summaryrefslogtreecommitdiffstats
path: root/src/xmlpatterns/schema/qxsdstatemachine.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/xmlpatterns/schema/qxsdstatemachine.cpp')
-rw-r--r--src/xmlpatterns/schema/qxsdstatemachine.cpp433
1 files changed, 433 insertions, 0 deletions
diff --git a/src/xmlpatterns/schema/qxsdstatemachine.cpp b/src/xmlpatterns/schema/qxsdstatemachine.cpp
new file mode 100644
index 0000000..e40e55b
--- /dev/null
+++ b/src/xmlpatterns/schema/qxsdstatemachine.cpp
@@ -0,0 +1,433 @@
+/****************************************************************************
+**
+** Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the $MODULE$ of the Qt Toolkit.
+**
+** $TROLLTECH_DUAL_LICENSE$
+**
+****************************************************************************/
+
+/*
+ * NOTE: This file is included by qxsdstatemachine_p.h
+ * if you need some includes, put them in qxsdstatemachine_p.h (outside of the namespace)
+ */
+
+template <typename TransitionType>
+XsdStateMachine<TransitionType>::XsdStateMachine()
+ : m_counter(50)
+{
+}
+
+template <typename TransitionType>
+XsdStateMachine<TransitionType>::XsdStateMachine(const NamePool::Ptr &namePool)
+ : m_namePool(namePool)
+ , m_counter(50)
+{
+}
+
+template <typename TransitionType>
+typename XsdStateMachine<TransitionType>::StateId XsdStateMachine<TransitionType>::addState(StateType type)
+{
+#ifndef QT_NO_DEBUG
+ // make sure we don't have two start states
+ if (type == StartState) {
+ QHashIterator<StateId, StateType> it(m_states);
+ while (it.hasNext()) {
+ it.next();
+ Q_ASSERT(it.value() != StartState && it.value() != StartEndState);
+ }
+ }
+#endif // QT_NO_DEBUG
+
+ // reserve new state id
+ const StateId id = ++m_counter;
+ m_states.insert(id, type);
+
+ // if it is a start state, we make it to our current state
+ if (type == StartState || type == StartEndState)
+ m_currentState = id;
+
+ return id;
+}
+
+template <typename TransitionType>
+void XsdStateMachine<TransitionType>::addTransition(StateId start, TransitionType transition, StateId end)
+{
+ QHash<TransitionType, QVector<StateId> > &hash = m_transitions[start];
+ QVector<StateId> &states = hash[transition];
+ if (!states.contains(end))
+ states.append(end);
+}
+
+template <typename TransitionType>
+void XsdStateMachine<TransitionType>::addEpsilonTransition(StateId start, StateId end)
+{
+ QVector<StateId> &states = m_epsilonTransitions[start];
+ states.append(end);
+}
+
+template <typename TransitionType>
+void XsdStateMachine<TransitionType>::reset()
+{
+ // reset the machine to the start state
+ QHashIterator<StateId, StateType> it(m_states);
+ while (it.hasNext()) {
+ it.next();
+ if (it.value() == StartState || it.value() == StartEndState) {
+ m_currentState = it.key();
+ return;
+ }
+ }
+
+ Q_ASSERT(false);
+}
+
+template <typename TransitionType>
+void XsdStateMachine<TransitionType>::clear()
+{
+ m_states.clear();
+ m_transitions.clear();
+ m_epsilonTransitions.clear();
+ m_currentState = -1;
+ m_counter = 50;
+}
+
+template <typename TransitionType>
+bool XsdStateMachine<TransitionType>::proceed(TransitionType transition)
+{
+ // check that we are not in an invalid state
+ if (!m_transitions.contains(m_currentState)) {
+ return false;
+ }
+
+ // fetch the transition entry for the current state
+ const QHash<TransitionType, QVector<StateId> > &entry = m_transitions[m_currentState];
+ if (entry.contains(transition)) { // is there an transition for the given input?
+ m_currentState = entry.value(transition).first();
+ m_lastTransition = transition;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+template <typename TransitionType>
+template <typename InputType>
+bool XsdStateMachine<TransitionType>::proceed(InputType input)
+{
+ // check that we are not in an invalid state
+ if (!m_transitions.contains(m_currentState)) {
+ return false;
+ }
+
+ // fetch the transition entry for the current state
+ const QHash<TransitionType, QVector<StateId> > &entry = m_transitions[m_currentState];
+ QHashIterator<TransitionType, QVector<StateId> > it(entry);
+ while (it.hasNext()) {
+ it.next();
+ if (inputEqualsTransition(input, it.key())) {
+ m_currentState = it.value().first();
+ m_lastTransition = it.key();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+template <typename TransitionType>
+template <typename InputType>
+bool XsdStateMachine<TransitionType>::inputEqualsTransition(InputType input, TransitionType transition) const
+{
+ return false;
+}
+
+template <typename TransitionType>
+bool XsdStateMachine<TransitionType>::inEndState() const
+{
+ // check if current state is an end state
+ return (m_states.value(m_currentState) == StartEndState || m_states.value(m_currentState) == EndState);
+}
+
+template <typename TransitionType>
+TransitionType XsdStateMachine<TransitionType>::lastTransition() const
+{
+ return m_lastTransition;
+}
+
+template <typename TransitionType>
+typename XsdStateMachine<TransitionType>::StateId XsdStateMachine<TransitionType>::startState() const
+{
+ QHashIterator<StateId, StateType> it(m_states);
+ while (it.hasNext()) {
+ it.next();
+ if (it.value() == StartState || it.value() == StartEndState)
+ return it.key();
+ }
+
+ Q_ASSERT(false); // should never be reached
+ return -1;
+}
+
+template <typename TransitionType>
+QString XsdStateMachine<TransitionType>::transitionTypeToString(TransitionType type) const
+{
+ Q_UNUSED(type)
+
+ return QString();
+}
+
+template <typename TransitionType>
+bool XsdStateMachine<TransitionType>::outputGraph(QIODevice *device, const QString &graphName) const
+{
+ if (!device->isOpen()) {
+ qWarning("device must be open for writing");
+ return false;
+ }
+
+ QByteArray graph;
+ QTextStream s(&graph);
+
+ QHashIterator<StateId, QHash<TransitionType, QVector<StateId> > > it(m_transitions);
+ QHashIterator<StateId, StateType> it3(m_states);
+
+ s << "digraph " << graphName << " {\n";
+ s << " mindist = 2.0\n";
+
+ // draw edges
+ while (it.hasNext()) {
+ it.next();
+
+ QHashIterator<TransitionType, QVector<StateId> > it2(it.value());
+ while (it2.hasNext()) {
+ it2.next();
+ for (int i = 0; i < it2.value().count(); ++i)
+ s << " " << it.key() << " -> " << it2.value().at(i) << " [label=\"" << transitionTypeToString(it2.key()) << "\"]\n";
+ }
+ }
+
+ QHashIterator<StateId, QVector<StateId> > it4(m_epsilonTransitions);
+ while (it4.hasNext()) {
+ it4.next();
+
+ const QVector<StateId> states = it4.value();
+ for (int i = 0; i < states.count(); ++i)
+ s << " " << it4.key() << " -> " << states.at(i) << " [label=\"&#949;\"]\n";
+ }
+
+ // draw node infos
+ while (it3.hasNext()) {
+ it3.next();
+
+ QString style;
+ if (it3.value() == StartState) {
+ style = QLatin1String("shape=circle, style=filled, color=blue");
+ } else if (it3.value() == StartEndState) {
+ style = QLatin1String("shape=doublecircle, style=filled, color=blue");
+ } else if (it3.value() == InternalState) {
+ style = QLatin1String("shape=circle, style=filled, color=red");
+ } else if (it3.value() == EndState) {
+ style = QLatin1String("shape=doublecircle, style=filled, color=green");
+ }
+
+ s << " " << it3.key() << " [" << style << "]\n";
+ }
+
+ s << "}\n";
+
+ s.flush();
+
+ if (device->write(graph) == -1)
+ return false;
+
+ return true;
+}
+
+
+template <typename TransitionType>
+typename XsdStateMachine<TransitionType>::StateId XsdStateMachine<TransitionType>::dfaStateForNfaState(QSet<StateId> nfaState,
+ QList< QPair<QSet<StateId>, StateId> > &stateTable,
+ XsdStateMachine<TransitionType> &dfa) const
+{
+ // check whether we have the given state in our lookup table
+ // already, in that case simply return it
+ for (int i = 0; i < stateTable.count(); ++i) {
+ if (stateTable.at(i).first == nfaState)
+ return stateTable.at(i).second;
+ }
+
+ // check if the NFA state set contains a Start or End
+ // state, in that case our new DFA state will be a
+ // Start or End state as well
+ StateType type = InternalState;
+ QSetIterator<StateId> it(nfaState);
+ bool hasStartState = false;
+ bool hasEndState = false;
+ while (it.hasNext()) {
+ const StateId state = it.next();
+ if (m_states.value(state) == EndState) {
+ hasEndState = true;
+ } else if (m_states.value(state) == StartState) {
+ hasStartState = true;
+ }
+ }
+ if (hasStartState) {
+ if (hasEndState)
+ type = StartEndState;
+ else
+ type = StartState;
+ } else if (hasEndState) {
+ type = EndState;
+ }
+
+ // create the new DFA state
+ const StateId dfaState = dfa.addState(type);
+
+ // add the new DFA state to the lookup table
+ stateTable.append(qMakePair<QSet<StateId>, StateId>(nfaState, dfaState));
+
+ return dfaState;
+}
+
+
+template <typename TransitionType>
+QSet<typename XsdStateMachine<TransitionType>::StateId> XsdStateMachine<TransitionType>::epsilonClosure(const QSet<StateId> &input) const
+{
+ // every state can reach itself by epsilon transition, so include the input states
+ // in the result as well
+ QSet<StateId> result = input;
+
+ // add the input states to the list of to be processed states
+ QList<StateId> workStates = input.toList();
+ while (!workStates.isEmpty()) { // while there are states to be processed left...
+
+ // dequeue one state from list
+ const StateId state = workStates.takeFirst();
+
+ // get the list of states that can be reached by the epsilon transition
+ // from the current 'state'
+ const QVector<StateId> targetStates = m_epsilonTransitions.value(state);
+ for (int i = 0; i < targetStates.count(); ++i) {
+ // if we have this target state not in our result set yet...
+ if (!result.contains(targetStates.at(i))) {
+ // ... add it to the result set
+ result.insert(targetStates.at(i));
+
+ // add the target state to the list of to be processed states as well,
+ // as we want to have the epsilon transitions not only for the first
+ // level of following states
+ workStates.append(targetStates.at(i));
+ }
+ }
+ }
+
+ return result;
+}
+
+template <typename TransitionType>
+QSet<typename XsdStateMachine<TransitionType>::StateId> XsdStateMachine<TransitionType>::move(const QSet<StateId> &states, TransitionType input) const
+{
+ QSet<StateId> result;
+
+ QSetIterator<StateId> it(states);
+ while (it.hasNext()) { // iterate over all given states
+ const StateId state = it.next();
+
+ // get the transition table for the current state
+ const QHash<TransitionType, QVector<StateId> > transitions = m_transitions.value(state);
+
+ // get the target states for the given input
+ const QVector<StateId> targetStates = transitions.value(input);
+
+ // add all target states to the result
+ for (int i = 0; i < targetStates.size(); ++i)
+ result.insert(targetStates.at(i));
+ }
+
+ return result;
+}
+
+template <typename TransitionType>
+XsdStateMachine<TransitionType> XsdStateMachine<TransitionType>::toDFA() const
+{
+ XsdStateMachine<TransitionType> dfa(m_namePool);
+ dfa.m_counter = 100;
+ QList< QPair< QSet<StateId>, StateId> > table;
+ QList< QSet<StateId> > isMarked;
+
+ // search the start state as the algorithm starts with it...
+ StateId startState = -1;
+ QHashIterator<StateId, StateType> stateTypeIt(m_states);
+ while (stateTypeIt.hasNext()) {
+ stateTypeIt.next();
+ if (stateTypeIt.value() == StartState) {
+ startState = stateTypeIt.key();
+ break;
+ }
+ }
+ Q_ASSERT(startState != -1);
+
+ // our list of state set that still have to be processed
+ QList< QSet<StateId> > workStates;
+
+ // add the start state to the list of to processed state sets
+ workStates.append(epsilonClosure(QSet<StateId>() << startState));
+
+ while (!workStates.isEmpty()) { // as long as there are state sets to process left
+
+ // enqueue set of states
+ const QSet<StateId> states = workStates.takeFirst();
+
+ if (isMarked.contains(states)) // we processed this state set already
+ continue;
+
+ // mark as processed
+ isMarked.append(states);
+
+ // select a list of all inputs that are possible for
+ // the 'states' set
+ QList<TransitionType> input;
+
+ {
+ QSetIterator<StateId> it(states);
+ while (it.hasNext()) {
+ input << m_transitions.value(it.next()).keys();
+ }
+ }
+
+ // get the state in DFA that corresponds to the 'states' set in the NFA
+ const StateId dfaBegin = dfaStateForNfaState(states, table, dfa);
+
+ for (int i = 0; i < input.count(); ++i) { // for each possible input
+ // retrieve the states that can be reached from the 'states' set by the
+ // given input or by epsilon transition
+ const QSet<StateId> followStates = epsilonClosure(move(states, input.at(i)));
+
+ // get the state in DFA that corresponds to the 'followStates' set in the NFA
+ const StateId dfaEnd = dfaStateForNfaState(followStates, table, dfa);
+
+ // adds a new transition to the DFA that corresponds to the transitions between
+ // 'states' and 'followStates' in the NFA
+ dfa.addTransition(dfaBegin, input.at(i), dfaEnd);
+
+ // add the 'followStates' to the list of to be processed state sets
+ workStates.append(followStates);
+ }
+ }
+
+ return dfa;
+}
+
+template <typename TransitionType>
+QHash<typename XsdStateMachine<TransitionType>::StateId, typename XsdStateMachine<TransitionType>::StateType> XsdStateMachine<TransitionType>::states() const
+{
+ return m_states;
+}
+
+template <typename TransitionType>
+QHash<typename XsdStateMachine<TransitionType>::StateId, QHash<TransitionType, QVector<typename XsdStateMachine<TransitionType>::StateId> > > XsdStateMachine<TransitionType>::transitions() const
+{
+ return m_transitions;
+}