diff options
Diffstat (limited to 'src/gui/painting/qdrawhelper_sse2.cpp')
-rw-r--r-- | src/gui/painting/qdrawhelper_sse2.cpp | 168 |
1 files changed, 2 insertions, 166 deletions
diff --git a/src/gui/painting/qdrawhelper_sse2.cpp b/src/gui/painting/qdrawhelper_sse2.cpp index 6cd8688..346e177 100644 --- a/src/gui/painting/qdrawhelper_sse2.cpp +++ b/src/gui/painting/qdrawhelper_sse2.cpp @@ -43,176 +43,12 @@ #ifdef QT_HAVE_SSE2 +#include <private/qsimd_p.h> +#include <private/qdrawingprimitive_sse2_p.h> #include <private/qpaintengine_raster_p.h> -#ifdef QT_LINUXBASE -// this is an evil hack - the posix_memalign declaration in LSB -// is wrong - see http://bugs.linuxbase.org/show_bug.cgi?id=2431 -# define posix_memalign _lsb_hack_posix_memalign -# include <emmintrin.h> -# undef posix_memalign -#else -# include <emmintrin.h> -#endif - QT_BEGIN_NAMESPACE -/* - * Multiply the components of pixelVector by alphaChannel - * Each 32bits components of alphaChannel must be in the form 0x00AA00AA - * colorMask must have 0x00ff00ff on each 32 bits component - * half must have the value 128 (0x80) for each 32 bits compnent - */ -#define BYTE_MUL_SSE2(result, pixelVector, alphaChannel, colorMask, half) \ -{ \ - /* 1. separate the colors in 2 vectors so each color is on 16 bits \ - (in order to be multiplied by the alpha \ - each 32 bit of dstVectorAG are in the form 0x00AA00GG \ - each 32 bit of dstVectorRB are in the form 0x00RR00BB */\ - __m128i pixelVectorAG = _mm_srli_epi16(pixelVector, 8); \ - __m128i pixelVectorRB = _mm_and_si128(pixelVector, colorMask); \ - \ - /* 2. multiply the vectors by the alpha channel */\ - pixelVectorAG = _mm_mullo_epi16(pixelVectorAG, alphaChannel); \ - pixelVectorRB = _mm_mullo_epi16(pixelVectorRB, alphaChannel); \ - \ - /* 3. devide by 255, that's the tricky part. \ - we do it like for BYTE_MUL(), with bit shift: X/255 ~= (X + X/256 + rounding)/256 */ \ - /** so first (X + X/256 + rounding) */\ - pixelVectorRB = _mm_add_epi16(pixelVectorRB, _mm_srli_epi16(pixelVectorRB, 8)); \ - pixelVectorRB = _mm_add_epi16(pixelVectorRB, half); \ - pixelVectorAG = _mm_add_epi16(pixelVectorAG, _mm_srli_epi16(pixelVectorAG, 8)); \ - pixelVectorAG = _mm_add_epi16(pixelVectorAG, half); \ - \ - /** second devide by 256 */\ - pixelVectorRB = _mm_srli_epi16(pixelVectorRB, 8); \ - /** for AG, we could >> 8 to divide followed by << 8 to put the \ - bytes in the correct position. By masking instead, we execute \ - only one instruction */\ - pixelVectorAG = _mm_andnot_si128(colorMask, pixelVectorAG); \ - \ - /* 4. combine the 2 pairs of colors */ \ - result = _mm_or_si128(pixelVectorAG, pixelVectorRB); \ -} - -/* - * Each 32bits components of alphaChannel must be in the form 0x00AA00AA - * oneMinusAlphaChannel must be 255 - alpha for each 32 bits component - * colorMask must have 0x00ff00ff on each 32 bits component - * half must have the value 128 (0x80) for each 32 bits compnent - */ -#define INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, alphaChannel, oneMinusAlphaChannel, colorMask, half) { \ - /* interpolate AG */\ - __m128i srcVectorAG = _mm_srli_epi16(srcVector, 8); \ - __m128i dstVectorAG = _mm_srli_epi16(dstVector, 8); \ - __m128i srcVectorAGalpha = _mm_mullo_epi16(srcVectorAG, alphaChannel); \ - __m128i dstVectorAGoneMinusAlphalpha = _mm_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); \ - __m128i finalAG = _mm_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlphalpha); \ - finalAG = _mm_add_epi16(finalAG, _mm_srli_epi16(finalAG, 8)); \ - finalAG = _mm_add_epi16(finalAG, half); \ - finalAG = _mm_andnot_si128(colorMask, finalAG); \ - \ - /* interpolate RB */\ - __m128i srcVectorRB = _mm_and_si128(srcVector, colorMask); \ - __m128i dstVectorRB = _mm_and_si128(dstVector, colorMask); \ - __m128i srcVectorRBalpha = _mm_mullo_epi16(srcVectorRB, alphaChannel); \ - __m128i dstVectorRBoneMinusAlphalpha = _mm_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); \ - __m128i finalRB = _mm_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlphalpha); \ - finalRB = _mm_add_epi16(finalRB, _mm_srli_epi16(finalRB, 8)); \ - finalRB = _mm_add_epi16(finalRB, half); \ - finalRB = _mm_srli_epi16(finalRB, 8); \ - \ - /* combine */\ - result = _mm_or_si128(finalAG, finalRB); \ -} - -// Basically blend src over dst with the const alpha defined as constAlphaVector. -// nullVector, half, one, colorMask are constant accross the whole image/texture, and should be defined as: -//const __m128i nullVector = _mm_set1_epi32(0); -//const __m128i half = _mm_set1_epi16(0x80); -//const __m128i one = _mm_set1_epi16(0xff); -//const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); -//const __m128i alphaMask = _mm_set1_epi32(0xff000000); -// -// The computation being done is: -// result = s + d * (1-alpha) -// with shortcuts if fully opaque or fully transparent. -#define BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, length, nullVector, half, one, colorMask, alphaMask) { \ - int x = 0; \ - for (; x < length-3; x += 4) { \ - const __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); \ - const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); \ - if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { \ - /* all opaque */ \ - _mm_storeu_si128((__m128i *)&dst[x], srcVector); \ - } else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { \ - /* not fully transparent */ \ - /* extract the alpha channel on 2 x 16 bits */ \ - /* so we have room for the multiplication */ \ - /* each 32 bits will be in the form 0x00AA00AA */ \ - /* with A being the 1 - alpha */ \ - __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); \ - alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); \ - alphaChannel = _mm_sub_epi16(one, alphaChannel); \ - \ - const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); \ - __m128i destMultipliedByOneMinusAlpha; \ - BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \ - \ - /* result = s + d * (1-alpha) */\ - const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \ - _mm_storeu_si128((__m128i *)&dst[x], result); \ - } \ - } \ - for (; x < length; ++x) { \ - uint s = src[x]; \ - if (s >= 0xff000000) \ - dst[x] = s; \ - else if (s != 0) \ - dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); \ - } \ -} - -// Basically blend src over dst with the const alpha defined as constAlphaVector. -// nullVector, half, one, colorMask are constant accross the whole image/texture, and should be defined as: -//const __m128i nullVector = _mm_set1_epi32(0); -//const __m128i half = _mm_set1_epi16(0x80); -//const __m128i one = _mm_set1_epi16(0xff); -//const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); -// -// The computation being done is: -// dest = (s + d * sia) * ca + d * cia -// = s * ca + d * (sia * ca + cia) -// = s * ca + d * (1 - sa*ca) -#define BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, length, nullVector, half, one, colorMask, constAlphaVector) \ -{ \ - int x = 0; \ - for (; x < length-3; x += 4) { \ - __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); \ - if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) { \ - BYTE_MUL_SSE2(srcVector, srcVector, constAlphaVector, colorMask, half); \ -\ - __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); \ - alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); \ - alphaChannel = _mm_sub_epi16(one, alphaChannel); \ - \ - const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); \ - __m128i destMultipliedByOneMinusAlpha; \ - BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \ - \ - const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \ - _mm_storeu_si128((__m128i *)&dst[x], result); \ - } \ - } \ - for (; x < length; ++x) { \ - quint32 s = src[x]; \ - if (s != 0) { \ - s = BYTE_MUL(s, const_alpha); \ - dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); \ - } \ - } \ -} - void qt_blend_argb32_on_argb32_sse2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, |