format_ARGB32_Premultiplied,
+ Format_RGB16,
+ Format_ARGB8565_Premultiplied,
+ Format_RGB666,
+ Format_ARGB6666_Premultiplied,
+ Format_RGB555,
+ Format_ARGB8555_Premultiplied,
+ Format_RGB888
+ Format_RGB444
+ Format_ARGB4444_Premultiplied
+*/
+
+
+// first index source, second dest
+static const Image_Converter converter_map[QImage::NImageFormats][QImage::NImageFormats] =
+{
+ {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ },
+ {
+ 0,
+ 0,
+ swap_bit_order,
+ convert_Mono_to_Indexed8,
+ convert_Mono_to_X32,
+ convert_Mono_to_X32,
+ convert_Mono_to_X32,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_Mono
+
+ {
+ 0,
+ swap_bit_order,
+ 0,
+ convert_Mono_to_Indexed8,
+ convert_Mono_to_X32,
+ convert_Mono_to_X32,
+ convert_Mono_to_X32,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_MonoLSB
+
+ {
+ 0,
+ convert_X_to_Mono,
+ convert_X_to_Mono,
+ 0,
+ convert_Indexed8_to_X32,
+ convert_Indexed8_to_X32,
+ convert_Indexed8_to_X32,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_Indexed8
+
+ {
+ 0,
+ convert_X_to_Mono,
+ convert_X_to_Mono,
+ convert_RGB_to_Indexed8,
+ 0,
+ mask_alpha_converter,
+ mask_alpha_converter,
+ CONVERT_PTR(quint16, quint32),
+ CONVERT_PTR(qargb8565, quint32),
+ CONVERT_PTR(qrgb666, quint32),
+ CONVERT_PTR(qargb6666, quint32),
+ CONVERT_PTR(qrgb555, quint32),
+ CONVERT_PTR(qargb8555, quint32),
+ CONVERT_PTR(qrgb888, quint32),
+ CONVERT_PTR(qrgb444, quint32),
+ CONVERT_PTR(qargb4444, quint32)
+ }, // Format_RGB32
+
+ {
+ 0,
+ convert_X_to_Mono,
+ convert_X_to_Mono,
+ convert_ARGB_to_Indexed8,
+ mask_alpha_converter,
+ 0,
+ convert_ARGB_to_ARGB_PM,
+ CONVERT_PTR(quint16, quint32),
+ CONVERT_PTR(qargb8565, quint32),
+ CONVERT_PTR(qrgb666, quint32),
+ CONVERT_PTR(qargb6666, quint32),
+ CONVERT_PTR(qrgb555, quint32),
+ CONVERT_PTR(qargb8555, quint32),
+ CONVERT_PTR(qrgb888, quint32),
+ CONVERT_PTR(qrgb444, quint32),
+ CONVERT_PTR(qargb4444, quint32)
+ }, // Format_ARGB32
+
+ {
+ 0,
+ convert_ARGB_PM_to_Mono,
+ convert_ARGB_PM_to_Mono,
+ convert_ARGB_PM_to_Indexed8,
+ convert_ARGB_PM_to_RGB,
+ convert_ARGB_PM_to_ARGB,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_ARGB32_Premultiplied
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, quint16),
+ CONVERT_PTR(quint32, quint16),
+ CONVERT_PTR(quint32, quint16),
+ 0,
+ 0,
+ 0,
+ 0,
+#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
+ CONVERT_PTR(qrgb555, quint16),
+#else
+ 0,
+#endif
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_RGB16
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qargb8565),
+ CONVERT_PTR(quint32, qargb8565),
+ CONVERT_PTR(quint32, qargb8565),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_ARGB8565_Premultiplied
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qrgb666),
+ CONVERT_PTR(quint32, qrgb666),
+ CONVERT_PTR(quint32, qrgb666),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_RGB666
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qargb6666),
+ CONVERT_PTR(quint32, qargb6666),
+ CONVERT_PTR(quint32, qargb6666),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_ARGB6666_Premultiplied
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qrgb555),
+ CONVERT_PTR(quint32, qrgb555),
+ CONVERT_PTR(quint32, qrgb555),
+#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
+ CONVERT_PTR(quint16, qrgb555),
+#else
+ 0,
+#endif
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_RGB555
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qargb8555),
+ CONVERT_PTR(quint32, qargb8555),
+ CONVERT_PTR(quint32, qargb8555),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_ARGB8555_Premultiplied
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qrgb888),
+ CONVERT_PTR(quint32, qrgb888),
+ CONVERT_PTR(quint32, qrgb888),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_RGB888
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qrgb444),
+ CONVERT_PTR(quint32, qrgb444),
+ CONVERT_PTR(quint32, qrgb444),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ }, // Format_RGB444
+
+ {
+ 0,
+ 0,
+ 0,
+ 0,
+ CONVERT_PTR(quint32, qargb4444),
+ CONVERT_PTR(quint32, qargb4444),
+ CONVERT_PTR(quint32, qargb4444),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0
+ } // Format_ARGB4444_Premultiplied
+};
+
+/*!
+ Returns a copy of the image in the given \a format.
+
+ The specified image conversion \a flags control how the image data
+ is handled during the conversion process.
+
+ \sa {QImage#Image Format}{Image Format}
+*/
+QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const
+{
+ if (!d || d->format == format)
+ return *this;
+
+ if (format == Format_Invalid || d->format == Format_Invalid)
+ return QImage();
+
+ const Image_Converter *converterPtr = &converter_map[d->format][format];
+ Image_Converter converter = *converterPtr;
+ if (converter) {
+ QImage image(d->width, d->height, format);
+
+ QIMAGE_SANITYCHECK_MEMORY(image);
+
+ image.setDotsPerMeterY(dotsPerMeterY());
+ image.setDotsPerMeterX(dotsPerMeterX());
+
+#if !defined(QT_NO_IMAGE_TEXT)
+ image.d->text = d->text;
+#endif // !QT_NO_IMAGE_TEXT
+
+ converter(image.d, d, flags);
+ return image;
+ }
+
+ Q_ASSERT(format != QImage::Format_ARGB32);
+ Q_ASSERT(d->format != QImage::Format_ARGB32);
+
+ QImage image = convertToFormat(Format_ARGB32, flags);
+ return image.convertToFormat(format, flags);
+}
+
+
+
+static inline int pixel_distance(QRgb p1, QRgb p2) {
+ int r1 = qRed(p1);
+ int g1 = qGreen(p1);
+ int b1 = qBlue(p1);
+ int a1 = qAlpha(p1);
+
+ int r2 = qRed(p2);
+ int g2 = qGreen(p2);
+ int b2 = qBlue(p2);
+ int a2 = qAlpha(p2);
+
+ return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2);
+}
+
+static inline int closestMatch(QRgb pixel, const QVector<QRgb> &clut) {
+ int idx = 0;
+ int current_distance = INT_MAX;
+ for (int i=0; i<clut.size(); ++i) {
+ int dist = pixel_distance(pixel, clut.at(i));
+ if (dist < current_distance) {
+ current_distance = dist;
+ idx = i;
+ }
+ }
+ return idx;
+}
+
+static QImage convertWithPalette(const QImage &src, QImage::Format format,
+ const QVector<QRgb> &clut) {
+ QImage dest(src.size(), format);
+ dest.setColorTable(clut);
+
+#if !defined(QT_NO_IMAGE_TEXT)
+ QString textsKeys = src.text();
+ QStringList textKeyList = textsKeys.split(QLatin1Char('\n'), QString::SkipEmptyParts);
+ foreach (const QString &textKey, textKeyList) {
+ QStringList textKeySplitted = textKey.split(QLatin1String(": "));
+ dest.setText(textKeySplitted[0], textKeySplitted[1]);
+ }
+#endif // !QT_NO_IMAGE_TEXT
+
+ int h = src.height();
+ int w = src.width();
+
+ QHash<QRgb, int> cache;
+
+ if (format == QImage::Format_Indexed8) {
+ for (int y=0; y<h; ++y) {
+ QRgb *src_pixels = (QRgb *) src.scanLine(y);
+ uchar *dest_pixels = (uchar *) dest.scanLine(y);
+ for (int x=0; x<w; ++x) {
+ int src_pixel = src_pixels[x];
+ int value = cache.value(src_pixel, -1);
+ if (value == -1) {
+ value = closestMatch(src_pixel, clut);
+ cache.insert(src_pixel, value);
+ }
+ dest_pixels[x] = (uchar) value;
+ }
+ }
+ } else {
+ QVector<QRgb> table = clut;
+ table.resize(2);
+ for (int y=0; y<h; ++y) {
+ QRgb *src_pixels = (QRgb *) src.scanLine(y);
+ for (int x=0; x<w; ++x) {
+ int src_pixel = src_pixels[x];
+ int value = cache.value(src_pixel, -1);
+ if (value == -1) {
+ value = closestMatch(src_pixel, table);
+ cache.insert(src_pixel, value);
+ }
+ dest.setPixel(x, y, value);
+ }
+ }
+ }
+
+ return dest;
+}
+
+/*!
+ \overload
+
+ Returns a copy of the image converted to the given \a format,
+ using the specified \a colorTable.
+
+ Conversion from 32 bit to 8 bit indexed is a slow operation and
+ will use a straightforward nearest color approach, with no
+ dithering.
+*/
+QImage QImage::convertToFormat(Format format, const QVector<QRgb> &colorTable, Qt::ImageConversionFlags flags) const
+{
+ if (d->format == format)
+ return *this;
+
+ if (format <= QImage::Format_Indexed8 && depth() == 32) {
+ return convertWithPalette(*this, format, colorTable);
+ }
+
+ const Image_Converter *converterPtr = &converter_map[d->format][format];
+ Image_Converter converter = *converterPtr;
+ if (!converter)
+ return QImage();
+
+ QImage image(d->width, d->height, format);
+ QIMAGE_SANITYCHECK_MEMORY(image);
+
+#if !defined(QT_NO_IMAGE_TEXT)
+ image.d->text = d->text;
+#endif // !QT_NO_IMAGE_TEXT
+
+ converter(image.d, d, flags);
+ return image;
+}
+
+#ifdef QT3_SUPPORT
+/*!
+ Converts the depth (bpp) of the image to the given \a depth and
+ returns the converted image. The original image is not changed.
+ Returns this image if \a depth is equal to the image depth, or a
+ null image if this image cannot be converted. The \a depth
+ argument must be 1, 8 or 32. If the image needs to be modified to
+ fit in a lower-resolution result (e.g. converting from 32-bit to
+ 8-bit), use the \a flags to specify how you'd prefer this to
+ happen.
+
+ Use the convertToFormat() function instead.
+*/
+
+QImage QImage::convertDepth(int depth, Qt::ImageConversionFlags flags) const
+{
+ if (!d || d->depth == depth)
+ return *this;
+
+ Format format = formatFor (depth, QImage::LittleEndian);
+ return convertToFormat(format, flags);
+}
+#endif
+
+/*!
+ \fn bool QImage::valid(const QPoint &pos) const
+
+ Returns true if \a pos is a valid coordinate pair within the
+ image; otherwise returns false.
+
+ \sa rect(), QRect::contains()
+*/
+
+/*!
+ \overload
+
+ Returns true if QPoint(\a x, \a y) is a valid coordinate pair
+ within the image; otherwise returns false.
+*/
+bool QImage::valid(int x, int y) const
+{
+ return d
+ && x >= 0 && x < d->width
+ && y >= 0 && y < d->height;
+}
+
+/*!
+ \fn int QImage::pixelIndex(const QPoint &position) const
+
+ Returns the pixel index at the given \a position.
+
+ If \a position is not valid, or if the image is not a paletted
+ image (depth() > 8), the results are undefined.
+
+ \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation}
+*/
+
+/*!
+ \overload
+
+ Returns the pixel index at (\a x, \a y).
+*/
+int QImage::pixelIndex(int x, int y) const
+{
+ if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {
+ qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range", x, y);
+ return -12345;
+ }
+ const uchar * s = scanLine(y);
+ switch(d->format) {
+ case Format_Mono:
+ return (*(s + (x >> 3)) >> (7- (x & 7))) & 1;
+ case Format_MonoLSB:
+ return (*(s + (x >> 3)) >> (x & 7)) & 1;
+ case Format_Indexed8:
+ return (int)s[x];
+ default:
+ qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)", d->depth);
+ }
+ return 0;
+}
+
+
+/*!
+ \fn QRgb QImage::pixel(const QPoint &position) const
+
+ Returns the color of the pixel at the given \a position.
+
+ If the \a position is not valid, the results are undefined.
+
+ \sa setPixel(), valid(), {QImage#Pixel Manipulation}{Pixel
+ Manipulation}
+*/
+
+/*!
+ \overload
+
+ Returns the color of the pixel at coordinates (\a x, \a y).
+*/
+QRgb QImage::pixel(int x, int y) const
+{
+ if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {
+ qWarning("QImage::pixel: coordinate (%d,%d) out of range", x, y);
+ return 12345;
+ }
+ const uchar * s = scanLine(y);
+ switch(d->format) {
+ case Format_Mono:
+ return d->colortable.at((*(s + (x >> 3)) >> (7- (x & 7))) & 1);
+ case Format_MonoLSB:
+ return d->colortable.at((*(s + (x >> 3)) >> (x & 7)) & 1);
+ case Format_Indexed8:
+ return d->colortable.at((int)s[x]);
+ case Format_ARGB8565_Premultiplied:
+ return qt_colorConvert<quint32, qargb8565>(reinterpret_cast<const qargb8565*>(s)[x], 0);
+ case Format_RGB666:
+ return qt_colorConvert<quint32, qrgb666>(reinterpret_cast<const qrgb666*>(s)[x], 0);
+ case Format_ARGB6666_Premultiplied:
+ return qt_colorConvert<quint32, qargb6666>(reinterpret_cast<const qargb6666*>(s)[x], 0);
+ case Format_RGB555:
+ return qt_colorConvert<quint32, qrgb555>(reinterpret_cast<const qrgb555*>(s)[x], 0);
+ case Format_ARGB8555_Premultiplied:
+ return qt_colorConvert<quint32, qargb8555>(reinterpret_cast<const qargb8555*>(s)[x], 0);
+ case Format_RGB888:
+ return qt_colorConvert<quint32, qrgb888>(reinterpret_cast<const qrgb888*>(s)[x], 0);
+ case Format_RGB444:
+ return qt_colorConvert<quint32, qrgb444>(reinterpret_cast<const qrgb444*>(s)[x], 0);
+ case Format_ARGB4444_Premultiplied:
+ return qt_colorConvert<quint32, qargb4444>(reinterpret_cast<const qargb4444*>(s)[x], 0);
+ case Format_RGB16:
+ return qt_colorConvert<quint32, quint16>(reinterpret_cast<const quint16*>(s)[x], 0);
+ default:
+ return ((QRgb*)s)[x];
+ }
+}
+
+
+/*!
+ \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb)
+
+ Sets the pixel index or color at the given \a position to \a
+ index_or_rgb.
+
+ If the image's format is either monochrome or 8-bit, the given \a
+ index_or_rgb value must be an index in the image's color table,
+ otherwise the parameter must be a QRgb value.
+
+ If \a position is not a valid coordinate pair in the image, or if
+ \a index_or_rgb >= numColors() in the case of monochrome and
+ 8-bit images, the result is undefined.
+
+ \warning This function is expensive due to the call of the internal
+ \c{detach()} function called within; if performance is a concern, we
+ recommend the use of \l{QImage::}{scanLine()} to access pixel data
+ directly.
+
+ \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation}
+*/
+
+/*!
+ \overload
+
+ Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb.
+*/
+void QImage::setPixel(int x, int y, uint index_or_rgb)
+{
+ if (!d || x < 0 || x >= width() || y < 0 || y >= height()) {
+ qWarning("QImage::setPixel: coordinate (%d,%d) out of range", x, y);
+ return;
+ }
+ // detach is called from within scanLine
+ uchar * s = scanLine(y);
+ const quint32p p = quint32p::fromRawData(index_or_rgb);
+ switch(d->format) {
+ case Format_Mono:
+ case Format_MonoLSB:
+ if (index_or_rgb > 1) {
+ qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);
+ } else if (format() == Format_MonoLSB) {
+ if (index_or_rgb==0)
+ *(s + (x >> 3)) &= ~(1 << (x & 7));
+ else
+ *(s + (x >> 3)) |= (1 << (x & 7));
+ } else {
+ if (index_or_rgb==0)
+ *(s + (x >> 3)) &= ~(1 << (7-(x & 7)));
+ else
+ *(s + (x >> 3)) |= (1 << (7-(x & 7)));
+ }
+ break;
+ case Format_Indexed8:
+ if (index_or_rgb > (uint)d->colortable.size()) {
+ qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);
+ return;
+ }
+ s[x] = index_or_rgb;
+ break;
+ case Format_RGB32:
+ //make sure alpha is 255, we depend on it in qdrawhelper for cases
+ // when image is set as a texture pattern on a qbrush
+ ((uint *)s)[x] = uint(255 << 24) | index_or_rgb;
+ break;
+ case Format_ARGB32:
+ case Format_ARGB32_Premultiplied:
+ ((uint *)s)[x] = index_or_rgb;
+ break;
+ case Format_RGB16:
+ ((quint16 *)s)[x] = qt_colorConvert<quint16, quint32p>(p, 0);
+ break;
+ case Format_ARGB8565_Premultiplied:
+ ((qargb8565*)s)[x] = qt_colorConvert<qargb8565, quint32p>(p, 0);
+ break;
+ case Format_RGB666:
+ ((qrgb666*)s)[x] = qt_colorConvert<qrgb666, quint32p>(p, 0);
+ break;
+ case Format_ARGB6666_Premultiplied:
+ ((qargb6666*)s)[x] = qt_colorConvert<qargb6666, quint32p>(p, 0);
+ break;
+ case Format_RGB555:
+ ((qrgb555*)s)[x] = qt_colorConvert<qrgb555, quint32p>(p, 0);
+ break;
+ case Format_ARGB8555_Premultiplied:
+ ((qargb8555*)s)[x] = qt_colorConvert<qargb8555, quint32p>(p, 0);
+ break;
+ case Format_RGB888:
+ ((qrgb888*)s)[x] = qt_colorConvert<qrgb888, quint32p>(p, 0);
+ break;
+ case Format_RGB444:
+ ((qrgb444*)s)[x] = qt_colorConvert<qrgb444, quint32p>(p, 0);
+ break;
+ case Format_ARGB4444_Premultiplied:
+ ((qargb4444*)s)[x] = qt_colorConvert<qargb4444, quint32p>(p, 0);
+ break;
+ case Format_Invalid:
+ case NImageFormats:
+ Q_ASSERT(false);
+ }
+}
+
+#ifdef QT3_SUPPORT
+/*!
+ Converts the bit order of the image to the given \a bitOrder and
+ returns the converted image. The original image is not changed.
+ Returns this image if the given \a bitOrder is equal to the image
+ current bit order, or a null image if this image cannot be
+ converted.
+
+ Use convertToFormat() instead.
+*/
+
+QImage QImage::convertBitOrder(Endian bitOrder) const
+{
+ if (!d || isNull() || d->depth != 1 || !(bitOrder == BigEndian || bitOrder == LittleEndian))
+ return QImage();
+
+ if ((d->format == Format_Mono && bitOrder == BigEndian)
+ || (d->format == Format_MonoLSB && bitOrder == LittleEndian))
+ return *this;
+
+ QImage image(d->width, d->height, d->format == Format_Mono ? Format_MonoLSB : Format_Mono);
+
+ const uchar *data = d->data;
+ const uchar *end = data + d->nbytes;
+ uchar *ndata = image.d->data;
+ while (data < end)
+ *ndata++ = bitflip[*data++];
+
+ image.setDotsPerMeterX(dotsPerMeterX());
+ image.setDotsPerMeterY(dotsPerMeterY());
+
+ image.d->colortable = d->colortable;
+ return image;
+}
+#endif
+/*!
+ Returns true if all the colors in the image are shades of gray
+ (i.e. their red, green and blue components are equal); otherwise
+ false.
+
+ Note that this function is slow for images without color table.
+
+ \sa isGrayscale()
+*/
+bool QImage::allGray() const
+{
+ if (!d)
+ return true;
+
+ if (d->depth == 32) {
+ int p = width()*height();
+ const QRgb* b = (const QRgb*)bits();
+ while (p--)
+ if (!qIsGray(*b++))
+ return false;
+ } else if (d->depth == 16) {
+ int p = width()*height();
+ const ushort* b = (const ushort *)bits();
+ while (p--)
+ if (!qIsGray(qt_colorConvert<quint32, quint16>(*b++, 0)))
+ return false;
+ } else if (d->format == QImage::Format_RGB888) {
+ int p = width()*height();
+ const qrgb888* b = (const qrgb888 *)bits();
+ while (p--)
+ if (!qIsGray(qt_colorConvert<quint32, qrgb888>(*b++, 0)))
+ return false;
+ } else {
+ if (d->colortable.isEmpty())
+ return true;
+ for (int i = 0; i < numColors(); i++)
+ if (!qIsGray(d->colortable.at(i)))
+ return false;
+ }
+ return true;
+}
+
+/*!
+ For 32-bit images, this function is equivalent to allGray().
+
+ For 8-bpp images, this function returns true if color(i) is
+ QRgb(i, i, i) for all indexes of the color table; otherwise
+ returns false.
+
+ \sa allGray(), {QImage#Image Formats}{Image Formats}
+*/
+bool QImage::isGrayscale() const
+{
+ if (!d)
+ return false;
+
+ switch (depth()) {
+ case 32:
+ case 24:
+ case 16:
+ return allGray();
+ case 8: {
+ for (int i = 0; i < numColors(); i++)
+ if (d->colortable.at(i) != qRgb(i,i,i))
+ return false;
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/*!
+ \fn QImage QImage::smoothScale(int width, int height, Qt::AspectRatioMode mode) const
+
+ Use scaled() instead.
+
+ \oldcode
+ QImage image;
+ image.smoothScale(width, height, mode);
+ \newcode
+ QImage image;
+ image.scaled(width, height, mode, Qt::SmoothTransformation);
+ \endcode
+*/
+
+/*!
+ \fn QImage QImage::smoothScale(const QSize &size, Qt::AspectRatioMode mode) const
+ \overload
+
+ Use scaled() instead.
+
+ \oldcode
+ QImage image;
+ image.smoothScale(size, mode);
+ \newcode
+ QImage image;
+ image.scaled(size, mode, Qt::SmoothTransformation);
+ \endcode
+*/
+
+/*!
+ \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode,
+ Qt::TransformationMode transformMode) const
+ \overload
+
+ Returns a copy of the image scaled to a rectangle with the given
+ \a width and \a height according to the given \a aspectRatioMode
+ and \a transformMode.
+
+ If either the \a width or the \a height is zero or negative, this
+ function returns a null image.
+*/
+
+/*!
+ \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode,
+ Qt::TransformationMode transformMode) const
+
+ Returns a copy of the image scaled to a rectangle defined by the
+ given \a size according to the given \a aspectRatioMode and \a
+ transformMode.
+
+ \image qimage-scaling.png
+
+ \list
+ \i If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image
+ is scaled to \a size.
+ \i If \a aspectRatioMode is Qt::KeepAspectRatio, the image is
+ scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio.
+ \i If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding,
+ the image is scaled to a rectangle as small as possible
+ outside \a size, preserving the aspect ratio.
+ \endlist
+
+ If the given \a size is empty, this function returns a null image.
+
+ \sa isNull(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const
+{
+ if (!d) {
+ qWarning("QImage::scaled: Image is a null image");
+ return QImage();
+ }
+ if (s.isEmpty())
+ return QImage();
+
+ QSize newSize = size();
+ newSize.scale(s, aspectMode);
+ if (newSize == size())
+ return copy();
+
+ QImage img;
+ QTransform wm;
+ wm.scale((qreal)newSize.width() / width(), (qreal)newSize.height() / height());
+ img = transformed(wm, mode);
+ return img;
+}
+
+/*!
+ \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const
+
+ Returns a scaled copy of the image. The returned image is scaled
+ to the given \a width using the specified transformation \a
+ mode.
+
+ This function automatically calculates the height of the image so
+ that its aspect ratio is preserved.
+
+ If the given \a width is 0 or negative, a null image is returned.
+
+ \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const
+{
+ if (!d) {
+ qWarning("QImage::scaleWidth: Image is a null image");
+ return QImage();
+ }
+ if (w <= 0)
+ return QImage();
+
+ QTransform wm;
+ qreal factor = (qreal) w / width();
+ wm.scale(factor, factor);
+ return transformed(wm, mode);
+}
+
+/*!
+ \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const
+
+ Returns a scaled copy of the image. The returned image is scaled
+ to the given \a height using the specified transformation \a
+ mode.
+
+ This function automatically calculates the width of the image so that
+ the ratio of the image is preserved.
+
+ If the given \a height is 0 or negative, a null image is returned.
+
+ \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const
+{
+ if (!d) {
+ qWarning("QImage::scaleHeight: Image is a null image");
+ return QImage();
+ }
+ if (h <= 0)
+ return QImage();
+
+ QTransform wm;
+ qreal factor = (qreal) h / height();
+ wm.scale(factor, factor);
+ return transformed(wm, mode);
+}
+
+
+/*!
+ \fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height)
+
+ Returns the actual matrix used for transforming an image with the
+ given \a width, \a height and \a matrix.
+
+ When transforming an image using the transformed() function, the
+ transformation matrix is internally adjusted to compensate for
+ unwanted translation, i.e. transformed() returns the smallest
+ image containing all transformed points of the original image.
+ This function returns the modified matrix, which maps points
+ correctly from the original image into the new image.
+
+ \sa transformed(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h)
+{
+ return trueMatrix(QTransform(matrix), w, h).toAffine();
+}
+
+/*!
+ Returns a copy of the image that is transformed using the given
+ transformation \a matrix and transformation \a mode.
+
+ The transformation \a matrix is internally adjusted to compensate
+ for unwanted translation; i.e. the image produced is the smallest
+ image that contains all the transformed points of the original
+ image. Use the trueMatrix() function to retrieve the actual matrix
+ used for transforming an image.
+
+ \sa trueMatrix(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const
+{
+ return transformed(QTransform(matrix), mode);
+}
+
+/*!
+ Builds and returns a 1-bpp mask from the alpha buffer in this
+ image. Returns a null image if the image's format is
+ QImage::Format_RGB32.
+
+ The \a flags argument is a bitwise-OR of the
+ Qt::ImageConversionFlags, and controls the conversion
+ process. Passing 0 for flags sets all the default options.
+
+ The returned image has little-endian bit order (i.e. the image's
+ format is QImage::Format_MonoLSB), which you can convert to
+ big-endian (QImage::Format_Mono) using the convertToFormat()
+ function.
+
+ \sa createHeuristicMask(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const
+{
+ if (!d || d->format == QImage::Format_RGB32)
+ return QImage();
+
+ if (d->depth == 1) {
+ // A monochrome pixmap, with alpha channels on those two colors.
+ // Pretty unlikely, so use less efficient solution.
+ return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags);
+ }
+
+ QImage mask(d->width, d->height, Format_MonoLSB);
+ dither_to_Mono(mask.d, d, flags, true);
+ return mask;
+}
+
+#ifndef QT_NO_IMAGE_HEURISTIC_MASK
+/*!
+ Creates and returns a 1-bpp heuristic mask for this image.
+
+ The function works by selecting a color from one of the corners,
+ then chipping away pixels of that color starting at all the edges.
+ The four corners vote for which color is to be masked away. In
+ case of a draw (this generally means that this function is not
+ applicable to the image), the result is arbitrary.
+
+ The returned image has little-endian bit order (i.e. the image's
+ format is QImage::Format_MonoLSB), which you can convert to
+ big-endian (QImage::Format_Mono) using the convertToFormat()
+ function.
+
+ If \a clipTight is true (the default) the mask is just large
+ enough to cover the pixels; otherwise, the mask is larger than the
+ data pixels.
+
+ Note that this function disregards the alpha buffer.
+
+ \sa createAlphaMask(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+
+QImage QImage::createHeuristicMask(bool clipTight) const
+{
+ if (!d)
+ return QImage();
+
+ if (d->depth != 32) {
+ QImage img32 = convertToFormat(Format_RGB32);
+ return img32.createHeuristicMask(clipTight);
+ }
+
+#define PIX(x,y) (*((QRgb*)scanLine(y)+x) & 0x00ffffff)
+
+ int w = width();
+ int h = height();
+ QImage m(w, h, Format_MonoLSB);
+ m.setNumColors(2);
+ m.setColor(0, QColor(Qt::color0).rgba());
+ m.setColor(1, QColor(Qt::color1).rgba());
+ m.fill(0xff);
+
+ QRgb background = PIX(0,0);
+ if (background != PIX(w-1,0) &&
+ background != PIX(0,h-1) &&
+ background != PIX(w-1,h-1)) {
+ background = PIX(w-1,0);
+ if (background != PIX(w-1,h-1) &&
+ background != PIX(0,h-1) &&
+ PIX(0,h-1) == PIX(w-1,h-1)) {
+ background = PIX(w-1,h-1);
+ }
+ }
+
+ int x,y;
+ bool done = false;
+ uchar *ypp, *ypc, *ypn;
+ while(!done) {
+ done = true;
+ ypn = m.scanLine(0);
+ ypc = 0;
+ for (y = 0; y < h; y++) {
+ ypp = ypc;
+ ypc = ypn;
+ ypn = (y == h-1) ? 0 : m.scanLine(y+1);
+ QRgb *p = (QRgb *)scanLine(y);
+ for (x = 0; x < w; x++) {
+ // slowness here - it's possible to do six of these tests
+ // together in one go. oh well.
+ if ((x == 0 || y == 0 || x == w-1 || y == h-1 ||
+ !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) ||
+ !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) ||
+ !(*(ypp + (x >> 3)) & (1 << (x & 7))) ||
+ !(*(ypn + (x >> 3)) & (1 << (x & 7)))) &&
+ ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) &&
+ ((*p & 0x00ffffff) == background)) {
+ done = false;
+ *(ypc + (x >> 3)) &= ~(1 << (x & 7));
+ }
+ p++;
+ }
+ }
+ }
+
+ if (!clipTight) {
+ ypn = m.scanLine(0);
+ ypc = 0;
+ for (y = 0; y < h; y++) {
+ ypp = ypc;
+ ypc = ypn;
+ ypn = (y == h-1) ? 0 : m.scanLine(y+1);
+ QRgb *p = (QRgb *)scanLine(y);
+ for (x = 0; x < w; x++) {
+ if ((*p & 0x00ffffff) != background) {
+ if (x > 0)
+ *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7));
+ if (x < w-1)
+ *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7));
+ if (y > 0)
+ *(ypp + (x >> 3)) |= (1 << (x & 7));
+ if (y < h-1)
+ *(ypn + (x >> 3)) |= (1 << (x & 7));
+ }
+ p++;
+ }
+ }
+ }
+
+#undef PIX
+
+ return m;
+}
+#endif //QT_NO_IMAGE_HEURISTIC_MASK
+
+/*!
+ Creates and returns a mask for this image based on the given \a
+ color value. If the \a mode is MaskInColor (the default value),
+ all pixels matching \a color will be opaque pixels in the mask. If
+ \a mode is MaskOutColor, all pixels matching the given color will
+ be transparent.
+
+ \sa createAlphaMask(), createHeuristicMask()
+*/
+
+QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const
+{
+ if (!d)
+ return QImage();
+ QImage maskImage(size(), QImage::Format_MonoLSB);
+ maskImage.fill(0);
+ uchar *s = maskImage.bits();
+
+ if (depth() == 32) {
+ for (int h = 0; h < d->height; h++) {
+ const uint *sl = (uint *) scanLine(h);
+ for (int w = 0; w < d->width; w++) {
+ if (sl[w] == color)
+ *(s + (w >> 3)) |= (1 << (w & 7));
+ }
+ s += maskImage.bytesPerLine();
+ }
+ } else {
+ for (int h = 0; h < d->height; h++) {
+ for (int w = 0; w < d->width; w++) {
+ if ((uint) pixel(w, h) == color)
+ *(s + (w >> 3)) |= (1 << (w & 7));
+ }
+ s += maskImage.bytesPerLine();
+ }
+ }
+ if (mode == Qt::MaskOutColor)
+ maskImage.invertPixels();
+ return maskImage;
+}
+
+
+/*
+ This code is contributed by Philipp Lang,
+ GeneriCom Software Germany (www.generi.com)
+ under the terms of the QPL, Version 1.0
+*/
+
+/*!
+ \fn QImage QImage::mirror(bool horizontal, bool vertical) const
+
+ Use mirrored() instead.
+*/
+
+/*!
+ Returns a mirror of the image, mirrored in the horizontal and/or
+ the vertical direction depending on whether \a horizontal and \a
+ vertical are set to true or false.
+
+ Note that the original image is not changed.
+
+ \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::mirrored(bool horizontal, bool vertical) const
+{
+ if (!d)
+ return QImage();
+
+ if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical))
+ return *this;
+
+ int w = d->width;
+ int h = d->height;
+ // Create result image, copy colormap
+ QImage result(d->width, d->height, d->format);
+ result.d->colortable = d->colortable;
+ result.d->has_alpha_clut = d->has_alpha_clut;
+
+ if (depth() == 1)
+ w = (w+7)/8;
+ int dxi = horizontal ? -1 : 1;
+ int dxs = horizontal ? w-1 : 0;
+ int dyi = vertical ? -1 : 1;
+ int dy = vertical ? h-1: 0;
+
+ // 1 bit, 8 bit
+ if (d->depth == 1 || d->depth == 8) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ quint8* ssl = (quint8*)(d->data + sy*d->bytes_per_line);
+ quint8* dsl = (quint8*)(result.d->data + dy*result.d->bytes_per_line);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+ // 16 bit
+ else if (d->depth == 16) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ quint16* ssl = (quint16*)(d->data + sy*d->bytes_per_line);
+ quint16* dsl = (quint16*)(result.d->data + dy*result.d->bytes_per_line);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+ // 24 bit
+ else if (d->depth == 24) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ quint24* ssl = (quint24*)(d->data + sy*d->bytes_per_line);
+ quint24* dsl = (quint24*)(result.d->data + dy*result.d->bytes_per_line);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+ // 32 bit
+ else if (d->depth == 32) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ quint32* ssl = (quint32*)(d->data + sy*d->bytes_per_line);
+ quint32* dsl = (quint32*)(result.d->data + dy*result.d->bytes_per_line);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+
+ // special handling of 1 bit images for horizontal mirroring
+ if (horizontal && d->depth == 1) {
+ int shift = width() % 8;
+ for (int y = h-1; y >= 0; y--) {
+ quint8* a0 = (quint8*)(result.d->data + y*d->bytes_per_line);
+ // Swap bytes
+ quint8* a = a0+dxs;
+ while (a >= a0) {
+ *a = bitflip[*a];
+ a--;
+ }
+ // Shift bits if unaligned
+ if (shift != 0) {
+ a = a0+dxs;
+ quint8 c = 0;
+ if (format() == Format_MonoLSB) {
+ while (a >= a0) {
+ quint8 nc = *a << shift;
+ *a = (*a >> (8-shift)) | c;
+ --a;
+ c = nc;
+ }
+ } else {
+ while (a >= a0) {
+ quint8 nc = *a >> shift;
+ *a = (*a << (8-shift)) | c;
+ --a;
+ c = nc;
+ }
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+/*!
+ \fn QImage QImage::swapRGB() const
+
+ Use rgbSwapped() instead.
+
+ \omit
+ Returns a QImage in which the values of the red and blue
+ components of all pixels have been swapped, effectively converting
+ an RGB image to an BGR image. The original QImage is not changed.
+ \endomit
+*/
+
+/*!
+ Returns a QImage in which the values of the red and blue
+ components of all pixels have been swapped, effectively converting
+ an RGB image to an BGR image.
+
+ The original QImage is not changed.
+
+ \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::rgbSwapped() const
+{
+ if (isNull())
+ return *this;
+ QImage res;
+ switch (d->format) {
+ case Format_Invalid:
+ case NImageFormats:
+ Q_ASSERT(false);
+ break;
+ case Format_Mono:
+ case Format_MonoLSB:
+ case Format_Indexed8:
+ res = copy();
+ for (int i = 0; i < res.d->colortable.size(); i++) {
+ QRgb c = res.d->colortable.at(i);
+ res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00));
+ }
+ break;
+ case Format_RGB32:
+ case Format_ARGB32:
+ case Format_ARGB32_Premultiplied:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ uint *q = (uint*)res.scanLine(i);
+ uint *p = (uint*)scanLine(i);
+ uint *end = p + d->width;
+ while (p < end) {
+ *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);
+ p++;
+ q++;
+ }
+ }
+ break;
+ case Format_RGB16:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ ushort *q = (ushort*)res.scanLine(i);
+ const ushort *p = (const ushort*)scanLine(i);
+ const ushort *end = p + d->width;
+ while (p < end) {
+ *q = ((*p << 11) & 0xf800) | ((*p >> 11) & 0x1f) | (*p & 0x07e0);
+ p++;
+ q++;
+ }
+ }
+ break;
+ case Format_ARGB8565_Premultiplied:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ quint8 *p = (quint8*)scanLine(i);
+ const quint8 *end = p + d->width * sizeof(qargb8565);
+ while (p < end) {
+ quint16 *q = reinterpret_cast<quint16*>(p + 1);
+ *q = ((*q << 11) & 0xf800) | ((*q >> 11) & 0x1f) | (*q & 0x07e0);
+ p += sizeof(qargb8565);
+ }
+ }
+ break;
+ case Format_RGB666:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ qrgb666 *q = reinterpret_cast<qrgb666*>(res.scanLine(i));
+ const qrgb666 *p = reinterpret_cast<const qrgb666*>(scanLine(i));
+ const qrgb666 *end = p + d->width;
+ while (p < end) {
+ const QRgb rgb = quint32(*p++);
+ *q++ = qRgb(qBlue(rgb), qGreen(rgb), qRed(rgb));
+ }
+ }
+ break;
+ case Format_ARGB6666_Premultiplied:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ qargb6666 *q = reinterpret_cast<qargb6666*>(res.scanLine(i));
+ const qargb6666 *p = reinterpret_cast<const qargb6666*>(scanLine(i));
+ const qargb6666 *end = p + d->width;
+ while (p < end) {
+ const QRgb rgb = quint32(*p++);
+ *q++ = qRgba(qBlue(rgb), qGreen(rgb), qRed(rgb), qAlpha(rgb));
+ }
+ }
+ break;
+ case Format_RGB555:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ ushort *q = (ushort*)res.scanLine(i);
+ const ushort *p = (const ushort*)scanLine(i);
+ const ushort *end = p + d->width;
+ while (p < end) {
+ *q = ((*p << 10) & 0x7800) | ((*p >> 10) & 0x1f) | (*p & 0x83e0);
+ p++;
+ q++;
+ }
+ }
+ break;
+ case Format_ARGB8555_Premultiplied:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ quint8 *p = (quint8*)scanLine(i);
+ const quint8 *end = p + d->width * sizeof(qargb8555);
+ while (p < end) {
+ quint16 *q = reinterpret_cast<quint16*>(p + 1);
+ *q = ((*q << 10) & 0x7800) | ((*q >> 10) & 0x1f) | (*q & 0x83e0);
+ p += sizeof(qargb8555);
+ }
+ }
+ break;
+ case Format_RGB888:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));
+ const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));
+ const quint8 *end = p + d->width * sizeof(qrgb888);
+ while (p < end) {
+ q[0] = p[2];
+ q[1] = p[1];
+ q[2] = p[0];
+ q += sizeof(qrgb888);
+ p += sizeof(qrgb888);
+ }
+ }
+ break;
+ case Format_RGB444:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));
+ const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));
+ const quint8 *end = p + d->width * sizeof(qrgb444);
+ while (p < end) {
+ q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8);
+ q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0);
+ q += sizeof(qrgb444);
+ p += sizeof(qrgb444);
+ }
+ }
+ break;
+ case Format_ARGB4444_Premultiplied:
+ res = QImage(d->width, d->height, d->format);
+ for (int i = 0; i < d->height; i++) {
+ quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));
+ const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));
+ const quint8 *end = p + d->width * sizeof(qargb4444);
+ while (p < end) {
+ q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8);
+ q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0);
+ q += sizeof(qargb4444);
+ p += sizeof(qargb4444);
+ }
+ }
+ break;
+ }
+ return res;
+}
+
+/*!
+ Loads an image from the file with the given \a fileName. Returns true if
+ the image was successfully loaded; otherwise returns false.
+
+ The loader attempts to read the image using the specified \a format, e.g.,
+ PNG or JPG. If \a format is not specified (which is the default), the
+ loader probes the file for a header to guess the file format.
+
+ The file name can either refer to an actual file on disk or to one
+ of the application's embedded resources. See the
+ \l{resources.html}{Resource System} overview for details on how to
+ embed images and other resource files in the application's
+ executable.
+
+ \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+*/
+
+bool QImage::load(const QString &fileName, const char* format)
+{
+ if (fileName.isEmpty())
+ return false;
+
+ QImage image = QImageReader(fileName, format).read();
+ if (!image.isNull()) {
+ operator=(image);
+ return true;
+ }
+ return false;
+}
+
+/*!
+ \overload
+
+ This function reads a QImage from the given \a device. This can,
+ for example, be used to load an image directly into a QByteArray.
+*/
+
+bool QImage::load(QIODevice* device, const char* format)
+{
+ QImage image = QImageReader(device, format).read();
+ if(!image.isNull()) {
+ operator=(image);
+ return true;
+ }
+ return false;
+}
+
+/*!
+ \fn bool QImage::loadFromData(const uchar *data, int len, const char *format)
+
+ Loads an image from the first \a len bytes of the given binary \a
+ data. Returns true if the image was successfully loaded; otherwise
+ returns false.
+
+ The loader attempts to read the image using the specified \a format, e.g.,
+ PNG or JPG. If \a format is not specified (which is the default), the
+ loader probes the file for a header to guess the file format.
+
+ \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+*/
+
+bool QImage::loadFromData(const uchar *data, int len, const char *format)
+{
+ QImage image = fromData(data, len, format);
+ if (!image.isNull()) {
+ operator=(image);
+ return true;
+ }
+ return false;
+}
+
+/*!
+ \fn bool QImage::loadFromData(const QByteArray &data, const char *format)
+
+ \overload
+
+ Loads an image from the given QByteArray \a data.
+*/
+
+/*!
+ \fn QImage QImage::fromData(const uchar *data, int size, const char *format)
+
+ Constructs a QImage from the first \a size bytes of the given
+ binary \a data. The loader attempts to read the image using the
+ specified \a format. If \a format is not specified (which is the default),
+ the loader probes the file for a header to guess the file format.
+
+ If the loading of the image failed, this object is a null image.
+
+ \sa load(), save(), {QImage#Reading and Writing Image
+ Files}{Reading and Writing Image Files}
+*/
+QImage QImage::fromData(const uchar *data, int size, const char *format)
+{
+ QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size);
+ QBuffer b;
+ b.setData(a);
+ b.open(QIODevice::ReadOnly);
+ return QImageReader(&b, format).read();
+}
+
+/*!
+ \fn QImage QImage::fromData(const QByteArray &data, const char *format)
+
+ \overload
+
+ Loads an image from the given QByteArray \a data.
+*/
+
+/*!
+ Saves the image to the file with the given \a fileName, using the
+ given image file \a format and \a quality factor. If \a format is
+ 0, QImage will attempt to guess the format by looking at \a fileName's
+ suffix.
+
+ The \a quality factor must be in the range 0 to 100 or -1. Specify
+ 0 to obtain small compressed files, 100 for large uncompressed
+ files, and -1 (the default) to use the default settings.
+
+ Returns true if the image was successfully saved; otherwise
+ returns false.
+
+ \sa {QImage#Reading and Writing Image Files}{Reading and Writing
+ Image Files}
+*/
+bool QImage::save(const QString &fileName, const char *format, int quality) const
+{
+ if (isNull())
+ return false;
+ QImageWriter writer(fileName, format);
+ return d->doImageIO(this, &writer, quality);
+}
+
+/*!
+ \overload
+
+ This function writes a QImage to the given \a device.
+
+ This can, for example, be used to save an image directly into a
+ QByteArray:
+
+ \snippet doc/src/snippets/image/image.cpp 0
+*/
+
+bool QImage::save(QIODevice* device, const char* format, int quality) const
+{
+ if (isNull())
+ return false; // nothing to save
+ QImageWriter writer(device, format);
+ return d->doImageIO(this, &writer, quality);
+}
+
+/* \internal
+*/
+
+bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const
+{
+ if (quality > 100 || quality < -1)
+ qWarning("QPixmap::save: Quality out of range [-1, 100]");
+ if (quality >= 0)
+ writer->setQuality(qMin(quality,100));
+ return writer->write(*image);
+}
+
+/*****************************************************************************
+ QImage stream functions
+ *****************************************************************************/
+#if !defined(QT_NO_DATASTREAM)
+/*!
+ \fn QDataStream &operator<<(QDataStream &stream, const QImage &image)
+ \relates QImage
+
+ Writes the given \a image to the given \a stream as a PNG image,
+ or as a BMP image if the stream's version is 1. Note that writing
+ the stream to a file will not produce a valid image file.
+
+ \sa QImage::save(), {Format of the QDataStream Operators}
+*/
+
+QDataStream &operator<<(QDataStream &s, const QImage &image)
+{
+ if (s.version() >= 5) {
+ if (image.isNull()) {
+ s << (qint32) 0; // null image marker
+ return s;
+ } else {
+ s << (qint32) 1;
+ // continue ...
+ }
+ }
+ QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png");
+ writer.write(image);
+ return s;
+}
+
+/*!
+ \fn QDataStream &operator>>(QDataStream &stream, QImage &image)
+ \relates QImage
+
+ Reads an image from the given \a stream and stores it in the given
+ \a image.
+
+ \sa QImage::load(), {Format of the QDataStream Operators}
+*/
+
+QDataStream &operator>>(QDataStream &s, QImage &image)
+{
+ if (s.version() >= 5) {
+ qint32 nullMarker;
+ s >> nullMarker;
+ if (!nullMarker) {
+ image = QImage(); // null image
+ return s;
+ }
+ }
+ image = QImageReader(s.device(), 0).read();
+ return s;
+}
+#endif
+
+
+#ifdef QT3_SUPPORT
+/*!
+ \fn QImage QImage::convertDepthWithPalette(int depth, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const
+
+ Returns an image with the given \a depth, using the \a
+ palette_count colors pointed to by \a palette. If \a depth is 1 or
+ 8, the returned image will have its color table ordered in the
+ same way as \a palette.
+
+ If the image needs to be modified to fit in a lower-resolution
+ result (e.g. converting from 32-bit to 8-bit), use the \a flags to
+ specify how you'd prefer this to happen.
+
+ Note: currently no closest-color search is made. If colors are
+ found that are not in the palette, the palette may not be used at
+ all. This result should not be considered valid because it may
+ change in future implementations.
+
+ Currently inefficient for non-32-bit images.
+
+ Use the convertToFormat() function in combination with the
+ setColorTable() function instead.
+*/
+QImage QImage::convertDepthWithPalette(int d, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const
+{
+ Format f = formatFor(d, QImage::LittleEndian);
+ QVector<QRgb> colortable;
+ for (int i = 0; i < palette_count; ++i)
+ colortable.append(palette[i]);
+ return convertToFormat(f, colortable, flags);
+}
+
+/*!
+ \relates QImage
+
+ Copies a block of pixels from \a src to \a dst. The pixels
+ copied from source (src) are converted according to
+ \a flags if it is incompatible with the destination
+ (\a dst).
+
+ \a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy is the
+ top-left position in \a dst and \a sw, \a sh is the size of the
+ copied block. The copying is clipped if areas outside \a src or \a
+ dst are specified. If \a sw is -1, it is adjusted to
+ src->width(). Similarly, if \a sh is -1, it is adjusted to
+ src->height().
+
+ Currently inefficient for non 32-bit images.
+
+ Use copy() or QPainter::drawImage() instead.
+*/
+void bitBlt(QImage *dst, int dx, int dy, const QImage *src, int sx, int sy, int sw, int sh,
+ Qt::ImageConversionFlags flags)
+{
+ if (dst->isNull() || src->isNull())
+ return;
+ QPainter p(dst);
+ p.drawImage(QPoint(dx, dy), *src, QRect(sx, sy, sw, sh), flags);
+}
+#endif
+
+/*!
+ \fn bool QImage::operator==(const QImage & image) const
+
+ Returns true if this image and the given \a image have the same
+ contents; otherwise returns false.
+
+ The comparison can be slow, unless there is some obvious
+ difference (e.g. different size or format), in which case the
+ function will return quickly.
+
+ \sa operator=()
+*/
+
+bool QImage::operator==(const QImage & i) const
+{
+ // same object, or shared?
+ if (i.d == d)
+ return true;
+ if (!i.d || !d)
+ return false;
+
+ // obviously different stuff?
+ if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format)
+ return false;
+
+ if (d->format != Format_RGB32) {
+ if (d->colortable != i.d->colortable)
+ return false;
+ if (d->format >= Format_ARGB32) { // all bits defined
+ const int n = d->width * d->depth / 8;
+ if (n == d->bytes_per_line && n == i.d->bytes_per_line) {
+ if (memcmp(bits(), i.bits(), d->nbytes))
+ return false;
+ } else {
+ for (int y = 0; y < d->height; ++y) {
+ if (memcmp(scanLine(y), i.scanLine(y), n))
+ return false;
+ }
+ }
+ } else {
+ int w = width();
+ int h = height();
+ for (int y=0; y<h; ++y) {
+ for (int x=0; x<w; ++x) {
+ if (pixelIndex(x, y) != i.pixelIndex(x, y))
+ return false;
+ }
+ }
+ }
+ } else {
+ //alpha channel undefined, so we must mask it out
+ for(int l = 0; l < d->height; l++) {
+ int w = d->width;
+ const uint *p1 = reinterpret_cast<const uint*>(scanLine(l));
+ const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(l));
+ while (w--) {
+ if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+
+/*!
+ \fn bool QImage::operator!=(const QImage & image) const
+
+ Returns true if this image and the given \a image have different
+ contents; otherwise returns false.
+
+ The comparison can be slow, unless there is some obvious
+ difference, such as different widths, in which case the function
+ will return quickly.
+
+ \sa operator=()
+*/
+
+bool QImage::operator!=(const QImage & i) const
+{
+ return !(*this == i);
+}
+
+
+
+
+/*!
+ Returns the number of pixels that fit horizontally in a physical
+ meter. Together with dotsPerMeterY(), this number defines the
+ intended scale and aspect ratio of the image.
+
+ \sa setDotsPerMeterX(), {QImage#Image Information}{Image
+ Information}
+*/
+int QImage::dotsPerMeterX() const
+{
+ return d ? qRound(d->dpmx) : 0;
+}
+
+/*!
+ Returns the number of pixels that fit vertically in a physical
+ meter. Together with dotsPerMeterX(), this number defines the
+ intended scale and aspect ratio of the image.
+
+ \sa setDotsPerMeterY(), {QImage#Image Information}{Image
+ Information}
+*/
+int QImage::dotsPerMeterY() const
+{
+ return d ? qRound(d->dpmy) : 0;
+}
+
+/*!
+ Sets the number of pixels that fit horizontally in a physical
+ meter, to \a x.
+
+ Together with dotsPerMeterY(), this number defines the intended
+ scale and aspect ratio of the image.
+
+ \sa dotsPerMeterX(), {QImage#Image Information}{Image
+ Information}
+*/
+void QImage::setDotsPerMeterX(int x)
+{
+ if (!d || !x)
+ return;
+ detach();
+
+ if (d)
+ d->dpmx = x;
+}
+
+/*!
+ Sets the number of pixels that fit vertically in a physical meter,
+ to \a y.
+
+ Together with dotsPerMeterX(), this number defines the intended
+ scale and aspect ratio of the image.
+
+ \sa dotsPerMeterY(), {QImage#Image Information}{Image
+ Information}
+*/
+void QImage::setDotsPerMeterY(int y)
+{
+ if (!d || !y)
+ return;
+ detach();
+
+ if (d)
+ d->dpmy = y;
+}
+
+/*!
+ \fn QPoint QImage::offset() const
+
+ Returns the number of pixels by which the image is intended to be
+ offset by when positioning relative to other images.
+
+ \sa setOffset(), {QImage#Image Information}{Image Information}
+*/
+QPoint QImage::offset() const
+{
+ return d ? d->offset : QPoint();
+}
+
+
+/*!
+ \fn void QImage::setOffset(const QPoint& offset)
+
+ Sets the the number of pixels by which the image is intended to be
+ offset by when positioning relative to other images, to \a offset.
+
+ \sa offset(), {QImage#Image Information}{Image Information}
+*/
+void QImage::setOffset(const QPoint& p)
+{
+ if (!d)
+ return;
+ detach();
+
+ if (d)
+ d->offset = p;
+}
+#ifndef QT_NO_IMAGE_TEXT
+
+/*!
+ Returns the text keys for this image.
+
+ You can use these keys with text() to list the image text for a
+ certain key.
+
+ \sa text()
+*/
+QStringList QImage::textKeys() const
+{
+ return d ? QStringList(d->text.keys()) : QStringList();
+}
+
+/*!
+ Returns the image text associated with the given \a key. If the
+ specified \a key is an empty string, the whole image text is
+ returned, with each key-text pair separated by a newline.
+
+ \sa setText(), textKeys()
+*/
+QString QImage::text(const QString &key) const
+{
+ if (!d)
+ return QString();
+
+ if (!key.isEmpty())
+ return d->text.value(key);
+
+ QString tmp;
+ foreach (const QString &key, d->text.keys()) {
+ if (!tmp.isEmpty())
+ tmp += QLatin1String("\n\n");
+ tmp += key + QLatin1String(": ") + d->text.value(key).simplified();
+ }
+ return tmp;
+}
+
+/*!
+ \fn void QImage::setText(const QString &key, const QString &text)
+
+ Sets the image text to the given \a text and associate it with the
+ given \a key.
+
+ If you just want to store a single text block (i.e., a "comment"
+ or just a description), you can either pass an empty key, or use a
+ generic key like "Description".
+
+ The image text is embedded into the image data when you
+ call save() or QImageWriter::write().
+
+ Not all image formats support embedded text. You can find out
+ if a specific image or format supports embedding text
+ by using QImageWriter::supportsOption(). We give an example:
+
+ \snippet doc/src/snippets/image/supportedformat.cpp 0
+
+ You can use QImageWriter::supportedImageFormats() to find out
+ which image formats are available to you.
+
+ \sa text(), textKeys()
+*/
+void QImage::setText(const QString &key, const QString &value)
+{
+ if (!d)
+ return;
+ detach();
+
+ if (d)
+ d->text.insert(key, value);
+}
+
+/*!
+ \fn QString QImage::text(const char* key, const char* language) const
+ \obsolete
+
+ Returns the text recorded for the given \a key in the given \a
+ language, or in a default language if \a language is 0.
+
+ Use text() instead.
+
+ The language the text is recorded in is no longer relevant since
+ the text is always set using QString and UTF-8 representation.
+*/
+QString QImage::text(const char* key, const char* lang) const
+{
+ if (!d)
+ return QString();
+ QString k = QString::fromAscii(key);
+ if (lang && *lang)
+ k += QLatin1Char('/') + QString::fromAscii(lang);
+ return d->text.value(k);
+}
+
+/*!
+ \fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const
+ \overload
+ \obsolete
+
+ Returns the text recorded for the given \a keywordAndLanguage.
+
+ Use text() instead.
+
+ The language the text is recorded in is no longer relevant since
+ the text is always set using QString and UTF-8 representation.
+*/
+QString QImage::text(const QImageTextKeyLang& kl) const
+{
+ if (!d)
+ return QString();
+ QString k = QString::fromAscii(kl.key);
+ if (!kl.lang.isEmpty())
+ k += QLatin1Char('/') + QString::fromAscii(kl.lang);
+ return d->text.value(k);
+}
+
+/*!
+ \obsolete
+
+ Returns the language identifiers for which some texts are
+ recorded. Note that if you want to iterate over the list, you
+ should iterate over a copy.
+
+ The language the text is recorded in is no longer relevant since
+ the text is always set using QString and UTF-8 representation.
+*/
+QStringList QImage::textLanguages() const
+{
+ if (!d)
+ return QStringList();
+ QStringList keys = textKeys();
+ QStringList languages;
+ for (int i = 0; i < keys.size(); ++i) {
+ int index = keys.at(i).indexOf(QLatin1Char('/'));
+ if (index > 0)
+ languages += keys.at(i).mid(index+1);
+ }
+
+ return languages;
+}
+
+/*!
+ \obsolete
+
+ Returns a list of QImageTextKeyLang objects that enumerate all the
+ texts key/language pairs set for this image.
+
+ Use textKeys() instead.
+
+ The language the text is recorded in is no longer relevant since
+ the text is always set using QString and UTF-8 representation.
+*/
+QList<QImageTextKeyLang> QImage::textList() const
+{
+ QList<QImageTextKeyLang> imageTextKeys;
+ if (!d)
+ return imageTextKeys;
+ QStringList keys = textKeys();
+ for (int i = 0; i < keys.size(); ++i) {
+ int index = keys.at(i).indexOf(QLatin1Char('/'));
+ if (index > 0) {
+ QImageTextKeyLang tkl;
+ tkl.key = keys.at(i).left(index).toAscii();
+ tkl.lang = keys.at(i).mid(index+1).toAscii();
+ imageTextKeys += tkl;
+ }
+ }
+
+ return imageTextKeys;
+}
+
+/*!
+ \fn void QImage::setText(const char* key, const char* language, const QString& text)
+ \obsolete
+
+ Sets the image text to the given \a text and associate it with the
+ given \a key. The text is recorded in the specified \a language,
+ or in a default language if \a language is 0.
+
+ Use setText() instead.
+
+ The language the text is recorded in is no longer relevant since
+ the text is always set using QString and UTF-8 representation.
+
+ \omit
+ Records string \a for the keyword \a key. The \a key should be
+ a portable keyword recognizable by other software - some suggested
+ values can be found in
+ \l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text}
+ {the PNG specification}. \a s can be any text. \a lang should
+ specify the language code (see
+ \l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or 0.
+ \endomit
+*/
+void QImage::setText(const char* key, const char* lang, const QString& s)
+{
+ if (!d)
+ return;
+ detach();
+
+ // In case detach() ran out of memory
+ if (!d)
+ return;
+
+ QString k = QString::fromAscii(key);
+ if (lang && *lang)
+ k += QLatin1Char('/') + QString::fromAscii(lang);
+ d->text.insert(k, s);
+}
+
+#endif // QT_NO_IMAGE_TEXT
+
+/*
+ Sets the image bits to the \a pixmap contents and returns a
+ reference to the image.
+
+ If the image shares data with other images, it will first
+ dereference the shared data.
+
+ Makes a call to QPixmap::convertToImage().
+*/
+
+/*! \fn QImage::Endian QImage::systemBitOrder()
+
+ Determines the bit order of the display hardware. Returns
+ QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).
+
+ This function is no longer relevant for QImage. Use QSysInfo
+ instead.
+*/
+
+
+/*!
+ \internal
+
+ Used by QPainter to retrieve a paint engine for the image.
+*/
+
+QPaintEngine *QImage::paintEngine() const
+{
+ if (!d)
+ return 0;
+
+#ifdef QT_RASTER_IMAGEENGINE
+ if (!d->paintEngine) {
+ d->paintEngine = new QRasterPaintEngine(const_cast<QImage *>(this));
+ }
+#endif
+ return d->paintEngine;
+}
+
+
+/*!
+ \reimp
+
+ Returns the size for the specified \a metric on the device.
+*/
+int QImage::metric(PaintDeviceMetric metric) const
+{
+ if (!d)
+ return 0;
+
+ switch (metric) {
+ case PdmWidth:
+ return d->width;
+ break;
+
+ case PdmHeight:
+ return d->height;
+ break;
+
+ case PdmWidthMM:
+ return qRound(d->width * 1000 / d->dpmx);
+ break;
+
+ case PdmHeightMM:
+ return qRound(d->height * 1000 / d->dpmy);
+ break;
+
+ case PdmNumColors:
+ return d->colortable.size();
+ break;
+
+ case PdmDepth:
+ return d->depth;
+ break;
+
+ case PdmDpiX:
+ return qRound(d->dpmx * 0.0254);
+ break;
+
+ case PdmDpiY:
+ return qRound(d->dpmy * 0.0254);
+ break;
+
+ case PdmPhysicalDpiX:
+ return qRound(d->dpmx * 0.0254);
+ break;
+
+ case PdmPhysicalDpiY:
+ return qRound(d->dpmy * 0.0254);
+ break;
+
+ default:
+ qWarning("QImage::metric(): Unhandled metric type %d", metric);
+ break;
+ }
+ return 0;
+}
+
+
+
+/*****************************************************************************
+ QPixmap (and QImage) helper functions
+ *****************************************************************************/
+/*
+ This internal function contains the common (i.e. platform independent) code
+ to do a transformation of pixel data. It is used by QPixmap::transform() and by
+ QImage::transform().
+
+ \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and
+ \a xoffset is an offset to the matrix.
+
+ \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a
+ depth specifies the colordepth of the data.
+
+ \a dptr is a pointer to the destination data, \a dbpl specifies the bits per
+ line for the destination data, \a p_inc is the offset that we advance for
+ every scanline and \a dHeight is the height of the destination image.
+
+ \a sprt is the pointer to the source data, \a sbpl specifies the bits per
+ line of the source data, \a sWidth and \a sHeight are the width and height of
+ the source data.
+*/
+
+#undef IWX_MSB
+#define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \
+ if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \
+ (1 << (7-((trigx>>12)&7)))) \
+ *dptr |= b; \
+ } \
+ trigx += m11; \
+ trigy += m12;
+ // END OF MACRO
+#undef IWX_LSB
+#define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \
+ if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \
+ (1 << ((trigx>>12)&7))) \
+ *dptr |= b; \
+ } \
+ trigx += m11; \
+ trigy += m12;
+ // END OF MACRO
+#undef IWX_PIX
+#define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \
+ if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \
+ (1 << (7-((trigx>>12)&7)))) == 0) \
+ *dptr &= ~b; \
+ } \
+ trigx += m11; \
+ trigy += m12;
+ // END OF MACRO
+bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth,
+ uchar *dptr, int dbpl, int p_inc, int dHeight,
+ const uchar *sptr, int sbpl, int sWidth, int sHeight)
+{
+ int m11 = int(trueMat.m11()*4096.0);
+ int m12 = int(trueMat.m12()*4096.0);
+ int m21 = int(trueMat.m21()*4096.0);
+ int m22 = int(trueMat.m22()*4096.0);
+ int dx = qRound(trueMat.dx()*4096.0);
+ int dy = qRound(trueMat.dy()*4096.0);
+
+ int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2;
+ int m22ydy = dy + (m12 + m22) / 2;
+ uint trigx;
+ uint trigy;
+ uint maxws = sWidth<<12;
+ uint maxhs = sHeight<<12;
+
+ for (int y=0; y<dHeight; y++) { // for each target scanline
+ trigx = m21ydx;
+ trigy = m22ydy;
+ uchar *maxp = dptr + dbpl;
+ if (depth != 1) {
+ switch (depth) {
+ case 8: // 8 bpp transform
+ while (dptr < maxp) {
+ if (trigx < maxws && trigy < maxhs)
+ *dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12));
+ trigx += m11;
+ trigy += m12;
+ dptr++;
+ }
+ break;
+
+ case 16: // 16 bpp transform
+ while (dptr < maxp) {
+ if (trigx < maxws && trigy < maxhs)
+ *((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>12) +
+ ((trigx>>12)<<1)));
+ trigx += m11;
+ trigy += m12;
+ dptr++;
+ dptr++;
+ }
+ break;
+
+ case 24: // 24 bpp transform
+ while (dptr < maxp) {
+ if (trigx < maxws && trigy < maxhs) {
+ const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3);
+ dptr[0] = p2[0];
+ dptr[1] = p2[1];
+ dptr[2] = p2[2];
+ }
+ trigx += m11;
+ trigy += m12;
+ dptr += 3;
+ }
+ break;
+
+ case 32: // 32 bpp transform
+ while (dptr < maxp) {
+ if (trigx < maxws && trigy < maxhs)
+ *((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>12) +
+ ((trigx>>12)<<2)));
+ trigx += m11;
+ trigy += m12;
+ dptr += 4;
+ }
+ break;
+
+ default: {
+ return false;
+ }
+ }
+ } else {
+ switch (type) {
+ case QT_XFORM_TYPE_MSBFIRST:
+ while (dptr < maxp) {
+ IWX_MSB(128);
+ IWX_MSB(64);
+ IWX_MSB(32);
+ IWX_MSB(16);
+ IWX_MSB(8);
+ IWX_MSB(4);
+ IWX_MSB(2);
+ IWX_MSB(1);
+ dptr++;
+ }
+ break;
+ case QT_XFORM_TYPE_LSBFIRST:
+ while (dptr < maxp) {
+ IWX_LSB(1);
+ IWX_LSB(2);
+ IWX_LSB(4);
+ IWX_LSB(8);
+ IWX_LSB(16);
+ IWX_LSB(32);
+ IWX_LSB(64);
+ IWX_LSB(128);
+ dptr++;
+ }
+ break;
+# if defined(Q_WS_WIN)
+ case QT_XFORM_TYPE_WINDOWSPIXMAP:
+ while (dptr < maxp) {
+ IWX_PIX(128);
+ IWX_PIX(64);
+ IWX_PIX(32);
+ IWX_PIX(16);
+ IWX_PIX(8);
+ IWX_PIX(4);
+ IWX_PIX(2);
+ IWX_PIX(1);
+ dptr++;
+ }
+ break;
+# endif
+ }
+ }
+ m21ydx += m21;
+ m22ydy += m22;
+ dptr += p_inc;
+ }
+ return true;
+}
+#undef IWX_MSB
+#undef IWX_LSB
+#undef IWX_PIX
+
+/*!
+ \fn QImage QImage::xForm(const QMatrix &matrix) const
+
+ Use transformed() instead.
+
+ \oldcode
+ QImage image;
+ ...
+ image.xForm(matrix);
+ \newcode
+ QImage image;
+ ...
+ image.transformed(matrix);
+ \endcode
+*/
+
+/*! \obsolete
+ Returns a number that identifies the contents of this
+ QImage object. Distinct QImage objects can only have the same
+ serial number if they refer to the same contents (but they don't
+ have to).
+
+ Use cacheKey() instead.
+
+ \warning The serial number doesn't necessarily change when the
+ image is altered. This means that it may be dangerous to use
+ it as a cache key.
+
+ \sa operator==()
+*/
+
+int QImage::serialNumber() const
+{
+ if (!d)
+ return 0;
+ else
+ return d->ser_no;
+}
+
+/*!
+ Returns a number that identifies the contents of this QImage
+ object. Distinct QImage objects can only have the same key if they
+ refer to the same contents.
+
+ The key will change when the image is altered.
+*/
+qint64 QImage::cacheKey() const
+{
+ if (!d)
+ return 0;
+ else
+ return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no);
+}
+
+/*!
+ \internal
+
+ Returns true if the image is detached; otherwise returns false.
+
+ \sa detach(), {Implicit Data Sharing}
+*/
+
+bool QImage::isDetached() const
+{
+ return d && d->ref == 1;
+}
+
+
+/*!
+ \obsolete
+ Sets the alpha channel of this image to the given \a alphaChannel.
+
+ If \a alphaChannel is an 8 bit grayscale image, the intensity values are
+ written into this buffer directly. Otherwise, \a alphaChannel is converted
+ to 32 bit and the intensity of the RGB pixel values is used.
+
+ Note that the image will be converted to the Format_ARGB32_Premultiplied
+ format if the function succeeds.
+
+ Use one of the composition mods in QPainter::CompositionMode instead.
+
+ \sa alphaChannel(), {QImage#Image Transformations}{Image
+ Transformations}, {QImage#Image Formats}{Image Formats}
+*/
+
+void QImage::setAlphaChannel(const QImage &alphaChannel)
+{
+ if (!d)
+ return;
+
+ int w = d->width;
+ int h = d->height;
+
+ if (w != alphaChannel.d->width || h != alphaChannel.d->height) {
+ qWarning("QImage::setAlphaChannel: "
+ "Alpha channel must have same dimensions as the target image");
+ return;
+ }
+
+ if (d->paintEngine && d->paintEngine->isActive()) {
+ qWarning("QImage::setAlphaChannel: "
+ "Unable to set alpha channel while image is being painted on");
+ return;
+ }
+
+ detach();
+
+ *this = convertToFormat(QImage::Format_ARGB32_Premultiplied);
+
+ // Slight optimization since alphachannels are returned as 8-bit grays.
+ if (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale()) {
+ const uchar *src_data = alphaChannel.d->data;
+ const uchar *dest_data = d->data;
+ for (int y=0; y<h; ++y) {
+ const uchar *src = src_data;
+ QRgb *dest = (QRgb *)dest_data;
+ for (int x=0; x<w; ++x) {
+ int alpha = *src;
+ int destAlpha = qt_div_255(alpha * qAlpha(*dest));
+ *dest = ((destAlpha << 24)
+ | (qt_div_255(qRed(*dest) * alpha) << 16)
+ | (qt_div_255(qGreen(*dest) * alpha) << 8)
+ | (qt_div_255(qBlue(*dest) * alpha)));
+ ++dest;
+ ++src;
+ }
+ src_data += alphaChannel.d->bytes_per_line;
+ dest_data += d->bytes_per_line;
+ }
+
+ } else {
+ const QImage sourceImage = alphaChannel.convertToFormat(QImage::Format_RGB32);
+ const uchar *src_data = sourceImage.d->data;
+ const uchar *dest_data = d->data;
+ for (int y=0; y<h; ++y) {
+ const QRgb *src = (const QRgb *) src_data;
+ QRgb *dest = (QRgb *) dest_data;
+ for (int x=0; x<w; ++x) {
+ int alpha = qGray(*src);
+ int destAlpha = qt_div_255(alpha * qAlpha(*dest));
+ *dest = ((destAlpha << 24)
+ | (qt_div_255(qRed(*dest) * alpha) << 16)
+ | (qt_div_255(qGreen(*dest) * alpha) << 8)
+ | (qt_div_255(qBlue(*dest) * alpha)));
+ ++dest;
+ ++src;
+ }
+ src_data += sourceImage.d->bytes_per_line;
+ dest_data += d->bytes_per_line;
+ }
+ }
+}
+
+
+/*!
+ Returns the alpha channel of the image as a new grayscale QImage in which
+ each pixel's red, green, and blue values are given the alpha value of the
+ original image. The color depth of the returned image is 8-bit.
+
+ You can see an example of use of this function in QPixmap's
+ \l{QPixmap::}{alphaChannel()}, which works in the same way as
+ this function on QPixmaps.
+
+ \sa setAlphaChannel(), hasAlphaChannel(),
+ {QPixmap#Pixmap Information}{Pixmap},
+ {QImage#Image Transformations}{Image Transformations}
+*/
+
+QImage QImage::alphaChannel() const
+{
+ if (!d)
+ return QImage();
+
+ int w = d->width;
+ int h = d->height;
+
+ QImage image(w, h, Format_Indexed8);
+ image.setNumColors(256);
+
+ // set up gray scale table.
+ for (int i=0; i<256; ++i)
+ image.setColor(i, qRgb(i, i, i));
+
+ if (!hasAlphaChannel()) {
+ image.fill(255);
+ return image;
+ }
+
+ if (d->format == Format_Indexed8) {
+ const uchar *src_data = d->data;
+ uchar *dest_data = image.d->data;
+ for (int y=0; y<h; ++y) {
+ const uchar *src = src_data;
+ uchar *dest = dest_data;
+ for (int x=0; x<w; ++x) {
+ *dest = qAlpha(d->colortable.at(*src));
+ ++dest;
+ ++src;
+ }
+ src_data += d->bytes_per_line;
+ dest_data += image.d->bytes_per_line;
+ }
+ } else {
+ QImage alpha32 = *this;
+ if (d->format != Format_ARGB32 && d->format != Format_ARGB32_Premultiplied)
+ alpha32 = convertToFormat(Format_ARGB32);
+
+ const uchar *src_data = alpha32.d->data;
+ uchar *dest_data = image.d->data;
+ for (int y=0; y<h; ++y) {
+ const QRgb *src = (const QRgb *) src_data;
+ uchar *dest = dest_data;
+ for (int x=0; x<w; ++x) {
+ *dest = qAlpha(*src);
+ ++dest;
+ ++src;
+ }
+ src_data += alpha32.d->bytes_per_line;
+ dest_data += image.d->bytes_per_line;
+ }
+ }
+
+ return image;
+}
+
+/*!
+ Returns true if the image has a format that respects the alpha
+ channel, otherwise returns false.
+
+ \sa alphaChannel(), {QImage#Image Information}{Image Information}
+*/
+bool QImage::hasAlphaChannel() const
+{
+ return d && (d->format == Format_ARGB32_Premultiplied
+ || d->format == Format_ARGB32
+ || d->format == Format_ARGB8565_Premultiplied
+ || d->format == Format_ARGB8555_Premultiplied
+ || d->format == Format_ARGB6666_Premultiplied
+ || d->format == Format_ARGB4444_Premultiplied
+ || (d->has_alpha_clut && (d->format == Format_Indexed8
+ || d->format == Format_Mono
+ || d->format == Format_MonoLSB)));
+}
+
+
+#ifdef QT3_SUPPORT
+#if defined(Q_WS_X11)
+QT_BEGIN_INCLUDE_NAMESPACE
+#include <private/qt_x11_p.h>
+QT_END_INCLUDE_NAMESPACE
+#endif
+
+QImage::Endian QImage::systemBitOrder()
+{
+#if defined(Q_WS_X11)
+ return BitmapBitOrder(X11->display) == MSBFirst ? BigEndian : LittleEndian;
+#else
+ return BigEndian;
+#endif
+}
+#endif
+
+/*!
+ \fn QImage QImage::copy(const QRect &rect, Qt::ImageConversionFlags flags) const
+ \compat
+
+ Use copy() instead.
+*/
+
+/*!
+ \fn QImage QImage::copy(int x, int y, int w, int h, Qt::ImageConversionFlags flags) const
+ \compat
+
+ Use copy() instead.
+*/
+
+/*!
+ \fn QImage QImage::scaleWidth(int w) const
+ \compat
+
+ Use scaledToWidth() instead.
+*/
+
+/*!
+ \fn QImage QImage::scaleHeight(int h) const
+ \compat
+
+ Use scaledToHeight() instead.
+*/
+
+static QImage smoothScaled(const QImage &source, int w, int h) {
+ QImage src = source;
+ if (src.format() == QImage::Format_ARGB32)
+ src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);
+ else if (src.depth() < 32) {
+ if (src.hasAlphaChannel())
+ src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);
+ else
+ src = src.convertToFormat(QImage::Format_RGB32);
+ }
+
+ return qSmoothScaleImage(src, w, h);
+}
+
+
+static QImage rotated90(const QImage &image) {
+ QImage out(image.height(), image.width(), image.format());
+ if (image.numColors() > 0)
+ out.setColorTable(image.colorTable());
+ int w = image.width();
+ int h = image.height();
+ switch (image.format()) {
+ case QImage::Format_RGB32:
+ case QImage::Format_ARGB32:
+ case QImage::Format_ARGB32_Premultiplied:
+ qt_memrotate270(reinterpret_cast<const quint32*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint32*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ case QImage::Format_RGB666:
+ case QImage::Format_ARGB6666_Premultiplied:
+ case QImage::Format_ARGB8565_Premultiplied:
+ case QImage::Format_ARGB8555_Premultiplied:
+ case QImage::Format_RGB888:
+ qt_memrotate270(reinterpret_cast<const quint24*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint24*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ case QImage::Format_RGB555:
+ case QImage::Format_RGB16:
+ case QImage::Format_ARGB4444_Premultiplied:
+ qt_memrotate270(reinterpret_cast<const quint16*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint16*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ case QImage::Format_Indexed8:
+ qt_memrotate270(reinterpret_cast<const quint8*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint8*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ default:
+ for (int y=0; y<h; ++y) {
+ if (image.numColors())
+ for (int x=0; x<w; ++x)
+ out.setPixel(h-y-1, x, image.pixelIndex(x, y));
+ else
+ for (int x=0; x<w; ++x)
+ out.setPixel(h-y-1, x, image.pixel(x, y));
+ }
+ break;
+ }
+ return out;
+}
+
+
+static QImage rotated180(const QImage &image) {
+ return image.mirrored(true, true);
+}
+
+
+static QImage rotated270(const QImage &image) {
+ QImage out(image.height(), image.width(), image.format());
+ if (image.numColors() > 0)
+ out.setColorTable(image.colorTable());
+ int w = image.width();
+ int h = image.height();
+ switch (image.format()) {
+ case QImage::Format_RGB32:
+ case QImage::Format_ARGB32:
+ case QImage::Format_ARGB32_Premultiplied:
+ qt_memrotate90(reinterpret_cast<const quint32*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint32*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ case QImage::Format_RGB666:
+ case QImage::Format_ARGB6666_Premultiplied:
+ case QImage::Format_ARGB8565_Premultiplied:
+ case QImage::Format_ARGB8555_Premultiplied:
+ case QImage::Format_RGB888:
+ qt_memrotate90(reinterpret_cast<const quint24*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint24*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ case QImage::Format_RGB555:
+ case QImage::Format_RGB16:
+ case QImage::Format_ARGB4444_Premultiplied:
+ qt_memrotate90(reinterpret_cast<const quint16*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint16*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ case QImage::Format_Indexed8:
+ qt_memrotate90(reinterpret_cast<const quint8*>(image.bits()),
+ w, h, image.bytesPerLine(),
+ reinterpret_cast<quint8*>(out.bits()),
+ out.bytesPerLine());
+ break;
+ default:
+ for (int y=0; y<h; ++y) {
+ if (image.numColors())
+ for (int x=0; x<w; ++x)
+ out.setPixel(y, w-x-1, image.pixelIndex(x, y));
+ else
+ for (int x=0; x<w; ++x)
+ out.setPixel(y, w-x-1, image.pixel(x, y));
+ }
+ break;
+ }
+ return out;
+}
+
+/*!
+ Returns a copy of the image that is transformed using the given
+ transformation \a matrix and transformation \a mode.
+
+ The transformation \a matrix is internally adjusted to compensate
+ for unwanted translation; i.e. the image produced is the smallest
+ image that contains all the transformed points of the original
+ image. Use the trueMatrix() function to retrieve the actual matrix
+ used for transforming an image.
+
+ Unlike the other overload, this function can be used to perform perspective
+ transformations on images.
+
+ \sa trueMatrix(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+
+QImage QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const
+{
+ if (!d)
+ return QImage();
+
+ // source image data
+ int ws = width();
+ int hs = height();
+
+ // target image data
+ int wd;
+ int hd;
+
+ // compute size of target image
+ QTransform mat = trueMatrix(matrix, ws, hs);
+ bool complex_xform = false;
+ bool scale_xform = false;
+ if (mat.type() <= QTransform::TxScale) {
+ if (mat.type() == QTransform::TxNone) // identity matrix
+ return *this;
+ else if (mat.m11() == -1. && mat.m22() == -1.)
+ return rotated180(*this);
+
+ if (mode == Qt::FastTransformation) {
+ hd = qRound(qAbs(mat.m22()) * hs);
+ wd = qRound(qAbs(mat.m11()) * ws);
+ } else {
+ hd = int(qAbs(mat.m22()) * hs + 0.9999);
+ wd = int(qAbs(mat.m11()) * ws + 0.9999);
+ }
+ scale_xform = true;
+ } else {
+ if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) {
+ if (mat.m12() == 1. && mat.m21() == -1.)
+ return rotated90(*this);
+ else if (mat.m12() == -1. && mat.m21() == 1.)
+ return rotated270(*this);
+ }
+
+ QPolygonF a(QRectF(0, 0, ws, hs));
+ a = mat.map(a);
+ QRect r = a.boundingRect().toAlignedRect();
+ wd = r.width();
+ hd = r.height();
+ complex_xform = true;
+ }
+
+ if (wd == 0 || hd == 0)
+ return QImage();
+
+ // Make use of the optimized algorithm when we're scaling
+ if (scale_xform && mode == Qt::SmoothTransformation) {
+ if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip
+ return smoothScaled(mirrored(true, true), wd, hd);
+ } else if (mat.m11() < 0.0F) { // horizontal flip
+ return smoothScaled(mirrored(true, false), wd, hd);
+ } else if (mat.m22() < 0.0F) { // vertical flip
+ return smoothScaled(mirrored(false, true), wd, hd);
+ } else { // no flipping
+ return smoothScaled(*this, wd, hd);
+ }
+ }
+
+ int bpp = depth();
+
+ int sbpl = bytesPerLine();
+ const uchar *sptr = bits();
+
+ QImage::Format target_format = d->format;
+
+ if (complex_xform || mode == Qt::SmoothTransformation) {
+ if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) {
+ switch(d->format) {
+ case QImage::Format_RGB16:
+ target_format = Format_ARGB8565_Premultiplied;
+ break;
+ case QImage::Format_RGB555:
+ target_format = Format_ARGB8555_Premultiplied;
+ break;
+ case QImage::Format_RGB666:
+ target_format = Format_ARGB6666_Premultiplied;
+ break;
+ case QImage::Format_RGB444:
+ target_format = Format_ARGB4444_Premultiplied;
+ break;
+ default:
+ target_format = Format_ARGB32_Premultiplied;
+ break;
+ }
+ }
+ }
+
+ QImage dImage(wd, hd, target_format);
+ QIMAGE_SANITYCHECK_MEMORY(dImage);
+
+ if (target_format == QImage::Format_MonoLSB
+ || target_format == QImage::Format_Mono
+ || target_format == QImage::Format_Indexed8) {
+ dImage.d->colortable = d->colortable;
+ dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform;
+ }
+
+ dImage.d->dpmx = dotsPerMeterX();
+ dImage.d->dpmy = dotsPerMeterY();
+
+ switch (bpp) {
+ // initizialize the data
+ case 8:
+ if (dImage.d->colortable.size() < 256) {
+ // colors are left in the color table, so pick that one as transparent
+ dImage.d->colortable.append(0x0);
+ memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.numBytes());
+ } else {
+ memset(dImage.bits(), 0, dImage.numBytes());
+ }
+ break;
+ case 1:
+ case 16:
+ case 24:
+ case 32:
+ memset(dImage.bits(), 0x00, dImage.numBytes());
+ break;
+ }
+
+ if (target_format >= QImage::Format_RGB32) {
+ QPainter p(&dImage);
+ if (mode == Qt::SmoothTransformation) {
+ p.setRenderHint(QPainter::Antialiasing);
+ p.setRenderHint(QPainter::SmoothPixmapTransform);
+ }
+ p.setTransform(mat);
+ p.drawImage(QPoint(0, 0), *this);
+ } else {
+ bool invertible;
+ mat = mat.inverted(&invertible); // invert matrix
+ if (!invertible) // error, return null image
+ return QImage();
+
+ // create target image (some of the code is from QImage::copy())
+ int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST;
+ int dbpl = dImage.bytesPerLine();
+ qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs);
+ }
+ return dImage;
+}
+
+/*!
+ \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height)
+
+ Returns the actual matrix used for transforming an image with the
+ given \a width, \a height and \a matrix.
+
+ When transforming an image using the transformed() function, the
+ transformation matrix is internally adjusted to compensate for
+ unwanted translation, i.e. transformed() returns the smallest
+ image containing all transformed points of the original image.
+ This function returns the modified matrix, which maps points
+ correctly from the original image into the new image.
+
+ Unlike the other overload, this function creates transformation
+ matrices that can be used to perform perspective
+ transformations on images.
+
+ \sa transformed(), {QImage#Image Transformations}{Image
+ Transformations}
+*/
+
+QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h)
+{
+ const QRectF rect(0, 0, w, h);
+ const QRect mapped = matrix.mapRect(rect).toAlignedRect();
+ const QPoint delta = mapped.topLeft();
+ return matrix * QTransform().translate(-delta.x(), -delta.y());
+}
+
+
+/*!
+ \typedef QImage::DataPtr
+ \internal
+*/
+
+/*!
+ \fn DataPtr & QImage::data_ptr()
+ \internal
+*/
+
+QT_END_NAMESPACE