summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/3rdparty/libjpeg/README325
-rw-r--r--src/3rdparty/libjpeg/ansi2knr.136
-rw-r--r--src/3rdparty/libjpeg/ansi2knr.c739
-rw-r--r--src/3rdparty/libjpeg/cderror.h134
-rw-r--r--src/3rdparty/libjpeg/cdjpeg.h187
-rw-r--r--src/3rdparty/libjpeg/change.log290
-rw-r--r--src/3rdparty/libjpeg/cjpeg.1325
-rw-r--r--src/3rdparty/libjpeg/ckconfig.c402
-rw-r--r--src/3rdparty/libjpeg/coderules.txt118
-rw-r--r--src/3rdparty/libjpeg/djpeg.1252
-rw-r--r--src/3rdparty/libjpeg/example.c433
-rw-r--r--src/3rdparty/libjpeg/filelist.txt215
-rw-r--r--src/3rdparty/libjpeg/jaricom.c153
-rw-r--r--src/3rdparty/libjpeg/jcapimin.c282
-rw-r--r--src/3rdparty/libjpeg/jcapistd.c161
-rw-r--r--src/3rdparty/libjpeg/jcarith.c934
-rw-r--r--src/3rdparty/libjpeg/jccoefct.c453
-rw-r--r--src/3rdparty/libjpeg/jccolor.c459
-rw-r--r--src/3rdparty/libjpeg/jcdctmgr.c482
-rw-r--r--src/3rdparty/libjpeg/jchuff.c1576
-rw-r--r--src/3rdparty/libjpeg/jcinit.c65
-rw-r--r--src/3rdparty/libjpeg/jcmainct.c293
-rw-r--r--src/3rdparty/libjpeg/jcmarker.c680
-rw-r--r--src/3rdparty/libjpeg/jcmaster.c842
-rw-r--r--src/3rdparty/libjpeg/jcomapi.c106
-rw-r--r--src/3rdparty/libjpeg/jconfig.bcc48
-rw-r--r--src/3rdparty/libjpeg/jconfig.cfg45
-rw-r--r--src/3rdparty/libjpeg/jconfig.dj38
-rw-r--r--src/3rdparty/libjpeg/jconfig.mac43
-rw-r--r--src/3rdparty/libjpeg/jconfig.manx43
-rw-r--r--src/3rdparty/libjpeg/jconfig.mc652
-rw-r--r--src/3rdparty/libjpeg/jconfig.sas43
-rw-r--r--src/3rdparty/libjpeg/jconfig.st42
-rw-r--r--src/3rdparty/libjpeg/jconfig.txt155
-rw-r--r--src/3rdparty/libjpeg/jconfig.vc45
-rw-r--r--src/3rdparty/libjpeg/jconfig.vms37
-rw-r--r--src/3rdparty/libjpeg/jconfig.wat38
-rw-r--r--src/3rdparty/libjpeg/jcparam.c632
-rw-r--r--src/3rdparty/libjpeg/jcprepct.c358
-rw-r--r--src/3rdparty/libjpeg/jcsample.c545
-rw-r--r--src/3rdparty/libjpeg/jctrans.c382
-rw-r--r--src/3rdparty/libjpeg/jdapimin.c396
-rw-r--r--src/3rdparty/libjpeg/jdapistd.c275
-rw-r--r--src/3rdparty/libjpeg/jdarith.c772
-rw-r--r--src/3rdparty/libjpeg/jdatadst.c267
-rw-r--r--src/3rdparty/libjpeg/jdatasrc.c274
-rw-r--r--src/3rdparty/libjpeg/jdcoefct.c736
-rw-r--r--src/3rdparty/libjpeg/jdcolor.c396
-rw-r--r--src/3rdparty/libjpeg/jdct.h393
-rw-r--r--src/3rdparty/libjpeg/jddctmgr.c382
-rw-r--r--src/3rdparty/libjpeg/jdhuff.c1541
-rw-r--r--src/3rdparty/libjpeg/jdinput.c661
-rw-r--r--src/3rdparty/libjpeg/jdmainct.c512
-rw-r--r--src/3rdparty/libjpeg/jdmarker.c1406
-rw-r--r--src/3rdparty/libjpeg/jdmaster.c533
-rw-r--r--src/3rdparty/libjpeg/jdmerge.c400
-rw-r--r--src/3rdparty/libjpeg/jdpostct.c290
-rw-r--r--src/3rdparty/libjpeg/jdsample.c361
-rw-r--r--src/3rdparty/libjpeg/jdtrans.c140
-rw-r--r--src/3rdparty/libjpeg/jerror.c252
-rw-r--r--src/3rdparty/libjpeg/jerror.h304
-rw-r--r--src/3rdparty/libjpeg/jfdctflt.c174
-rw-r--r--src/3rdparty/libjpeg/jfdctfst.c230
-rw-r--r--src/3rdparty/libjpeg/jfdctint.c4348
-rw-r--r--src/3rdparty/libjpeg/jidctflt.c242
-rw-r--r--src/3rdparty/libjpeg/jidctfst.c368
-rw-r--r--src/3rdparty/libjpeg/jidctint.c5137
-rw-r--r--src/3rdparty/libjpeg/jinclude.h91
-rw-r--r--src/3rdparty/libjpeg/jmemansi.c167
-rw-r--r--src/3rdparty/libjpeg/jmemdos.c638
-rw-r--r--src/3rdparty/libjpeg/jmemdosa.asm379
-rw-r--r--src/3rdparty/libjpeg/jmemmac.c289
-rw-r--r--src/3rdparty/libjpeg/jmemmgr.c1118
-rw-r--r--src/3rdparty/libjpeg/jmemname.c276
-rw-r--r--src/3rdparty/libjpeg/jmemnobs.c109
-rw-r--r--src/3rdparty/libjpeg/jmemsys.h198
-rw-r--r--src/3rdparty/libjpeg/jmorecfg.h371
-rw-r--r--src/3rdparty/libjpeg/jpegint.h407
-rw-r--r--src/3rdparty/libjpeg/jpeglib.h1158
-rw-r--r--src/3rdparty/libjpeg/jpegtran.1285
-rw-r--r--src/3rdparty/libjpeg/jquant1.c856
-rw-r--r--src/3rdparty/libjpeg/jquant2.c1310
-rw-r--r--src/3rdparty/libjpeg/jutils.c231
-rw-r--r--src/3rdparty/libjpeg/jversion.h14
-rw-r--r--src/3rdparty/libjpeg/libjpeg.map4
-rw-r--r--src/3rdparty/libjpeg/libjpeg.txt3070
-rw-r--r--src/3rdparty/libjpeg/makcjpeg.st36
-rw-r--r--src/3rdparty/libjpeg/makdjpeg.st36
-rw-r--r--src/3rdparty/libjpeg/makeadsw.vc677
-rw-r--r--src/3rdparty/libjpeg/makeasln.vc933
-rw-r--r--src/3rdparty/libjpeg/makecdep.vc682
-rw-r--r--src/3rdparty/libjpeg/makecdsp.vc6130
-rw-r--r--src/3rdparty/libjpeg/makecmak.vc6159
-rw-r--r--src/3rdparty/libjpeg/makecvcp.vc9186
-rw-r--r--src/3rdparty/libjpeg/makeddep.vc682
-rw-r--r--src/3rdparty/libjpeg/makeddsp.vc6130
-rw-r--r--src/3rdparty/libjpeg/makedmak.vc6159
-rw-r--r--src/3rdparty/libjpeg/makedvcp.vc9186
-rw-r--r--src/3rdparty/libjpeg/makefile.ansi220
-rw-r--r--src/3rdparty/libjpeg/makefile.bcc291
-rw-r--r--src/3rdparty/libjpeg/makefile.dj226
-rw-r--r--src/3rdparty/libjpeg/makefile.manx220
-rw-r--r--src/3rdparty/libjpeg/makefile.mc6255
-rw-r--r--src/3rdparty/libjpeg/makefile.mms224
-rw-r--r--src/3rdparty/libjpeg/makefile.sas258
-rw-r--r--src/3rdparty/libjpeg/makefile.unix234
-rw-r--r--src/3rdparty/libjpeg/makefile.vc217
-rw-r--r--src/3rdparty/libjpeg/makefile.vms142
-rw-r--r--src/3rdparty/libjpeg/makefile.wat239
-rw-r--r--src/3rdparty/libjpeg/makejdep.vc6423
-rw-r--r--src/3rdparty/libjpeg/makejdsp.vc6285
-rw-r--r--src/3rdparty/libjpeg/makejdsw.vc629
-rw-r--r--src/3rdparty/libjpeg/makejmak.vc6425
-rw-r--r--src/3rdparty/libjpeg/makejsln.vc917
-rw-r--r--src/3rdparty/libjpeg/makejvcp.vc9328
-rw-r--r--src/3rdparty/libjpeg/makeproj.mac213
-rw-r--r--src/3rdparty/libjpeg/makerdep.vc66
-rw-r--r--src/3rdparty/libjpeg/makerdsp.vc678
-rw-r--r--src/3rdparty/libjpeg/makermak.vc6110
-rw-r--r--src/3rdparty/libjpeg/makervcp.vc9133
-rw-r--r--src/3rdparty/libjpeg/maketdep.vc643
-rw-r--r--src/3rdparty/libjpeg/maketdsp.vc6122
-rw-r--r--src/3rdparty/libjpeg/maketmak.vc6131
-rw-r--r--src/3rdparty/libjpeg/maketvcp.vc9178
-rw-r--r--src/3rdparty/libjpeg/makewdep.vc66
-rw-r--r--src/3rdparty/libjpeg/makewdsp.vc678
-rw-r--r--src/3rdparty/libjpeg/makewmak.vc6110
-rw-r--r--src/3rdparty/libjpeg/makewvcp.vc9133
-rw-r--r--src/3rdparty/libjpeg/makljpeg.st68
-rw-r--r--src/3rdparty/libjpeg/maktjpeg.st30
-rw-r--r--src/3rdparty/libjpeg/makvms.opt4
-rw-r--r--src/3rdparty/libjpeg/rdjpgcom.163
-rw-r--r--src/3rdparty/libjpeg/structure.txt945
-rw-r--r--src/3rdparty/libjpeg/transupp.h210
-rw-r--r--src/3rdparty/libjpeg/usage.txt617
-rw-r--r--src/3rdparty/libjpeg/wizard.txt211
-rw-r--r--src/3rdparty/libjpeg/wrjpgcom.1103
137 files changed, 53170 insertions, 0 deletions
diff --git a/src/3rdparty/libjpeg/README b/src/3rdparty/libjpeg/README
new file mode 100644
index 0000000..7bc588f
--- /dev/null
+++ b/src/3rdparty/libjpeg/README
@@ -0,0 +1,325 @@
+The Independent JPEG Group's JPEG software
+==========================================
+
+README for release 8 of 10-Jan-2010
+===================================
+
+This distribution contains the eighth public release of the Independent JPEG
+Group's free JPEG software. You are welcome to redistribute this software and
+to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
+
+This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
+Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
+Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
+and other members of the Independent JPEG Group.
+
+IJG is not affiliated with the official ISO JPEG standards committee.
+
+
+DOCUMENTATION ROADMAP
+=====================
+
+This file contains the following sections:
+
+OVERVIEW General description of JPEG and the IJG software.
+LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
+REFERENCES Where to learn more about JPEG.
+ARCHIVE LOCATIONS Where to find newer versions of this software.
+ACKNOWLEDGMENTS Special thanks.
+FILE FORMAT WARS Software *not* to get.
+TO DO Plans for future IJG releases.
+
+Other documentation files in the distribution are:
+
+User documentation:
+ install.txt How to configure and install the IJG software.
+ usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
+ rdjpgcom, and wrjpgcom.
+ *.1 Unix-style man pages for programs (same info as usage.txt).
+ wizard.txt Advanced usage instructions for JPEG wizards only.
+ change.log Version-to-version change highlights.
+Programmer and internal documentation:
+ libjpeg.txt How to use the JPEG library in your own programs.
+ example.c Sample code for calling the JPEG library.
+ structure.txt Overview of the JPEG library's internal structure.
+ filelist.txt Road map of IJG files.
+ coderules.txt Coding style rules --- please read if you contribute code.
+
+Please read at least the files install.txt and usage.txt. Some information
+can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
+ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
+
+If you want to understand how the JPEG code works, we suggest reading one or
+more of the REFERENCES, then looking at the documentation files (in roughly
+the order listed) before diving into the code.
+
+
+OVERVIEW
+========
+
+This package contains C software to implement JPEG image encoding, decoding,
+and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
+method for full-color and gray-scale images.
+
+This software implements JPEG baseline, extended-sequential, and progressive
+compression processes. Provision is made for supporting all variants of these
+processes, although some uncommon parameter settings aren't implemented yet.
+We have made no provision for supporting the hierarchical or lossless
+processes defined in the standard.
+
+We provide a set of library routines for reading and writing JPEG image files,
+plus two sample applications "cjpeg" and "djpeg", which use the library to
+perform conversion between JPEG and some other popular image file formats.
+The library is intended to be reused in other applications.
+
+In order to support file conversion and viewing software, we have included
+considerable functionality beyond the bare JPEG coding/decoding capability;
+for example, the color quantization modules are not strictly part of JPEG
+decoding, but they are essential for output to colormapped file formats or
+colormapped displays. These extra functions can be compiled out of the
+library if not required for a particular application.
+
+We have also included "jpegtran", a utility for lossless transcoding between
+different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
+applications for inserting and extracting textual comments in JFIF files.
+
+The emphasis in designing this software has been on achieving portability and
+flexibility, while also making it fast enough to be useful. In particular,
+the software is not intended to be read as a tutorial on JPEG. (See the
+REFERENCES section for introductory material.) Rather, it is intended to
+be reliable, portable, industrial-strength code. We do not claim to have
+achieved that goal in every aspect of the software, but we strive for it.
+
+We welcome the use of this software as a component of commercial products.
+No royalty is required, but we do ask for an acknowledgement in product
+documentation, as described under LEGAL ISSUES.
+
+
+LEGAL ISSUES
+============
+
+In plain English:
+
+1. We don't promise that this software works. (But if you find any bugs,
+ please let us know!)
+2. You can use this software for whatever you want. You don't have to pay us.
+3. You may not pretend that you wrote this software. If you use it in a
+ program, you must acknowledge somewhere in your documentation that
+ you've used the IJG code.
+
+In legalese:
+
+The authors make NO WARRANTY or representation, either express or implied,
+with respect to this software, its quality, accuracy, merchantability, or
+fitness for a particular purpose. This software is provided "AS IS", and you,
+its user, assume the entire risk as to its quality and accuracy.
+
+This software is copyright (C) 1991-2010, Thomas G. Lane, Guido Vollbeding.
+All Rights Reserved except as specified below.
+
+Permission is hereby granted to use, copy, modify, and distribute this
+software (or portions thereof) for any purpose, without fee, subject to these
+conditions:
+(1) If any part of the source code for this software is distributed, then this
+README file must be included, with this copyright and no-warranty notice
+unaltered; and any additions, deletions, or changes to the original files
+must be clearly indicated in accompanying documentation.
+(2) If only executable code is distributed, then the accompanying
+documentation must state that "this software is based in part on the work of
+the Independent JPEG Group".
+(3) Permission for use of this software is granted only if the user accepts
+full responsibility for any undesirable consequences; the authors accept
+NO LIABILITY for damages of any kind.
+
+These conditions apply to any software derived from or based on the IJG code,
+not just to the unmodified library. If you use our work, you ought to
+acknowledge us.
+
+Permission is NOT granted for the use of any IJG author's name or company name
+in advertising or publicity relating to this software or products derived from
+it. This software may be referred to only as "the Independent JPEG Group's
+software".
+
+We specifically permit and encourage the use of this software as the basis of
+commercial products, provided that all warranty or liability claims are
+assumed by the product vendor.
+
+
+ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
+sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
+ansi2knr.c is NOT covered by the above copyright and conditions, but instead
+by the usual distribution terms of the Free Software Foundation; principally,
+that you must include source code if you redistribute it. (See the file
+ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part
+of any program generated from the IJG code, this does not limit you more than
+the foregoing paragraphs do.
+
+The Unix configuration script "configure" was produced with GNU Autoconf.
+It is copyright by the Free Software Foundation but is freely distributable.
+The same holds for its supporting scripts (config.guess, config.sub,
+ltmain.sh). Another support script, install-sh, is copyright by X Consortium
+but is also freely distributable.
+
+The IJG distribution formerly included code to read and write GIF files.
+To avoid entanglement with the Unisys LZW patent, GIF reading support has
+been removed altogether, and the GIF writer has been simplified to produce
+"uncompressed GIFs". This technique does not use the LZW algorithm; the
+resulting GIF files are larger than usual, but are readable by all standard
+GIF decoders.
+
+We are required to state that
+ "The Graphics Interchange Format(c) is the Copyright property of
+ CompuServe Incorporated. GIF(sm) is a Service Mark property of
+ CompuServe Incorporated."
+
+
+REFERENCES
+==========
+
+We recommend reading one or more of these references before trying to
+understand the innards of the JPEG software.
+
+The best short technical introduction to the JPEG compression algorithm is
+ Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
+ Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
+(Adjacent articles in that issue discuss MPEG motion picture compression,
+applications of JPEG, and related topics.) If you don't have the CACM issue
+handy, a PostScript file containing a revised version of Wallace's article is
+available at http://www.ijg.org/files/wallace.ps.gz. The file (actually
+a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
+omits the sample images that appeared in CACM, but it includes corrections
+and some added material. Note: the Wallace article is copyright ACM and IEEE,
+and it may not be used for commercial purposes.
+
+A somewhat less technical, more leisurely introduction to JPEG can be found in
+"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
+M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
+good explanations and example C code for a multitude of compression methods
+including JPEG. It is an excellent source if you are comfortable reading C
+code but don't know much about data compression in general. The book's JPEG
+sample code is far from industrial-strength, but when you are ready to look
+at a full implementation, you've got one here...
+
+The best currently available description of JPEG is the textbook "JPEG Still
+Image Data Compression Standard" by William B. Pennebaker and Joan L.
+Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
+Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
+standards (DIS 10918-1 and draft DIS 10918-2).
+Although this is by far the most detailed and comprehensive exposition of
+JPEG publicly available, we point out that it is still missing an explanation
+of the most essential properties and algorithms of the underlying DCT
+technology.
+If you think that you know about DCT-based JPEG after reading this book,
+then you are in delusion. The real fundamentals and corresponding potential
+of DCT-based JPEG are not publicly known so far, and that is the reason for
+all the mistaken developments taking place in the image coding domain.
+
+The original JPEG standard is divided into two parts, Part 1 being the actual
+specification, while Part 2 covers compliance testing methods. Part 1 is
+titled "Digital Compression and Coding of Continuous-tone Still Images,
+Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
+10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
+Continuous-tone Still Images, Part 2: Compliance testing" and has document
+numbers ISO/IEC IS 10918-2, ITU-T T.83.
+IJG JPEG 8 introduces an implementation of the JPEG SmartScale extension
+which is specified in a contributed document at ITU and ISO with title "ITU-T
+JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced Image Coding", April
+2006, Geneva, Switzerland. The latest version of the document is Revision 3.
+
+The JPEG standard does not specify all details of an interchangeable file
+format. For the omitted details we follow the "JFIF" conventions, revision
+1.02. JFIF 1.02 has been adopted as an Ecma International Technical Report
+and thus received a formal publication status. It is available as a free
+download in PDF format from
+http://www.ecma-international.org/publications/techreports/E-TR-098.htm.
+A PostScript version of the JFIF document is available at
+http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at
+http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures.
+
+The TIFF 6.0 file format specification can be obtained by FTP from
+ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
+found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
+IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
+Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
+(Compression tag 7). Copies of this Note can be obtained from
+http://www.ijg.org/files/. It is expected that the next revision
+of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
+Although IJG's own code does not support TIFF/JPEG, the free libtiff library
+uses our library to implement TIFF/JPEG per the Note.
+
+
+ARCHIVE LOCATIONS
+=================
+
+The "official" archive site for this software is www.ijg.org.
+The most recent released version can always be found there in
+directory "files". This particular version will be archived as
+http://www.ijg.org/files/jpegsrc.v8.tar.gz, and in Windows-compatible
+"zip" archive format as http://www.ijg.org/files/jpegsr8.zip.
+
+The JPEG FAQ (Frequently Asked Questions) article is a source of some
+general information about JPEG.
+It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
+and other news.answers archive sites, including the official news.answers
+archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
+If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
+with body
+ send usenet/news.answers/jpeg-faq/part1
+ send usenet/news.answers/jpeg-faq/part2
+
+
+ACKNOWLEDGMENTS
+===============
+
+Thank to Juergen Bruder for providing me with a copy of the common DCT
+algorithm article, only to find out that I had come to the same result
+in a more direct and comprehensible way with a more generative approach.
+
+Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the
+ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.
+
+Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
+Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
+
+Thank to John Korejwa and Massimo Ballerini for inviting me to
+fruitful consultations in Boston, MA and Milan, Italy.
+
+Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther
+Maier-Gerber, and Walter Stoeber for corresponding business development.
+
+Thank to Nico Zschach and Dirk Stelling of the technical support team
+at the Digital Images company in Halle for providing me with extra
+equipment for configuration tests.
+
+Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful
+communication about JPEG configuration in Sigma Photo Pro software.
+
+Thank to Andrew Finkenstadt for hosting the ijg.org site.
+
+Last but not least special thank to Thomas G. Lane for the original
+design and development of this singular software package.
+
+
+FILE FORMAT WARS
+================
+
+The ISO JPEG standards committee actually promotes different formats like
+"JPEG 2000" or "JPEG XR" which are incompatible with original DCT-based
+JPEG and which are based on faulty technologies. IJG therefore does not
+and will not support such momentary mistakes (see REFERENCES).
+We have little or no sympathy for the promotion of these formats. Indeed,
+one of the original reasons for developing this free software was to help
+force convergence on common, interoperable format standards for JPEG files.
+Don't use an incompatible file format!
+(In any case, our decoder will remain capable of reading existing JPEG
+image files indefinitely.)
+
+
+TO DO
+=====
+
+Version 8.0 is the first release of a new generation JPEG standard
+to overcome the limitations of the original JPEG specification.
+More features are being prepared for coming releases...
+
+Please send bug reports, offers of help, etc. to jpeg-info@uc.ag.
diff --git a/src/3rdparty/libjpeg/ansi2knr.1 b/src/3rdparty/libjpeg/ansi2knr.1
new file mode 100644
index 0000000..f9ee5a6
--- /dev/null
+++ b/src/3rdparty/libjpeg/ansi2knr.1
@@ -0,0 +1,36 @@
+.TH ANSI2KNR 1 "19 Jan 1996"
+.SH NAME
+ansi2knr \- convert ANSI C to Kernighan & Ritchie C
+.SH SYNOPSIS
+.I ansi2knr
+[--varargs] input_file [output_file]
+.SH DESCRIPTION
+If no output_file is supplied, output goes to stdout.
+.br
+There are no error messages.
+.sp
+.I ansi2knr
+recognizes function definitions by seeing a non-keyword identifier at the left
+margin, followed by a left parenthesis, with a right parenthesis as the last
+character on the line, and with a left brace as the first token on the
+following line (ignoring possible intervening comments). It will recognize a
+multi-line header provided that no intervening line ends with a left or right
+brace or a semicolon. These algorithms ignore whitespace and comments, except
+that the function name must be the first thing on the line.
+.sp
+The following constructs will confuse it:
+.br
+ - Any other construct that starts at the left margin and follows the
+above syntax (such as a macro or function call).
+.br
+ - Some macros that tinker with the syntax of the function header.
+.sp
+The --varargs switch is obsolete, and is recognized only for
+backwards compatibility. The present version of
+.I ansi2knr
+will always attempt to convert a ... argument to va_alist and va_dcl.
+.SH AUTHOR
+L. Peter Deutsch <ghost@aladdin.com> wrote the original ansi2knr and
+continues to maintain the current version; most of the code in the current
+version is his work. ansi2knr also includes contributions by Francois
+Pinard <pinard@iro.umontreal.ca> and Jim Avera <jima@netcom.com>.
diff --git a/src/3rdparty/libjpeg/ansi2knr.c b/src/3rdparty/libjpeg/ansi2knr.c
new file mode 100644
index 0000000..e84c210
--- /dev/null
+++ b/src/3rdparty/libjpeg/ansi2knr.c
@@ -0,0 +1,739 @@
+/* Copyright (C) 1989, 2000 Aladdin Enterprises. All rights reserved. */
+
+/*$Id: ansi2knr.c,v 1.14 2003/09/06 05:36:56 eggert Exp $*/
+/* Convert ANSI C function definitions to K&R ("traditional C") syntax */
+
+/*
+ansi2knr is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY. No author or distributor accepts responsibility to anyone for the
+consequences of using it or for whether it serves any particular purpose or
+works at all, unless he says so in writing. Refer to the GNU General Public
+License (the "GPL") for full details.
+
+Everyone is granted permission to copy, modify and redistribute ansi2knr,
+but only under the conditions described in the GPL. A copy of this license
+is supposed to have been given to you along with ansi2knr so you can know
+your rights and responsibilities. It should be in a file named COPYLEFT,
+or, if there is no file named COPYLEFT, a file named COPYING. Among other
+things, the copyright notice and this notice must be preserved on all
+copies.
+
+We explicitly state here what we believe is already implied by the GPL: if
+the ansi2knr program is distributed as a separate set of sources and a
+separate executable file which are aggregated on a storage medium together
+with another program, this in itself does not bring the other program under
+the GPL, nor does the mere fact that such a program or the procedures for
+constructing it invoke the ansi2knr executable bring any other part of the
+program under the GPL.
+*/
+
+/*
+ * Usage:
+ ansi2knr [--filename FILENAME] [INPUT_FILE [OUTPUT_FILE]]
+ * --filename provides the file name for the #line directive in the output,
+ * overriding input_file (if present).
+ * If no input_file is supplied, input is read from stdin.
+ * If no output_file is supplied, output goes to stdout.
+ * There are no error messages.
+ *
+ * ansi2knr recognizes function definitions by seeing a non-keyword
+ * identifier at the left margin, followed by a left parenthesis, with a
+ * right parenthesis as the last character on the line, and with a left
+ * brace as the first token on the following line (ignoring possible
+ * intervening comments and/or preprocessor directives), except that a line
+ * consisting of only
+ * identifier1(identifier2)
+ * will not be considered a function definition unless identifier2 is
+ * the word "void", and a line consisting of
+ * identifier1(identifier2, <<arbitrary>>)
+ * will not be considered a function definition.
+ * ansi2knr will recognize a multi-line header provided that no intervening
+ * line ends with a left or right brace or a semicolon. These algorithms
+ * ignore whitespace, comments, and preprocessor directives, except that
+ * the function name must be the first thing on the line. The following
+ * constructs will confuse it:
+ * - Any other construct that starts at the left margin and
+ * follows the above syntax (such as a macro or function call).
+ * - Some macros that tinker with the syntax of function headers.
+ */
+
+/*
+ * The original and principal author of ansi2knr is L. Peter Deutsch
+ * <ghost@aladdin.com>. Other authors are noted in the change history
+ * that follows (in reverse chronological order):
+
+ lpd 2000-04-12 backs out Eggert's changes because of bugs:
+ - concatlits didn't declare the type of its bufend argument;
+ - concatlits didn't recognize when it was inside a comment;
+ - scanstring could scan backward past the beginning of the string; when
+ - the check for \ + newline in scanstring was unnecessary.
+
+ 2000-03-05 Paul Eggert <eggert@twinsun.com>
+
+ Add support for concatenated string literals.
+ * ansi2knr.c (concatlits): New decl.
+ (main): Invoke concatlits to concatenate string literals.
+ (scanstring): Handle backslash-newline correctly. Work with
+ character constants. Fix bug when scanning backwards through
+ backslash-quote. Check for unterminated strings.
+ (convert1): Parse character constants, too.
+ (appendline, concatlits): New functions.
+ * ansi2knr.1: Document this.
+
+ lpd 1999-08-17 added code to allow preprocessor directives
+ wherever comments are allowed
+ lpd 1999-04-12 added minor fixes from Pavel Roskin
+ <pavel_roskin@geocities.com> for clean compilation with
+ gcc -W -Wall
+ lpd 1999-03-22 added hack to recognize lines consisting of
+ identifier1(identifier2, xxx) as *not* being procedures
+ lpd 1999-02-03 made indentation of preprocessor commands consistent
+ lpd 1999-01-28 fixed two bugs: a '/' in an argument list caused an
+ endless loop; quoted strings within an argument list
+ confused the parser
+ lpd 1999-01-24 added a check for write errors on the output,
+ suggested by Jim Meyering <meyering@ascend.com>
+ lpd 1998-11-09 added further hack to recognize identifier(void)
+ as being a procedure
+ lpd 1998-10-23 added hack to recognize lines consisting of
+ identifier1(identifier2) as *not* being procedures
+ lpd 1997-12-08 made input_file optional; only closes input and/or
+ output file if not stdin or stdout respectively; prints
+ usage message on stderr rather than stdout; adds
+ --filename switch (changes suggested by
+ <ceder@lysator.liu.se>)
+ lpd 1996-01-21 added code to cope with not HAVE_CONFIG_H and with
+ compilers that don't understand void, as suggested by
+ Tom Lane
+ lpd 1996-01-15 changed to require that the first non-comment token
+ on the line following a function header be a left brace,
+ to reduce sensitivity to macros, as suggested by Tom Lane
+ <tgl@sss.pgh.pa.us>
+ lpd 1995-06-22 removed #ifndefs whose sole purpose was to define
+ undefined preprocessor symbols as 0; changed all #ifdefs
+ for configuration symbols to #ifs
+ lpd 1995-04-05 changed copyright notice to make it clear that
+ including ansi2knr in a program does not bring the entire
+ program under the GPL
+ lpd 1994-12-18 added conditionals for systems where ctype macros
+ don't handle 8-bit characters properly, suggested by
+ Francois Pinard <pinard@iro.umontreal.ca>;
+ removed --varargs switch (this is now the default)
+ lpd 1994-10-10 removed CONFIG_BROKETS conditional
+ lpd 1994-07-16 added some conditionals to help GNU `configure',
+ suggested by Francois Pinard <pinard@iro.umontreal.ca>;
+ properly erase prototype args in function parameters,
+ contributed by Jim Avera <jima@netcom.com>;
+ correct error in writeblanks (it shouldn't erase EOLs)
+ lpd 1989-xx-xx original version
+ */
+
+/* Most of the conditionals here are to make ansi2knr work with */
+/* or without the GNU configure machinery. */
+
+#if HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#include <stdio.h>
+#include <ctype.h>
+
+#if HAVE_CONFIG_H
+
+/*
+ For properly autoconfiguring ansi2knr, use AC_CONFIG_HEADER(config.h).
+ This will define HAVE_CONFIG_H and so, activate the following lines.
+ */
+
+# if STDC_HEADERS || HAVE_STRING_H
+# include <string.h>
+# else
+# include <strings.h>
+# endif
+
+#else /* not HAVE_CONFIG_H */
+
+/* Otherwise do it the hard way */
+
+# ifdef BSD
+# include <strings.h>
+# else
+# ifdef VMS
+ extern int strlen(), strncmp();
+# else
+# include <string.h>
+# endif
+# endif
+
+#endif /* not HAVE_CONFIG_H */
+
+#if STDC_HEADERS
+# include <stdlib.h>
+#else
+/*
+ malloc and free should be declared in stdlib.h,
+ but if you've got a K&R compiler, they probably aren't.
+ */
+# ifdef MSDOS
+# include <malloc.h>
+# else
+# ifdef VMS
+ extern char *malloc();
+ extern void free();
+# else
+ extern char *malloc();
+ extern int free();
+# endif
+# endif
+
+#endif
+
+/* Define NULL (for *very* old compilers). */
+#ifndef NULL
+# define NULL (0)
+#endif
+
+/*
+ * The ctype macros don't always handle 8-bit characters correctly.
+ * Compensate for this here.
+ */
+#ifdef isascii
+# undef HAVE_ISASCII /* just in case */
+# define HAVE_ISASCII 1
+#else
+#endif
+#if STDC_HEADERS || !HAVE_ISASCII
+# define is_ascii(c) 1
+#else
+# define is_ascii(c) isascii(c)
+#endif
+
+#define is_space(c) (is_ascii(c) && isspace(c))
+#define is_alpha(c) (is_ascii(c) && isalpha(c))
+#define is_alnum(c) (is_ascii(c) && isalnum(c))
+
+/* Scanning macros */
+#define isidchar(ch) (is_alnum(ch) || (ch) == '_')
+#define isidfirstchar(ch) (is_alpha(ch) || (ch) == '_')
+
+/* Forward references */
+char *ppdirforward();
+char *ppdirbackward();
+char *skipspace();
+char *scanstring();
+int writeblanks();
+int test1();
+int convert1();
+
+/* The main program */
+int
+main(argc, argv)
+ int argc;
+ char *argv[];
+{ FILE *in = stdin;
+ FILE *out = stdout;
+ char *filename = 0;
+ char *program_name = argv[0];
+ char *output_name = 0;
+#define bufsize 5000 /* arbitrary size */
+ char *buf;
+ char *line;
+ char *more;
+ char *usage =
+ "Usage: ansi2knr [--filename FILENAME] [INPUT_FILE [OUTPUT_FILE]]\n";
+ /*
+ * In previous versions, ansi2knr recognized a --varargs switch.
+ * If this switch was supplied, ansi2knr would attempt to convert
+ * a ... argument to va_alist and va_dcl; if this switch was not
+ * supplied, ansi2knr would simply drop any such arguments.
+ * Now, ansi2knr always does this conversion, and we only
+ * check for this switch for backward compatibility.
+ */
+ int convert_varargs = 1;
+ int output_error;
+
+ while ( argc > 1 && argv[1][0] == '-' ) {
+ if ( !strcmp(argv[1], "--varargs") ) {
+ convert_varargs = 1;
+ argc--;
+ argv++;
+ continue;
+ }
+ if ( !strcmp(argv[1], "--filename") && argc > 2 ) {
+ filename = argv[2];
+ argc -= 2;
+ argv += 2;
+ continue;
+ }
+ fprintf(stderr, "%s: Unrecognized switch: %s\n", program_name,
+ argv[1]);
+ fprintf(stderr, usage);
+ exit(1);
+ }
+ switch ( argc )
+ {
+ default:
+ fprintf(stderr, usage);
+ exit(0);
+ case 3:
+ output_name = argv[2];
+ out = fopen(output_name, "w");
+ if ( out == NULL ) {
+ fprintf(stderr, "%s: Cannot open output file %s\n",
+ program_name, output_name);
+ exit(1);
+ }
+ /* falls through */
+ case 2:
+ in = fopen(argv[1], "r");
+ if ( in == NULL ) {
+ fprintf(stderr, "%s: Cannot open input file %s\n",
+ program_name, argv[1]);
+ exit(1);
+ }
+ if ( filename == 0 )
+ filename = argv[1];
+ /* falls through */
+ case 1:
+ break;
+ }
+ if ( filename )
+ fprintf(out, "#line 1 \"%s\"\n", filename);
+ buf = malloc(bufsize);
+ if ( buf == NULL )
+ {
+ fprintf(stderr, "Unable to allocate read buffer!\n");
+ exit(1);
+ }
+ line = buf;
+ while ( fgets(line, (unsigned)(buf + bufsize - line), in) != NULL )
+ {
+test: line += strlen(line);
+ switch ( test1(buf) )
+ {
+ case 2: /* a function header */
+ convert1(buf, out, 1, convert_varargs);
+ break;
+ case 1: /* a function */
+ /* Check for a { at the start of the next line. */
+ more = ++line;
+f: if ( line >= buf + (bufsize - 1) ) /* overflow check */
+ goto wl;
+ if ( fgets(line, (unsigned)(buf + bufsize - line), in) == NULL )
+ goto wl;
+ switch ( *skipspace(ppdirforward(more), 1) )
+ {
+ case '{':
+ /* Definitely a function header. */
+ convert1(buf, out, 0, convert_varargs);
+ fputs(more, out);
+ break;
+ case 0:
+ /* The next line was blank or a comment: */
+ /* keep scanning for a non-comment. */
+ line += strlen(line);
+ goto f;
+ default:
+ /* buf isn't a function header, but */
+ /* more might be. */
+ fputs(buf, out);
+ strcpy(buf, more);
+ line = buf;
+ goto test;
+ }
+ break;
+ case -1: /* maybe the start of a function */
+ if ( line != buf + (bufsize - 1) ) /* overflow check */
+ continue;
+ /* falls through */
+ default: /* not a function */
+wl: fputs(buf, out);
+ break;
+ }
+ line = buf;
+ }
+ if ( line != buf )
+ fputs(buf, out);
+ free(buf);
+ if ( output_name ) {
+ output_error = ferror(out);
+ output_error |= fclose(out);
+ } else { /* out == stdout */
+ fflush(out);
+ output_error = ferror(out);
+ }
+ if ( output_error ) {
+ fprintf(stderr, "%s: error writing to %s\n", program_name,
+ (output_name ? output_name : "stdout"));
+ exit(1);
+ }
+ if ( in != stdin )
+ fclose(in);
+ return 0;
+}
+
+/*
+ * Skip forward or backward over one or more preprocessor directives.
+ */
+char *
+ppdirforward(p)
+ char *p;
+{
+ for (; *p == '#'; ++p) {
+ for (; *p != '\r' && *p != '\n'; ++p)
+ if (*p == 0)
+ return p;
+ if (*p == '\r' && p[1] == '\n')
+ ++p;
+ }
+ return p;
+}
+char *
+ppdirbackward(p, limit)
+ char *p;
+ char *limit;
+{
+ char *np = p;
+
+ for (;; p = --np) {
+ if (*np == '\n' && np[-1] == '\r')
+ --np;
+ for (; np > limit && np[-1] != '\r' && np[-1] != '\n'; --np)
+ if (np[-1] == 0)
+ return np;
+ if (*np != '#')
+ return p;
+ }
+}
+
+/*
+ * Skip over whitespace, comments, and preprocessor directives,
+ * in either direction.
+ */
+char *
+skipspace(p, dir)
+ char *p;
+ int dir; /* 1 for forward, -1 for backward */
+{
+ for ( ; ; ) {
+ while ( is_space(*p) )
+ p += dir;
+ if ( !(*p == '/' && p[dir] == '*') )
+ break;
+ p += dir; p += dir;
+ while ( !(*p == '*' && p[dir] == '/') ) {
+ if ( *p == 0 )
+ return p; /* multi-line comment?? */
+ p += dir;
+ }
+ p += dir; p += dir;
+ }
+ return p;
+}
+
+/* Scan over a quoted string, in either direction. */
+char *
+scanstring(p, dir)
+ char *p;
+ int dir;
+{
+ for (p += dir; ; p += dir)
+ if (*p == '"' && p[-dir] != '\\')
+ return p + dir;
+}
+
+/*
+ * Write blanks over part of a string.
+ * Don't overwrite end-of-line characters.
+ */
+int
+writeblanks(start, end)
+ char *start;
+ char *end;
+{ char *p;
+ for ( p = start; p < end; p++ )
+ if ( *p != '\r' && *p != '\n' )
+ *p = ' ';
+ return 0;
+}
+
+/*
+ * Test whether the string in buf is a function definition.
+ * The string may contain and/or end with a newline.
+ * Return as follows:
+ * 0 - definitely not a function definition;
+ * 1 - definitely a function definition;
+ * 2 - definitely a function prototype (NOT USED);
+ * -1 - may be the beginning of a function definition,
+ * append another line and look again.
+ * The reason we don't attempt to convert function prototypes is that
+ * Ghostscript's declaration-generating macros look too much like
+ * prototypes, and confuse the algorithms.
+ */
+int
+test1(buf)
+ char *buf;
+{ char *p = buf;
+ char *bend;
+ char *endfn;
+ int contin;
+
+ if ( !isidfirstchar(*p) )
+ return 0; /* no name at left margin */
+ bend = skipspace(ppdirbackward(buf + strlen(buf) - 1, buf), -1);
+ switch ( *bend )
+ {
+ case ';': contin = 0 /*2*/; break;
+ case ')': contin = 1; break;
+ case '{': return 0; /* not a function */
+ case '}': return 0; /* not a function */
+ default: contin = -1;
+ }
+ while ( isidchar(*p) )
+ p++;
+ endfn = p;
+ p = skipspace(p, 1);
+ if ( *p++ != '(' )
+ return 0; /* not a function */
+ p = skipspace(p, 1);
+ if ( *p == ')' )
+ return 0; /* no parameters */
+ /* Check that the apparent function name isn't a keyword. */
+ /* We only need to check for keywords that could be followed */
+ /* by a left parenthesis (which, unfortunately, is most of them). */
+ { static char *words[] =
+ { "asm", "auto", "case", "char", "const", "double",
+ "extern", "float", "for", "if", "int", "long",
+ "register", "return", "short", "signed", "sizeof",
+ "static", "switch", "typedef", "unsigned",
+ "void", "volatile", "while", 0
+ };
+ char **key = words;
+ char *kp;
+ unsigned len = endfn - buf;
+
+ while ( (kp = *key) != 0 )
+ { if ( strlen(kp) == len && !strncmp(kp, buf, len) )
+ return 0; /* name is a keyword */
+ key++;
+ }
+ }
+ {
+ char *id = p;
+ int len;
+ /*
+ * Check for identifier1(identifier2) and not
+ * identifier1(void), or identifier1(identifier2, xxxx).
+ */
+
+ while ( isidchar(*p) )
+ p++;
+ len = p - id;
+ p = skipspace(p, 1);
+ if (*p == ',' ||
+ (*p == ')' && (len != 4 || strncmp(id, "void", 4)))
+ )
+ return 0; /* not a function */
+ }
+ /*
+ * If the last significant character was a ), we need to count
+ * parentheses, because it might be part of a formal parameter
+ * that is a procedure.
+ */
+ if (contin > 0) {
+ int level = 0;
+
+ for (p = skipspace(buf, 1); *p; p = skipspace(p + 1, 1))
+ level += (*p == '(' ? 1 : *p == ')' ? -1 : 0);
+ if (level > 0)
+ contin = -1;
+ }
+ return contin;
+}
+
+/* Convert a recognized function definition or header to K&R syntax. */
+int
+convert1(buf, out, header, convert_varargs)
+ char *buf;
+ FILE *out;
+ int header; /* Boolean */
+ int convert_varargs; /* Boolean */
+{ char *endfn;
+ char *p;
+ /*
+ * The breaks table contains pointers to the beginning and end
+ * of each argument.
+ */
+ char **breaks;
+ unsigned num_breaks = 2; /* for testing */
+ char **btop;
+ char **bp;
+ char **ap;
+ char *vararg = 0;
+
+ /* Pre-ANSI implementations don't agree on whether strchr */
+ /* is called strchr or index, so we open-code it here. */
+ for ( endfn = buf; *(endfn++) != '('; )
+ ;
+top: p = endfn;
+ breaks = (char **)malloc(sizeof(char *) * num_breaks * 2);
+ if ( breaks == NULL )
+ { /* Couldn't allocate break table, give up */
+ fprintf(stderr, "Unable to allocate break table!\n");
+ fputs(buf, out);
+ return -1;
+ }
+ btop = breaks + num_breaks * 2 - 2;
+ bp = breaks;
+ /* Parse the argument list */
+ do
+ { int level = 0;
+ char *lp = NULL;
+ char *rp = NULL;
+ char *end = NULL;
+
+ if ( bp >= btop )
+ { /* Filled up break table. */
+ /* Allocate a bigger one and start over. */
+ free((char *)breaks);
+ num_breaks <<= 1;
+ goto top;
+ }
+ *bp++ = p;
+ /* Find the end of the argument */
+ for ( ; end == NULL; p++ )
+ { switch(*p)
+ {
+ case ',':
+ if ( !level ) end = p;
+ break;
+ case '(':
+ if ( !level ) lp = p;
+ level++;
+ break;
+ case ')':
+ if ( --level < 0 ) end = p;
+ else rp = p;
+ break;
+ case '/':
+ if (p[1] == '*')
+ p = skipspace(p, 1) - 1;
+ break;
+ case '"':
+ p = scanstring(p, 1) - 1;
+ break;
+ default:
+ ;
+ }
+ }
+ /* Erase any embedded prototype parameters. */
+ if ( lp && rp )
+ writeblanks(lp + 1, rp);
+ p--; /* back up over terminator */
+ /* Find the name being declared. */
+ /* This is complicated because of procedure and */
+ /* array modifiers. */
+ for ( ; ; )
+ { p = skipspace(p - 1, -1);
+ switch ( *p )
+ {
+ case ']': /* skip array dimension(s) */
+ case ')': /* skip procedure args OR name */
+ { int level = 1;
+ while ( level )
+ switch ( *--p )
+ {
+ case ']': case ')':
+ level++;
+ break;
+ case '[': case '(':
+ level--;
+ break;
+ case '/':
+ if (p > buf && p[-1] == '*')
+ p = skipspace(p, -1) + 1;
+ break;
+ case '"':
+ p = scanstring(p, -1) + 1;
+ break;
+ default: ;
+ }
+ }
+ if ( *p == '(' && *skipspace(p + 1, 1) == '*' )
+ { /* We found the name being declared */
+ while ( !isidfirstchar(*p) )
+ p = skipspace(p, 1) + 1;
+ goto found;
+ }
+ break;
+ default:
+ goto found;
+ }
+ }
+found: if ( *p == '.' && p[-1] == '.' && p[-2] == '.' )
+ { if ( convert_varargs )
+ { *bp++ = "va_alist";
+ vararg = p-2;
+ }
+ else
+ { p++;
+ if ( bp == breaks + 1 ) /* sole argument */
+ writeblanks(breaks[0], p);
+ else
+ writeblanks(bp[-1] - 1, p);
+ bp--;
+ }
+ }
+ else
+ { while ( isidchar(*p) ) p--;
+ *bp++ = p+1;
+ }
+ p = end;
+ }
+ while ( *p++ == ',' );
+ *bp = p;
+ /* Make a special check for 'void' arglist */
+ if ( bp == breaks+2 )
+ { p = skipspace(breaks[0], 1);
+ if ( !strncmp(p, "void", 4) )
+ { p = skipspace(p+4, 1);
+ if ( p == breaks[2] - 1 )
+ { bp = breaks; /* yup, pretend arglist is empty */
+ writeblanks(breaks[0], p + 1);
+ }
+ }
+ }
+ /* Put out the function name and left parenthesis. */
+ p = buf;
+ while ( p != endfn ) putc(*p, out), p++;
+ /* Put out the declaration. */
+ if ( header )
+ { fputs(");", out);
+ for ( p = breaks[0]; *p; p++ )
+ if ( *p == '\r' || *p == '\n' )
+ putc(*p, out);
+ }
+ else
+ { for ( ap = breaks+1; ap < bp; ap += 2 )
+ { p = *ap;
+ while ( isidchar(*p) )
+ putc(*p, out), p++;
+ if ( ap < bp - 1 )
+ fputs(", ", out);
+ }
+ fputs(") ", out);
+ /* Put out the argument declarations */
+ for ( ap = breaks+2; ap <= bp; ap += 2 )
+ (*ap)[-1] = ';';
+ if ( vararg != 0 )
+ { *vararg = 0;
+ fputs(breaks[0], out); /* any prior args */
+ fputs("va_dcl", out); /* the final arg */
+ fputs(bp[0], out);
+ }
+ else
+ fputs(breaks[0], out);
+ }
+ free((char *)breaks);
+ return 0;
+}
diff --git a/src/3rdparty/libjpeg/cderror.h b/src/3rdparty/libjpeg/cderror.h
new file mode 100644
index 0000000..e19c475
--- /dev/null
+++ b/src/3rdparty/libjpeg/cderror.h
@@ -0,0 +1,134 @@
+/*
+ * cderror.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the error and message codes for the cjpeg/djpeg
+ * applications. These strings are not needed as part of the JPEG library
+ * proper.
+ * Edit this file to add new codes, or to translate the message strings to
+ * some other language.
+ */
+
+/*
+ * To define the enum list of message codes, include this file without
+ * defining macro JMESSAGE. To create a message string table, include it
+ * again with a suitable JMESSAGE definition (see jerror.c for an example).
+ */
+#ifndef JMESSAGE
+#ifndef CDERROR_H
+#define CDERROR_H
+/* First time through, define the enum list */
+#define JMAKE_ENUM_LIST
+#else
+/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+#define JMESSAGE(code,string)
+#endif /* CDERROR_H */
+#endif /* JMESSAGE */
+
+#ifdef JMAKE_ENUM_LIST
+
+typedef enum {
+
+#define JMESSAGE(code,string) code ,
+
+#endif /* JMAKE_ENUM_LIST */
+
+JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */
+
+#ifdef BMP_SUPPORTED
+JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
+JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
+JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
+JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
+JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
+JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
+JMESSAGE(JERR_BMP_EMPTY, "Empty BMP image")
+JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
+JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
+JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
+JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
+JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
+#endif /* BMP_SUPPORTED */
+
+#ifdef GIF_SUPPORTED
+JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
+JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
+JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
+JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
+JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
+JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
+JMESSAGE(JTRC_GIF_BADVERSION,
+ "Warning: unexpected GIF version number '%c%c%c'")
+JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
+JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
+JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
+JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
+JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
+JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
+#endif /* GIF_SUPPORTED */
+
+#ifdef PPM_SUPPORTED
+JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
+JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
+JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
+JMESSAGE(JTRC_PGM, "%ux%u PGM image")
+JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
+JMESSAGE(JTRC_PPM, "%ux%u PPM image")
+JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
+#endif /* PPM_SUPPORTED */
+
+#ifdef RLE_SUPPORTED
+JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
+JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
+JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
+JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
+JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
+JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
+JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
+JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
+JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
+JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
+JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
+JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
+JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
+JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
+#endif /* RLE_SUPPORTED */
+
+#ifdef TARGA_SUPPORTED
+JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
+JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
+JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
+JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
+JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
+JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
+#else
+JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
+#endif /* TARGA_SUPPORTED */
+
+JMESSAGE(JERR_BAD_CMAP_FILE,
+ "Color map file is invalid or of unsupported format")
+JMESSAGE(JERR_TOO_MANY_COLORS,
+ "Output file format cannot handle %d colormap entries")
+JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
+#ifdef TARGA_SUPPORTED
+JMESSAGE(JERR_UNKNOWN_FORMAT,
+ "Unrecognized input file format --- perhaps you need -targa")
+#else
+JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
+#endif
+JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
+
+#ifdef JMAKE_ENUM_LIST
+
+ JMSG_LASTADDONCODE
+} ADDON_MESSAGE_CODE;
+
+#undef JMAKE_ENUM_LIST
+#endif /* JMAKE_ENUM_LIST */
+
+/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+#undef JMESSAGE
diff --git a/src/3rdparty/libjpeg/cdjpeg.h b/src/3rdparty/libjpeg/cdjpeg.h
new file mode 100644
index 0000000..ed024ac
--- /dev/null
+++ b/src/3rdparty/libjpeg/cdjpeg.h
@@ -0,0 +1,187 @@
+/*
+ * cdjpeg.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains common declarations for the sample applications
+ * cjpeg and djpeg. It is NOT used by the core JPEG library.
+ */
+
+#define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */
+#define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h" /* get library error codes too */
+#include "cderror.h" /* get application-specific error codes */
+
+
+/*
+ * Object interface for cjpeg's source file decoding modules
+ */
+
+typedef struct cjpeg_source_struct * cjpeg_source_ptr;
+
+struct cjpeg_source_struct {
+ JMETHOD(void, start_input, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+ JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+ JMETHOD(void, finish_input, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+
+ FILE *input_file;
+
+ JSAMPARRAY buffer;
+ JDIMENSION buffer_height;
+};
+
+
+/*
+ * Object interface for djpeg's output file encoding modules
+ */
+
+typedef struct djpeg_dest_struct * djpeg_dest_ptr;
+
+struct djpeg_dest_struct {
+ /* start_output is called after jpeg_start_decompress finishes.
+ * The color map will be ready at this time, if one is needed.
+ */
+ JMETHOD(void, start_output, (j_decompress_ptr cinfo,
+ djpeg_dest_ptr dinfo));
+ /* Emit the specified number of pixel rows from the buffer. */
+ JMETHOD(void, put_pixel_rows, (j_decompress_ptr cinfo,
+ djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied));
+ /* Finish up at the end of the image. */
+ JMETHOD(void, finish_output, (j_decompress_ptr cinfo,
+ djpeg_dest_ptr dinfo));
+
+ /* Target file spec; filled in by djpeg.c after object is created. */
+ FILE * output_file;
+
+ /* Output pixel-row buffer. Created by module init or start_output.
+ * Width is cinfo->output_width * cinfo->output_components;
+ * height is buffer_height.
+ */
+ JSAMPARRAY buffer;
+ JDIMENSION buffer_height;
+};
+
+
+/*
+ * cjpeg/djpeg may need to perform extra passes to convert to or from
+ * the source/destination file format. The JPEG library does not know
+ * about these passes, but we'd like them to be counted by the progress
+ * monitor. We use an expanded progress monitor object to hold the
+ * additional pass count.
+ */
+
+struct cdjpeg_progress_mgr {
+ struct jpeg_progress_mgr pub; /* fields known to JPEG library */
+ int completed_extra_passes; /* extra passes completed */
+ int total_extra_passes; /* total extra */
+ /* last printed percentage stored here to avoid multiple printouts */
+ int percent_done;
+};
+
+typedef struct cdjpeg_progress_mgr * cd_progress_ptr;
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_read_bmp jIRdBMP
+#define jinit_write_bmp jIWrBMP
+#define jinit_read_gif jIRdGIF
+#define jinit_write_gif jIWrGIF
+#define jinit_read_ppm jIRdPPM
+#define jinit_write_ppm jIWrPPM
+#define jinit_read_rle jIRdRLE
+#define jinit_write_rle jIWrRLE
+#define jinit_read_targa jIRdTarga
+#define jinit_write_targa jIWrTarga
+#define read_quant_tables RdQTables
+#define read_scan_script RdScnScript
+#define set_quality_ratings SetQRates
+#define set_quant_slots SetQSlots
+#define set_sample_factors SetSFacts
+#define read_color_map RdCMap
+#define enable_signal_catcher EnSigCatcher
+#define start_progress_monitor StProgMon
+#define end_progress_monitor EnProgMon
+#define read_stdin RdStdin
+#define write_stdout WrStdout
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Module selection routines for I/O modules. */
+
+EXTERN(cjpeg_source_ptr) jinit_read_bmp JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_bmp JPP((j_decompress_ptr cinfo,
+ boolean is_os2));
+EXTERN(cjpeg_source_ptr) jinit_read_gif JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_gif JPP((j_decompress_ptr cinfo));
+EXTERN(cjpeg_source_ptr) jinit_read_ppm JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_ppm JPP((j_decompress_ptr cinfo));
+EXTERN(cjpeg_source_ptr) jinit_read_rle JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_rle JPP((j_decompress_ptr cinfo));
+EXTERN(cjpeg_source_ptr) jinit_read_targa JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_targa JPP((j_decompress_ptr cinfo));
+
+/* cjpeg support routines (in rdswitch.c) */
+
+EXTERN(boolean) read_quant_tables JPP((j_compress_ptr cinfo, char * filename,
+ boolean force_baseline));
+EXTERN(boolean) read_scan_script JPP((j_compress_ptr cinfo, char * filename));
+EXTERN(boolean) set_quality_ratings JPP((j_compress_ptr cinfo, char *arg,
+ boolean force_baseline));
+EXTERN(boolean) set_quant_slots JPP((j_compress_ptr cinfo, char *arg));
+EXTERN(boolean) set_sample_factors JPP((j_compress_ptr cinfo, char *arg));
+
+/* djpeg support routines (in rdcolmap.c) */
+
+EXTERN(void) read_color_map JPP((j_decompress_ptr cinfo, FILE * infile));
+
+/* common support routines (in cdjpeg.c) */
+
+EXTERN(void) enable_signal_catcher JPP((j_common_ptr cinfo));
+EXTERN(void) start_progress_monitor JPP((j_common_ptr cinfo,
+ cd_progress_ptr progress));
+EXTERN(void) end_progress_monitor JPP((j_common_ptr cinfo));
+EXTERN(boolean) keymatch JPP((char * arg, const char * keyword, int minchars));
+EXTERN(FILE *) read_stdin JPP((void));
+EXTERN(FILE *) write_stdout JPP((void));
+
+/* miscellaneous useful macros */
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#define WRITE_BINARY "w"
+#else
+#ifdef VMS /* VMS is very nonstandard */
+#define READ_BINARY "rb", "ctx=stm"
+#define WRITE_BINARY "wb", "ctx=stm"
+#else /* standard ANSI-compliant case */
+#define READ_BINARY "rb"
+#define WRITE_BINARY "wb"
+#endif
+#endif
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+#ifndef EXIT_SUCCESS
+#ifdef VMS
+#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
+#else
+#define EXIT_SUCCESS 0
+#endif
+#endif
+#ifndef EXIT_WARNING
+#ifdef VMS
+#define EXIT_WARNING 1 /* VMS is very nonstandard */
+#else
+#define EXIT_WARNING 2
+#endif
+#endif
diff --git a/src/3rdparty/libjpeg/change.log b/src/3rdparty/libjpeg/change.log
new file mode 100644
index 0000000..58ea3eb
--- /dev/null
+++ b/src/3rdparty/libjpeg/change.log
@@ -0,0 +1,290 @@
+CHANGE LOG for Independent JPEG Group's JPEG software
+
+
+Version 8 10-Jan-2010
+----------------------
+
+jpegtran now supports the same -scale option as djpeg for "lossless" resize.
+An implementation of the JPEG SmartScale extension is required for this
+feature. A (draft) specification of the JPEG SmartScale extension is
+available as a contributed document at ITU and ISO. Revision 2 or later
+of the document is required (latest document version is Revision 3).
+The SmartScale extension will enable more features beside lossless resize
+in future implementations, as described in the document (new compression
+options).
+
+Add sanity check in BMP reader module to avoid cjpeg crash for empty input
+image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error).
+
+Add data source and destination managers for read from and write to
+memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest.
+Thank to Roberto Boni from Italy for the suggestion.
+
+
+Version 7 27-Jun-2009
+----------------------
+
+New scaled DCTs implemented.
+djpeg now supports scalings N/8 with all N from 1 to 16.
+cjpeg now supports scalings 8/N with all N from 1 to 16.
+Scaled DCTs with size larger than 8 are now also used for resolving the
+common 2x2 chroma subsampling case without additional spatial resampling.
+Separate spatial resampling for those kind of files is now only necessary
+for N>8 scaling cases.
+Furthermore, separate scaled DCT functions are provided for direct resolving
+of the common asymmetric subsampling cases (2x1 and 1x2) without additional
+spatial resampling.
+
+cjpeg -quality option has been extended for support of separate quality
+settings for luminance and chrominance (or in general, for every provided
+quantization table slot).
+New API function jpeg_default_qtables() and q_scale_factor array in library.
+
+Added -nosmooth option to cjpeg, complementary to djpeg.
+New variable "do_fancy_downsampling" in library, complement to fancy
+upsampling. Fancy upsampling now uses direct DCT scaling with sizes
+larger than 8. The old method is not reversible and has been removed.
+
+Support arithmetic entropy encoding and decoding.
+Added files jaricom.c, jcarith.c, jdarith.c.
+
+Straighten the file structure:
+Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h.
+
+jpegtran has a new "lossless" cropping feature.
+
+Implement -perfect option in jpegtran, new API function
+jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch)
+
+Better error messages for jpegtran fopen failure.
+(DP 203_jpegtran_errmsg.dpatch)
+
+Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c:
+according to Netpbm, the de facto standard implementation of the PNM formats,
+the most significant byte is first. (DP 203_rdppm.dpatch)
+
+Add -raw option to rdjpgcom not to mangle the output.
+(DP 205_rdjpgcom_raw.dpatch)
+
+Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch)
+
+Add extern "C" to jpeglib.h.
+This avoids the need to put extern "C" { ... } around #include "jpeglib.h"
+in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the
+configuration prevents this. (DP 202_jpeglib.h_c++.dpatch)
+
+
+Version 6b 27-Mar-1998
+-----------------------
+
+jpegtran has new features for lossless image transformations (rotation
+and flipping) as well as "lossless" reduction to grayscale.
+
+jpegtran now copies comments by default; it has a -copy switch to enable
+copying all APPn blocks as well, or to suppress comments. (Formerly it
+always suppressed comments and APPn blocks.) jpegtran now also preserves
+JFIF version and resolution information.
+
+New decompressor library feature: COM and APPn markers found in the input
+file can be saved in memory for later use by the application. (Before,
+you had to code this up yourself with a custom marker processor.)
+
+There is an unused field "void * client_data" now in compress and decompress
+parameter structs; this may be useful in some applications.
+
+JFIF version number information is now saved by the decoder and accepted by
+the encoder. jpegtran uses this to copy the source file's version number,
+to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
+extensions but claim to be version 1.01. Applications that generate their
+own JFXX extension markers also (finally) have a supported way to cause the
+encoder to emit JFIF version number 1.02.
+
+djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
+than as unknown APP0 markers.
+
+In -verbose mode, djpeg and rdjpgcom will try to print the contents of
+APP12 markers as text. Some digital cameras store useful text information
+in APP12 markers.
+
+Handling of truncated data streams is more robust: blocks beyond the one in
+which the error occurs will be output as uniform gray, or left unchanged
+if decoding a progressive JPEG. The appearance no longer depends on the
+Huffman tables being used.
+
+Huffman tables are checked for validity much more carefully than before.
+
+To avoid the Unisys LZW patent, djpeg's GIF output capability has been
+changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
+has been removed altogether. We're not happy about it either, but there
+seems to be no good alternative.
+
+The configure script now supports building libjpeg as a shared library
+on many flavors of Unix (all the ones that GNU libtool knows how to
+build shared libraries for). Use "./configure --enable-shared" to
+try this out.
+
+New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
+Also, a jconfig file and a build script for Metrowerks CodeWarrior
+on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there
+are miscellaneous other minor improvements in the makefiles.
+
+jmemmac.c now knows how to create temporary files following Mac System 7
+conventions.
+
+djpeg's -map switch is now able to read raw-format PPM files reliably.
+
+cjpeg -progressive -restart no longer generates any unnecessary DRI markers.
+
+Multiple calls to jpeg_simple_progression for a single JPEG object
+no longer leak memory.
+
+
+Version 6a 7-Feb-96
+--------------------
+
+Library initialization sequence modified to detect version mismatches
+and struct field packing mismatches between library and calling application.
+This change requires applications to be recompiled, but does not require
+any application source code change.
+
+All routine declarations changed to the style "GLOBAL(type) name ...",
+that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
+routine's return type as an argument. This makes it possible to add
+Microsoft-style linkage keywords to all the routines by changing just
+these macros. Note that any application code that was using these macros
+will have to be changed.
+
+DCT coefficient quantization tables are now stored in normal array order
+rather than zigzag order. Application code that calls jpeg_add_quant_table,
+or otherwise manipulates quantization tables directly, will need to be
+changed. If you need to make such code work with either older or newer
+versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
+recommended.
+
+djpeg's trace capability now dumps DQT tables in natural order, not zigzag
+order. This allows the trace output to be made into a "-qtables" file
+more easily.
+
+New system-dependent memory manager module for use on Apple Macintosh.
+
+Fix bug in cjpeg's -smooth option: last one or two scanlines would be
+duplicates of the prior line unless the image height mod 16 was 1 or 2.
+
+Repair minor problems in VMS, BCC, MC6 makefiles.
+
+New configure script based on latest GNU Autoconf.
+
+Correct the list of include files needed by MetroWerks C for ccommand().
+
+Numerous small documentation updates.
+
+
+Version 6 2-Aug-95
+-------------------
+
+Progressive JPEG support: library can read and write full progressive JPEG
+files. A "buffered image" mode supports incremental decoding for on-the-fly
+display of progressive images. Simply recompiling an existing IJG-v5-based
+decoder with v6 should allow it to read progressive files, though of course
+without any special progressive display.
+
+New "jpegtran" application performs lossless transcoding between different
+JPEG formats; primarily, it can be used to convert baseline to progressive
+JPEG and vice versa. In support of jpegtran, the library now allows lossless
+reading and writing of JPEG files as DCT coefficient arrays. This ability
+may be of use in other applications.
+
+Notes for programmers:
+* We changed jpeg_start_decompress() to be able to suspend; this makes all
+decoding modes available to suspending-input applications. However,
+existing applications that use suspending input will need to be changed
+to check the return value from jpeg_start_decompress(). You don't need to
+do anything if you don't use a suspending data source.
+* We changed the interface to the virtual array routines: access_virt_array
+routines now take a count of the number of rows to access this time. The
+last parameter to request_virt_array routines is now interpreted as the
+maximum number of rows that may be accessed at once, but not necessarily
+the height of every access.
+
+
+Version 5b 15-Mar-95
+---------------------
+
+Correct bugs with grayscale images having v_samp_factor > 1.
+
+jpeg_write_raw_data() now supports output suspension.
+
+Correct bugs in "configure" script for case of compiling in
+a directory other than the one containing the source files.
+
+Repair bug in jquant1.c: sometimes didn't use as many colors as it could.
+
+Borland C makefile and jconfig file work under either MS-DOS or OS/2.
+
+Miscellaneous improvements to documentation.
+
+
+Version 5a 7-Dec-94
+--------------------
+
+Changed color conversion roundoff behavior so that grayscale values are
+represented exactly. (This causes test image files to change.)
+
+Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
+improvement.
+
+New configure script based on latest GNU Autoconf.
+Fix configure script to handle CFLAGS correctly.
+Rename *.auto files to *.cfg, so that configure script still works if
+file names have been truncated for DOS.
+
+Fix bug in rdbmp.c: didn't allow for extra data between header and image.
+
+Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.
+
+Fix several bugs in rdrle.c.
+
+NEED_SHORT_EXTERNAL_NAMES option was broken.
+
+Revise jerror.h/jerror.c for more flexibility in message table.
+
+Repair oversight in jmemname.c NO_MKTEMP case: file could be there
+but unreadable.
+
+
+Version 5 24-Sep-94
+--------------------
+
+Version 5 represents a nearly complete redesign and rewrite of the IJG
+software. Major user-visible changes include:
+ * Automatic configuration simplifies installation for most Unix systems.
+ * A range of speed vs. image quality tradeoffs are supported.
+ This includes resizing of an image during decompression: scaling down
+ by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
+ * New programs rdjpgcom and wrjpgcom allow insertion and extraction
+ of text comments in a JPEG file.
+
+The application programmer's interface to the library has changed completely.
+Notable improvements include:
+ * We have eliminated the use of callback routines for handling the
+ uncompressed image data. The application now sees the library as a
+ set of routines that it calls to read or write image data on a
+ scanline-by-scanline basis.
+ * The application image data is represented in a conventional interleaved-
+ pixel format, rather than as a separate array for each color channel.
+ This can save a copying step in many programs.
+ * The handling of compressed data has been cleaned up: the application can
+ supply routines to source or sink the compressed data. It is possible to
+ suspend processing on source/sink buffer overrun, although this is not
+ supported in all operating modes.
+ * All static state has been eliminated from the library, so that multiple
+ instances of compression or decompression can be active concurrently.
+ * JPEG abbreviated datastream formats are supported, ie, quantization and
+ Huffman tables can be stored separately from the image data.
+ * And not only that, but the documentation of the library has improved
+ considerably!
+
+
+The last widely used release before the version 5 rewrite was version 4A of
+18-Feb-93. Change logs before that point have been discarded, since they
+are not of much interest after the rewrite.
diff --git a/src/3rdparty/libjpeg/cjpeg.1 b/src/3rdparty/libjpeg/cjpeg.1
new file mode 100644
index 0000000..01bfa25
--- /dev/null
+++ b/src/3rdparty/libjpeg/cjpeg.1
@@ -0,0 +1,325 @@
+.TH CJPEG 1 "30 December 2009"
+.SH NAME
+cjpeg \- compress an image file to a JPEG file
+.SH SYNOPSIS
+.B cjpeg
+[
+.I options
+]
+[
+.I filename
+]
+.LP
+.SH DESCRIPTION
+.LP
+.B cjpeg
+compresses the named image file, or the standard input if no file is
+named, and produces a JPEG/JFIF file on the standard output.
+The currently supported input file formats are: PPM (PBMPLUS color
+format), PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster
+Toolkit format). (RLE is supported only if the URT library is available.)
+.SH OPTIONS
+All switch names may be abbreviated; for example,
+.B \-grayscale
+may be written
+.B \-gray
+or
+.BR \-gr .
+Most of the "basic" switches can be abbreviated to as little as one letter.
+Upper and lower case are equivalent (thus
+.B \-BMP
+is the same as
+.BR \-bmp ).
+British spellings are also accepted (e.g.,
+.BR \-greyscale ),
+though for brevity these are not mentioned below.
+.PP
+The basic switches are:
+.TP
+.BI \-quality " N[,...]"
+Scale quantization tables to adjust image quality. Quality is 0 (worst) to
+100 (best); default is 75. (See below for more info.)
+.TP
+.B \-grayscale
+Create monochrome JPEG file from color input. Be sure to use this switch when
+compressing a grayscale BMP file, because
+.B cjpeg
+isn't bright enough to notice whether a BMP file uses only shades of gray.
+By saying
+.BR \-grayscale ,
+you'll get a smaller JPEG file that takes less time to process.
+.TP
+.B \-optimize
+Perform optimization of entropy encoding parameters. Without this, default
+encoding parameters are used.
+.B \-optimize
+usually makes the JPEG file a little smaller, but
+.B cjpeg
+runs somewhat slower and needs much more memory. Image quality and speed of
+decompression are unaffected by
+.BR \-optimize .
+.TP
+.B \-progressive
+Create progressive JPEG file (see below).
+.TP
+.BI \-scale " M/N"
+Scale the output image by a factor M/N. Currently supported scale factors are
+8/N with all N from 1 to 16.
+.TP
+.B \-targa
+Input file is Targa format. Targa files that contain an "identification"
+field will not be automatically recognized by
+.BR cjpeg ;
+for such files you must specify
+.B \-targa
+to make
+.B cjpeg
+treat the input as Targa format.
+For most Targa files, you won't need this switch.
+.PP
+The
+.B \-quality
+switch lets you trade off compressed file size against quality of the
+reconstructed image: the higher the quality setting, the larger the JPEG file,
+and the closer the output image will be to the original input. Normally you
+want to use the lowest quality setting (smallest file) that decompresses into
+something visually indistinguishable from the original image. For this
+purpose the quality setting should be between 50 and 95; the default of 75 is
+often about right. If you see defects at
+.B \-quality
+75, then go up 5 or 10 counts at a time until you are happy with the output
+image. (The optimal setting will vary from one image to another.)
+.PP
+.B \-quality
+100 will generate a quantization table of all 1's, minimizing loss in the
+quantization step (but there is still information loss in subsampling, as well
+as roundoff error). This setting is mainly of interest for experimental
+purposes. Quality values above about 95 are
+.B not
+recommended for normal use; the compressed file size goes up dramatically for
+hardly any gain in output image quality.
+.PP
+In the other direction, quality values below 50 will produce very small files
+of low image quality. Settings around 5 to 10 might be useful in preparing an
+index of a large image library, for example. Try
+.B \-quality
+2 (or so) for some amusing Cubist effects. (Note: quality
+values below about 25 generate 2-byte quantization tables, which are
+considered optional in the JPEG standard.
+.B cjpeg
+emits a warning message when you give such a quality value, because some
+other JPEG programs may be unable to decode the resulting file. Use
+.B \-baseline
+if you need to ensure compatibility at low quality values.)
+.PP
+The
+.B \-quality
+option has been extended in IJG version 7 for support of separate quality
+settings for luminance and chrominance (or in general, for every provided
+quantization table slot). This feature is useful for high-quality
+applications which cannot accept the damage of color data by coarse
+subsampling settings. You can now easily reduce the color data amount more
+smoothly with finer control without separate subsampling. The resulting file
+is fully compliant with standard JPEG decoders.
+Note that the
+.B \-quality
+ratings refer to the quantization table slots, and that the last value is
+replicated if there are more q-table slots than parameters. The default
+q-table slots are 0 for luminance and 1 for chrominance with default tables as
+given in the JPEG standard. This is compatible with the old behaviour in case
+that only one parameter is given, which is then used for both luminance and
+chrominance (slots 0 and 1). More or custom quantization tables can be set
+with
+.B \-qtables
+and assigned to components with
+.B \-qslots
+parameter (see the "wizard" switches below).
+.B Caution:
+You must explicitly add
+.BI \-sample " 1x1"
+for efficient separate color
+quality selection, since the default value used by library is 2x2!
+.PP
+The
+.B \-progressive
+switch creates a "progressive JPEG" file. In this type of JPEG file, the data
+is stored in multiple scans of increasing quality. If the file is being
+transmitted over a slow communications link, the decoder can use the first
+scan to display a low-quality image very quickly, and can then improve the
+display with each subsequent scan. The final image is exactly equivalent to a
+standard JPEG file of the same quality setting, and the total file size is
+about the same --- often a little smaller.
+.PP
+Switches for advanced users:
+.TP
+.B \-dct int
+Use integer DCT method (default).
+.TP
+.B \-dct fast
+Use fast integer DCT (less accurate).
+.TP
+.B \-dct float
+Use floating-point DCT method.
+The float method is very slightly more accurate than the int method, but is
+much slower unless your machine has very fast floating-point hardware. Also
+note that results of the floating-point method may vary slightly across
+machines, while the integer methods should give the same results everywhere.
+The fast integer method is much less accurate than the other two.
+.TP
+.B \-nosmooth
+Don't use high-quality downsampling.
+.TP
+.BI \-restart " N"
+Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is
+attached to the number.
+.B \-restart 0
+(the default) means no restart markers.
+.TP
+.BI \-smooth " N"
+Smooth the input image to eliminate dithering noise. N, ranging from 1 to
+100, indicates the strength of smoothing. 0 (the default) means no smoothing.
+.TP
+.BI \-maxmemory " N"
+Set limit for amount of memory to use in processing large images. Value is
+in thousands of bytes, or millions of bytes if "M" is attached to the
+number. For example,
+.B \-max 4m
+selects 4000000 bytes. If more space is needed, temporary files will be used.
+.TP
+.BI \-outfile " name"
+Send output image to the named file, not to standard output.
+.TP
+.B \-verbose
+Enable debug printout. More
+.BR \-v 's
+give more output. Also, version information is printed at startup.
+.TP
+.B \-debug
+Same as
+.BR \-verbose .
+.PP
+The
+.B \-restart
+option inserts extra markers that allow a JPEG decoder to resynchronize after
+a transmission error. Without restart markers, any damage to a compressed
+file will usually ruin the image from the point of the error to the end of the
+image; with restart markers, the damage is usually confined to the portion of
+the image up to the next restart marker. Of course, the restart markers
+occupy extra space. We recommend
+.B \-restart 1
+for images that will be transmitted across unreliable networks such as Usenet.
+.PP
+The
+.B \-smooth
+option filters the input to eliminate fine-scale noise. This is often useful
+when converting dithered images to JPEG: a moderate smoothing factor of 10 to
+50 gets rid of dithering patterns in the input file, resulting in a smaller
+JPEG file and a better-looking image. Too large a smoothing factor will
+visibly blur the image, however.
+.PP
+Switches for wizards:
+.TP
+.B \-arithmetic
+Use arithmetic coding.
+.B Caution:
+arithmetic coded JPEG is not yet widely implemented, so many decoders will be
+unable to view an arithmetic coded JPEG file at all.
+.TP
+.B \-baseline
+Force baseline-compatible quantization tables to be generated. This clamps
+quantization values to 8 bits even at low quality settings. (This switch is
+poorly named, since it does not ensure that the output is actually baseline
+JPEG. For example, you can use
+.B \-baseline
+and
+.B \-progressive
+together.)
+.TP
+.BI \-qtables " file"
+Use the quantization tables given in the specified text file.
+.TP
+.BI \-qslots " N[,...]"
+Select which quantization table to use for each color component.
+.TP
+.BI \-sample " HxV[,...]"
+Set JPEG sampling factors for each color component.
+.TP
+.BI \-scans " file"
+Use the scan script given in the specified text file.
+.PP
+The "wizard" switches are intended for experimentation with JPEG. If you
+don't know what you are doing, \fBdon't use them\fR. These switches are
+documented further in the file wizard.txt.
+.SH EXAMPLES
+.LP
+This example compresses the PPM file foo.ppm with a quality factor of
+60 and saves the output as foo.jpg:
+.IP
+.B cjpeg \-quality
+.I 60 foo.ppm
+.B >
+.I foo.jpg
+.SH HINTS
+Color GIF files are not the ideal input for JPEG; JPEG is really intended for
+compressing full-color (24-bit) images. In particular, don't try to convert
+cartoons, line drawings, and other images that have only a few distinct
+colors. GIF works great on these, JPEG does not. If you want to convert a
+GIF to JPEG, you should experiment with
+.BR cjpeg 's
+.B \-quality
+and
+.B \-smooth
+options to get a satisfactory conversion.
+.B \-smooth 10
+or so is often helpful.
+.PP
+Avoid running an image through a series of JPEG compression/decompression
+cycles. Image quality loss will accumulate; after ten or so cycles the image
+may be noticeably worse than it was after one cycle. It's best to use a
+lossless format while manipulating an image, then convert to JPEG format when
+you are ready to file the image away.
+.PP
+The
+.B \-optimize
+option to
+.B cjpeg
+is worth using when you are making a "final" version for posting or archiving.
+It's also a win when you are using low quality settings to make very small
+JPEG files; the percentage improvement is often a lot more than it is on
+larger files. (At present,
+.B \-optimize
+mode is always selected when generating progressive JPEG files.)
+.SH ENVIRONMENT
+.TP
+.B JPEGMEM
+If this environment variable is set, its value is the default memory limit.
+The value is specified as described for the
+.B \-maxmemory
+switch.
+.B JPEGMEM
+overrides the default value specified when the program was compiled, and
+itself is overridden by an explicit
+.BR \-maxmemory .
+.SH SEE ALSO
+.BR djpeg (1),
+.BR jpegtran (1),
+.BR rdjpgcom (1),
+.BR wrjpgcom (1)
+.br
+.BR ppm (5),
+.BR pgm (5)
+.br
+Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
+Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
+.SH AUTHOR
+Independent JPEG Group
+.SH BUGS
+GIF input files are no longer supported, to avoid the Unisys LZW patent.
+(Conversion of GIF files to JPEG is usually a bad idea anyway.)
+.PP
+Not all variants of BMP and Targa file formats are supported.
+.PP
+The
+.B \-targa
+switch is not a bug, it's a feature. (It would be a bug if the Targa format
+designers had not been clueless.)
diff --git a/src/3rdparty/libjpeg/ckconfig.c b/src/3rdparty/libjpeg/ckconfig.c
new file mode 100644
index 0000000..e658623
--- /dev/null
+++ b/src/3rdparty/libjpeg/ckconfig.c
@@ -0,0 +1,402 @@
+/*
+ * ckconfig.c
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ */
+
+/*
+ * This program is intended to help you determine how to configure the JPEG
+ * software for installation on a particular system. The idea is to try to
+ * compile and execute this program. If your compiler fails to compile the
+ * program, make changes as indicated in the comments below. Once you can
+ * compile the program, run it, and it will produce a "jconfig.h" file for
+ * your system.
+ *
+ * As a general rule, each time you try to compile this program,
+ * pay attention only to the *first* error message you get from the compiler.
+ * Many C compilers will issue lots of spurious error messages once they
+ * have gotten confused. Go to the line indicated in the first error message,
+ * and read the comments preceding that line to see what to change.
+ *
+ * Almost all of the edits you may need to make to this program consist of
+ * changing a line that reads "#define SOME_SYMBOL" to "#undef SOME_SYMBOL",
+ * or vice versa. This is called defining or undefining that symbol.
+ */
+
+
+/* First we must see if your system has the include files we need.
+ * We start out with the assumption that your system has all the ANSI-standard
+ * include files. If you get any error trying to include one of these files,
+ * undefine the corresponding HAVE_xxx symbol.
+ */
+
+#define HAVE_STDDEF_H /* replace 'define' by 'undef' if error here */
+#ifdef HAVE_STDDEF_H /* next line will be skipped if you undef... */
+#include <stddef.h>
+#endif
+
+#define HAVE_STDLIB_H /* same thing for stdlib.h */
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#include <stdio.h> /* If you ain't got this, you ain't got C. */
+
+/* We have to see if your string functions are defined by
+ * strings.h (old BSD convention) or string.h (everybody else).
+ * We try the non-BSD convention first; define NEED_BSD_STRINGS
+ * if the compiler says it can't find string.h.
+ */
+
+#undef NEED_BSD_STRINGS
+
+#ifdef NEED_BSD_STRINGS
+#include <strings.h>
+#else
+#include <string.h>
+#endif
+
+/* On some systems (especially older Unix machines), type size_t is
+ * defined only in the include file <sys/types.h>. If you get a failure
+ * on the size_t test below, try defining NEED_SYS_TYPES_H.
+ */
+
+#undef NEED_SYS_TYPES_H /* start by assuming we don't need it */
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+
+/* Usually type size_t is defined in one of the include files we've included
+ * above. If not, you'll get an error on the "typedef size_t my_size_t;" line.
+ * In that case, first try defining NEED_SYS_TYPES_H just above.
+ * If that doesn't work, you'll have to search through your system library
+ * to figure out which include file defines "size_t". Look for a line that
+ * says "typedef something-or-other size_t;". Then, change the line below
+ * that says "#include <someincludefile.h>" to instead include the file
+ * you found size_t in, and define NEED_SPECIAL_INCLUDE. If you can't find
+ * type size_t anywhere, try replacing "#include <someincludefile.h>" with
+ * "typedef unsigned int size_t;".
+ */
+
+#undef NEED_SPECIAL_INCLUDE /* assume we DON'T need it, for starters */
+
+#ifdef NEED_SPECIAL_INCLUDE
+#include <someincludefile.h>
+#endif
+
+typedef size_t my_size_t; /* The payoff: do we have size_t now? */
+
+
+/* The next question is whether your compiler supports ANSI-style function
+ * prototypes. You need to know this in order to choose between using
+ * makefile.ansi and using makefile.unix.
+ * The #define line below is set to assume you have ANSI function prototypes.
+ * If you get an error in this group of lines, undefine HAVE_PROTOTYPES.
+ */
+
+#define HAVE_PROTOTYPES
+
+#ifdef HAVE_PROTOTYPES
+int testfunction (int arg1, int * arg2); /* check prototypes */
+
+struct methods_struct { /* check method-pointer declarations */
+ int (*error_exit) (char *msgtext);
+ int (*trace_message) (char *msgtext);
+ int (*another_method) (void);
+};
+
+int testfunction (int arg1, int * arg2) /* check definitions */
+{
+ return arg2[arg1];
+}
+
+int test2function (void) /* check void arg list */
+{
+ return 0;
+}
+#endif
+
+
+/* Now we want to find out if your compiler knows what "unsigned char" means.
+ * If you get an error on the "unsigned char un_char;" line,
+ * then undefine HAVE_UNSIGNED_CHAR.
+ */
+
+#define HAVE_UNSIGNED_CHAR
+
+#ifdef HAVE_UNSIGNED_CHAR
+unsigned char un_char;
+#endif
+
+
+/* Now we want to find out if your compiler knows what "unsigned short" means.
+ * If you get an error on the "unsigned short un_short;" line,
+ * then undefine HAVE_UNSIGNED_SHORT.
+ */
+
+#define HAVE_UNSIGNED_SHORT
+
+#ifdef HAVE_UNSIGNED_SHORT
+unsigned short un_short;
+#endif
+
+
+/* Now we want to find out if your compiler understands type "void".
+ * If you get an error anywhere in here, undefine HAVE_VOID.
+ */
+
+#define HAVE_VOID
+
+#ifdef HAVE_VOID
+/* Caution: a C++ compiler will insist on complete prototypes */
+typedef void * void_ptr; /* check void * */
+#ifdef HAVE_PROTOTYPES /* check ptr to function returning void */
+typedef void (*void_func) (int a, int b);
+#else
+typedef void (*void_func) ();
+#endif
+
+#ifdef HAVE_PROTOTYPES /* check void function result */
+void test3function (void_ptr arg1, void_func arg2)
+#else
+void test3function (arg1, arg2)
+ void_ptr arg1;
+ void_func arg2;
+#endif
+{
+ char * locptr = (char *) arg1; /* check casting to and from void * */
+ arg1 = (void *) locptr;
+ (*arg2) (1, 2); /* check call of fcn returning void */
+}
+#endif
+
+
+/* Now we want to find out if your compiler knows what "const" means.
+ * If you get an error here, undefine HAVE_CONST.
+ */
+
+#define HAVE_CONST
+
+#ifdef HAVE_CONST
+static const int carray[3] = {1, 2, 3};
+
+#ifdef HAVE_PROTOTYPES
+int test4function (const int arg1)
+#else
+int test4function (arg1)
+ const int arg1;
+#endif
+{
+ return carray[arg1];
+}
+#endif
+
+
+/* If you get an error or warning about this structure definition,
+ * define INCOMPLETE_TYPES_BROKEN.
+ */
+
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifndef INCOMPLETE_TYPES_BROKEN
+typedef struct undefined_structure * undef_struct_ptr;
+#endif
+
+
+/* If you get an error about duplicate names,
+ * define NEED_SHORT_EXTERNAL_NAMES.
+ */
+
+#undef NEED_SHORT_EXTERNAL_NAMES
+
+#ifndef NEED_SHORT_EXTERNAL_NAMES
+
+int possibly_duplicate_function ()
+{
+ return 0;
+}
+
+int possibly_dupli_function ()
+{
+ return 1;
+}
+
+#endif
+
+
+
+/************************************************************************
+ * OK, that's it. You should not have to change anything beyond this
+ * point in order to compile and execute this program. (You might get
+ * some warnings, but you can ignore them.)
+ * When you run the program, it will make a couple more tests that it
+ * can do automatically, and then it will create jconfig.h and print out
+ * any additional suggestions it has.
+ ************************************************************************
+ */
+
+
+#ifdef HAVE_PROTOTYPES
+int is_char_signed (int arg)
+#else
+int is_char_signed (arg)
+ int arg;
+#endif
+{
+ if (arg == 189) { /* expected result for unsigned char */
+ return 0; /* type char is unsigned */
+ }
+ else if (arg != -67) { /* expected result for signed char */
+ printf("Hmm, it seems 'char' is not eight bits wide on your machine.\n");
+ printf("I fear the JPEG software will not work at all.\n\n");
+ }
+ return 1; /* assume char is signed otherwise */
+}
+
+
+#ifdef HAVE_PROTOTYPES
+int is_shifting_signed (long arg)
+#else
+int is_shifting_signed (arg)
+ long arg;
+#endif
+/* See whether right-shift on a long is signed or not. */
+{
+ long res = arg >> 4;
+
+ if (res == -0x7F7E80CL) { /* expected result for signed shift */
+ return 1; /* right shift is signed */
+ }
+ /* see if unsigned-shift hack will fix it. */
+ /* we can't just test exact value since it depends on width of long... */
+ res |= (~0L) << (32-4);
+ if (res == -0x7F7E80CL) { /* expected result now? */
+ return 0; /* right shift is unsigned */
+ }
+ printf("Right shift isn't acting as I expect it to.\n");
+ printf("I fear the JPEG software will not work at all.\n\n");
+ return 0; /* try it with unsigned anyway */
+}
+
+
+#ifdef HAVE_PROTOTYPES
+int main (int argc, char ** argv)
+#else
+int main (argc, argv)
+ int argc;
+ char ** argv;
+#endif
+{
+ char signed_char_check = (char) (-67);
+ FILE *outfile;
+
+ /* Attempt to write jconfig.h */
+ if ((outfile = fopen("jconfig.h", "w")) == NULL) {
+ printf("Failed to write jconfig.h\n");
+ return 1;
+ }
+
+ /* Write out all the info */
+ fprintf(outfile, "/* jconfig.h --- generated by ckconfig.c */\n");
+ fprintf(outfile, "/* see jconfig.txt for explanations */\n\n");
+#ifdef HAVE_PROTOTYPES
+ fprintf(outfile, "#define HAVE_PROTOTYPES\n");
+#else
+ fprintf(outfile, "#undef HAVE_PROTOTYPES\n");
+#endif
+#ifdef HAVE_UNSIGNED_CHAR
+ fprintf(outfile, "#define HAVE_UNSIGNED_CHAR\n");
+#else
+ fprintf(outfile, "#undef HAVE_UNSIGNED_CHAR\n");
+#endif
+#ifdef HAVE_UNSIGNED_SHORT
+ fprintf(outfile, "#define HAVE_UNSIGNED_SHORT\n");
+#else
+ fprintf(outfile, "#undef HAVE_UNSIGNED_SHORT\n");
+#endif
+#ifdef HAVE_VOID
+ fprintf(outfile, "/* #define void char */\n");
+#else
+ fprintf(outfile, "#define void char\n");
+#endif
+#ifdef HAVE_CONST
+ fprintf(outfile, "/* #define const */\n");
+#else
+ fprintf(outfile, "#define const\n");
+#endif
+ if (is_char_signed((int) signed_char_check))
+ fprintf(outfile, "#undef CHAR_IS_UNSIGNED\n");
+ else
+ fprintf(outfile, "#define CHAR_IS_UNSIGNED\n");
+#ifdef HAVE_STDDEF_H
+ fprintf(outfile, "#define HAVE_STDDEF_H\n");
+#else
+ fprintf(outfile, "#undef HAVE_STDDEF_H\n");
+#endif
+#ifdef HAVE_STDLIB_H
+ fprintf(outfile, "#define HAVE_STDLIB_H\n");
+#else
+ fprintf(outfile, "#undef HAVE_STDLIB_H\n");
+#endif
+#ifdef NEED_BSD_STRINGS
+ fprintf(outfile, "#define NEED_BSD_STRINGS\n");
+#else
+ fprintf(outfile, "#undef NEED_BSD_STRINGS\n");
+#endif
+#ifdef NEED_SYS_TYPES_H
+ fprintf(outfile, "#define NEED_SYS_TYPES_H\n");
+#else
+ fprintf(outfile, "#undef NEED_SYS_TYPES_H\n");
+#endif
+ fprintf(outfile, "#undef NEED_FAR_POINTERS\n");
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+ fprintf(outfile, "#define NEED_SHORT_EXTERNAL_NAMES\n");
+#else
+ fprintf(outfile, "#undef NEED_SHORT_EXTERNAL_NAMES\n");
+#endif
+#ifdef INCOMPLETE_TYPES_BROKEN
+ fprintf(outfile, "#define INCOMPLETE_TYPES_BROKEN\n");
+#else
+ fprintf(outfile, "#undef INCOMPLETE_TYPES_BROKEN\n");
+#endif
+ fprintf(outfile, "\n#ifdef JPEG_INTERNALS\n\n");
+ if (is_shifting_signed(-0x7F7E80B1L))
+ fprintf(outfile, "#undef RIGHT_SHIFT_IS_UNSIGNED\n");
+ else
+ fprintf(outfile, "#define RIGHT_SHIFT_IS_UNSIGNED\n");
+ fprintf(outfile, "\n#endif /* JPEG_INTERNALS */\n");
+ fprintf(outfile, "\n#ifdef JPEG_CJPEG_DJPEG\n\n");
+ fprintf(outfile, "#define BMP_SUPPORTED /* BMP image file format */\n");
+ fprintf(outfile, "#define GIF_SUPPORTED /* GIF image file format */\n");
+ fprintf(outfile, "#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */\n");
+ fprintf(outfile, "#undef RLE_SUPPORTED /* Utah RLE image file format */\n");
+ fprintf(outfile, "#define TARGA_SUPPORTED /* Targa image file format */\n\n");
+ fprintf(outfile, "#undef TWO_FILE_COMMANDLINE /* You may need this on non-Unix systems */\n");
+ fprintf(outfile, "#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */\n");
+ fprintf(outfile, "#undef DONT_USE_B_MODE\n");
+ fprintf(outfile, "/* #define PROGRESS_REPORT */ /* optional */\n");
+ fprintf(outfile, "\n#endif /* JPEG_CJPEG_DJPEG */\n");
+
+ /* Close the jconfig.h file */
+ fclose(outfile);
+
+ /* User report */
+ printf("Configuration check for Independent JPEG Group's software done.\n");
+ printf("\nI have written the jconfig.h file for you.\n\n");
+#ifdef HAVE_PROTOTYPES
+ printf("You should use makefile.ansi as the starting point for your Makefile.\n");
+#else
+ printf("You should use makefile.unix as the starting point for your Makefile.\n");
+#endif
+
+#ifdef NEED_SPECIAL_INCLUDE
+ printf("\nYou'll need to change jconfig.h to include the system include file\n");
+ printf("that you found type size_t in, or add a direct definition of type\n");
+ printf("size_t if that's what you used. Just add it to the end.\n");
+#endif
+
+ return 0;
+}
diff --git a/src/3rdparty/libjpeg/coderules.txt b/src/3rdparty/libjpeg/coderules.txt
new file mode 100644
index 0000000..357929f
--- /dev/null
+++ b/src/3rdparty/libjpeg/coderules.txt
@@ -0,0 +1,118 @@
+IJG JPEG LIBRARY: CODING RULES
+
+Copyright (C) 1991-1996, Thomas G. Lane.
+This file is part of the Independent JPEG Group's software.
+For conditions of distribution and use, see the accompanying README file.
+
+
+Since numerous people will be contributing code and bug fixes, it's important
+to establish a common coding style. The goal of using similar coding styles
+is much more important than the details of just what that style is.
+
+In general we follow the recommendations of "Recommended C Style and Coding
+Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and
+Brader). This document is available in the IJG FTP archive (see
+jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl).
+
+Block comments should be laid out thusly:
+
+/*
+ * Block comments in this style.
+ */
+
+We indent statements in K&R style, e.g.,
+ if (test) {
+ then-part;
+ } else {
+ else-part;
+ }
+with two spaces per indentation level. (This indentation convention is
+handled automatically by GNU Emacs and many other text editors.)
+
+Multi-word names should be written in lower case with underscores, e.g.,
+multi_word_name (not multiWordName). Preprocessor symbols and enum constants
+are similar but upper case (MULTI_WORD_NAME). Names should be unique within
+the first fifteen characters. (On some older systems, global names must be
+unique within six characters. We accommodate this without cluttering the
+source code by using macros to substitute shorter names.)
+
+We use function prototypes everywhere; we rely on automatic source code
+transformation to feed prototype-less C compilers. Transformation is done
+by the simple and portable tool 'ansi2knr.c' (courtesy of Ghostscript).
+ansi2knr is not very bright, so it imposes a format requirement on function
+declarations: the function name MUST BEGIN IN COLUMN 1. Thus all functions
+should be written in the following style:
+
+LOCAL(int *)
+function_name (int a, char *b)
+{
+ code...
+}
+
+Note that each function definition must begin with GLOBAL(type), LOCAL(type),
+or METHODDEF(type). These macros expand to "static type" or just "type" as
+appropriate. They provide a readable indication of the routine's usage and
+can readily be changed for special needs. (For instance, special linkage
+keywords can be inserted for use in Windows DLLs.)
+
+ansi2knr does not transform method declarations (function pointers in
+structs). We handle these with a macro JMETHOD, defined as
+ #ifdef HAVE_PROTOTYPES
+ #define JMETHOD(type,methodname,arglist) type (*methodname) arglist
+ #else
+ #define JMETHOD(type,methodname,arglist) type (*methodname) ()
+ #endif
+which is used like this:
+ struct function_pointers {
+ JMETHOD(void, init_entropy_encoder, (int somearg, jparms *jp));
+ JMETHOD(void, term_entropy_encoder, (void));
+ };
+Note the set of parentheses surrounding the parameter list.
+
+A similar solution is used for forward and external function declarations
+(see the EXTERN and JPP macros).
+
+If the code is to work on non-ANSI compilers, we cannot rely on a prototype
+declaration to coerce actual parameters into the right types. Therefore, use
+explicit casts on actual parameters whenever the actual parameter type is not
+identical to the formal parameter. Beware of implicit conversions to "int".
+
+It seems there are some non-ANSI compilers in which the sizeof() operator
+is defined to return int, yet size_t is defined as long. Needless to say,
+this is brain-damaged. Always use the SIZEOF() macro in place of sizeof(),
+so that the result is guaranteed to be of type size_t.
+
+
+The JPEG library is intended to be used within larger programs. Furthermore,
+we want it to be reentrant so that it can be used by applications that process
+multiple images concurrently. The following rules support these requirements:
+
+1. Avoid direct use of file I/O, "malloc", error report printouts, etc;
+pass these through the common routines provided.
+
+2. Minimize global namespace pollution. Functions should be declared static
+wherever possible. (Note that our method-based calling conventions help this
+a lot: in many modules only the initialization function will ever need to be
+called directly, so only that function need be externally visible.) All
+global function names should begin with "jpeg_", and should have an
+abbreviated name (unique in the first six characters) substituted by macro
+when NEED_SHORT_EXTERNAL_NAMES is set.
+
+3. Don't use global variables; anything that must be used in another module
+should be in the common data structures.
+
+4. Don't use static variables except for read-only constant tables. Variables
+that should be private to a module can be placed into private structures (see
+the system architecture document, structure.txt).
+
+5. Source file names should begin with "j" for files that are part of the
+library proper; source files that are not part of the library, such as cjpeg.c
+and djpeg.c, do not begin with "j". Keep source file names to eight
+characters (plus ".c" or ".h", etc) to make life easy for MS-DOSers. Keep
+compression and decompression code in separate source files --- some
+applications may want only one half of the library.
+
+Note: these rules (particularly #4) are not followed religiously in the
+modules that are used in cjpeg/djpeg but are not part of the JPEG library
+proper. Those modules are not really intended to be used in other
+applications.
diff --git a/src/3rdparty/libjpeg/djpeg.1 b/src/3rdparty/libjpeg/djpeg.1
new file mode 100644
index 0000000..f3722d1
--- /dev/null
+++ b/src/3rdparty/libjpeg/djpeg.1
@@ -0,0 +1,252 @@
+.TH DJPEG 1 "3 October 2009"
+.SH NAME
+djpeg \- decompress a JPEG file to an image file
+.SH SYNOPSIS
+.B djpeg
+[
+.I options
+]
+[
+.I filename
+]
+.LP
+.SH DESCRIPTION
+.LP
+.B djpeg
+decompresses the named JPEG file, or the standard input if no file is named,
+and produces an image file on the standard output. PBMPLUS (PPM/PGM), BMP,
+GIF, Targa, or RLE (Utah Raster Toolkit) output format can be selected.
+(RLE is supported only if the URT library is available.)
+.SH OPTIONS
+All switch names may be abbreviated; for example,
+.B \-grayscale
+may be written
+.B \-gray
+or
+.BR \-gr .
+Most of the "basic" switches can be abbreviated to as little as one letter.
+Upper and lower case are equivalent (thus
+.B \-BMP
+is the same as
+.BR \-bmp ).
+British spellings are also accepted (e.g.,
+.BR \-greyscale ),
+though for brevity these are not mentioned below.
+.PP
+The basic switches are:
+.TP
+.BI \-colors " N"
+Reduce image to at most N colors. This reduces the number of colors used in
+the output image, so that it can be displayed on a colormapped display or
+stored in a colormapped file format. For example, if you have an 8-bit
+display, you'd need to reduce to 256 or fewer colors.
+.TP
+.BI \-quantize " N"
+Same as
+.BR \-colors .
+.B \-colors
+is the recommended name,
+.B \-quantize
+is provided only for backwards compatibility.
+.TP
+.B \-fast
+Select recommended processing options for fast, low quality output. (The
+default options are chosen for highest quality output.) Currently, this is
+equivalent to \fB\-dct fast \-nosmooth \-onepass \-dither ordered\fR.
+.TP
+.B \-grayscale
+Force gray-scale output even if JPEG file is color. Useful for viewing on
+monochrome displays; also,
+.B djpeg
+runs noticeably faster in this mode.
+.TP
+.BI \-scale " M/N"
+Scale the output image by a factor M/N. Currently supported scale factors are
+M/N with all M from 1 to 16, where N is the source DCT size, which is 8 for
+baseline JPEG. If the /N part is omitted, then M specifies the DCT scaled
+size to be applied on the given input. For baseline JPEG this is equivalent
+to M/8 scaling, since the source DCT size for baseline JPEG is 8.
+Scaling is handy if the image is larger than your screen; also,
+.B djpeg
+runs much faster when scaling down the output.
+.TP
+.B \-bmp
+Select BMP output format (Windows flavor). 8-bit colormapped format is
+emitted if
+.B \-colors
+or
+.B \-grayscale
+is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color
+format is emitted.
+.TP
+.B \-gif
+Select GIF output format. Since GIF does not support more than 256 colors,
+.B \-colors 256
+is assumed (unless you specify a smaller number of colors).
+.TP
+.B \-os2
+Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is
+emitted if
+.B \-colors
+or
+.B \-grayscale
+is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color
+format is emitted.
+.TP
+.B \-pnm
+Select PBMPLUS (PPM/PGM) output format (this is the default format).
+PGM is emitted if the JPEG file is gray-scale or if
+.B \-grayscale
+is specified; otherwise PPM is emitted.
+.TP
+.B \-rle
+Select RLE output format. (Requires URT library.)
+.TP
+.B \-targa
+Select Targa output format. Gray-scale format is emitted if the JPEG file is
+gray-scale or if
+.B \-grayscale
+is specified; otherwise, colormapped format is emitted if
+.B \-colors
+is specified; otherwise, 24-bit full-color format is emitted.
+.PP
+Switches for advanced users:
+.TP
+.B \-dct int
+Use integer DCT method (default).
+.TP
+.B \-dct fast
+Use fast integer DCT (less accurate).
+.TP
+.B \-dct float
+Use floating-point DCT method.
+The float method is very slightly more accurate than the int method, but is
+much slower unless your machine has very fast floating-point hardware. Also
+note that results of the floating-point method may vary slightly across
+machines, while the integer methods should give the same results everywhere.
+The fast integer method is much less accurate than the other two.
+.TP
+.B \-dither fs
+Use Floyd-Steinberg dithering in color quantization.
+.TP
+.B \-dither ordered
+Use ordered dithering in color quantization.
+.TP
+.B \-dither none
+Do not use dithering in color quantization.
+By default, Floyd-Steinberg dithering is applied when quantizing colors; this
+is slow but usually produces the best results. Ordered dither is a compromise
+between speed and quality; no dithering is fast but usually looks awful. Note
+that these switches have no effect unless color quantization is being done.
+Ordered dither is only available in
+.B \-onepass
+mode.
+.TP
+.BI \-map " file"
+Quantize to the colors used in the specified image file. This is useful for
+producing multiple files with identical color maps, or for forcing a
+predefined set of colors to be used. The
+.I file
+must be a GIF or PPM file. This option overrides
+.B \-colors
+and
+.BR \-onepass .
+.TP
+.B \-nosmooth
+Don't use high-quality upsampling.
+.TP
+.B \-onepass
+Use one-pass instead of two-pass color quantization. The one-pass method is
+faster and needs less memory, but it produces a lower-quality image.
+.B \-onepass
+is ignored unless you also say
+.B \-colors
+.IR N .
+Also, the one-pass method is always used for gray-scale output (the two-pass
+method is no improvement then).
+.TP
+.BI \-maxmemory " N"
+Set limit for amount of memory to use in processing large images. Value is
+in thousands of bytes, or millions of bytes if "M" is attached to the
+number. For example,
+.B \-max 4m
+selects 4000000 bytes. If more space is needed, temporary files will be used.
+.TP
+.BI \-outfile " name"
+Send output image to the named file, not to standard output.
+.TP
+.B \-verbose
+Enable debug printout. More
+.BR \-v 's
+give more output. Also, version information is printed at startup.
+.TP
+.B \-debug
+Same as
+.BR \-verbose .
+.SH EXAMPLES
+.LP
+This example decompresses the JPEG file foo.jpg, quantizes it to
+256 colors, and saves the output in 8-bit BMP format in foo.bmp:
+.IP
+.B djpeg \-colors 256 \-bmp
+.I foo.jpg
+.B >
+.I foo.bmp
+.SH HINTS
+To get a quick preview of an image, use the
+.B \-grayscale
+and/or
+.B \-scale
+switches.
+.B \-grayscale \-scale 1/8
+is the fastest case.
+.PP
+Several options are available that trade off image quality to gain speed.
+.B \-fast
+turns on the recommended settings.
+.PP
+.B \-dct fast
+and/or
+.B \-nosmooth
+gain speed at a small sacrifice in quality.
+When producing a color-quantized image,
+.B \-onepass \-dither ordered
+is fast but much lower quality than the default behavior.
+.B \-dither none
+may give acceptable results in two-pass mode, but is seldom tolerable in
+one-pass mode.
+.PP
+If you are fortunate enough to have very fast floating point hardware,
+\fB\-dct float\fR may be even faster than \fB\-dct fast\fR. But on most
+machines \fB\-dct float\fR is slower than \fB\-dct int\fR; in this case it is
+not worth using, because its theoretical accuracy advantage is too small to be
+significant in practice.
+.SH ENVIRONMENT
+.TP
+.B JPEGMEM
+If this environment variable is set, its value is the default memory limit.
+The value is specified as described for the
+.B \-maxmemory
+switch.
+.B JPEGMEM
+overrides the default value specified when the program was compiled, and
+itself is overridden by an explicit
+.BR \-maxmemory .
+.SH SEE ALSO
+.BR cjpeg (1),
+.BR jpegtran (1),
+.BR rdjpgcom (1),
+.BR wrjpgcom (1)
+.br
+.BR ppm (5),
+.BR pgm (5)
+.br
+Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
+Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
+.SH AUTHOR
+Independent JPEG Group
+.SH BUGS
+To avoid the Unisys LZW patent,
+.B djpeg
+produces uncompressed GIF files. These are larger than they should be, but
+are readable by standard GIF decoders.
diff --git a/src/3rdparty/libjpeg/example.c b/src/3rdparty/libjpeg/example.c
new file mode 100644
index 0000000..1d6f6cc
--- /dev/null
+++ b/src/3rdparty/libjpeg/example.c
@@ -0,0 +1,433 @@
+/*
+ * example.c
+ *
+ * This file illustrates how to use the IJG code as a subroutine library
+ * to read or write JPEG image files. You should look at this code in
+ * conjunction with the documentation file libjpeg.txt.
+ *
+ * This code will not do anything useful as-is, but it may be helpful as a
+ * skeleton for constructing routines that call the JPEG library.
+ *
+ * We present these routines in the same coding style used in the JPEG code
+ * (ANSI function definitions, etc); but you are of course free to code your
+ * routines in a different style if you prefer.
+ */
+
+#include <stdio.h>
+
+/*
+ * Include file for users of JPEG library.
+ * You will need to have included system headers that define at least
+ * the typedefs FILE and size_t before you can include jpeglib.h.
+ * (stdio.h is sufficient on ANSI-conforming systems.)
+ * You may also wish to include "jerror.h".
+ */
+
+#include "jpeglib.h"
+
+/*
+ * <setjmp.h> is used for the optional error recovery mechanism shown in
+ * the second part of the example.
+ */
+
+#include <setjmp.h>
+
+
+
+/******************** JPEG COMPRESSION SAMPLE INTERFACE *******************/
+
+/* This half of the example shows how to feed data into the JPEG compressor.
+ * We present a minimal version that does not worry about refinements such
+ * as error recovery (the JPEG code will just exit() if it gets an error).
+ */
+
+
+/*
+ * IMAGE DATA FORMATS:
+ *
+ * The standard input image format is a rectangular array of pixels, with
+ * each pixel having the same number of "component" values (color channels).
+ * Each pixel row is an array of JSAMPLEs (which typically are unsigned chars).
+ * If you are working with color data, then the color values for each pixel
+ * must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit
+ * RGB color.
+ *
+ * For this example, we'll assume that this data structure matches the way
+ * our application has stored the image in memory, so we can just pass a
+ * pointer to our image buffer. In particular, let's say that the image is
+ * RGB color and is described by:
+ */
+
+extern JSAMPLE * image_buffer; /* Points to large array of R,G,B-order data */
+extern int image_height; /* Number of rows in image */
+extern int image_width; /* Number of columns in image */
+
+
+/*
+ * Sample routine for JPEG compression. We assume that the target file name
+ * and a compression quality factor are passed in.
+ */
+
+GLOBAL(void)
+write_JPEG_file (char * filename, int quality)
+{
+ /* This struct contains the JPEG compression parameters and pointers to
+ * working space (which is allocated as needed by the JPEG library).
+ * It is possible to have several such structures, representing multiple
+ * compression/decompression processes, in existence at once. We refer
+ * to any one struct (and its associated working data) as a "JPEG object".
+ */
+ struct jpeg_compress_struct cinfo;
+ /* This struct represents a JPEG error handler. It is declared separately
+ * because applications often want to supply a specialized error handler
+ * (see the second half of this file for an example). But here we just
+ * take the easy way out and use the standard error handler, which will
+ * print a message on stderr and call exit() if compression fails.
+ * Note that this struct must live as long as the main JPEG parameter
+ * struct, to avoid dangling-pointer problems.
+ */
+ struct jpeg_error_mgr jerr;
+ /* More stuff */
+ FILE * outfile; /* target file */
+ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
+ int row_stride; /* physical row width in image buffer */
+
+ /* Step 1: allocate and initialize JPEG compression object */
+
+ /* We have to set up the error handler first, in case the initialization
+ * step fails. (Unlikely, but it could happen if you are out of memory.)
+ * This routine fills in the contents of struct jerr, and returns jerr's
+ * address which we place into the link field in cinfo.
+ */
+ cinfo.err = jpeg_std_error(&jerr);
+ /* Now we can initialize the JPEG compression object. */
+ jpeg_create_compress(&cinfo);
+
+ /* Step 2: specify data destination (eg, a file) */
+ /* Note: steps 2 and 3 can be done in either order. */
+
+ /* Here we use the library-supplied code to send compressed data to a
+ * stdio stream. You can also write your own code to do something else.
+ * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
+ * requires it in order to write binary files.
+ */
+ if ((outfile = fopen(filename, "wb")) == NULL) {
+ fprintf(stderr, "can't open %s\n", filename);
+ exit(1);
+ }
+ jpeg_stdio_dest(&cinfo, outfile);
+
+ /* Step 3: set parameters for compression */
+
+ /* First we supply a description of the input image.
+ * Four fields of the cinfo struct must be filled in:
+ */
+ cinfo.image_width = image_width; /* image width and height, in pixels */
+ cinfo.image_height = image_height;
+ cinfo.input_components = 3; /* # of color components per pixel */
+ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
+ /* Now use the library's routine to set default compression parameters.
+ * (You must set at least cinfo.in_color_space before calling this,
+ * since the defaults depend on the source color space.)
+ */
+ jpeg_set_defaults(&cinfo);
+ /* Now you can set any non-default parameters you wish to.
+ * Here we just illustrate the use of quality (quantization table) scaling:
+ */
+ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
+
+ /* Step 4: Start compressor */
+
+ /* TRUE ensures that we will write a complete interchange-JPEG file.
+ * Pass TRUE unless you are very sure of what you're doing.
+ */
+ jpeg_start_compress(&cinfo, TRUE);
+
+ /* Step 5: while (scan lines remain to be written) */
+ /* jpeg_write_scanlines(...); */
+
+ /* Here we use the library's state variable cinfo.next_scanline as the
+ * loop counter, so that we don't have to keep track ourselves.
+ * To keep things simple, we pass one scanline per call; you can pass
+ * more if you wish, though.
+ */
+ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
+
+ while (cinfo.next_scanline < cinfo.image_height) {
+ /* jpeg_write_scanlines expects an array of pointers to scanlines.
+ * Here the array is only one element long, but you could pass
+ * more than one scanline at a time if that's more convenient.
+ */
+ row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
+ (void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
+ }
+
+ /* Step 6: Finish compression */
+
+ jpeg_finish_compress(&cinfo);
+ /* After finish_compress, we can close the output file. */
+ fclose(outfile);
+
+ /* Step 7: release JPEG compression object */
+
+ /* This is an important step since it will release a good deal of memory. */
+ jpeg_destroy_compress(&cinfo);
+
+ /* And we're done! */
+}
+
+
+/*
+ * SOME FINE POINTS:
+ *
+ * In the above loop, we ignored the return value of jpeg_write_scanlines,
+ * which is the number of scanlines actually written. We could get away
+ * with this because we were only relying on the value of cinfo.next_scanline,
+ * which will be incremented correctly. If you maintain additional loop
+ * variables then you should be careful to increment them properly.
+ * Actually, for output to a stdio stream you needn't worry, because
+ * then jpeg_write_scanlines will write all the lines passed (or else exit
+ * with a fatal error). Partial writes can only occur if you use a data
+ * destination module that can demand suspension of the compressor.
+ * (If you don't know what that's for, you don't need it.)
+ *
+ * If the compressor requires full-image buffers (for entropy-coding
+ * optimization or a multi-scan JPEG file), it will create temporary
+ * files for anything that doesn't fit within the maximum-memory setting.
+ * (Note that temp files are NOT needed if you use the default parameters.)
+ * On some systems you may need to set up a signal handler to ensure that
+ * temporary files are deleted if the program is interrupted. See libjpeg.txt.
+ *
+ * Scanlines MUST be supplied in top-to-bottom order if you want your JPEG
+ * files to be compatible with everyone else's. If you cannot readily read
+ * your data in that order, you'll need an intermediate array to hold the
+ * image. See rdtarga.c or rdbmp.c for examples of handling bottom-to-top
+ * source data using the JPEG code's internal virtual-array mechanisms.
+ */
+
+
+
+/******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/
+
+/* This half of the example shows how to read data from the JPEG decompressor.
+ * It's a bit more refined than the above, in that we show:
+ * (a) how to modify the JPEG library's standard error-reporting behavior;
+ * (b) how to allocate workspace using the library's memory manager.
+ *
+ * Just to make this example a little different from the first one, we'll
+ * assume that we do not intend to put the whole image into an in-memory
+ * buffer, but to send it line-by-line someplace else. We need a one-
+ * scanline-high JSAMPLE array as a work buffer, and we will let the JPEG
+ * memory manager allocate it for us. This approach is actually quite useful
+ * because we don't need to remember to deallocate the buffer separately: it
+ * will go away automatically when the JPEG object is cleaned up.
+ */
+
+
+/*
+ * ERROR HANDLING:
+ *
+ * The JPEG library's standard error handler (jerror.c) is divided into
+ * several "methods" which you can override individually. This lets you
+ * adjust the behavior without duplicating a lot of code, which you might
+ * have to update with each future release.
+ *
+ * Our example here shows how to override the "error_exit" method so that
+ * control is returned to the library's caller when a fatal error occurs,
+ * rather than calling exit() as the standard error_exit method does.
+ *
+ * We use C's setjmp/longjmp facility to return control. This means that the
+ * routine which calls the JPEG library must first execute a setjmp() call to
+ * establish the return point. We want the replacement error_exit to do a
+ * longjmp(). But we need to make the setjmp buffer accessible to the
+ * error_exit routine. To do this, we make a private extension of the
+ * standard JPEG error handler object. (If we were using C++, we'd say we
+ * were making a subclass of the regular error handler.)
+ *
+ * Here's the extended error handler struct:
+ */
+
+struct my_error_mgr {
+ struct jpeg_error_mgr pub; /* "public" fields */
+
+ jmp_buf setjmp_buffer; /* for return to caller */
+};
+
+typedef struct my_error_mgr * my_error_ptr;
+
+/*
+ * Here's the routine that will replace the standard error_exit method:
+ */
+
+METHODDEF(void)
+my_error_exit (j_common_ptr cinfo)
+{
+ /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
+ my_error_ptr myerr = (my_error_ptr) cinfo->err;
+
+ /* Always display the message. */
+ /* We could postpone this until after returning, if we chose. */
+ (*cinfo->err->output_message) (cinfo);
+
+ /* Return control to the setjmp point */
+ longjmp(myerr->setjmp_buffer, 1);
+}
+
+
+/*
+ * Sample routine for JPEG decompression. We assume that the source file name
+ * is passed in. We want to return 1 on success, 0 on error.
+ */
+
+
+GLOBAL(int)
+read_JPEG_file (char * filename)
+{
+ /* This struct contains the JPEG decompression parameters and pointers to
+ * working space (which is allocated as needed by the JPEG library).
+ */
+ struct jpeg_decompress_struct cinfo;
+ /* We use our private extension JPEG error handler.
+ * Note that this struct must live as long as the main JPEG parameter
+ * struct, to avoid dangling-pointer problems.
+ */
+ struct my_error_mgr jerr;
+ /* More stuff */
+ FILE * infile; /* source file */
+ JSAMPARRAY buffer; /* Output row buffer */
+ int row_stride; /* physical row width in output buffer */
+
+ /* In this example we want to open the input file before doing anything else,
+ * so that the setjmp() error recovery below can assume the file is open.
+ * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
+ * requires it in order to read binary files.
+ */
+
+ if ((infile = fopen(filename, "rb")) == NULL) {
+ fprintf(stderr, "can't open %s\n", filename);
+ return 0;
+ }
+
+ /* Step 1: allocate and initialize JPEG decompression object */
+
+ /* We set up the normal JPEG error routines, then override error_exit. */
+ cinfo.err = jpeg_std_error(&jerr.pub);
+ jerr.pub.error_exit = my_error_exit;
+ /* Establish the setjmp return context for my_error_exit to use. */
+ if (setjmp(jerr.setjmp_buffer)) {
+ /* If we get here, the JPEG code has signaled an error.
+ * We need to clean up the JPEG object, close the input file, and return.
+ */
+ jpeg_destroy_decompress(&cinfo);
+ fclose(infile);
+ return 0;
+ }
+ /* Now we can initialize the JPEG decompression object. */
+ jpeg_create_decompress(&cinfo);
+
+ /* Step 2: specify data source (eg, a file) */
+
+ jpeg_stdio_src(&cinfo, infile);
+
+ /* Step 3: read file parameters with jpeg_read_header() */
+
+ (void) jpeg_read_header(&cinfo, TRUE);
+ /* We can ignore the return value from jpeg_read_header since
+ * (a) suspension is not possible with the stdio data source, and
+ * (b) we passed TRUE to reject a tables-only JPEG file as an error.
+ * See libjpeg.txt for more info.
+ */
+
+ /* Step 4: set parameters for decompression */
+
+ /* In this example, we don't need to change any of the defaults set by
+ * jpeg_read_header(), so we do nothing here.
+ */
+
+ /* Step 5: Start decompressor */
+
+ (void) jpeg_start_decompress(&cinfo);
+ /* We can ignore the return value since suspension is not possible
+ * with the stdio data source.
+ */
+
+ /* We may need to do some setup of our own at this point before reading
+ * the data. After jpeg_start_decompress() we have the correct scaled
+ * output image dimensions available, as well as the output colormap
+ * if we asked for color quantization.
+ * In this example, we need to make an output work buffer of the right size.
+ */
+ /* JSAMPLEs per row in output buffer */
+ row_stride = cinfo.output_width * cinfo.output_components;
+ /* Make a one-row-high sample array that will go away when done with image */
+ buffer = (*cinfo.mem->alloc_sarray)
+ ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
+
+ /* Step 6: while (scan lines remain to be read) */
+ /* jpeg_read_scanlines(...); */
+
+ /* Here we use the library's state variable cinfo.output_scanline as the
+ * loop counter, so that we don't have to keep track ourselves.
+ */
+ while (cinfo.output_scanline < cinfo.output_height) {
+ /* jpeg_read_scanlines expects an array of pointers to scanlines.
+ * Here the array is only one element long, but you could ask for
+ * more than one scanline at a time if that's more convenient.
+ */
+ (void) jpeg_read_scanlines(&cinfo, buffer, 1);
+ /* Assume put_scanline_someplace wants a pointer and sample count. */
+ put_scanline_someplace(buffer[0], row_stride);
+ }
+
+ /* Step 7: Finish decompression */
+
+ (void) jpeg_finish_decompress(&cinfo);
+ /* We can ignore the return value since suspension is not possible
+ * with the stdio data source.
+ */
+
+ /* Step 8: Release JPEG decompression object */
+
+ /* This is an important step since it will release a good deal of memory. */
+ jpeg_destroy_decompress(&cinfo);
+
+ /* After finish_decompress, we can close the input file.
+ * Here we postpone it until after no more JPEG errors are possible,
+ * so as to simplify the setjmp error logic above. (Actually, I don't
+ * think that jpeg_destroy can do an error exit, but why assume anything...)
+ */
+ fclose(infile);
+
+ /* At this point you may want to check to see whether any corrupt-data
+ * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
+ */
+
+ /* And we're done! */
+ return 1;
+}
+
+
+/*
+ * SOME FINE POINTS:
+ *
+ * In the above code, we ignored the return value of jpeg_read_scanlines,
+ * which is the number of scanlines actually read. We could get away with
+ * this because we asked for only one line at a time and we weren't using
+ * a suspending data source. See libjpeg.txt for more info.
+ *
+ * We cheated a bit by calling alloc_sarray() after jpeg_start_decompress();
+ * we should have done it beforehand to ensure that the space would be
+ * counted against the JPEG max_memory setting. In some systems the above
+ * code would risk an out-of-memory error. However, in general we don't
+ * know the output image dimensions before jpeg_start_decompress(), unless we
+ * call jpeg_calc_output_dimensions(). See libjpeg.txt for more about this.
+ *
+ * Scanlines are returned in the same order as they appear in the JPEG file,
+ * which is standardly top-to-bottom. If you must emit data bottom-to-top,
+ * you can use one of the virtual arrays provided by the JPEG memory manager
+ * to invert the data. See wrbmp.c for an example.
+ *
+ * As with compression, some operating modes may require temporary files.
+ * On some systems you may need to set up a signal handler to ensure that
+ * temporary files are deleted if the program is interrupted. See libjpeg.txt.
+ */
diff --git a/src/3rdparty/libjpeg/filelist.txt b/src/3rdparty/libjpeg/filelist.txt
new file mode 100644
index 0000000..7e05386
--- /dev/null
+++ b/src/3rdparty/libjpeg/filelist.txt
@@ -0,0 +1,215 @@
+IJG JPEG LIBRARY: FILE LIST
+
+Copyright (C) 1994-2009, Thomas G. Lane, Guido Vollbeding.
+This file is part of the Independent JPEG Group's software.
+For conditions of distribution and use, see the accompanying README file.
+
+
+Here is a road map to the files in the IJG JPEG distribution. The
+distribution includes the JPEG library proper, plus two application
+programs ("cjpeg" and "djpeg") which use the library to convert JPEG
+files to and from some other popular image formats. A third application
+"jpegtran" uses the library to do lossless conversion between different
+variants of JPEG. There are also two stand-alone applications,
+"rdjpgcom" and "wrjpgcom".
+
+
+THE JPEG LIBRARY
+================
+
+Include files:
+
+jpeglib.h JPEG library's exported data and function declarations.
+jconfig.h Configuration declarations. Note: this file is not present
+ in the distribution; it is generated during installation.
+jmorecfg.h Additional configuration declarations; need not be changed
+ for a standard installation.
+jerror.h Declares JPEG library's error and trace message codes.
+jinclude.h Central include file used by all IJG .c files to reference
+ system include files.
+jpegint.h JPEG library's internal data structures.
+jdct.h Private declarations for forward & reverse DCT subsystems.
+jmemsys.h Private declarations for memory management subsystem.
+jversion.h Version information.
+
+Applications using the library should include jpeglib.h (which in turn
+includes jconfig.h and jmorecfg.h). Optionally, jerror.h may be included
+if the application needs to reference individual JPEG error codes. The
+other include files are intended for internal use and would not normally
+be included by an application program. (cjpeg/djpeg/etc do use jinclude.h,
+since its function is to improve portability of the whole IJG distribution.
+Most other applications will directly include the system include files they
+want, and hence won't need jinclude.h.)
+
+
+C source code files:
+
+These files contain most of the functions intended to be called directly by
+an application program:
+
+jcapimin.c Application program interface: core routines for compression.
+jcapistd.c Application program interface: standard compression.
+jdapimin.c Application program interface: core routines for decompression.
+jdapistd.c Application program interface: standard decompression.
+jcomapi.c Application program interface routines common to compression
+ and decompression.
+jcparam.c Compression parameter setting helper routines.
+jctrans.c API and library routines for transcoding compression.
+jdtrans.c API and library routines for transcoding decompression.
+
+Compression side of the library:
+
+jcinit.c Initialization: determines which other modules to use.
+jcmaster.c Master control: setup and inter-pass sequencing logic.
+jcmainct.c Main buffer controller (preprocessor => JPEG compressor).
+jcprepct.c Preprocessor buffer controller.
+jccoefct.c Buffer controller for DCT coefficient buffer.
+jccolor.c Color space conversion.
+jcsample.c Downsampling.
+jcdctmgr.c DCT manager (DCT implementation selection & control).
+jfdctint.c Forward DCT using slow-but-accurate integer method.
+jfdctfst.c Forward DCT using faster, less accurate integer method.
+jfdctflt.c Forward DCT using floating-point arithmetic.
+jchuff.c Huffman entropy coding.
+jcarith.c Arithmetic entropy coding.
+jcmarker.c JPEG marker writing.
+jdatadst.c Data destination managers for memory and stdio output.
+
+Decompression side of the library:
+
+jdmaster.c Master control: determines which other modules to use.
+jdinput.c Input controller: controls input processing modules.
+jdmainct.c Main buffer controller (JPEG decompressor => postprocessor).
+jdcoefct.c Buffer controller for DCT coefficient buffer.
+jdpostct.c Postprocessor buffer controller.
+jdmarker.c JPEG marker reading.
+jdhuff.c Huffman entropy decoding.
+jdarith.c Arithmetic entropy decoding.
+jddctmgr.c IDCT manager (IDCT implementation selection & control).
+jidctint.c Inverse DCT using slow-but-accurate integer method.
+jidctfst.c Inverse DCT using faster, less accurate integer method.
+jidctflt.c Inverse DCT using floating-point arithmetic.
+jdsample.c Upsampling.
+jdcolor.c Color space conversion.
+jdmerge.c Merged upsampling/color conversion (faster, lower quality).
+jquant1.c One-pass color quantization using a fixed-spacing colormap.
+jquant2.c Two-pass color quantization using a custom-generated colormap.
+ Also handles one-pass quantization to an externally given map.
+jdatasrc.c Data source managers for memory and stdio input.
+
+Support files for both compression and decompression:
+
+jaricom.c Tables for common use in arithmetic entropy encoding and
+ decoding routines.
+jerror.c Standard error handling routines (application replaceable).
+jmemmgr.c System-independent (more or less) memory management code.
+jutils.c Miscellaneous utility routines.
+
+jmemmgr.c relies on a system-dependent memory management module. The IJG
+distribution includes the following implementations of the system-dependent
+module:
+
+jmemnobs.c "No backing store": assumes adequate virtual memory exists.
+jmemansi.c Makes temporary files with ANSI-standard routine tmpfile().
+jmemname.c Makes temporary files with program-generated file names.
+jmemdos.c Custom implementation for MS-DOS (16-bit environment only):
+ can use extended and expanded memory as well as temp files.
+jmemmac.c Custom implementation for Apple Macintosh.
+
+Exactly one of the system-dependent modules should be configured into an
+installed JPEG library (see install.txt for hints about which one to use).
+On unusual systems you may find it worthwhile to make a special
+system-dependent memory manager.
+
+
+Non-C source code files:
+
+jmemdosa.asm 80x86 assembly code support for jmemdos.c; used only in
+ MS-DOS-specific configurations of the JPEG library.
+
+
+CJPEG/DJPEG/JPEGTRAN
+====================
+
+Include files:
+
+cdjpeg.h Declarations shared by cjpeg/djpeg/jpegtran modules.
+cderror.h Additional error and trace message codes for cjpeg et al.
+transupp.h Declarations for jpegtran support routines in transupp.c.
+
+C source code files:
+
+cjpeg.c Main program for cjpeg.
+djpeg.c Main program for djpeg.
+jpegtran.c Main program for jpegtran.
+cdjpeg.c Utility routines used by all three programs.
+rdcolmap.c Code to read a colormap file for djpeg's "-map" switch.
+rdswitch.c Code to process some of cjpeg's more complex switches.
+ Also used by jpegtran.
+transupp.c Support code for jpegtran: lossless image manipulations.
+
+Image file reader modules for cjpeg:
+
+rdbmp.c BMP file input.
+rdgif.c GIF file input (now just a stub).
+rdppm.c PPM/PGM file input.
+rdrle.c Utah RLE file input.
+rdtarga.c Targa file input.
+
+Image file writer modules for djpeg:
+
+wrbmp.c BMP file output.
+wrgif.c GIF file output (a mere shadow of its former self).
+wrppm.c PPM/PGM file output.
+wrrle.c Utah RLE file output.
+wrtarga.c Targa file output.
+
+
+RDJPGCOM/WRJPGCOM
+=================
+
+C source code files:
+
+rdjpgcom.c Stand-alone rdjpgcom application.
+wrjpgcom.c Stand-alone wrjpgcom application.
+
+These programs do not depend on the IJG library. They do use
+jconfig.h and jinclude.h, only to improve portability.
+
+
+ADDITIONAL FILES
+================
+
+Documentation (see README for a guide to the documentation files):
+
+README Master documentation file.
+*.txt Other documentation files.
+*.1 Documentation in Unix man page format.
+change.log Version-to-version change highlights.
+example.c Sample code for calling JPEG library.
+
+Configuration/installation files and programs (see install.txt for more info):
+
+configure Unix shell script to perform automatic configuration.
+configure.ac Source file for use with Autoconf to generate configure.
+ltmain.sh Support scripts for configure (from GNU libtool).
+config.guess
+config.sub
+depcomp
+missing
+install-sh Install shell script for those Unix systems lacking one.
+Makefile.in Makefile input for configure.
+Makefile.am Source file for use with Automake to generate Makefile.in.
+ckconfig.c Program to generate jconfig.h on non-Unix systems.
+jconfig.txt Template for making jconfig.h by hand.
+mak*.* Sample makefiles for particular systems.
+jconfig.* Sample jconfig.h for particular systems.
+libjpeg.map Script to generate shared library with versioned symbols.
+aclocal.m4 M4 macro definitions for use with Autoconf.
+ansi2knr.c De-ANSIfier for pre-ANSI C compilers (courtesy of
+ L. Peter Deutsch and Aladdin Enterprises).
+
+Test files (see install.txt for test procedure):
+
+test*.* Source and comparison files for confidence test.
+ These are binary image files, NOT text files.
diff --git a/src/3rdparty/libjpeg/jaricom.c b/src/3rdparty/libjpeg/jaricom.c
new file mode 100644
index 0000000..f43e2ea
--- /dev/null
+++ b/src/3rdparty/libjpeg/jaricom.c
@@ -0,0 +1,153 @@
+/*
+ * jaricom.c
+ *
+ * Developed 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains probability estimation tables for common use in
+ * arithmetic entropy encoding and decoding routines.
+ *
+ * This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
+ * and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
+ * (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+/* The following #define specifies the packing of the four components
+ * into the compact INT32 representation.
+ * Note that this formula must match the actual arithmetic encoder
+ * and decoder implementation. The implementation has to be changed
+ * if this formula is changed.
+ * The current organization is leaned on Markus Kuhn's JBIG
+ * implementation (jbig_tab.c).
+ */
+
+#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
+
+const INT32 jpeg_aritab[113+1] = {
+/*
+ * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
+ */
+ V( 0, 0x5a1d, 1, 1, 1 ),
+ V( 1, 0x2586, 14, 2, 0 ),
+ V( 2, 0x1114, 16, 3, 0 ),
+ V( 3, 0x080b, 18, 4, 0 ),
+ V( 4, 0x03d8, 20, 5, 0 ),
+ V( 5, 0x01da, 23, 6, 0 ),
+ V( 6, 0x00e5, 25, 7, 0 ),
+ V( 7, 0x006f, 28, 8, 0 ),
+ V( 8, 0x0036, 30, 9, 0 ),
+ V( 9, 0x001a, 33, 10, 0 ),
+ V( 10, 0x000d, 35, 11, 0 ),
+ V( 11, 0x0006, 9, 12, 0 ),
+ V( 12, 0x0003, 10, 13, 0 ),
+ V( 13, 0x0001, 12, 13, 0 ),
+ V( 14, 0x5a7f, 15, 15, 1 ),
+ V( 15, 0x3f25, 36, 16, 0 ),
+ V( 16, 0x2cf2, 38, 17, 0 ),
+ V( 17, 0x207c, 39, 18, 0 ),
+ V( 18, 0x17b9, 40, 19, 0 ),
+ V( 19, 0x1182, 42, 20, 0 ),
+ V( 20, 0x0cef, 43, 21, 0 ),
+ V( 21, 0x09a1, 45, 22, 0 ),
+ V( 22, 0x072f, 46, 23, 0 ),
+ V( 23, 0x055c, 48, 24, 0 ),
+ V( 24, 0x0406, 49, 25, 0 ),
+ V( 25, 0x0303, 51, 26, 0 ),
+ V( 26, 0x0240, 52, 27, 0 ),
+ V( 27, 0x01b1, 54, 28, 0 ),
+ V( 28, 0x0144, 56, 29, 0 ),
+ V( 29, 0x00f5, 57, 30, 0 ),
+ V( 30, 0x00b7, 59, 31, 0 ),
+ V( 31, 0x008a, 60, 32, 0 ),
+ V( 32, 0x0068, 62, 33, 0 ),
+ V( 33, 0x004e, 63, 34, 0 ),
+ V( 34, 0x003b, 32, 35, 0 ),
+ V( 35, 0x002c, 33, 9, 0 ),
+ V( 36, 0x5ae1, 37, 37, 1 ),
+ V( 37, 0x484c, 64, 38, 0 ),
+ V( 38, 0x3a0d, 65, 39, 0 ),
+ V( 39, 0x2ef1, 67, 40, 0 ),
+ V( 40, 0x261f, 68, 41, 0 ),
+ V( 41, 0x1f33, 69, 42, 0 ),
+ V( 42, 0x19a8, 70, 43, 0 ),
+ V( 43, 0x1518, 72, 44, 0 ),
+ V( 44, 0x1177, 73, 45, 0 ),
+ V( 45, 0x0e74, 74, 46, 0 ),
+ V( 46, 0x0bfb, 75, 47, 0 ),
+ V( 47, 0x09f8, 77, 48, 0 ),
+ V( 48, 0x0861, 78, 49, 0 ),
+ V( 49, 0x0706, 79, 50, 0 ),
+ V( 50, 0x05cd, 48, 51, 0 ),
+ V( 51, 0x04de, 50, 52, 0 ),
+ V( 52, 0x040f, 50, 53, 0 ),
+ V( 53, 0x0363, 51, 54, 0 ),
+ V( 54, 0x02d4, 52, 55, 0 ),
+ V( 55, 0x025c, 53, 56, 0 ),
+ V( 56, 0x01f8, 54, 57, 0 ),
+ V( 57, 0x01a4, 55, 58, 0 ),
+ V( 58, 0x0160, 56, 59, 0 ),
+ V( 59, 0x0125, 57, 60, 0 ),
+ V( 60, 0x00f6, 58, 61, 0 ),
+ V( 61, 0x00cb, 59, 62, 0 ),
+ V( 62, 0x00ab, 61, 63, 0 ),
+ V( 63, 0x008f, 61, 32, 0 ),
+ V( 64, 0x5b12, 65, 65, 1 ),
+ V( 65, 0x4d04, 80, 66, 0 ),
+ V( 66, 0x412c, 81, 67, 0 ),
+ V( 67, 0x37d8, 82, 68, 0 ),
+ V( 68, 0x2fe8, 83, 69, 0 ),
+ V( 69, 0x293c, 84, 70, 0 ),
+ V( 70, 0x2379, 86, 71, 0 ),
+ V( 71, 0x1edf, 87, 72, 0 ),
+ V( 72, 0x1aa9, 87, 73, 0 ),
+ V( 73, 0x174e, 72, 74, 0 ),
+ V( 74, 0x1424, 72, 75, 0 ),
+ V( 75, 0x119c, 74, 76, 0 ),
+ V( 76, 0x0f6b, 74, 77, 0 ),
+ V( 77, 0x0d51, 75, 78, 0 ),
+ V( 78, 0x0bb6, 77, 79, 0 ),
+ V( 79, 0x0a40, 77, 48, 0 ),
+ V( 80, 0x5832, 80, 81, 1 ),
+ V( 81, 0x4d1c, 88, 82, 0 ),
+ V( 82, 0x438e, 89, 83, 0 ),
+ V( 83, 0x3bdd, 90, 84, 0 ),
+ V( 84, 0x34ee, 91, 85, 0 ),
+ V( 85, 0x2eae, 92, 86, 0 ),
+ V( 86, 0x299a, 93, 87, 0 ),
+ V( 87, 0x2516, 86, 71, 0 ),
+ V( 88, 0x5570, 88, 89, 1 ),
+ V( 89, 0x4ca9, 95, 90, 0 ),
+ V( 90, 0x44d9, 96, 91, 0 ),
+ V( 91, 0x3e22, 97, 92, 0 ),
+ V( 92, 0x3824, 99, 93, 0 ),
+ V( 93, 0x32b4, 99, 94, 0 ),
+ V( 94, 0x2e17, 93, 86, 0 ),
+ V( 95, 0x56a8, 95, 96, 1 ),
+ V( 96, 0x4f46, 101, 97, 0 ),
+ V( 97, 0x47e5, 102, 98, 0 ),
+ V( 98, 0x41cf, 103, 99, 0 ),
+ V( 99, 0x3c3d, 104, 100, 0 ),
+ V( 100, 0x375e, 99, 93, 0 ),
+ V( 101, 0x5231, 105, 102, 0 ),
+ V( 102, 0x4c0f, 106, 103, 0 ),
+ V( 103, 0x4639, 107, 104, 0 ),
+ V( 104, 0x415e, 103, 99, 0 ),
+ V( 105, 0x5627, 105, 106, 1 ),
+ V( 106, 0x50e7, 108, 107, 0 ),
+ V( 107, 0x4b85, 109, 103, 0 ),
+ V( 108, 0x5597, 110, 109, 0 ),
+ V( 109, 0x504f, 111, 107, 0 ),
+ V( 110, 0x5a10, 110, 111, 1 ),
+ V( 111, 0x5522, 112, 109, 0 ),
+ V( 112, 0x59eb, 112, 111, 1 ),
+/*
+ * This last entry is used for fixed probability estimate of 0.5
+ * as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851.
+ */
+ V( 113, 0x5a1d, 113, 113, 0 )
+};
diff --git a/src/3rdparty/libjpeg/jcapimin.c b/src/3rdparty/libjpeg/jcapimin.c
new file mode 100644
index 0000000..563ab42
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcapimin.c
@@ -0,0 +1,282 @@
+/*
+ * jcapimin.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the compression half
+ * of the JPEG library. These are the "minimum" API routines that may be
+ * needed in either the normal full-compression case or the transcoding-only
+ * case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jcapistd.c. But also see jcparam.c for
+ * parameter-setup helper routines, jcomapi.c for routines shared by
+ * compression and decompression, and jctrans.c for the transcoding case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG compression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL(void)
+jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
+{
+ int i;
+
+ /* Guard against version mismatches between library and caller. */
+ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
+ if (version != JPEG_LIB_VERSION)
+ ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+ if (structsize != SIZEOF(struct jpeg_compress_struct))
+ ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
+ (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
+
+ /* For debugging purposes, we zero the whole master structure.
+ * But the application has already set the err pointer, and may have set
+ * client_data, so we have to save and restore those fields.
+ * Note: if application hasn't set client_data, tools like Purify may
+ * complain here.
+ */
+ {
+ struct jpeg_error_mgr * err = cinfo->err;
+ void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+ MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
+ cinfo->err = err;
+ cinfo->client_data = client_data;
+ }
+ cinfo->is_decompressor = FALSE;
+
+ /* Initialize a memory manager instance for this object */
+ jinit_memory_mgr((j_common_ptr) cinfo);
+
+ /* Zero out pointers to permanent structures. */
+ cinfo->progress = NULL;
+ cinfo->dest = NULL;
+
+ cinfo->comp_info = NULL;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ cinfo->quant_tbl_ptrs[i] = NULL;
+ cinfo->q_scale_factor[i] = 100;
+ }
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ cinfo->dc_huff_tbl_ptrs[i] = NULL;
+ cinfo->ac_huff_tbl_ptrs[i] = NULL;
+ }
+
+ cinfo->script_space = NULL;
+
+ cinfo->input_gamma = 1.0; /* in case application forgets */
+
+ /* OK, I'm ready */
+ cinfo->global_state = CSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG compression object
+ */
+
+GLOBAL(void)
+jpeg_destroy_compress (j_compress_ptr cinfo)
+{
+ jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG compression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL(void)
+jpeg_abort_compress (j_compress_ptr cinfo)
+{
+ jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Forcibly suppress or un-suppress all quantization and Huffman tables.
+ * Marks all currently defined tables as already written (if suppress)
+ * or not written (if !suppress). This will control whether they get emitted
+ * by a subsequent jpeg_start_compress call.
+ *
+ * This routine is exported for use by applications that want to produce
+ * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
+ * since it is called by jpeg_start_compress, we put it here --- otherwise
+ * jcparam.o would be linked whether the application used it or not.
+ */
+
+GLOBAL(void)
+jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
+{
+ int i;
+ JQUANT_TBL * qtbl;
+ JHUFF_TBL * htbl;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
+ qtbl->sent_table = suppress;
+ }
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
+ htbl->sent_table = suppress;
+ if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
+ htbl->sent_table = suppress;
+ }
+}
+
+
+/*
+ * Finish JPEG compression.
+ *
+ * If a multipass operating mode was selected, this may do a great deal of
+ * work including most of the actual output.
+ */
+
+GLOBAL(void)
+jpeg_finish_compress (j_compress_ptr cinfo)
+{
+ JDIMENSION iMCU_row;
+
+ if (cinfo->global_state == CSTATE_SCANNING ||
+ cinfo->global_state == CSTATE_RAW_OK) {
+ /* Terminate first pass */
+ if (cinfo->next_scanline < cinfo->image_height)
+ ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+ (*cinfo->master->finish_pass) (cinfo);
+ } else if (cinfo->global_state != CSTATE_WRCOEFS)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Perform any remaining passes */
+ while (! cinfo->master->is_last_pass) {
+ (*cinfo->master->prepare_for_pass) (cinfo);
+ for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) iMCU_row;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+ /* We bypass the main controller and invoke coef controller directly;
+ * all work is being done from the coefficient buffer.
+ */
+ if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ }
+ (*cinfo->master->finish_pass) (cinfo);
+ }
+ /* Write EOI, do final cleanup */
+ (*cinfo->marker->write_file_trailer) (cinfo);
+ (*cinfo->dest->term_destination) (cinfo);
+ /* We can use jpeg_abort to release memory and reset global_state */
+ jpeg_abort((j_common_ptr) cinfo);
+}
+
+
+/*
+ * Write a special marker.
+ * This is only recommended for writing COM or APPn markers.
+ * Must be called after jpeg_start_compress() and before
+ * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
+ */
+
+GLOBAL(void)
+jpeg_write_marker (j_compress_ptr cinfo, int marker,
+ const JOCTET *dataptr, unsigned int datalen)
+{
+ JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
+
+ if (cinfo->next_scanline != 0 ||
+ (cinfo->global_state != CSTATE_SCANNING &&
+ cinfo->global_state != CSTATE_RAW_OK &&
+ cinfo->global_state != CSTATE_WRCOEFS))
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+ write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
+ while (datalen--) {
+ (*write_marker_byte) (cinfo, *dataptr);
+ dataptr++;
+ }
+}
+
+/* Same, but piecemeal. */
+
+GLOBAL(void)
+jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+{
+ if (cinfo->next_scanline != 0 ||
+ (cinfo->global_state != CSTATE_SCANNING &&
+ cinfo->global_state != CSTATE_RAW_OK &&
+ cinfo->global_state != CSTATE_WRCOEFS))
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+}
+
+GLOBAL(void)
+jpeg_write_m_byte (j_compress_ptr cinfo, int val)
+{
+ (*cinfo->marker->write_marker_byte) (cinfo, val);
+}
+
+
+/*
+ * Alternate compression function: just write an abbreviated table file.
+ * Before calling this, all parameters and a data destination must be set up.
+ *
+ * To produce a pair of files containing abbreviated tables and abbreviated
+ * image data, one would proceed as follows:
+ *
+ * initialize JPEG object
+ * set JPEG parameters
+ * set destination to table file
+ * jpeg_write_tables(cinfo);
+ * set destination to image file
+ * jpeg_start_compress(cinfo, FALSE);
+ * write data...
+ * jpeg_finish_compress(cinfo);
+ *
+ * jpeg_write_tables has the side effect of marking all tables written
+ * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
+ * will not re-emit the tables unless it is passed write_all_tables=TRUE.
+ */
+
+GLOBAL(void)
+jpeg_write_tables (j_compress_ptr cinfo)
+{
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* (Re)initialize error mgr and destination modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->dest->init_destination) (cinfo);
+ /* Initialize the marker writer ... bit of a crock to do it here. */
+ jinit_marker_writer(cinfo);
+ /* Write them tables! */
+ (*cinfo->marker->write_tables_only) (cinfo);
+ /* And clean up. */
+ (*cinfo->dest->term_destination) (cinfo);
+ /*
+ * In library releases up through v6a, we called jpeg_abort() here to free
+ * any working memory allocated by the destination manager and marker
+ * writer. Some applications had a problem with that: they allocated space
+ * of their own from the library memory manager, and didn't want it to go
+ * away during write_tables. So now we do nothing. This will cause a
+ * memory leak if an app calls write_tables repeatedly without doing a full
+ * compression cycle or otherwise resetting the JPEG object. However, that
+ * seems less bad than unexpectedly freeing memory in the normal case.
+ * An app that prefers the old behavior can call jpeg_abort for itself after
+ * each call to jpeg_write_tables().
+ */
+}
diff --git a/src/3rdparty/libjpeg/jcapistd.c b/src/3rdparty/libjpeg/jcapistd.c
new file mode 100644
index 0000000..c0320b1
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcapistd.c
@@ -0,0 +1,161 @@
+/*
+ * jcapistd.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the compression half
+ * of the JPEG library. These are the "standard" API routines that are
+ * used in the normal full-compression case. They are not used by a
+ * transcoding-only application. Note that if an application links in
+ * jpeg_start_compress, it will end up linking in the entire compressor.
+ * We thus must separate this file from jcapimin.c to avoid linking the
+ * whole compression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Compression initialization.
+ * Before calling this, all parameters and a data destination must be set up.
+ *
+ * We require a write_all_tables parameter as a failsafe check when writing
+ * multiple datastreams from the same compression object. Since prior runs
+ * will have left all the tables marked sent_table=TRUE, a subsequent run
+ * would emit an abbreviated stream (no tables) by default. This may be what
+ * is wanted, but for safety's sake it should not be the default behavior:
+ * programmers should have to make a deliberate choice to emit abbreviated
+ * images. Therefore the documentation and examples should encourage people
+ * to pass write_all_tables=TRUE; then it will take active thought to do the
+ * wrong thing.
+ */
+
+GLOBAL(void)
+jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
+{
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (write_all_tables)
+ jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
+
+ /* (Re)initialize error mgr and destination modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->dest->init_destination) (cinfo);
+ /* Perform master selection of active modules */
+ jinit_compress_master(cinfo);
+ /* Set up for the first pass */
+ (*cinfo->master->prepare_for_pass) (cinfo);
+ /* Ready for application to drive first pass through jpeg_write_scanlines
+ * or jpeg_write_raw_data.
+ */
+ cinfo->next_scanline = 0;
+ cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
+}
+
+
+/*
+ * Write some scanlines of data to the JPEG compressor.
+ *
+ * The return value will be the number of lines actually written.
+ * This should be less than the supplied num_lines only in case that
+ * the data destination module has requested suspension of the compressor,
+ * or if more than image_height scanlines are passed in.
+ *
+ * Note: we warn about excess calls to jpeg_write_scanlines() since
+ * this likely signals an application programmer error. However,
+ * excess scanlines passed in the last valid call are *silently* ignored,
+ * so that the application need not adjust num_lines for end-of-image
+ * when using a multiple-scanline buffer.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
+ JDIMENSION num_lines)
+{
+ JDIMENSION row_ctr, rows_left;
+
+ if (cinfo->global_state != CSTATE_SCANNING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->next_scanline >= cinfo->image_height)
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->image_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Give master control module another chance if this is first call to
+ * jpeg_write_scanlines. This lets output of the frame/scan headers be
+ * delayed so that application can write COM, etc, markers between
+ * jpeg_start_compress and jpeg_write_scanlines.
+ */
+ if (cinfo->master->call_pass_startup)
+ (*cinfo->master->pass_startup) (cinfo);
+
+ /* Ignore any extra scanlines at bottom of image. */
+ rows_left = cinfo->image_height - cinfo->next_scanline;
+ if (num_lines > rows_left)
+ num_lines = rows_left;
+
+ row_ctr = 0;
+ (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
+ cinfo->next_scanline += row_ctr;
+ return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to write raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
+ JDIMENSION num_lines)
+{
+ JDIMENSION lines_per_iMCU_row;
+
+ if (cinfo->global_state != CSTATE_RAW_OK)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->next_scanline >= cinfo->image_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->image_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Give master control module another chance if this is first call to
+ * jpeg_write_raw_data. This lets output of the frame/scan headers be
+ * delayed so that application can write COM, etc, markers between
+ * jpeg_start_compress and jpeg_write_raw_data.
+ */
+ if (cinfo->master->call_pass_startup)
+ (*cinfo->master->pass_startup) (cinfo);
+
+ /* Verify that at least one iMCU row has been passed. */
+ lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
+ if (num_lines < lines_per_iMCU_row)
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* Directly compress the row. */
+ if (! (*cinfo->coef->compress_data) (cinfo, data)) {
+ /* If compressor did not consume the whole row, suspend processing. */
+ return 0;
+ }
+
+ /* OK, we processed one iMCU row. */
+ cinfo->next_scanline += lines_per_iMCU_row;
+ return lines_per_iMCU_row;
+}
diff --git a/src/3rdparty/libjpeg/jcarith.c b/src/3rdparty/libjpeg/jcarith.c
new file mode 100644
index 0000000..0b7ea55
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcarith.c
@@ -0,0 +1,934 @@
+/*
+ * jcarith.c
+ *
+ * Developed 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy encoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy encoder object for arithmetic encoding. */
+
+typedef struct {
+ struct jpeg_entropy_encoder pub; /* public fields */
+
+ INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
+ INT32 a; /* A register, normalized size of coding interval */
+ INT32 sc; /* counter for stacked 0xFF values which might overflow */
+ INT32 zc; /* counter for pending 0x00 output values which might *
+ * be discarded at the end ("Pacman" termination) */
+ int ct; /* bit shift counter, determines when next byte will be written */
+ int buffer; /* buffer for most recent output byte != 0xFF */
+
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ int next_restart_num; /* next restart number to write (0-7) */
+
+ /* Pointers to statistics areas (these workspaces have image lifespan) */
+ unsigned char * dc_stats[NUM_ARITH_TBLS];
+ unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+ /* Statistics bin for coding with fixed probability 0.5 */
+ unsigned char fixed_bin[4];
+} arith_entropy_encoder;
+
+typedef arith_entropy_encoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+/* NOTE: Uncomment the following #define if you want to use the
+ * given formula for calculating the AC conditioning parameter Kx
+ * for spectral selection progressive coding in section G.1.3.2
+ * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
+ * Although the spec and P&M authors claim that this "has proven
+ * to give good results for 8 bit precision samples", I'm not
+ * convinced yet that this is really beneficial.
+ * Early tests gave only very marginal compression enhancements
+ * (a few - around 5 or so - bytes even for very large files),
+ * which would turn out rather negative if we'd suppress the
+ * DAC (Define Arithmetic Conditioning) marker segments for
+ * the default parameters in the future.
+ * Note that currently the marker writing module emits 12-byte
+ * DAC segments for a full-component scan in a color image.
+ * This is not worth worrying about IMHO. However, since the
+ * spec defines the default values to be used if the tables
+ * are omitted (unlike Huffman tables, which are required
+ * anyway), one might optimize this behaviour in the future,
+ * and then it would be disadvantageous to use custom tables if
+ * they don't provide sufficient gain to exceed the DAC size.
+ *
+ * On the other hand, I'd consider it as a reasonable result
+ * that the conditioning has no significant influence on the
+ * compression performance. This means that the basic
+ * statistical model is already rather stable.
+ *
+ * Thus, at the moment, we use the default conditioning values
+ * anyway, and do not use the custom formula.
+ *
+#define CALCULATE_SPECTRAL_CONDITIONING
+ */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS int ishift_temp;
+#define IRIGHT_SHIFT(x,shft) \
+ ((ishift_temp = (x)) < 0 ? \
+ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+ (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+LOCAL(void)
+emit_byte (int val, j_compress_ptr cinfo)
+/* Write next output byte; we do not support suspension in this module. */
+{
+ struct jpeg_destination_mgr * dest = cinfo->dest;
+
+ *dest->next_output_byte++ = (JOCTET) val;
+ if (--dest->free_in_buffer == 0)
+ if (! (*dest->empty_output_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+}
+
+
+/*
+ * Finish up at the end of an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass (j_compress_ptr cinfo)
+{
+ arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+ INT32 temp;
+
+ /* Section D.1.8: Termination of encoding */
+
+ /* Find the e->c in the coding interval with the largest
+ * number of trailing zero bits */
+ if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
+ e->c = temp + 0x8000L;
+ else
+ e->c = temp;
+ /* Send remaining bytes to output */
+ e->c <<= e->ct;
+ if (e->c & 0xF8000000L) {
+ /* One final overflow has to be handled */
+ if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer + 1, cinfo);
+ if (e->buffer + 1 == 0xFF)
+ emit_byte(0x00, cinfo);
+ }
+ e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
+ e->sc = 0;
+ } else {
+ if (e->buffer == 0)
+ ++e->zc;
+ else if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer, cinfo);
+ }
+ if (e->sc) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ do {
+ emit_byte(0xFF, cinfo);
+ emit_byte(0x00, cinfo);
+ } while (--e->sc);
+ }
+ }
+ /* Output final bytes only if they are not 0x00 */
+ if (e->c & 0x7FFF800L) {
+ if (e->zc) /* output final pending zero bytes */
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte((e->c >> 19) & 0xFF, cinfo);
+ if (((e->c >> 19) & 0xFF) == 0xFF)
+ emit_byte(0x00, cinfo);
+ if (e->c & 0x7F800L) {
+ emit_byte((e->c >> 11) & 0xFF, cinfo);
+ if (((e->c >> 11) & 0xFF) == 0xFF)
+ emit_byte(0x00, cinfo);
+ }
+ }
+}
+
+
+/*
+ * The core arithmetic encoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
+ *
+ * Note: I've added full "Pacman" termination support to the
+ * byte output routines, which is equivalent to the optional
+ * Discard_final_zeros procedure (Figure D.15) in the spec.
+ * Thus, we always produce the shortest possible output
+ * stream compliant to the spec (no trailing zero bytes,
+ * except for FF stuffing).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(void)
+arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
+{
+ register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+ register unsigned char nl, nm;
+ register INT32 qe, temp;
+ register int sv;
+
+ /* Fetch values from our compact representation of Table D.2:
+ * Qe values and probability estimation state machine
+ */
+ sv = *st;
+ qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
+ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
+ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
+
+ /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
+ e->a -= qe;
+ if (val != (sv >> 7)) {
+ /* Encode the less probable symbol */
+ if (e->a >= qe) {
+ /* If the interval size (qe) for the less probable symbol (LPS)
+ * is larger than the interval size for the MPS, then exchange
+ * the two symbols for coding efficiency, otherwise code the LPS
+ * as usual: */
+ e->c += e->a;
+ e->a = qe;
+ }
+ *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
+ } else {
+ /* Encode the more probable symbol */
+ if (e->a >= 0x8000L)
+ return; /* A >= 0x8000 -> ready, no renormalization required */
+ if (e->a < qe) {
+ /* If the interval size (qe) for the less probable symbol (LPS)
+ * is larger than the interval size for the MPS, then exchange
+ * the two symbols for coding efficiency: */
+ e->c += e->a;
+ e->a = qe;
+ }
+ *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
+ }
+
+ /* Renormalization & data output per section D.1.6 */
+ do {
+ e->a <<= 1;
+ e->c <<= 1;
+ if (--e->ct == 0) {
+ /* Another byte is ready for output */
+ temp = e->c >> 19;
+ if (temp > 0xFF) {
+ /* Handle overflow over all stacked 0xFF bytes */
+ if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer + 1, cinfo);
+ if (e->buffer + 1 == 0xFF)
+ emit_byte(0x00, cinfo);
+ }
+ e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
+ e->sc = 0;
+ /* Note: The 3 spacer bits in the C register guarantee
+ * that the new buffer byte can't be 0xFF here
+ * (see page 160 in the P&M JPEG book). */
+ e->buffer = temp & 0xFF; /* new output byte, might overflow later */
+ } else if (temp == 0xFF) {
+ ++e->sc; /* stack 0xFF byte (which might overflow later) */
+ } else {
+ /* Output all stacked 0xFF bytes, they will not overflow any more */
+ if (e->buffer == 0)
+ ++e->zc;
+ else if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer, cinfo);
+ }
+ if (e->sc) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ do {
+ emit_byte(0xFF, cinfo);
+ emit_byte(0x00, cinfo);
+ } while (--e->sc);
+ }
+ e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
+ }
+ e->c &= 0x7FFFFL;
+ e->ct += 8;
+ }
+ } while (e->a < 0x8000L);
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(void)
+emit_restart (j_compress_ptr cinfo, int restart_num)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci;
+ jpeg_component_info * compptr;
+
+ finish_pass(cinfo);
+
+ emit_byte(0xFF, cinfo);
+ emit_byte(JPEG_RST0 + restart_num, cinfo);
+
+ /* Re-initialize statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+ /* Reset DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+ }
+ }
+
+ /* Reset arithmetic encoding variables */
+ entropy->c = 0;
+ entropy->a = 0x10000L;
+ entropy->sc = 0;
+ entropy->zc = 0;
+ entropy->ct = 11;
+ entropy->buffer = -1; /* empty */
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl;
+ int v, v2, m;
+ ISHIFT_TEMPS
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+ /* Compute the DC value after the required point transform by Al.
+ * This is simply an arithmetic right shift.
+ */
+ m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
+
+ /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.4: Encode_DC_DIFF */
+ if ((v = m - entropy->last_dc_val[ci]) == 0) {
+ arith_encode(cinfo, st, 0);
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ } else {
+ entropy->last_dc_val[ci] = m;
+ arith_encode(cinfo, st, 1);
+ /* Figure F.6: Encoding nonzero value v */
+ /* Figure F.7: Encoding the sign of v */
+ if (v > 0) {
+ arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
+ st += 2; /* Table F.4: SP = S0 + 2 */
+ entropy->dc_context[ci] = 4; /* small positive diff category */
+ } else {
+ v = -v;
+ arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
+ st += 3; /* Table F.4: SN = S0 + 3 */
+ entropy->dc_context[ci] = 8; /* small negative diff category */
+ }
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] += 8; /* large diff category */
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int tbl, k, ke;
+ int v, v2, m;
+ const int * natural_order;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+ /* Establish EOB (end-of-block) index */
+ for (ke = cinfo->Se; ke > 0; ke--)
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value.
+ */
+ if ((v = (*block)[natural_order[ke]]) >= 0) {
+ if (v >>= cinfo->Al) break;
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) break;
+ }
+
+ /* Figure F.5: Encode_AC_Coefficients */
+ for (k = cinfo->Ss; k <= ke; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 0); /* EOB decision */
+ for (;;) {
+ if ((v = (*block)[natural_order[k]]) >= 0) {
+ if (v >>= cinfo->Al) {
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 0);
+ break;
+ }
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) {
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 1);
+ break;
+ }
+ }
+ arith_encode(cinfo, st + 1, 0); st += 3; k++;
+ }
+ st += 2;
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ if (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+ /* Encode EOB decision only if k <= cinfo->Se */
+ if (k <= cinfo->Se) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 1);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ unsigned char *st;
+ int Al, blkn;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ st = entropy->fixed_bin; /* use fixed probability estimation */
+ Al = cinfo->Al;
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ /* We simply emit the Al'th bit of the DC coefficient value. */
+ arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int tbl, k, ke, kex;
+ int v;
+ const int * natural_order;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ /* Section G.1.3.3: Encoding of AC coefficients */
+
+ /* Establish EOB (end-of-block) index */
+ for (ke = cinfo->Se; ke > 0; ke--)
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value.
+ */
+ if ((v = (*block)[natural_order[ke]]) >= 0) {
+ if (v >>= cinfo->Al) break;
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) break;
+ }
+
+ /* Establish EOBx (previous stage end-of-block) index */
+ for (kex = ke; kex > 0; kex--)
+ if ((v = (*block)[natural_order[kex]]) >= 0) {
+ if (v >>= cinfo->Ah) break;
+ } else {
+ v = -v;
+ if (v >>= cinfo->Ah) break;
+ }
+
+ /* Figure G.10: Encode_AC_Coefficients_SA */
+ for (k = cinfo->Ss; k <= ke; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (k > kex)
+ arith_encode(cinfo, st, 0); /* EOB decision */
+ for (;;) {
+ if ((v = (*block)[natural_order[k]]) >= 0) {
+ if (v >>= cinfo->Al) {
+ if (v >> 1) /* previously nonzero coef */
+ arith_encode(cinfo, st + 2, (v & 1));
+ else { /* newly nonzero coef */
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 0);
+ }
+ break;
+ }
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) {
+ if (v >> 1) /* previously nonzero coef */
+ arith_encode(cinfo, st + 2, (v & 1));
+ else { /* newly nonzero coef */
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 1);
+ }
+ break;
+ }
+ }
+ arith_encode(cinfo, st + 1, 0); st += 3; k++;
+ }
+ }
+ /* Encode EOB decision only if k <= cinfo->Se */
+ if (k <= cinfo->Se) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 1);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ jpeg_component_info * compptr;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl, k, ke;
+ int v, v2, m;
+ const int * natural_order;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+
+ /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+ tbl = compptr->dc_tbl_no;
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.4: Encode_DC_DIFF */
+ if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
+ arith_encode(cinfo, st, 0);
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ } else {
+ entropy->last_dc_val[ci] = (*block)[0];
+ arith_encode(cinfo, st, 1);
+ /* Figure F.6: Encoding nonzero value v */
+ /* Figure F.7: Encoding the sign of v */
+ if (v > 0) {
+ arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
+ st += 2; /* Table F.4: SP = S0 + 2 */
+ entropy->dc_context[ci] = 4; /* small positive diff category */
+ } else {
+ v = -v;
+ arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
+ st += 3; /* Table F.4: SN = S0 + 3 */
+ entropy->dc_context[ci] = 8; /* small negative diff category */
+ }
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] += 8; /* large diff category */
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+
+ /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+ tbl = compptr->ac_tbl_no;
+
+ /* Establish EOB (end-of-block) index */
+ for (ke = cinfo->lim_Se; ke > 0; ke--)
+ if ((*block)[natural_order[ke]]) break;
+
+ /* Figure F.5: Encode_AC_Coefficients */
+ for (k = 1; k <= ke; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 0); /* EOB decision */
+ while ((v = (*block)[natural_order[k]]) == 0) {
+ arith_encode(cinfo, st + 1, 0); st += 3; k++;
+ }
+ arith_encode(cinfo, st + 1, 1);
+ /* Figure F.6: Encoding nonzero value v */
+ /* Figure F.7: Encoding the sign of v */
+ if (v > 0) {
+ arith_encode(cinfo, entropy->fixed_bin, 0);
+ } else {
+ v = -v;
+ arith_encode(cinfo, entropy->fixed_bin, 1);
+ }
+ st += 2;
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ if (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+ /* Encode EOB decision only if k <= cinfo->lim_Se */
+ if (k <= cinfo->lim_Se) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 1);
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_compress_ptr cinfo, boolean gather_statistics)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+
+ if (gather_statistics)
+ /* Make sure to avoid that in the master control logic!
+ * We are fully adaptive here and need no extra
+ * statistics gathering pass!
+ */
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+
+ /* We assume jcmaster.c already validated the progressive scan parameters. */
+
+ /* Select execution routines */
+ if (cinfo->progressive_mode) {
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_first;
+ else
+ entropy->pub.encode_mcu = encode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_refine;
+ else
+ entropy->pub.encode_mcu = encode_mcu_AC_refine;
+ }
+ } else
+ entropy->pub.encode_mcu = encode_mcu;
+
+ /* Allocate & initialize requested statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ tbl = compptr->dc_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->dc_stats[tbl] == NULL)
+ entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+ MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+ /* Initialize DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ tbl = compptr->ac_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->ac_stats[tbl] == NULL)
+ entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+ MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+#ifdef CALCULATE_SPECTRAL_CONDITIONING
+ if (cinfo->progressive_mode)
+ /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
+ cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
+#endif
+ }
+ }
+
+ /* Initialize arithmetic encoding variables */
+ entropy->c = 0;
+ entropy->a = 0x10000L;
+ entropy->sc = 0;
+ entropy->zc = 0;
+ entropy->ct = 11;
+ entropy->buffer = -1; /* empty */
+
+ /* Initialize restart stuff */
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_arith_encoder (j_compress_ptr cinfo)
+{
+ arith_entropy_ptr entropy;
+ int i;
+
+ entropy = (arith_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(arith_entropy_encoder));
+ cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+ entropy->pub.start_pass = start_pass;
+ entropy->pub.finish_pass = finish_pass;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ entropy->dc_stats[i] = NULL;
+ entropy->ac_stats[i] = NULL;
+ }
+
+ /* Initialize index for fixed probability estimation */
+ entropy->fixed_bin[0] = 113;
+}
diff --git a/src/3rdparty/libjpeg/jccoefct.c b/src/3rdparty/libjpeg/jccoefct.c
new file mode 100644
index 0000000..d775313
--- /dev/null
+++ b/src/3rdparty/libjpeg/jccoefct.c
@@ -0,0 +1,453 @@
+/*
+ * jccoefct.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for compression.
+ * This controller is the top level of the JPEG compressor proper.
+ * The coefficient buffer lies between forward-DCT and entropy encoding steps.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* We use a full-image coefficient buffer when doing Huffman optimization,
+ * and also for writing multiple-scan JPEG files. In all cases, the DCT
+ * step is run during the first pass, and subsequent passes need only read
+ * the buffered coefficients.
+ */
+#ifdef ENTROPY_OPT_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#else
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#endif
+#endif
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_coef_controller pub; /* public fields */
+
+ JDIMENSION iMCU_row_num; /* iMCU row # within image */
+ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* For single-pass compression, it's sufficient to buffer just one MCU
+ * (although this may prove a bit slow in practice). We allocate a
+ * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
+ * MCU constructed and sent. (On 80x86, the workspace is FAR even though
+ * it's not really very big; this is to keep the module interfaces unchanged
+ * when a large coefficient buffer is necessary.)
+ * In multi-pass modes, this array points to the current MCU's blocks
+ * within the virtual arrays.
+ */
+ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+
+ /* In multi-pass modes, we need a virtual block array for each component. */
+ jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+/* Forward declarations */
+METHODDEF(boolean) compress_data
+ JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+METHODDEF(boolean) compress_first_pass
+ JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+METHODDEF(boolean) compress_output
+ JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+#endif
+
+
+LOCAL(void)
+start_iMCU_row (j_compress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->mcu_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ coef->iMCU_row_num = 0;
+ start_iMCU_row(cinfo);
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (coef->whole_image[0] != NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ coef->pub.compress_data = compress_data;
+ break;
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+ case JBUF_SAVE_AND_PASS:
+ if (coef->whole_image[0] == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ coef->pub.compress_data = compress_first_pass;
+ break;
+ case JBUF_CRANK_DEST:
+ if (coef->whole_image[0] == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ coef->pub.compress_data = compress_output;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data in the single-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(boolean)
+compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, bi, ci, yindex, yoffset, blockcnt;
+ JDIMENSION ypos, xpos;
+ jpeg_component_info *compptr;
+ forward_DCT_ptr forward_DCT;
+
+ /* Loop to write as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Determine where data comes from in input_buf and do the DCT thing.
+ * Each call on forward_DCT processes a horizontal row of DCT blocks
+ * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
+ * sequentially. Dummy blocks at the right or bottom edge are filled in
+ * specially. The data in them does not matter for image reconstruction,
+ * so we fill them with values that will encode to the smallest amount of
+ * data, viz: all zeroes in the AC entries, DC entries equal to previous
+ * block's DC value. (Thanks to Thomas Kinsman for this idea.)
+ */
+ blkn = 0;
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
+ blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ xpos = MCU_col_num * compptr->MCU_sample_width;
+ ypos = yoffset * compptr->DCT_v_scaled_size;
+ /* ypos == (yoffset+yindex) * DCTSIZE */
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (coef->iMCU_row_num < last_iMCU_row ||
+ yoffset+yindex < compptr->last_row_height) {
+ (*forward_DCT) (cinfo, compptr,
+ input_buf[compptr->component_index],
+ coef->MCU_buffer[blkn],
+ ypos, xpos, (JDIMENSION) blockcnt);
+ if (blockcnt < compptr->MCU_width) {
+ /* Create some dummy blocks at the right edge of the image. */
+ jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
+ (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
+ for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
+ coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
+ }
+ }
+ } else {
+ /* Create a row of dummy blocks at the bottom of the image. */
+ jzero_far((void FAR *) coef->MCU_buffer[blkn],
+ compptr->MCU_width * SIZEOF(JBLOCK));
+ for (bi = 0; bi < compptr->MCU_width; bi++) {
+ coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
+ }
+ }
+ blkn += compptr->MCU_width;
+ ypos += compptr->DCT_v_scaled_size;
+ }
+ }
+ /* Try to write the MCU. In event of a suspension failure, we will
+ * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
+ */
+ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->mcu_ctr = MCU_col_num;
+ return FALSE;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->mcu_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ coef->iMCU_row_num++;
+ start_iMCU_row(cinfo);
+ return TRUE;
+}
+
+
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+
+/*
+ * Process some data in the first pass of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * This amount of data is read from the source buffer, DCT'd and quantized,
+ * and saved into the virtual arrays. We also generate suitable dummy blocks
+ * as needed at the right and lower edges. (The dummy blocks are constructed
+ * in the virtual arrays, which have been padded appropriately.) This makes
+ * it possible for subsequent passes not to worry about real vs. dummy blocks.
+ *
+ * We must also emit the data to the entropy encoder. This is conveniently
+ * done by calling compress_output() after we've loaded the current strip
+ * of the virtual arrays.
+ *
+ * NB: input_buf contains a plane for each component in image. All
+ * components are DCT'd and loaded into the virtual arrays in this pass.
+ * However, it may be that only a subset of the components are emitted to
+ * the entropy encoder during this first pass; be careful about looking
+ * at the scan-dependent variables (MCU dimensions, etc).
+ */
+
+METHODDEF(boolean)
+compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION blocks_across, MCUs_across, MCUindex;
+ int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
+ JCOEF lastDC;
+ jpeg_component_info *compptr;
+ JBLOCKARRAY buffer;
+ JBLOCKROW thisblockrow, lastblockrow;
+ forward_DCT_ptr forward_DCT;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ coef->iMCU_row_num * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (coef->iMCU_row_num < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here, since may not be set! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ blocks_across = compptr->width_in_blocks;
+ h_samp_factor = compptr->h_samp_factor;
+ /* Count number of dummy blocks to be added at the right margin. */
+ ndummy = (int) (blocks_across % h_samp_factor);
+ if (ndummy > 0)
+ ndummy = h_samp_factor - ndummy;
+ forward_DCT = cinfo->fdct->forward_DCT[ci];
+ /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
+ * on forward_DCT processes a complete horizontal row of DCT blocks.
+ */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ thisblockrow = buffer[block_row];
+ (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
+ (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
+ (JDIMENSION) 0, blocks_across);
+ if (ndummy > 0) {
+ /* Create dummy blocks at the right edge of the image. */
+ thisblockrow += blocks_across; /* => first dummy block */
+ jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
+ lastDC = thisblockrow[-1][0];
+ for (bi = 0; bi < ndummy; bi++) {
+ thisblockrow[bi][0] = lastDC;
+ }
+ }
+ }
+ /* If at end of image, create dummy block rows as needed.
+ * The tricky part here is that within each MCU, we want the DC values
+ * of the dummy blocks to match the last real block's DC value.
+ * This squeezes a few more bytes out of the resulting file...
+ */
+ if (coef->iMCU_row_num == last_iMCU_row) {
+ blocks_across += ndummy; /* include lower right corner */
+ MCUs_across = blocks_across / h_samp_factor;
+ for (block_row = block_rows; block_row < compptr->v_samp_factor;
+ block_row++) {
+ thisblockrow = buffer[block_row];
+ lastblockrow = buffer[block_row-1];
+ jzero_far((void FAR *) thisblockrow,
+ (size_t) (blocks_across * SIZEOF(JBLOCK)));
+ for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
+ lastDC = lastblockrow[h_samp_factor-1][0];
+ for (bi = 0; bi < h_samp_factor; bi++) {
+ thisblockrow[bi][0] = lastDC;
+ }
+ thisblockrow += h_samp_factor; /* advance to next MCU in row */
+ lastblockrow += h_samp_factor;
+ }
+ }
+ }
+ }
+ /* NB: compress_output will increment iMCU_row_num if successful.
+ * A suspension return will result in redoing all the work above next time.
+ */
+
+ /* Emit data to the entropy encoder, sharing code with subsequent passes */
+ return compress_output(cinfo, input_buf);
+}
+
+
+/*
+ * Process some data in subsequent passes of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF(boolean)
+compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan.
+ * NB: during first pass, this is safe only because the buffers will
+ * already be aligned properly, so jmemmgr.c won't need to do any I/O.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ coef->iMCU_row_num * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ /* Try to write the MCU. */
+ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->mcu_ctr = MCU_col_num;
+ return FALSE;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->mcu_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ coef->iMCU_row_num++;
+ start_iMCU_row(cinfo);
+ return TRUE;
+}
+
+#endif /* FULL_COEF_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+ coef->pub.start_pass = start_pass_coef;
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ int ci;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) compptr->v_samp_factor);
+ }
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ coef->whole_image[0] = NULL; /* flag for no virtual arrays */
+ }
+}
diff --git a/src/3rdparty/libjpeg/jccolor.c b/src/3rdparty/libjpeg/jccolor.c
new file mode 100644
index 0000000..0a8a4b5
--- /dev/null
+++ b/src/3rdparty/libjpeg/jccolor.c
@@ -0,0 +1,459 @@
+/*
+ * jccolor.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_converter pub; /* public fields */
+
+ /* Private state for RGB->YCC conversion */
+ INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
+} my_color_converter;
+
+typedef my_color_converter * my_cconvert_ptr;
+
+
+/**************** RGB -> YCbCr conversion: most common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
+ * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
+ * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
+ * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
+ * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
+ * were not represented exactly. Now we sacrifice exact representation of
+ * maximum red and maximum blue in order to get exact grayscales.
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times R,G,B for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable. It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
+ * in the tables to save adding them separately in the inner loop.
+ */
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+/* We allocate one big table and divide it up into eight parts, instead of
+ * doing eight alloc_small requests. This lets us use a single table base
+ * address, which can be held in a register in the inner loops on many
+ * machines (more than can hold all eight addresses, anyway).
+ */
+
+#define R_Y_OFF 0 /* offset to R => Y section */
+#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
+#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
+#define R_CB_OFF (3*(MAXJSAMPLE+1))
+#define G_CB_OFF (4*(MAXJSAMPLE+1))
+#define B_CB_OFF (5*(MAXJSAMPLE+1))
+#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
+#define G_CR_OFF (6*(MAXJSAMPLE+1))
+#define B_CR_OFF (7*(MAXJSAMPLE+1))
+#define TABLE_SIZE (8*(MAXJSAMPLE+1))
+
+
+/*
+ * Initialize for RGB->YCC colorspace conversion.
+ */
+
+METHODDEF(void)
+rgb_ycc_start (j_compress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ INT32 * rgb_ycc_tab;
+ INT32 i;
+
+ /* Allocate and fill in the conversion tables. */
+ cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (TABLE_SIZE * SIZEOF(INT32)));
+
+ for (i = 0; i <= MAXJSAMPLE; i++) {
+ rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
+ rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
+ rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
+ rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
+ rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
+ /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
+ * This ensures that the maximum output will round to MAXJSAMPLE
+ * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
+ */
+ rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
+/* B=>Cb and R=>Cr tables are the same
+ rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
+*/
+ rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
+ rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ *
+ * Note that we change from the application's interleaved-pixel format
+ * to our internal noninterleaved, one-plane-per-component format.
+ * The input buffer is therefore three times as wide as the output buffer.
+ *
+ * A starting row offset is provided only for the output buffer. The caller
+ * can easily adjust the passed input_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+METHODDEF(void)
+rgb_ycc_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_ycc_tab;
+ register JSAMPROW inptr;
+ register JSAMPROW outptr0, outptr1, outptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr0 = output_buf[0][output_row];
+ outptr1 = output_buf[1][output_row];
+ outptr2 = output_buf[2][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ r = GETJSAMPLE(inptr[RGB_RED]);
+ g = GETJSAMPLE(inptr[RGB_GREEN]);
+ b = GETJSAMPLE(inptr[RGB_BLUE]);
+ inptr += RGB_PIXELSIZE;
+ /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+ * must be too; we do not need an explicit range-limiting operation.
+ * Hence the value being shifted is never negative, and we don't
+ * need the general RIGHT_SHIFT macro.
+ */
+ /* Y */
+ outptr0[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ /* Cb */
+ outptr1[col] = (JSAMPLE)
+ ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+ >> SCALEBITS);
+ /* Cr */
+ outptr2[col] = (JSAMPLE)
+ ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/**************** Cases other than RGB -> YCbCr **************/
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles RGB->grayscale conversion, which is the same
+ * as the RGB->Y portion of RGB->YCbCr.
+ * We assume rgb_ycc_start has been called (we only use the Y tables).
+ */
+
+METHODDEF(void)
+rgb_gray_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_ycc_tab;
+ register JSAMPROW inptr;
+ register JSAMPROW outptr;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr = output_buf[0][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ r = GETJSAMPLE(inptr[RGB_RED]);
+ g = GETJSAMPLE(inptr[RGB_GREEN]);
+ b = GETJSAMPLE(inptr[RGB_BLUE]);
+ inptr += RGB_PIXELSIZE;
+ /* Y */
+ outptr[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles Adobe-style CMYK->YCCK conversion,
+ * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume rgb_ycc_start has been called.
+ */
+
+METHODDEF(void)
+cmyk_ycck_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_ycc_tab;
+ register JSAMPROW inptr;
+ register JSAMPROW outptr0, outptr1, outptr2, outptr3;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr0 = output_buf[0][output_row];
+ outptr1 = output_buf[1][output_row];
+ outptr2 = output_buf[2][output_row];
+ outptr3 = output_buf[3][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
+ g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
+ b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
+ /* K passes through as-is */
+ outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
+ inptr += 4;
+ /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+ * must be too; we do not need an explicit range-limiting operation.
+ * Hence the value being shifted is never negative, and we don't
+ * need the general RIGHT_SHIFT macro.
+ */
+ /* Y */
+ outptr0[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ /* Cb */
+ outptr1[col] = (JSAMPLE)
+ ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+ >> SCALEBITS);
+ /* Cr */
+ outptr2[col] = (JSAMPLE)
+ ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles grayscale output with no conversion.
+ * The source can be either plain grayscale or YCbCr (since Y == gray).
+ */
+
+METHODDEF(void)
+grayscale_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ register JSAMPROW inptr;
+ register JSAMPROW outptr;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+ int instride = cinfo->input_components;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr = output_buf[0][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
+ inptr += instride;
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles multi-component colorspaces without conversion.
+ * We assume input_components == num_components.
+ */
+
+METHODDEF(void)
+null_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ register JSAMPROW inptr;
+ register JSAMPROW outptr;
+ register JDIMENSION col;
+ register int ci;
+ int nc = cinfo->num_components;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ /* It seems fastest to make a separate pass for each component. */
+ for (ci = 0; ci < nc; ci++) {
+ inptr = *input_buf;
+ outptr = output_buf[ci][output_row];
+ for (col = 0; col < num_cols; col++) {
+ outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
+ inptr += nc;
+ }
+ }
+ input_buf++;
+ output_row++;
+ }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF(void)
+null_method (j_compress_ptr cinfo)
+{
+ /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for input colorspace conversion.
+ */
+
+GLOBAL(void)
+jinit_color_converter (j_compress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert;
+
+ cconvert = (my_cconvert_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_color_converter));
+ cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
+ /* set start_pass to null method until we find out differently */
+ cconvert->pub.start_pass = null_method;
+
+ /* Make sure input_components agrees with in_color_space */
+ switch (cinfo->in_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->input_components != 1)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ case JCS_RGB:
+#if RGB_PIXELSIZE != 3
+ if (cinfo->input_components != RGB_PIXELSIZE)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+#endif /* else share code with YCbCr */
+
+ case JCS_YCbCr:
+ if (cinfo->input_components != 3)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ case JCS_CMYK:
+ case JCS_YCCK:
+ if (cinfo->input_components != 4)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ default: /* JCS_UNKNOWN can be anything */
+ if (cinfo->input_components < 1)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+ }
+
+ /* Check num_components, set conversion method based on requested space */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->num_components != 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_GRAYSCALE)
+ cconvert->pub.color_convert = grayscale_convert;
+ else if (cinfo->in_color_space == JCS_RGB) {
+ cconvert->pub.start_pass = rgb_ycc_start;
+ cconvert->pub.color_convert = rgb_gray_convert;
+ } else if (cinfo->in_color_space == JCS_YCbCr)
+ cconvert->pub.color_convert = grayscale_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_RGB:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_YCbCr:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_RGB) {
+ cconvert->pub.start_pass = rgb_ycc_start;
+ cconvert->pub.color_convert = rgb_ycc_convert;
+ } else if (cinfo->in_color_space == JCS_YCbCr)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_CMYK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_CMYK)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_YCCK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_CMYK) {
+ cconvert->pub.start_pass = rgb_ycc_start;
+ cconvert->pub.color_convert = cmyk_ycck_convert;
+ } else if (cinfo->in_color_space == JCS_YCCK)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ default: /* allow null conversion of JCS_UNKNOWN */
+ if (cinfo->jpeg_color_space != cinfo->in_color_space ||
+ cinfo->num_components != cinfo->input_components)
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ cconvert->pub.color_convert = null_convert;
+ break;
+ }
+}
diff --git a/src/3rdparty/libjpeg/jcdctmgr.c b/src/3rdparty/libjpeg/jcdctmgr.c
new file mode 100644
index 0000000..0bbdbb6
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcdctmgr.c
@@ -0,0 +1,482 @@
+/*
+ * jcdctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the forward-DCT management logic.
+ * This code selects a particular DCT implementation to be used,
+ * and it performs related housekeeping chores including coefficient
+ * quantization.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+ struct jpeg_forward_dct pub; /* public fields */
+
+ /* Pointer to the DCT routine actually in use */
+ forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
+
+ /* The actual post-DCT divisors --- not identical to the quant table
+ * entries, because of scaling (especially for an unnormalized DCT).
+ * Each table is given in normal array order.
+ */
+ DCTELEM * divisors[NUM_QUANT_TBLS];
+
+#ifdef DCT_FLOAT_SUPPORTED
+ /* Same as above for the floating-point case. */
+ float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
+ FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
+#endif
+} my_fdct_controller;
+
+typedef my_fdct_controller * my_fdct_ptr;
+
+
+/* The current scaled-DCT routines require ISLOW-style divisor tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef DCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Perform forward DCT on one or more blocks of a component.
+ *
+ * The input samples are taken from the sample_data[] array starting at
+ * position start_row/start_col, and moving to the right for any additional
+ * blocks. The quantized coefficients are returned in coef_blocks[].
+ */
+
+METHODDEF(void)
+forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks)
+/* This version is used for integer DCT implementations. */
+{
+ /* This routine is heavily used, so it's worth coding it tightly. */
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+ forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
+ DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
+ DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
+ JDIMENSION bi;
+
+ sample_data += start_row; /* fold in the vertical offset once */
+
+ for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
+ /* Perform the DCT */
+ (*do_dct) (workspace, sample_data, start_col);
+
+ /* Quantize/descale the coefficients, and store into coef_blocks[] */
+ { register DCTELEM temp, qval;
+ register int i;
+ register JCOEFPTR output_ptr = coef_blocks[bi];
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ qval = divisors[i];
+ temp = workspace[i];
+ /* Divide the coefficient value by qval, ensuring proper rounding.
+ * Since C does not specify the direction of rounding for negative
+ * quotients, we have to force the dividend positive for portability.
+ *
+ * In most files, at least half of the output values will be zero
+ * (at default quantization settings, more like three-quarters...)
+ * so we should ensure that this case is fast. On many machines,
+ * a comparison is enough cheaper than a divide to make a special test
+ * a win. Since both inputs will be nonnegative, we need only test
+ * for a < b to discover whether a/b is 0.
+ * If your machine's division is fast enough, define FAST_DIVIDE.
+ */
+#ifdef FAST_DIVIDE
+#define DIVIDE_BY(a,b) a /= b
+#else
+#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
+#endif
+ if (temp < 0) {
+ temp = -temp;
+ temp += qval>>1; /* for rounding */
+ DIVIDE_BY(temp, qval);
+ temp = -temp;
+ } else {
+ temp += qval>>1; /* for rounding */
+ DIVIDE_BY(temp, qval);
+ }
+ output_ptr[i] = (JCOEF) temp;
+ }
+ }
+ }
+}
+
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+METHODDEF(void)
+forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks)
+/* This version is used for floating-point DCT implementations. */
+{
+ /* This routine is heavily used, so it's worth coding it tightly. */
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+ float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
+ FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
+ FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
+ JDIMENSION bi;
+
+ sample_data += start_row; /* fold in the vertical offset once */
+
+ for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
+ /* Perform the DCT */
+ (*do_dct) (workspace, sample_data, start_col);
+
+ /* Quantize/descale the coefficients, and store into coef_blocks[] */
+ { register FAST_FLOAT temp;
+ register int i;
+ register JCOEFPTR output_ptr = coef_blocks[bi];
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ /* Apply the quantization and scaling factor */
+ temp = workspace[i] * divisors[i];
+ /* Round to nearest integer.
+ * Since C does not specify the direction of rounding for negative
+ * quotients, we have to force the dividend positive for portability.
+ * The maximum coefficient size is +-16K (for 12-bit data), so this
+ * code should work for either 16-bit or 32-bit ints.
+ */
+ output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
+ }
+ }
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
+
+
+/*
+ * Initialize for a processing pass.
+ * Verify that all referenced Q-tables are present, and set up
+ * the divisor table for each one.
+ * In the current implementation, DCT of all components is done during
+ * the first pass, even if only some components will be output in the
+ * first scan. Hence all components should be examined here.
+ */
+
+METHODDEF(void)
+start_pass_fdctmgr (j_compress_ptr cinfo)
+{
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+ int ci, qtblno, i;
+ jpeg_component_info *compptr;
+ int method = 0;
+ JQUANT_TBL * qtbl;
+ DCTELEM * dtbl;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Select the proper DCT routine for this component's scaling */
+ switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
+#ifdef DCT_SCALING_SUPPORTED
+ case ((1 << 8) + 1):
+ fdct->do_dct[ci] = jpeg_fdct_1x1;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((2 << 8) + 2):
+ fdct->do_dct[ci] = jpeg_fdct_2x2;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((3 << 8) + 3):
+ fdct->do_dct[ci] = jpeg_fdct_3x3;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((4 << 8) + 4):
+ fdct->do_dct[ci] = jpeg_fdct_4x4;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((5 << 8) + 5):
+ fdct->do_dct[ci] = jpeg_fdct_5x5;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((6 << 8) + 6):
+ fdct->do_dct[ci] = jpeg_fdct_6x6;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((7 << 8) + 7):
+ fdct->do_dct[ci] = jpeg_fdct_7x7;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((9 << 8) + 9):
+ fdct->do_dct[ci] = jpeg_fdct_9x9;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((10 << 8) + 10):
+ fdct->do_dct[ci] = jpeg_fdct_10x10;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((11 << 8) + 11):
+ fdct->do_dct[ci] = jpeg_fdct_11x11;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((12 << 8) + 12):
+ fdct->do_dct[ci] = jpeg_fdct_12x12;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((13 << 8) + 13):
+ fdct->do_dct[ci] = jpeg_fdct_13x13;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((14 << 8) + 14):
+ fdct->do_dct[ci] = jpeg_fdct_14x14;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((15 << 8) + 15):
+ fdct->do_dct[ci] = jpeg_fdct_15x15;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((16 << 8) + 16):
+ fdct->do_dct[ci] = jpeg_fdct_16x16;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((16 << 8) + 8):
+ fdct->do_dct[ci] = jpeg_fdct_16x8;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((14 << 8) + 7):
+ fdct->do_dct[ci] = jpeg_fdct_14x7;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((12 << 8) + 6):
+ fdct->do_dct[ci] = jpeg_fdct_12x6;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((10 << 8) + 5):
+ fdct->do_dct[ci] = jpeg_fdct_10x5;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((8 << 8) + 4):
+ fdct->do_dct[ci] = jpeg_fdct_8x4;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((6 << 8) + 3):
+ fdct->do_dct[ci] = jpeg_fdct_6x3;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((4 << 8) + 2):
+ fdct->do_dct[ci] = jpeg_fdct_4x2;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((2 << 8) + 1):
+ fdct->do_dct[ci] = jpeg_fdct_2x1;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((8 << 8) + 16):
+ fdct->do_dct[ci] = jpeg_fdct_8x16;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((7 << 8) + 14):
+ fdct->do_dct[ci] = jpeg_fdct_7x14;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((6 << 8) + 12):
+ fdct->do_dct[ci] = jpeg_fdct_6x12;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((5 << 8) + 10):
+ fdct->do_dct[ci] = jpeg_fdct_5x10;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((4 << 8) + 8):
+ fdct->do_dct[ci] = jpeg_fdct_4x8;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((3 << 8) + 6):
+ fdct->do_dct[ci] = jpeg_fdct_3x6;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((2 << 8) + 4):
+ fdct->do_dct[ci] = jpeg_fdct_2x4;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((1 << 8) + 2):
+ fdct->do_dct[ci] = jpeg_fdct_1x2;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+#endif
+ case ((DCTSIZE << 8) + DCTSIZE):
+ switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+ case JDCT_ISLOW:
+ fdct->do_dct[ci] = jpeg_fdct_islow;
+ method = JDCT_ISLOW;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ fdct->do_dct[ci] = jpeg_fdct_ifast;
+ method = JDCT_IFAST;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ fdct->do_float_dct[ci] = jpeg_fdct_float;
+ method = JDCT_FLOAT;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ break;
+ default:
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+ compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
+ break;
+ }
+ qtblno = compptr->quant_tbl_no;
+ /* Make sure specified quantization table is present */
+ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+ cinfo->quant_tbl_ptrs[qtblno] == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+ qtbl = cinfo->quant_tbl_ptrs[qtblno];
+ /* Compute divisors for this quant table */
+ /* We may do this more than once for same table, but it's not a big deal */
+ switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+ case JDCT_ISLOW:
+ /* For LL&M IDCT method, divisors are equal to raw quantization
+ * coefficients multiplied by 8 (to counteract scaling).
+ */
+ if (fdct->divisors[qtblno] == NULL) {
+ fdct->divisors[qtblno] = (DCTELEM *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ DCTSIZE2 * SIZEOF(DCTELEM));
+ }
+ dtbl = fdct->divisors[qtblno];
+ for (i = 0; i < DCTSIZE2; i++) {
+ dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
+ }
+ fdct->pub.forward_DCT[ci] = forward_DCT;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ {
+ /* For AA&N IDCT method, divisors are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * We apply a further scale factor of 8.
+ */
+#define CONST_BITS 14
+ static const INT16 aanscales[DCTSIZE2] = {
+ /* precomputed values scaled up by 14 bits */
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
+ };
+ SHIFT_TEMPS
+
+ if (fdct->divisors[qtblno] == NULL) {
+ fdct->divisors[qtblno] = (DCTELEM *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ DCTSIZE2 * SIZEOF(DCTELEM));
+ }
+ dtbl = fdct->divisors[qtblno];
+ for (i = 0; i < DCTSIZE2; i++) {
+ dtbl[i] = (DCTELEM)
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+ (INT32) aanscales[i]),
+ CONST_BITS-3);
+ }
+ }
+ fdct->pub.forward_DCT[ci] = forward_DCT;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ {
+ /* For float AA&N IDCT method, divisors are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * We apply a further scale factor of 8.
+ * What's actually stored is 1/divisor so that the inner loop can
+ * use a multiplication rather than a division.
+ */
+ FAST_FLOAT * fdtbl;
+ int row, col;
+ static const double aanscalefactor[DCTSIZE] = {
+ 1.0, 1.387039845, 1.306562965, 1.175875602,
+ 1.0, 0.785694958, 0.541196100, 0.275899379
+ };
+
+ if (fdct->float_divisors[qtblno] == NULL) {
+ fdct->float_divisors[qtblno] = (FAST_FLOAT *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ DCTSIZE2 * SIZEOF(FAST_FLOAT));
+ }
+ fdtbl = fdct->float_divisors[qtblno];
+ i = 0;
+ for (row = 0; row < DCTSIZE; row++) {
+ for (col = 0; col < DCTSIZE; col++) {
+ fdtbl[i] = (FAST_FLOAT)
+ (1.0 / (((double) qtbl->quantval[i] *
+ aanscalefactor[row] * aanscalefactor[col] * 8.0)));
+ i++;
+ }
+ }
+ }
+ fdct->pub.forward_DCT[ci] = forward_DCT_float;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ }
+}
+
+
+/*
+ * Initialize FDCT manager.
+ */
+
+GLOBAL(void)
+jinit_forward_dct (j_compress_ptr cinfo)
+{
+ my_fdct_ptr fdct;
+ int i;
+
+ fdct = (my_fdct_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_fdct_controller));
+ cinfo->fdct = (struct jpeg_forward_dct *) fdct;
+ fdct->pub.start_pass = start_pass_fdctmgr;
+
+ /* Mark divisor tables unallocated */
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ fdct->divisors[i] = NULL;
+#ifdef DCT_FLOAT_SUPPORTED
+ fdct->float_divisors[i] = NULL;
+#endif
+ }
+}
diff --git a/src/3rdparty/libjpeg/jchuff.c b/src/3rdparty/libjpeg/jchuff.c
new file mode 100644
index 0000000..257d7aa
--- /dev/null
+++ b/src/3rdparty/libjpeg/jchuff.c
@@ -0,0 +1,1576 @@
+/*
+ * jchuff.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2006-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy encoding routines.
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Much of the complexity here has to do with supporting output suspension.
+ * If the data destination module demands suspension, we want to be able to
+ * back up to the start of the current MCU. To do this, we copy state
+ * variables into local working storage, and update them back to the
+ * permanent JPEG objects only upon successful completion of an MCU.
+ *
+ * We do not support output suspension for the progressive JPEG mode, since
+ * the library currently does not allow multiple-scan files to be written
+ * with output suspension.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* The legal range of a DCT coefficient is
+ * -1024 .. +1023 for 8-bit data;
+ * -16384 .. +16383 for 12-bit data.
+ * Hence the magnitude should always fit in 10 or 14 bits respectively.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MAX_COEF_BITS 10
+#else
+#define MAX_COEF_BITS 14
+#endif
+
+/* Derived data constructed for each Huffman table */
+
+typedef struct {
+ unsigned int ehufco[256]; /* code for each symbol */
+ char ehufsi[256]; /* length of code for each symbol */
+ /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
+} c_derived_tbl;
+
+
+/* Expanded entropy encoder object for Huffman encoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+ INT32 put_buffer; /* current bit-accumulation buffer */
+ int put_bits; /* # of bits now in it */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment. You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src) ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src) \
+ ((dest).put_buffer = (src).put_buffer, \
+ (dest).put_bits = (src).put_bits, \
+ (dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+ struct jpeg_entropy_encoder pub; /* public fields */
+
+ savable_state saved; /* Bit buffer & DC state at start of MCU */
+
+ /* These fields are NOT loaded into local working state. */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ int next_restart_num; /* next restart number to write (0-7) */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+ c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+
+ /* Statistics tables for optimization */
+ long * dc_count_ptrs[NUM_HUFF_TBLS];
+ long * ac_count_ptrs[NUM_HUFF_TBLS];
+
+ /* Following fields used only in progressive mode */
+
+ /* Mode flag: TRUE for optimization, FALSE for actual data output */
+ boolean gather_statistics;
+
+ /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
+ */
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+ j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
+
+ /* Coding status for AC components */
+ int ac_tbl_no; /* the table number of the single component */
+ unsigned int EOBRUN; /* run length of EOBs */
+ unsigned int BE; /* # of buffered correction bits before MCU */
+ char * bit_buffer; /* buffer for correction bits (1 per char) */
+ /* packing correction bits tightly would save some space but cost time... */
+} huff_entropy_encoder;
+
+typedef huff_entropy_encoder * huff_entropy_ptr;
+
+/* Working state while writing an MCU (sequential mode).
+ * This struct contains all the fields that are needed by subroutines.
+ */
+
+typedef struct {
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+ savable_state cur; /* Current bit buffer & DC state */
+ j_compress_ptr cinfo; /* dump_buffer needs access to this */
+} working_state;
+
+/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
+ * buffer can hold. Larger sizes may slightly improve compression, but
+ * 1000 is already well into the realm of overkill.
+ * The minimum safe size is 64 bits.
+ */
+
+#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS int ishift_temp;
+#define IRIGHT_SHIFT(x,shft) \
+ ((ishift_temp = (x)) < 0 ? \
+ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+ (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * This routine also performs some validation checks on the table.
+ */
+
+LOCAL(void)
+jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
+ c_derived_tbl ** pdtbl)
+{
+ JHUFF_TBL *htbl;
+ c_derived_tbl *dtbl;
+ int p, i, l, lastp, si, maxsymbol;
+ char huffsize[257];
+ unsigned int huffcode[257];
+ unsigned int code;
+
+ /* Note that huffsize[] and huffcode[] are filled in code-length order,
+ * paralleling the order of the symbols themselves in htbl->huffval[].
+ */
+
+ /* Find the input Huffman table */
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+ htbl =
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+ /* Allocate a workspace if we haven't already done so. */
+ if (*pdtbl == NULL)
+ *pdtbl = (c_derived_tbl *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(c_derived_tbl));
+ dtbl = *pdtbl;
+
+ /* Figure C.1: make table of Huffman code length for each symbol */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ i = (int) htbl->bits[l];
+ if (i < 0 || p + i > 256) /* protect against table overrun */
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ while (i--)
+ huffsize[p++] = (char) l;
+ }
+ huffsize[p] = 0;
+ lastp = p;
+
+ /* Figure C.2: generate the codes themselves */
+ /* We also validate that the counts represent a legal Huffman code tree. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (((int) huffsize[p]) == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ /* code is now 1 more than the last code used for codelength si; but
+ * it must still fit in si bits, since no code is allowed to be all ones.
+ */
+ if (((INT32) code) >= (((INT32) 1) << si))
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure C.3: generate encoding tables */
+ /* These are code and size indexed by symbol value */
+
+ /* Set all codeless symbols to have code length 0;
+ * this lets us detect duplicate VAL entries here, and later
+ * allows emit_bits to detect any attempt to emit such symbols.
+ */
+ MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
+
+ /* This is also a convenient place to check for out-of-range
+ * and duplicated VAL entries. We allow 0..255 for AC symbols
+ * but only 0..15 for DC. (We could constrain them further
+ * based on data depth and mode, but this seems enough.)
+ */
+ maxsymbol = isDC ? 15 : 255;
+
+ for (p = 0; p < lastp; p++) {
+ i = htbl->huffval[p];
+ if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ dtbl->ehufco[i] = huffcode[p];
+ dtbl->ehufsi[i] = huffsize[p];
+ }
+}
+
+
+/* Outputting bytes to the file.
+ * NB: these must be called only when actually outputting,
+ * that is, entropy->gather_statistics == FALSE.
+ */
+
+/* Emit a byte, taking 'action' if must suspend. */
+#define emit_byte_s(state,val,action) \
+ { *(state)->next_output_byte++ = (JOCTET) (val); \
+ if (--(state)->free_in_buffer == 0) \
+ if (! dump_buffer_s(state)) \
+ { action; } }
+
+/* Emit a byte */
+#define emit_byte_e(entropy,val) \
+ { *(entropy)->next_output_byte++ = (JOCTET) (val); \
+ if (--(entropy)->free_in_buffer == 0) \
+ dump_buffer_e(entropy); }
+
+
+LOCAL(boolean)
+dump_buffer_s (working_state * state)
+/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
+{
+ struct jpeg_destination_mgr * dest = state->cinfo->dest;
+
+ if (! (*dest->empty_output_buffer) (state->cinfo))
+ return FALSE;
+ /* After a successful buffer dump, must reset buffer pointers */
+ state->next_output_byte = dest->next_output_byte;
+ state->free_in_buffer = dest->free_in_buffer;
+ return TRUE;
+}
+
+
+LOCAL(void)
+dump_buffer_e (huff_entropy_ptr entropy)
+/* Empty the output buffer; we do not support suspension in this case. */
+{
+ struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
+
+ if (! (*dest->empty_output_buffer) (entropy->cinfo))
+ ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
+ /* After a successful buffer dump, must reset buffer pointers */
+ entropy->next_output_byte = dest->next_output_byte;
+ entropy->free_in_buffer = dest->free_in_buffer;
+}
+
+
+/* Outputting bits to the file */
+
+/* Only the right 24 bits of put_buffer are used; the valid bits are
+ * left-justified in this part. At most 16 bits can be passed to emit_bits
+ * in one call, and we never retain more than 7 bits in put_buffer
+ * between calls, so 24 bits are sufficient.
+ */
+
+INLINE
+LOCAL(boolean)
+emit_bits_s (working_state * state, unsigned int code, int size)
+/* Emit some bits; return TRUE if successful, FALSE if must suspend */
+{
+ /* This routine is heavily used, so it's worth coding tightly. */
+ register INT32 put_buffer = (INT32) code;
+ register int put_bits = state->cur.put_bits;
+
+ /* if size is 0, caller used an invalid Huffman table entry */
+ if (size == 0)
+ ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
+
+ put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+
+ put_bits += size; /* new number of bits in buffer */
+
+ put_buffer <<= 24 - put_bits; /* align incoming bits */
+
+ put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
+
+ while (put_bits >= 8) {
+ int c = (int) ((put_buffer >> 16) & 0xFF);
+
+ emit_byte_s(state, c, return FALSE);
+ if (c == 0xFF) { /* need to stuff a zero byte? */
+ emit_byte_s(state, 0, return FALSE);
+ }
+ put_buffer <<= 8;
+ put_bits -= 8;
+ }
+
+ state->cur.put_buffer = put_buffer; /* update state variables */
+ state->cur.put_bits = put_bits;
+
+ return TRUE;
+}
+
+
+INLINE
+LOCAL(void)
+emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
+/* Emit some bits, unless we are in gather mode */
+{
+ /* This routine is heavily used, so it's worth coding tightly. */
+ register INT32 put_buffer = (INT32) code;
+ register int put_bits = entropy->saved.put_bits;
+
+ /* if size is 0, caller used an invalid Huffman table entry */
+ if (size == 0)
+ ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+
+ if (entropy->gather_statistics)
+ return; /* do nothing if we're only getting stats */
+
+ put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+
+ put_bits += size; /* new number of bits in buffer */
+
+ put_buffer <<= 24 - put_bits; /* align incoming bits */
+
+ /* and merge with old buffer contents */
+ put_buffer |= entropy->saved.put_buffer;
+
+ while (put_bits >= 8) {
+ int c = (int) ((put_buffer >> 16) & 0xFF);
+
+ emit_byte_e(entropy, c);
+ if (c == 0xFF) { /* need to stuff a zero byte? */
+ emit_byte_e(entropy, 0);
+ }
+ put_buffer <<= 8;
+ put_bits -= 8;
+ }
+
+ entropy->saved.put_buffer = put_buffer; /* update variables */
+ entropy->saved.put_bits = put_bits;
+}
+
+
+LOCAL(boolean)
+flush_bits_s (working_state * state)
+{
+ if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
+ return FALSE;
+ state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
+ state->cur.put_bits = 0;
+ return TRUE;
+}
+
+
+LOCAL(void)
+flush_bits_e (huff_entropy_ptr entropy)
+{
+ emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
+ entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
+ entropy->saved.put_bits = 0;
+}
+
+
+/*
+ * Emit (or just count) a Huffman symbol.
+ */
+
+INLINE
+LOCAL(void)
+emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
+{
+ if (entropy->gather_statistics)
+ entropy->dc_count_ptrs[tbl_no][symbol]++;
+ else {
+ c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
+ emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
+ }
+}
+
+
+INLINE
+LOCAL(void)
+emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
+{
+ if (entropy->gather_statistics)
+ entropy->ac_count_ptrs[tbl_no][symbol]++;
+ else {
+ c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
+ emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
+ }
+}
+
+
+/*
+ * Emit bits from a correction bit buffer.
+ */
+
+LOCAL(void)
+emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
+ unsigned int nbits)
+{
+ if (entropy->gather_statistics)
+ return; /* no real work */
+
+ while (nbits > 0) {
+ emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
+ bufstart++;
+ nbits--;
+ }
+}
+
+
+/*
+ * Emit any pending EOBRUN symbol.
+ */
+
+LOCAL(void)
+emit_eobrun (huff_entropy_ptr entropy)
+{
+ register int temp, nbits;
+
+ if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
+ temp = entropy->EOBRUN;
+ nbits = 0;
+ while ((temp >>= 1))
+ nbits++;
+ /* safety check: shouldn't happen given limited correction-bit buffer */
+ if (nbits > 14)
+ ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
+ if (nbits)
+ emit_bits_e(entropy, entropy->EOBRUN, nbits);
+
+ entropy->EOBRUN = 0;
+
+ /* Emit any buffered correction bits */
+ emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
+ entropy->BE = 0;
+ }
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(boolean)
+emit_restart_s (working_state * state, int restart_num)
+{
+ int ci;
+
+ if (! flush_bits_s(state))
+ return FALSE;
+
+ emit_byte_s(state, 0xFF, return FALSE);
+ emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
+ state->cur.last_dc_val[ci] = 0;
+
+ /* The restart counter is not updated until we successfully write the MCU. */
+
+ return TRUE;
+}
+
+
+LOCAL(void)
+emit_restart_e (huff_entropy_ptr entropy, int restart_num)
+{
+ int ci;
+
+ emit_eobrun(entropy);
+
+ if (! entropy->gather_statistics) {
+ flush_bits_e(entropy);
+ emit_byte_e(entropy, 0xFF);
+ emit_byte_e(entropy, JPEG_RST0 + restart_num);
+ }
+
+ if (entropy->cinfo->Ss == 0) {
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ } else {
+ /* Re-initialize all AC-related fields to 0 */
+ entropy->EOBRUN = 0;
+ entropy->BE = 0;
+ }
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp, temp2;
+ register int nbits;
+ int blkn, ci;
+ int Al = cinfo->Al;
+ JBLOCKROW block;
+ jpeg_component_info * compptr;
+ ISHIFT_TEMPS
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+
+ /* Compute the DC value after the required point transform by Al.
+ * This is simply an arithmetic right shift.
+ */
+ temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
+
+ /* DC differences are figured on the point-transformed values. */
+ temp = temp2 - entropy->saved.last_dc_val[ci];
+ entropy->saved.last_dc_val[ci] = temp2;
+
+ /* Encode the DC coefficient difference per section G.1.2.1 */
+ temp2 = temp;
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ /* For a negative input, want temp2 = bitwise complement of abs(input) */
+ /* This code assumes we are on a two's complement machine */
+ temp2--;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+ /* Check for out-of-range coefficient values.
+ * Since we're encoding a difference, the range limit is twice as much.
+ */
+ if (nbits > MAX_COEF_BITS+1)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count/emit the Huffman-coded symbol for the number of bits */
+ emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ if (nbits) /* emit_bits rejects calls with size 0 */
+ emit_bits_e(entropy, (unsigned int) temp2, nbits);
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp, temp2;
+ register int nbits;
+ register int r, k;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+
+ /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = cinfo->Ss; k <= Se; k++) {
+ if ((temp = (*block)[natural_order[k]]) == 0) {
+ r++;
+ continue;
+ }
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value; so the code is
+ * interwoven with finding the abs value (temp) and output bits (temp2).
+ */
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ temp >>= Al; /* apply the point transform */
+ /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
+ temp2 = ~temp;
+ } else {
+ temp >>= Al; /* apply the point transform */
+ temp2 = temp;
+ }
+ /* Watch out for case that nonzero coef is zero after point transform */
+ if (temp == 0) {
+ r++;
+ continue;
+ }
+
+ /* Emit any pending EOBRUN */
+ if (entropy->EOBRUN > 0)
+ emit_eobrun(entropy);
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+ r -= 16;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 1; /* there must be at least one 1 bit */
+ while ((temp >>= 1))
+ nbits++;
+ /* Check for out-of-range coefficient values */
+ if (nbits > MAX_COEF_BITS)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count/emit Huffman symbol for run length / number of bits */
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ emit_bits_e(entropy, (unsigned int) temp2, nbits);
+
+ r = 0; /* reset zero run length */
+ }
+
+ if (r > 0) { /* If there are trailing zeroes, */
+ entropy->EOBRUN++; /* count an EOB */
+ if (entropy->EOBRUN == 0x7FFF)
+ emit_eobrun(entropy); /* force it out to avoid overflow */
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp;
+ int blkn;
+ int Al = cinfo->Al;
+ JBLOCKROW block;
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+
+ /* We simply emit the Al'th bit of the DC coefficient value. */
+ temp = (*block)[0];
+ emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp;
+ register int r, k;
+ int EOB;
+ char *BR_buffer;
+ unsigned int BR;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+ int absvalues[DCTSIZE2];
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+
+ /* It is convenient to make a pre-pass to determine the transformed
+ * coefficients' absolute values and the EOB position.
+ */
+ EOB = 0;
+ for (k = cinfo->Ss; k <= Se; k++) {
+ temp = (*block)[natural_order[k]];
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value.
+ */
+ if (temp < 0)
+ temp = -temp; /* temp is abs value of input */
+ temp >>= Al; /* apply the point transform */
+ absvalues[k] = temp; /* save abs value for main pass */
+ if (temp == 1)
+ EOB = k; /* EOB = index of last newly-nonzero coef */
+ }
+
+ /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
+
+ r = 0; /* r = run length of zeros */
+ BR = 0; /* BR = count of buffered bits added now */
+ BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
+
+ for (k = cinfo->Ss; k <= Se; k++) {
+ if ((temp = absvalues[k]) == 0) {
+ r++;
+ continue;
+ }
+
+ /* Emit any required ZRLs, but not if they can be folded into EOB */
+ while (r > 15 && k <= EOB) {
+ /* emit any pending EOBRUN and the BE correction bits */
+ emit_eobrun(entropy);
+ /* Emit ZRL */
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+ r -= 16;
+ /* Emit buffered correction bits that must be associated with ZRL */
+ emit_buffered_bits(entropy, BR_buffer, BR);
+ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+ BR = 0;
+ }
+
+ /* If the coef was previously nonzero, it only needs a correction bit.
+ * NOTE: a straight translation of the spec's figure G.7 would suggest
+ * that we also need to test r > 15. But if r > 15, we can only get here
+ * if k > EOB, which implies that this coefficient is not 1.
+ */
+ if (temp > 1) {
+ /* The correction bit is the next bit of the absolute value. */
+ BR_buffer[BR++] = (char) (temp & 1);
+ continue;
+ }
+
+ /* Emit any pending EOBRUN and the BE correction bits */
+ emit_eobrun(entropy);
+
+ /* Count/emit Huffman symbol for run length / number of bits */
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
+
+ /* Emit output bit for newly-nonzero coef */
+ temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
+ emit_bits_e(entropy, (unsigned int) temp, 1);
+
+ /* Emit buffered correction bits that must be associated with this code */
+ emit_buffered_bits(entropy, BR_buffer, BR);
+ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+ BR = 0;
+ r = 0; /* reset zero run length */
+ }
+
+ if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
+ entropy->EOBRUN++; /* count an EOB */
+ entropy->BE += BR; /* concat my correction bits to older ones */
+ /* We force out the EOB if we risk either:
+ * 1. overflow of the EOB counter;
+ * 2. overflow of the correction bit buffer during the next MCU.
+ */
+ if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
+ emit_eobrun(entropy);
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/* Encode a single block's worth of coefficients */
+
+LOCAL(boolean)
+encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
+ c_derived_tbl *dctbl, c_derived_tbl *actbl)
+{
+ register int temp, temp2;
+ register int nbits;
+ register int k, r, i;
+ int Se = state->cinfo->lim_Se;
+ const int * natural_order = state->cinfo->natural_order;
+
+ /* Encode the DC coefficient difference per section F.1.2.1 */
+
+ temp = temp2 = block[0] - last_dc_val;
+
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ /* For a negative input, want temp2 = bitwise complement of abs(input) */
+ /* This code assumes we are on a two's complement machine */
+ temp2--;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+ /* Check for out-of-range coefficient values.
+ * Since we're encoding a difference, the range limit is twice as much.
+ */
+ if (nbits > MAX_COEF_BITS+1)
+ ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
+
+ /* Emit the Huffman-coded symbol for the number of bits */
+ if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
+ return FALSE;
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ if (nbits) /* emit_bits rejects calls with size 0 */
+ if (! emit_bits_s(state, (unsigned int) temp2, nbits))
+ return FALSE;
+
+ /* Encode the AC coefficients per section F.1.2.2 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = 1; k <= Se; k++) {
+ if ((temp = block[natural_order[k]]) == 0) {
+ r++;
+ } else {
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
+ return FALSE;
+ r -= 16;
+ }
+
+ temp2 = temp;
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ /* This code assumes we are on a two's complement machine */
+ temp2--;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 1; /* there must be at least one 1 bit */
+ while ((temp >>= 1))
+ nbits++;
+ /* Check for out-of-range coefficient values */
+ if (nbits > MAX_COEF_BITS)
+ ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
+
+ /* Emit Huffman symbol for run length / number of bits */
+ i = (r << 4) + nbits;
+ if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
+ return FALSE;
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ if (! emit_bits_s(state, (unsigned int) temp2, nbits))
+ return FALSE;
+
+ r = 0;
+ }
+ }
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0)
+ if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
+ return FALSE;
+
+ return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of Huffman-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ working_state state;
+ int blkn, ci;
+ jpeg_component_info * compptr;
+
+ /* Load up working state */
+ state.next_output_byte = cinfo->dest->next_output_byte;
+ state.free_in_buffer = cinfo->dest->free_in_buffer;
+ ASSIGN_STATE(state.cur, entropy->saved);
+ state.cinfo = cinfo;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! emit_restart_s(&state, entropy->next_restart_num))
+ return FALSE;
+ }
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ if (! encode_one_block(&state,
+ MCU_data[blkn][0], state.cur.last_dc_val[ci],
+ entropy->dc_derived_tbls[compptr->dc_tbl_no],
+ entropy->ac_derived_tbls[compptr->ac_tbl_no]))
+ return FALSE;
+ /* Update last_dc_val */
+ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
+ }
+
+ /* Completed MCU, so update state */
+ cinfo->dest->next_output_byte = state.next_output_byte;
+ cinfo->dest->free_in_buffer = state.free_in_buffer;
+ ASSIGN_STATE(entropy->saved, state.cur);
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Finish up at the end of a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass_huff (j_compress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ working_state state;
+
+ if (cinfo->progressive_mode) {
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Flush out any buffered data */
+ emit_eobrun(entropy);
+ flush_bits_e(entropy);
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+ } else {
+ /* Load up working state ... flush_bits needs it */
+ state.next_output_byte = cinfo->dest->next_output_byte;
+ state.free_in_buffer = cinfo->dest->free_in_buffer;
+ ASSIGN_STATE(state.cur, entropy->saved);
+ state.cinfo = cinfo;
+
+ /* Flush out the last data */
+ if (! flush_bits_s(&state))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+ /* Update state */
+ cinfo->dest->next_output_byte = state.next_output_byte;
+ cinfo->dest->free_in_buffer = state.free_in_buffer;
+ ASSIGN_STATE(entropy->saved, state.cur);
+ }
+}
+
+
+/*
+ * Huffman coding optimization.
+ *
+ * We first scan the supplied data and count the number of uses of each symbol
+ * that is to be Huffman-coded. (This process MUST agree with the code above.)
+ * Then we build a Huffman coding tree for the observed counts.
+ * Symbols which are not needed at all for the particular image are not
+ * assigned any code, which saves space in the DHT marker as well as in
+ * the compressed data.
+ */
+
+
+/* Process a single block's worth of coefficients */
+
+LOCAL(void)
+htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
+ long dc_counts[], long ac_counts[])
+{
+ register int temp;
+ register int nbits;
+ register int k, r;
+ int Se = cinfo->lim_Se;
+ const int * natural_order = cinfo->natural_order;
+
+ /* Encode the DC coefficient difference per section F.1.2.1 */
+
+ temp = block[0] - last_dc_val;
+ if (temp < 0)
+ temp = -temp;
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+ /* Check for out-of-range coefficient values.
+ * Since we're encoding a difference, the range limit is twice as much.
+ */
+ if (nbits > MAX_COEF_BITS+1)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count the Huffman symbol for the number of bits */
+ dc_counts[nbits]++;
+
+ /* Encode the AC coefficients per section F.1.2.2 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = 1; k <= Se; k++) {
+ if ((temp = block[natural_order[k]]) == 0) {
+ r++;
+ } else {
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ ac_counts[0xF0]++;
+ r -= 16;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ if (temp < 0)
+ temp = -temp;
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 1; /* there must be at least one 1 bit */
+ while ((temp >>= 1))
+ nbits++;
+ /* Check for out-of-range coefficient values */
+ if (nbits > MAX_COEF_BITS)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count Huffman symbol for run length / number of bits */
+ ac_counts[(r << 4) + nbits]++;
+
+ r = 0;
+ }
+ }
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0)
+ ac_counts[0]++;
+}
+
+
+/*
+ * Trial-encode one MCU's worth of Huffman-compressed coefficients.
+ * No data is actually output, so no suspension return is possible.
+ */
+
+METHODDEF(boolean)
+encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int blkn, ci;
+ jpeg_component_info * compptr;
+
+ /* Take care of restart intervals if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ /* Update restart state */
+ entropy->restarts_to_go = cinfo->restart_interval;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
+ entropy->dc_count_ptrs[compptr->dc_tbl_no],
+ entropy->ac_count_ptrs[compptr->ac_tbl_no]);
+ entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Generate the best Huffman code table for the given counts, fill htbl.
+ *
+ * The JPEG standard requires that no symbol be assigned a codeword of all
+ * one bits (so that padding bits added at the end of a compressed segment
+ * can't look like a valid code). Because of the canonical ordering of
+ * codewords, this just means that there must be an unused slot in the
+ * longest codeword length category. Section K.2 of the JPEG spec suggests
+ * reserving such a slot by pretending that symbol 256 is a valid symbol
+ * with count 1. In theory that's not optimal; giving it count zero but
+ * including it in the symbol set anyway should give a better Huffman code.
+ * But the theoretically better code actually seems to come out worse in
+ * practice, because it produces more all-ones bytes (which incur stuffed
+ * zero bytes in the final file). In any case the difference is tiny.
+ *
+ * The JPEG standard requires Huffman codes to be no more than 16 bits long.
+ * If some symbols have a very small but nonzero probability, the Huffman tree
+ * must be adjusted to meet the code length restriction. We currently use
+ * the adjustment method suggested in JPEG section K.2. This method is *not*
+ * optimal; it may not choose the best possible limited-length code. But
+ * typically only very-low-frequency symbols will be given less-than-optimal
+ * lengths, so the code is almost optimal. Experimental comparisons against
+ * an optimal limited-length-code algorithm indicate that the difference is
+ * microscopic --- usually less than a hundredth of a percent of total size.
+ * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
+ */
+
+LOCAL(void)
+jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
+{
+#define MAX_CLEN 32 /* assumed maximum initial code length */
+ UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
+ int codesize[257]; /* codesize[k] = code length of symbol k */
+ int others[257]; /* next symbol in current branch of tree */
+ int c1, c2;
+ int p, i, j;
+ long v;
+
+ /* This algorithm is explained in section K.2 of the JPEG standard */
+
+ MEMZERO(bits, SIZEOF(bits));
+ MEMZERO(codesize, SIZEOF(codesize));
+ for (i = 0; i < 257; i++)
+ others[i] = -1; /* init links to empty */
+
+ freq[256] = 1; /* make sure 256 has a nonzero count */
+ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
+ * that no real symbol is given code-value of all ones, because 256
+ * will be placed last in the largest codeword category.
+ */
+
+ /* Huffman's basic algorithm to assign optimal code lengths to symbols */
+
+ for (;;) {
+ /* Find the smallest nonzero frequency, set c1 = its symbol */
+ /* In case of ties, take the larger symbol number */
+ c1 = -1;
+ v = 1000000000L;
+ for (i = 0; i <= 256; i++) {
+ if (freq[i] && freq[i] <= v) {
+ v = freq[i];
+ c1 = i;
+ }
+ }
+
+ /* Find the next smallest nonzero frequency, set c2 = its symbol */
+ /* In case of ties, take the larger symbol number */
+ c2 = -1;
+ v = 1000000000L;
+ for (i = 0; i <= 256; i++) {
+ if (freq[i] && freq[i] <= v && i != c1) {
+ v = freq[i];
+ c2 = i;
+ }
+ }
+
+ /* Done if we've merged everything into one frequency */
+ if (c2 < 0)
+ break;
+
+ /* Else merge the two counts/trees */
+ freq[c1] += freq[c2];
+ freq[c2] = 0;
+
+ /* Increment the codesize of everything in c1's tree branch */
+ codesize[c1]++;
+ while (others[c1] >= 0) {
+ c1 = others[c1];
+ codesize[c1]++;
+ }
+
+ others[c1] = c2; /* chain c2 onto c1's tree branch */
+
+ /* Increment the codesize of everything in c2's tree branch */
+ codesize[c2]++;
+ while (others[c2] >= 0) {
+ c2 = others[c2];
+ codesize[c2]++;
+ }
+ }
+
+ /* Now count the number of symbols of each code length */
+ for (i = 0; i <= 256; i++) {
+ if (codesize[i]) {
+ /* The JPEG standard seems to think that this can't happen, */
+ /* but I'm paranoid... */
+ if (codesize[i] > MAX_CLEN)
+ ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
+
+ bits[codesize[i]]++;
+ }
+ }
+
+ /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
+ * Huffman procedure assigned any such lengths, we must adjust the coding.
+ * Here is what the JPEG spec says about how this next bit works:
+ * Since symbols are paired for the longest Huffman code, the symbols are
+ * removed from this length category two at a time. The prefix for the pair
+ * (which is one bit shorter) is allocated to one of the pair; then,
+ * skipping the BITS entry for that prefix length, a code word from the next
+ * shortest nonzero BITS entry is converted into a prefix for two code words
+ * one bit longer.
+ */
+
+ for (i = MAX_CLEN; i > 16; i--) {
+ while (bits[i] > 0) {
+ j = i - 2; /* find length of new prefix to be used */
+ while (bits[j] == 0)
+ j--;
+
+ bits[i] -= 2; /* remove two symbols */
+ bits[i-1]++; /* one goes in this length */
+ bits[j+1] += 2; /* two new symbols in this length */
+ bits[j]--; /* symbol of this length is now a prefix */
+ }
+ }
+
+ /* Remove the count for the pseudo-symbol 256 from the largest codelength */
+ while (bits[i] == 0) /* find largest codelength still in use */
+ i--;
+ bits[i]--;
+
+ /* Return final symbol counts (only for lengths 0..16) */
+ MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
+
+ /* Return a list of the symbols sorted by code length */
+ /* It's not real clear to me why we don't need to consider the codelength
+ * changes made above, but the JPEG spec seems to think this works.
+ */
+ p = 0;
+ for (i = 1; i <= MAX_CLEN; i++) {
+ for (j = 0; j <= 255; j++) {
+ if (codesize[j] == i) {
+ htbl->huffval[p] = (UINT8) j;
+ p++;
+ }
+ }
+ }
+
+ /* Set sent_table FALSE so updated table will be written to JPEG file. */
+ htbl->sent_table = FALSE;
+}
+
+
+/*
+ * Finish up a statistics-gathering pass and create the new Huffman tables.
+ */
+
+METHODDEF(void)
+finish_pass_gather (j_compress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+ JHUFF_TBL **htblptr;
+ boolean did_dc[NUM_HUFF_TBLS];
+ boolean did_ac[NUM_HUFF_TBLS];
+
+ /* It's important not to apply jpeg_gen_optimal_table more than once
+ * per table, because it clobbers the input frequency counts!
+ */
+ if (cinfo->progressive_mode)
+ /* Flush out buffered data (all we care about is counting the EOB symbol) */
+ emit_eobrun(entropy);
+
+ MEMZERO(did_dc, SIZEOF(did_dc));
+ MEMZERO(did_ac, SIZEOF(did_ac));
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ tbl = compptr->dc_tbl_no;
+ if (! did_dc[tbl]) {
+ htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+ jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
+ did_dc[tbl] = TRUE;
+ }
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ tbl = compptr->ac_tbl_no;
+ if (! did_ac[tbl]) {
+ htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+ jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
+ did_ac[tbl] = TRUE;
+ }
+ }
+ }
+}
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ * If gather_statistics is TRUE, we do not output anything during the scan,
+ * just count the Huffman symbols used and generate Huffman code tables.
+ */
+
+METHODDEF(void)
+start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+
+ if (gather_statistics)
+ entropy->pub.finish_pass = finish_pass_gather;
+ else
+ entropy->pub.finish_pass = finish_pass_huff;
+
+ if (cinfo->progressive_mode) {
+ entropy->cinfo = cinfo;
+ entropy->gather_statistics = gather_statistics;
+
+ /* We assume jcmaster.c already validated the scan parameters. */
+
+ /* Select execution routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_first;
+ else
+ entropy->pub.encode_mcu = encode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_refine;
+ else {
+ entropy->pub.encode_mcu = encode_mcu_AC_refine;
+ /* AC refinement needs a correction bit buffer */
+ if (entropy->bit_buffer == NULL)
+ entropy->bit_buffer = (char *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ MAX_CORR_BITS * SIZEOF(char));
+ }
+ }
+
+ /* Initialize AC stuff */
+ entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
+ entropy->EOBRUN = 0;
+ entropy->BE = 0;
+ } else {
+ if (gather_statistics)
+ entropy->pub.encode_mcu = encode_mcu_gather;
+ else
+ entropy->pub.encode_mcu = encode_mcu_huff;
+ }
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ tbl = compptr->dc_tbl_no;
+ if (gather_statistics) {
+ /* Check for invalid table index */
+ /* (make_c_derived_tbl does this in the other path) */
+ if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
+ /* Allocate and zero the statistics tables */
+ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
+ if (entropy->dc_count_ptrs[tbl] == NULL)
+ entropy->dc_count_ptrs[tbl] = (long *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 257 * SIZEOF(long));
+ MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
+ } else {
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for a table, but it's not expensive */
+ jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->dc_derived_tbls[tbl]);
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ tbl = compptr->ac_tbl_no;
+ if (gather_statistics) {
+ if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
+ if (entropy->ac_count_ptrs[tbl] == NULL)
+ entropy->ac_count_ptrs[tbl] = (long *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 257 * SIZEOF(long));
+ MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
+ } else {
+ jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
+ & entropy->ac_derived_tbls[tbl]);
+ }
+ }
+ }
+
+ /* Initialize bit buffer to empty */
+ entropy->saved.put_buffer = 0;
+ entropy->saved.put_bits = 0;
+
+ /* Initialize restart stuff */
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Module initialization routine for Huffman entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_huff_encoder (j_compress_ptr cinfo)
+{
+ huff_entropy_ptr entropy;
+ int i;
+
+ entropy = (huff_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(huff_entropy_encoder));
+ cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+ entropy->pub.start_pass = start_pass_huff;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+ entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
+ }
+
+ if (cinfo->progressive_mode)
+ entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
+}
diff --git a/src/3rdparty/libjpeg/jcinit.c b/src/3rdparty/libjpeg/jcinit.c
new file mode 100644
index 0000000..0ba310f
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcinit.c
@@ -0,0 +1,65 @@
+/*
+ * jcinit.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains initialization logic for the JPEG compressor.
+ * This routine is in charge of selecting the modules to be executed and
+ * making an initialization call to each one.
+ *
+ * Logically, this code belongs in jcmaster.c. It's split out because
+ * linking this routine implies linking the entire compression library.
+ * For a transcoding-only application, we want to be able to use jcmaster.c
+ * without linking in the whole library.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Master selection of compression modules.
+ * This is done once at the start of processing an image. We determine
+ * which modules will be used and give them appropriate initialization calls.
+ */
+
+GLOBAL(void)
+jinit_compress_master (j_compress_ptr cinfo)
+{
+ /* Initialize master control (includes parameter checking/processing) */
+ jinit_c_master_control(cinfo, FALSE /* full compression */);
+
+ /* Preprocessing */
+ if (! cinfo->raw_data_in) {
+ jinit_color_converter(cinfo);
+ jinit_downsampler(cinfo);
+ jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
+ }
+ /* Forward DCT */
+ jinit_forward_dct(cinfo);
+ /* Entropy encoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_encoder(cinfo);
+ else {
+ jinit_huff_encoder(cinfo);
+ }
+
+ /* Need a full-image coefficient buffer in any multi-pass mode. */
+ jinit_c_coef_controller(cinfo,
+ (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
+ jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+ jinit_marker_writer(cinfo);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Write the datastream header (SOI) immediately.
+ * Frame and scan headers are postponed till later.
+ * This lets application insert special markers after the SOI.
+ */
+ (*cinfo->marker->write_file_header) (cinfo);
+}
diff --git a/src/3rdparty/libjpeg/jcmainct.c b/src/3rdparty/libjpeg/jcmainct.c
new file mode 100644
index 0000000..7de75d1
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcmainct.c
@@ -0,0 +1,293 @@
+/*
+ * jcmainct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for compression.
+ * The main buffer lies between the pre-processor and the JPEG
+ * compressor proper; it holds downsampled data in the JPEG colorspace.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Note: currently, there is no operating mode in which a full-image buffer
+ * is needed at this step. If there were, that mode could not be used with
+ * "raw data" input, since this module is bypassed in that case. However,
+ * we've left the code here for possible use in special applications.
+ */
+#undef FULL_MAIN_BUFFER_SUPPORTED
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_main_controller pub; /* public fields */
+
+ JDIMENSION cur_iMCU_row; /* number of current iMCU row */
+ JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
+ boolean suspended; /* remember if we suspended output */
+ J_BUF_MODE pass_mode; /* current operating mode */
+
+ /* If using just a strip buffer, this points to the entire set of buffers
+ * (we allocate one for each component). In the full-image case, this
+ * points to the currently accessible strips of the virtual arrays.
+ */
+ JSAMPARRAY buffer[MAX_COMPONENTS];
+
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ /* If using full-image storage, this array holds pointers to virtual-array
+ * control blocks for each component. Unused if not full-image storage.
+ */
+ jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
+#endif
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+
+/* Forward declarations */
+METHODDEF(void) process_data_simple_main
+ JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+METHODDEF(void) process_data_buffer_main
+ JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ /* Do nothing in raw-data mode. */
+ if (cinfo->raw_data_in)
+ return;
+
+ main->cur_iMCU_row = 0; /* initialize counters */
+ main->rowgroup_ctr = 0;
+ main->suspended = FALSE;
+ main->pass_mode = pass_mode; /* save mode for use by process_data */
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ if (main->whole_image[0] != NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+ main->pub.process_data = process_data_simple_main;
+ break;
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ case JBUF_SAVE_SOURCE:
+ case JBUF_CRANK_DEST:
+ case JBUF_SAVE_AND_PASS:
+ if (main->whole_image[0] == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ main->pub.process_data = process_data_buffer_main;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This routine handles the simple pass-through mode,
+ * where we have only a strip buffer.
+ */
+
+METHODDEF(void)
+process_data_simple_main (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
+ /* Read input data if we haven't filled the main buffer yet */
+ if (main->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
+ (*cinfo->prep->pre_process_data) (cinfo,
+ input_buf, in_row_ctr, in_rows_avail,
+ main->buffer, &main->rowgroup_ctr,
+ (JDIMENSION) cinfo->min_DCT_v_scaled_size);
+
+ /* If we don't have a full iMCU row buffered, return to application for
+ * more data. Note that preprocessor will always pad to fill the iMCU row
+ * at the bottom of the image.
+ */
+ if (main->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
+ return;
+
+ /* Send the completed row to the compressor */
+ if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
+ /* If compressor did not consume the whole row, then we must need to
+ * suspend processing and return to the application. In this situation
+ * we pretend we didn't yet consume the last input row; otherwise, if
+ * it happened to be the last row of the image, the application would
+ * think we were done.
+ */
+ if (! main->suspended) {
+ (*in_row_ctr)--;
+ main->suspended = TRUE;
+ }
+ return;
+ }
+ /* We did finish the row. Undo our little suspension hack if a previous
+ * call suspended; then mark the main buffer empty.
+ */
+ if (main->suspended) {
+ (*in_row_ctr)++;
+ main->suspended = FALSE;
+ }
+ main->rowgroup_ctr = 0;
+ main->cur_iMCU_row++;
+ }
+}
+
+
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+
+/*
+ * Process some data.
+ * This routine handles all of the modes that use a full-size buffer.
+ */
+
+METHODDEF(void)
+process_data_buffer_main (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci;
+ jpeg_component_info *compptr;
+ boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
+
+ while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
+ /* Realign the virtual buffers if at the start of an iMCU row. */
+ if (main->rowgroup_ctr == 0) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, main->whole_image[ci],
+ main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
+ (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
+ }
+ /* In a read pass, pretend we just read some source data. */
+ if (! writing) {
+ *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
+ main->rowgroup_ctr = DCTSIZE;
+ }
+ }
+
+ /* If a write pass, read input data until the current iMCU row is full. */
+ /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
+ if (writing) {
+ (*cinfo->prep->pre_process_data) (cinfo,
+ input_buf, in_row_ctr, in_rows_avail,
+ main->buffer, &main->rowgroup_ctr,
+ (JDIMENSION) DCTSIZE);
+ /* Return to application if we need more data to fill the iMCU row. */
+ if (main->rowgroup_ctr < DCTSIZE)
+ return;
+ }
+
+ /* Emit data, unless this is a sink-only pass. */
+ if (main->pass_mode != JBUF_SAVE_SOURCE) {
+ if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
+ /* If compressor did not consume the whole row, then we must need to
+ * suspend processing and return to the application. In this situation
+ * we pretend we didn't yet consume the last input row; otherwise, if
+ * it happened to be the last row of the image, the application would
+ * think we were done.
+ */
+ if (! main->suspended) {
+ (*in_row_ctr)--;
+ main->suspended = TRUE;
+ }
+ return;
+ }
+ /* We did finish the row. Undo our little suspension hack if a previous
+ * call suspended; then mark the main buffer empty.
+ */
+ if (main->suspended) {
+ (*in_row_ctr)++;
+ main->suspended = FALSE;
+ }
+ }
+
+ /* If get here, we are done with this iMCU row. Mark buffer empty. */
+ main->rowgroup_ctr = 0;
+ main->cur_iMCU_row++;
+ }
+}
+
+#endif /* FULL_MAIN_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL(void)
+jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+ my_main_ptr main;
+ int ci;
+ jpeg_component_info *compptr;
+
+ main = (my_main_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_main_controller));
+ cinfo->main = (struct jpeg_c_main_controller *) main;
+ main->pub.start_pass = start_pass_main;
+
+ /* We don't need to create a buffer in raw-data mode. */
+ if (cinfo->raw_data_in)
+ return;
+
+ /* Create the buffer. It holds downsampled data, so each component
+ * may be of a different size.
+ */
+ if (need_full_buffer) {
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ /* Allocate a full-image virtual array for each component */
+ /* Note we pad the bottom to a multiple of the iMCU height */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor) * DCTSIZE,
+ (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
+ }
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+ } else {
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ main->whole_image[0] = NULL; /* flag for no virtual arrays */
+#endif
+ /* Allocate a strip buffer for each component */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
+ }
+ }
+}
diff --git a/src/3rdparty/libjpeg/jcmarker.c b/src/3rdparty/libjpeg/jcmarker.c
new file mode 100644
index 0000000..2e28983
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcmarker.c
@@ -0,0 +1,680 @@
+/*
+ * jcmarker.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write JPEG datastream markers.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+typedef enum { /* JPEG marker codes */
+ M_SOF0 = 0xc0,
+ M_SOF1 = 0xc1,
+ M_SOF2 = 0xc2,
+ M_SOF3 = 0xc3,
+
+ M_SOF5 = 0xc5,
+ M_SOF6 = 0xc6,
+ M_SOF7 = 0xc7,
+
+ M_JPG = 0xc8,
+ M_SOF9 = 0xc9,
+ M_SOF10 = 0xca,
+ M_SOF11 = 0xcb,
+
+ M_SOF13 = 0xcd,
+ M_SOF14 = 0xce,
+ M_SOF15 = 0xcf,
+
+ M_DHT = 0xc4,
+
+ M_DAC = 0xcc,
+
+ M_RST0 = 0xd0,
+ M_RST1 = 0xd1,
+ M_RST2 = 0xd2,
+ M_RST3 = 0xd3,
+ M_RST4 = 0xd4,
+ M_RST5 = 0xd5,
+ M_RST6 = 0xd6,
+ M_RST7 = 0xd7,
+
+ M_SOI = 0xd8,
+ M_EOI = 0xd9,
+ M_SOS = 0xda,
+ M_DQT = 0xdb,
+ M_DNL = 0xdc,
+ M_DRI = 0xdd,
+ M_DHP = 0xde,
+ M_EXP = 0xdf,
+
+ M_APP0 = 0xe0,
+ M_APP1 = 0xe1,
+ M_APP2 = 0xe2,
+ M_APP3 = 0xe3,
+ M_APP4 = 0xe4,
+ M_APP5 = 0xe5,
+ M_APP6 = 0xe6,
+ M_APP7 = 0xe7,
+ M_APP8 = 0xe8,
+ M_APP9 = 0xe9,
+ M_APP10 = 0xea,
+ M_APP11 = 0xeb,
+ M_APP12 = 0xec,
+ M_APP13 = 0xed,
+ M_APP14 = 0xee,
+ M_APP15 = 0xef,
+
+ M_JPG0 = 0xf0,
+ M_JPG13 = 0xfd,
+ M_COM = 0xfe,
+
+ M_TEM = 0x01,
+
+ M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_marker_writer pub; /* public fields */
+
+ unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
+} my_marker_writer;
+
+typedef my_marker_writer * my_marker_ptr;
+
+
+/*
+ * Basic output routines.
+ *
+ * Note that we do not support suspension while writing a marker.
+ * Therefore, an application using suspension must ensure that there is
+ * enough buffer space for the initial markers (typ. 600-700 bytes) before
+ * calling jpeg_start_compress, and enough space to write the trailing EOI
+ * (a few bytes) before calling jpeg_finish_compress. Multipass compression
+ * modes are not supported at all with suspension, so those two are the only
+ * points where markers will be written.
+ */
+
+LOCAL(void)
+emit_byte (j_compress_ptr cinfo, int val)
+/* Emit a byte */
+{
+ struct jpeg_destination_mgr * dest = cinfo->dest;
+
+ *(dest->next_output_byte)++ = (JOCTET) val;
+ if (--dest->free_in_buffer == 0) {
+ if (! (*dest->empty_output_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ }
+}
+
+
+LOCAL(void)
+emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
+/* Emit a marker code */
+{
+ emit_byte(cinfo, 0xFF);
+ emit_byte(cinfo, (int) mark);
+}
+
+
+LOCAL(void)
+emit_2bytes (j_compress_ptr cinfo, int value)
+/* Emit a 2-byte integer; these are always MSB first in JPEG files */
+{
+ emit_byte(cinfo, (value >> 8) & 0xFF);
+ emit_byte(cinfo, value & 0xFF);
+}
+
+
+/*
+ * Routines to write specific marker types.
+ */
+
+LOCAL(int)
+emit_dqt (j_compress_ptr cinfo, int index)
+/* Emit a DQT marker */
+/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
+{
+ JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
+ int prec;
+ int i;
+
+ if (qtbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
+
+ prec = 0;
+ for (i = 0; i <= cinfo->lim_Se; i++) {
+ if (qtbl->quantval[cinfo->natural_order[i]] > 255)
+ prec = 1;
+ }
+
+ if (! qtbl->sent_table) {
+ emit_marker(cinfo, M_DQT);
+
+ emit_2bytes(cinfo,
+ prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2);
+
+ emit_byte(cinfo, index + (prec<<4));
+
+ for (i = 0; i <= cinfo->lim_Se; i++) {
+ /* The table entries must be emitted in zigzag order. */
+ unsigned int qval = qtbl->quantval[cinfo->natural_order[i]];
+ if (prec)
+ emit_byte(cinfo, (int) (qval >> 8));
+ emit_byte(cinfo, (int) (qval & 0xFF));
+ }
+
+ qtbl->sent_table = TRUE;
+ }
+
+ return prec;
+}
+
+
+LOCAL(void)
+emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
+/* Emit a DHT marker */
+{
+ JHUFF_TBL * htbl;
+ int length, i;
+
+ if (is_ac) {
+ htbl = cinfo->ac_huff_tbl_ptrs[index];
+ index += 0x10; /* output index has AC bit set */
+ } else {
+ htbl = cinfo->dc_huff_tbl_ptrs[index];
+ }
+
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
+
+ if (! htbl->sent_table) {
+ emit_marker(cinfo, M_DHT);
+
+ length = 0;
+ for (i = 1; i <= 16; i++)
+ length += htbl->bits[i];
+
+ emit_2bytes(cinfo, length + 2 + 1 + 16);
+ emit_byte(cinfo, index);
+
+ for (i = 1; i <= 16; i++)
+ emit_byte(cinfo, htbl->bits[i]);
+
+ for (i = 0; i < length; i++)
+ emit_byte(cinfo, htbl->huffval[i]);
+
+ htbl->sent_table = TRUE;
+ }
+}
+
+
+LOCAL(void)
+emit_dac (j_compress_ptr cinfo)
+/* Emit a DAC marker */
+/* Since the useful info is so small, we want to emit all the tables in */
+/* one DAC marker. Therefore this routine does its own scan of the table. */
+{
+#ifdef C_ARITH_CODING_SUPPORTED
+ char dc_in_use[NUM_ARITH_TBLS];
+ char ac_in_use[NUM_ARITH_TBLS];
+ int length, i;
+ jpeg_component_info *compptr;
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++)
+ dc_in_use[i] = ac_in_use[i] = 0;
+
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ compptr = cinfo->cur_comp_info[i];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0)
+ dc_in_use[compptr->dc_tbl_no] = 1;
+ /* AC needs no table when not present */
+ if (cinfo->Se)
+ ac_in_use[compptr->ac_tbl_no] = 1;
+ }
+
+ length = 0;
+ for (i = 0; i < NUM_ARITH_TBLS; i++)
+ length += dc_in_use[i] + ac_in_use[i];
+
+ emit_marker(cinfo, M_DAC);
+
+ emit_2bytes(cinfo, length*2 + 2);
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ if (dc_in_use[i]) {
+ emit_byte(cinfo, i);
+ emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
+ }
+ if (ac_in_use[i]) {
+ emit_byte(cinfo, i + 0x10);
+ emit_byte(cinfo, cinfo->arith_ac_K[i]);
+ }
+ }
+#endif /* C_ARITH_CODING_SUPPORTED */
+}
+
+
+LOCAL(void)
+emit_dri (j_compress_ptr cinfo)
+/* Emit a DRI marker */
+{
+ emit_marker(cinfo, M_DRI);
+
+ emit_2bytes(cinfo, 4); /* fixed length */
+
+ emit_2bytes(cinfo, (int) cinfo->restart_interval);
+}
+
+
+LOCAL(void)
+emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
+/* Emit a SOF marker */
+{
+ int ci;
+ jpeg_component_info *compptr;
+
+ emit_marker(cinfo, code);
+
+ emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
+
+ /* Make sure image isn't bigger than SOF field can handle */
+ if ((long) cinfo->jpeg_height > 65535L ||
+ (long) cinfo->jpeg_width > 65535L)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
+
+ emit_byte(cinfo, cinfo->data_precision);
+ emit_2bytes(cinfo, (int) cinfo->jpeg_height);
+ emit_2bytes(cinfo, (int) cinfo->jpeg_width);
+
+ emit_byte(cinfo, cinfo->num_components);
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ emit_byte(cinfo, compptr->component_id);
+ emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
+ emit_byte(cinfo, compptr->quant_tbl_no);
+ }
+}
+
+
+LOCAL(void)
+emit_sos (j_compress_ptr cinfo)
+/* Emit a SOS marker */
+{
+ int i, td, ta;
+ jpeg_component_info *compptr;
+
+ emit_marker(cinfo, M_SOS);
+
+ emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
+
+ emit_byte(cinfo, cinfo->comps_in_scan);
+
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ compptr = cinfo->cur_comp_info[i];
+ emit_byte(cinfo, compptr->component_id);
+
+ /* We emit 0 for unused field(s); this is recommended by the P&M text
+ * but does not seem to be specified in the standard.
+ */
+
+ /* DC needs no table for refinement scan */
+ td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0;
+ /* AC needs no table when not present */
+ ta = cinfo->Se ? compptr->ac_tbl_no : 0;
+
+ emit_byte(cinfo, (td << 4) + ta);
+ }
+
+ emit_byte(cinfo, cinfo->Ss);
+ emit_byte(cinfo, cinfo->Se);
+ emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
+}
+
+
+LOCAL(void)
+emit_pseudo_sos (j_compress_ptr cinfo)
+/* Emit a pseudo SOS marker */
+{
+ emit_marker(cinfo, M_SOS);
+
+ emit_2bytes(cinfo, 2 + 1 + 3); /* length */
+
+ emit_byte(cinfo, 0); /* Ns */
+
+ emit_byte(cinfo, 0); /* Ss */
+ emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */
+ emit_byte(cinfo, 0); /* Ah/Al */
+}
+
+
+LOCAL(void)
+emit_jfif_app0 (j_compress_ptr cinfo)
+/* Emit a JFIF-compliant APP0 marker */
+{
+ /*
+ * Length of APP0 block (2 bytes)
+ * Block ID (4 bytes - ASCII "JFIF")
+ * Zero byte (1 byte to terminate the ID string)
+ * Version Major, Minor (2 bytes - major first)
+ * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
+ * Xdpu (2 bytes - dots per unit horizontal)
+ * Ydpu (2 bytes - dots per unit vertical)
+ * Thumbnail X size (1 byte)
+ * Thumbnail Y size (1 byte)
+ */
+
+ emit_marker(cinfo, M_APP0);
+
+ emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
+
+ emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
+ emit_byte(cinfo, 0x46);
+ emit_byte(cinfo, 0x49);
+ emit_byte(cinfo, 0x46);
+ emit_byte(cinfo, 0);
+ emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
+ emit_byte(cinfo, cinfo->JFIF_minor_version);
+ emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
+ emit_2bytes(cinfo, (int) cinfo->X_density);
+ emit_2bytes(cinfo, (int) cinfo->Y_density);
+ emit_byte(cinfo, 0); /* No thumbnail image */
+ emit_byte(cinfo, 0);
+}
+
+
+LOCAL(void)
+emit_adobe_app14 (j_compress_ptr cinfo)
+/* Emit an Adobe APP14 marker */
+{
+ /*
+ * Length of APP14 block (2 bytes)
+ * Block ID (5 bytes - ASCII "Adobe")
+ * Version Number (2 bytes - currently 100)
+ * Flags0 (2 bytes - currently 0)
+ * Flags1 (2 bytes - currently 0)
+ * Color transform (1 byte)
+ *
+ * Although Adobe TN 5116 mentions Version = 101, all the Adobe files
+ * now in circulation seem to use Version = 100, so that's what we write.
+ *
+ * We write the color transform byte as 1 if the JPEG color space is
+ * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
+ * whether the encoder performed a transformation, which is pretty useless.
+ */
+
+ emit_marker(cinfo, M_APP14);
+
+ emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
+
+ emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
+ emit_byte(cinfo, 0x64);
+ emit_byte(cinfo, 0x6F);
+ emit_byte(cinfo, 0x62);
+ emit_byte(cinfo, 0x65);
+ emit_2bytes(cinfo, 100); /* Version */
+ emit_2bytes(cinfo, 0); /* Flags0 */
+ emit_2bytes(cinfo, 0); /* Flags1 */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_YCbCr:
+ emit_byte(cinfo, 1); /* Color transform = 1 */
+ break;
+ case JCS_YCCK:
+ emit_byte(cinfo, 2); /* Color transform = 2 */
+ break;
+ default:
+ emit_byte(cinfo, 0); /* Color transform = 0 */
+ break;
+ }
+}
+
+
+/*
+ * These routines allow writing an arbitrary marker with parameters.
+ * The only intended use is to emit COM or APPn markers after calling
+ * write_file_header and before calling write_frame_header.
+ * Other uses are not guaranteed to produce desirable results.
+ * Counting the parameter bytes properly is the caller's responsibility.
+ */
+
+METHODDEF(void)
+write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+/* Emit an arbitrary marker header */
+{
+ if (datalen > (unsigned int) 65533) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ emit_marker(cinfo, (JPEG_MARKER) marker);
+
+ emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
+}
+
+METHODDEF(void)
+write_marker_byte (j_compress_ptr cinfo, int val)
+/* Emit one byte of marker parameters following write_marker_header */
+{
+ emit_byte(cinfo, val);
+}
+
+
+/*
+ * Write datastream header.
+ * This consists of an SOI and optional APPn markers.
+ * We recommend use of the JFIF marker, but not the Adobe marker,
+ * when using YCbCr or grayscale data. The JFIF marker should NOT
+ * be used for any other JPEG colorspace. The Adobe marker is helpful
+ * to distinguish RGB, CMYK, and YCCK colorspaces.
+ * Note that an application can write additional header markers after
+ * jpeg_start_compress returns.
+ */
+
+METHODDEF(void)
+write_file_header (j_compress_ptr cinfo)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+ emit_marker(cinfo, M_SOI); /* first the SOI */
+
+ /* SOI is defined to reset restart interval to 0 */
+ marker->last_restart_interval = 0;
+
+ if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
+ emit_jfif_app0(cinfo);
+ if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
+ emit_adobe_app14(cinfo);
+}
+
+
+/*
+ * Write frame header.
+ * This consists of DQT and SOFn markers, and a conditional pseudo SOS marker.
+ * Note that we do not emit the SOF until we have emitted the DQT(s).
+ * This avoids compatibility problems with incorrect implementations that
+ * try to error-check the quant table numbers as soon as they see the SOF.
+ */
+
+METHODDEF(void)
+write_frame_header (j_compress_ptr cinfo)
+{
+ int ci, prec;
+ boolean is_baseline;
+ jpeg_component_info *compptr;
+
+ /* Emit DQT for each quantization table.
+ * Note that emit_dqt() suppresses any duplicate tables.
+ */
+ prec = 0;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ prec += emit_dqt(cinfo, compptr->quant_tbl_no);
+ }
+ /* now prec is nonzero iff there are any 16-bit quant tables. */
+
+ /* Check for a non-baseline specification.
+ * Note we assume that Huffman table numbers won't be changed later.
+ */
+ if (cinfo->arith_code || cinfo->progressive_mode ||
+ cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) {
+ is_baseline = FALSE;
+ } else {
+ is_baseline = TRUE;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
+ is_baseline = FALSE;
+ }
+ if (prec && is_baseline) {
+ is_baseline = FALSE;
+ /* If it's baseline except for quantizer size, warn the user */
+ TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
+ }
+ }
+
+ /* Emit the proper SOF marker */
+ if (cinfo->arith_code) {
+ if (cinfo->progressive_mode)
+ emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
+ else
+ emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
+ } else {
+ if (cinfo->progressive_mode)
+ emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
+ else if (is_baseline)
+ emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
+ else
+ emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
+ }
+
+ /* Check to emit pseudo SOS marker */
+ if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE)
+ emit_pseudo_sos(cinfo);
+}
+
+
+/*
+ * Write scan header.
+ * This consists of DHT or DAC markers, optional DRI, and SOS.
+ * Compressed data will be written following the SOS.
+ */
+
+METHODDEF(void)
+write_scan_header (j_compress_ptr cinfo)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+ int i;
+ jpeg_component_info *compptr;
+
+ if (cinfo->arith_code) {
+ /* Emit arith conditioning info. We may have some duplication
+ * if the file has multiple scans, but it's so small it's hardly
+ * worth worrying about.
+ */
+ emit_dac(cinfo);
+ } else {
+ /* Emit Huffman tables.
+ * Note that emit_dht() suppresses any duplicate tables.
+ */
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ compptr = cinfo->cur_comp_info[i];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0)
+ emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
+ /* AC needs no table when not present */
+ if (cinfo->Se)
+ emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
+ }
+ }
+
+ /* Emit DRI if required --- note that DRI value could change for each scan.
+ * We avoid wasting space with unnecessary DRIs, however.
+ */
+ if (cinfo->restart_interval != marker->last_restart_interval) {
+ emit_dri(cinfo);
+ marker->last_restart_interval = cinfo->restart_interval;
+ }
+
+ emit_sos(cinfo);
+}
+
+
+/*
+ * Write datastream trailer.
+ */
+
+METHODDEF(void)
+write_file_trailer (j_compress_ptr cinfo)
+{
+ emit_marker(cinfo, M_EOI);
+}
+
+
+/*
+ * Write an abbreviated table-specification datastream.
+ * This consists of SOI, DQT and DHT tables, and EOI.
+ * Any table that is defined and not marked sent_table = TRUE will be
+ * emitted. Note that all tables will be marked sent_table = TRUE at exit.
+ */
+
+METHODDEF(void)
+write_tables_only (j_compress_ptr cinfo)
+{
+ int i;
+
+ emit_marker(cinfo, M_SOI);
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ if (cinfo->quant_tbl_ptrs[i] != NULL)
+ (void) emit_dqt(cinfo, i);
+ }
+
+ if (! cinfo->arith_code) {
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
+ emit_dht(cinfo, i, FALSE);
+ if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
+ emit_dht(cinfo, i, TRUE);
+ }
+ }
+
+ emit_marker(cinfo, M_EOI);
+}
+
+
+/*
+ * Initialize the marker writer module.
+ */
+
+GLOBAL(void)
+jinit_marker_writer (j_compress_ptr cinfo)
+{
+ my_marker_ptr marker;
+
+ /* Create the subobject */
+ marker = (my_marker_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_marker_writer));
+ cinfo->marker = (struct jpeg_marker_writer *) marker;
+ /* Initialize method pointers */
+ marker->pub.write_file_header = write_file_header;
+ marker->pub.write_frame_header = write_frame_header;
+ marker->pub.write_scan_header = write_scan_header;
+ marker->pub.write_file_trailer = write_file_trailer;
+ marker->pub.write_tables_only = write_tables_only;
+ marker->pub.write_marker_header = write_marker_header;
+ marker->pub.write_marker_byte = write_marker_byte;
+ /* Initialize private state */
+ marker->last_restart_interval = 0;
+}
diff --git a/src/3rdparty/libjpeg/jcmaster.c b/src/3rdparty/libjpeg/jcmaster.c
new file mode 100644
index 0000000..5284e58
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcmaster.c
@@ -0,0 +1,842 @@
+/*
+ * jcmaster.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2003-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG compressor.
+ * These routines are concerned with parameter validation, initial setup,
+ * and inter-pass control (determining the number of passes and the work
+ * to be done in each pass).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef enum {
+ main_pass, /* input data, also do first output step */
+ huff_opt_pass, /* Huffman code optimization pass */
+ output_pass /* data output pass */
+} c_pass_type;
+
+typedef struct {
+ struct jpeg_comp_master pub; /* public fields */
+
+ c_pass_type pass_type; /* the type of the current pass */
+
+ int pass_number; /* # of passes completed */
+ int total_passes; /* total # of passes needed */
+
+ int scan_number; /* current index in scan_info[] */
+} my_comp_master;
+
+typedef my_comp_master * my_master_ptr;
+
+
+/*
+ * Support routines that do various essential calculations.
+ */
+
+/*
+ * Compute JPEG image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ */
+
+GLOBAL(void)
+jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
+/* Do computations that are needed before master selection phase */
+{
+#ifdef DCT_SCALING_SUPPORTED
+
+ /* Compute actual JPEG image dimensions and DCT scaling choices. */
+ if (cinfo->scale_num >= cinfo->scale_denom * 8) {
+ /* Provide 8/1 scaling */
+ cinfo->jpeg_width = cinfo->image_width << 3;
+ cinfo->jpeg_height = cinfo->image_height << 3;
+ cinfo->min_DCT_h_scaled_size = 1;
+ cinfo->min_DCT_v_scaled_size = 1;
+ } else if (cinfo->scale_num >= cinfo->scale_denom * 4) {
+ /* Provide 4/1 scaling */
+ cinfo->jpeg_width = cinfo->image_width << 2;
+ cinfo->jpeg_height = cinfo->image_height << 2;
+ cinfo->min_DCT_h_scaled_size = 2;
+ cinfo->min_DCT_v_scaled_size = 2;
+ } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 8) {
+ /* Provide 8/3 scaling */
+ cinfo->jpeg_width = (cinfo->image_width << 1) + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 2, 3L);
+ cinfo->jpeg_height = (cinfo->image_height << 1) + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 2, 3L);
+ cinfo->min_DCT_h_scaled_size = 3;
+ cinfo->min_DCT_v_scaled_size = 3;
+ } else if (cinfo->scale_num >= cinfo->scale_denom * 2) {
+ /* Provide 2/1 scaling */
+ cinfo->jpeg_width = cinfo->image_width << 1;
+ cinfo->jpeg_height = cinfo->image_height << 1;
+ cinfo->min_DCT_h_scaled_size = 4;
+ cinfo->min_DCT_v_scaled_size = 4;
+ } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 8) {
+ /* Provide 8/5 scaling */
+ cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 3, 5L);
+ cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 3, 5L);
+ cinfo->min_DCT_h_scaled_size = 5;
+ cinfo->min_DCT_v_scaled_size = 5;
+ } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 4) {
+ /* Provide 4/3 scaling */
+ cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, 3L);
+ cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, 3L);
+ cinfo->min_DCT_h_scaled_size = 6;
+ cinfo->min_DCT_v_scaled_size = 6;
+ } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 8) {
+ /* Provide 8/7 scaling */
+ cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, 7L);
+ cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, 7L);
+ cinfo->min_DCT_h_scaled_size = 7;
+ cinfo->min_DCT_v_scaled_size = 7;
+ } else if (cinfo->scale_num >= cinfo->scale_denom) {
+ /* Provide 1/1 scaling */
+ cinfo->jpeg_width = cinfo->image_width;
+ cinfo->jpeg_height = cinfo->image_height;
+ cinfo->min_DCT_h_scaled_size = 8;
+ cinfo->min_DCT_v_scaled_size = 8;
+ } else if (cinfo->scale_num * 9 >= cinfo->scale_denom * 8) {
+ /* Provide 8/9 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 8, 9L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 8, 9L);
+ cinfo->min_DCT_h_scaled_size = 9;
+ cinfo->min_DCT_v_scaled_size = 9;
+ } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 4) {
+ /* Provide 4/5 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 4, 5L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 4, 5L);
+ cinfo->min_DCT_h_scaled_size = 10;
+ cinfo->min_DCT_v_scaled_size = 10;
+ } else if (cinfo->scale_num * 11 >= cinfo->scale_denom * 8) {
+ /* Provide 8/11 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 8, 11L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 8, 11L);
+ cinfo->min_DCT_h_scaled_size = 11;
+ cinfo->min_DCT_v_scaled_size = 11;
+ } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 2) {
+ /* Provide 2/3 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 2, 3L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 2, 3L);
+ cinfo->min_DCT_h_scaled_size = 12;
+ cinfo->min_DCT_v_scaled_size = 12;
+ } else if (cinfo->scale_num * 13 >= cinfo->scale_denom * 8) {
+ /* Provide 8/13 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 8, 13L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 8, 13L);
+ cinfo->min_DCT_h_scaled_size = 13;
+ cinfo->min_DCT_v_scaled_size = 13;
+ } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 4) {
+ /* Provide 4/7 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 4, 7L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 4, 7L);
+ cinfo->min_DCT_h_scaled_size = 14;
+ cinfo->min_DCT_v_scaled_size = 14;
+ } else if (cinfo->scale_num * 15 >= cinfo->scale_denom * 8) {
+ /* Provide 8/15 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 8, 15L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 8, 15L);
+ cinfo->min_DCT_h_scaled_size = 15;
+ cinfo->min_DCT_v_scaled_size = 15;
+ } else {
+ /* Provide 1/2 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, 2L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, 2L);
+ cinfo->min_DCT_h_scaled_size = 16;
+ cinfo->min_DCT_v_scaled_size = 16;
+ }
+
+#else /* !DCT_SCALING_SUPPORTED */
+
+ /* Hardwire it to "no scaling" */
+ cinfo->jpeg_width = cinfo->image_width;
+ cinfo->jpeg_height = cinfo->image_height;
+ cinfo->min_DCT_h_scaled_size = DCTSIZE;
+ cinfo->min_DCT_v_scaled_size = DCTSIZE;
+
+#endif /* DCT_SCALING_SUPPORTED */
+
+ cinfo->block_size = DCTSIZE;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+}
+
+
+LOCAL(void)
+jpeg_calc_trans_dimensions (j_compress_ptr cinfo)
+{
+ if (cinfo->min_DCT_h_scaled_size < 1 || cinfo->min_DCT_h_scaled_size > 16
+ || cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size)
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+ cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size);
+
+ cinfo->block_size = cinfo->min_DCT_h_scaled_size;
+
+ switch (cinfo->block_size) {
+ case 2: cinfo->natural_order = jpeg_natural_order2; break;
+ case 3: cinfo->natural_order = jpeg_natural_order3; break;
+ case 4: cinfo->natural_order = jpeg_natural_order4; break;
+ case 5: cinfo->natural_order = jpeg_natural_order5; break;
+ case 6: cinfo->natural_order = jpeg_natural_order6; break;
+ case 7: cinfo->natural_order = jpeg_natural_order7; break;
+ default: cinfo->natural_order = jpeg_natural_order; break;
+ }
+
+ cinfo->lim_Se = cinfo->block_size < DCTSIZE ?
+ cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1;
+}
+
+
+LOCAL(void)
+initial_setup (j_compress_ptr cinfo, boolean transcode_only)
+/* Do computations that are needed before master selection phase */
+{
+ int ci, ssize;
+ jpeg_component_info *compptr;
+ long samplesperrow;
+ JDIMENSION jd_samplesperrow;
+
+ if (transcode_only)
+ jpeg_calc_trans_dimensions(cinfo);
+ else
+ jpeg_calc_jpeg_dimensions(cinfo);
+
+ /* Sanity check on image dimensions */
+ if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 ||
+ cinfo->num_components <= 0 || cinfo->input_components <= 0)
+ ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+ /* Make sure image isn't bigger than I can handle */
+ if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
+ (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+ /* Width of an input scanline must be representable as JDIMENSION. */
+ samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
+ jd_samplesperrow = (JDIMENSION) samplesperrow;
+ if ((long) jd_samplesperrow != samplesperrow)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+ /* For now, precision must match compiled-in value... */
+ if (cinfo->data_precision != BITS_IN_JSAMPLE)
+ ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+ /* Check that number of components won't exceed internal array sizes */
+ if (cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+
+ /* Compute maximum sampling factors; check factor validity */
+ cinfo->max_h_samp_factor = 1;
+ cinfo->max_v_samp_factor = 1;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+ compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+ ERREXIT(cinfo, JERR_BAD_SAMPLING);
+ cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+ compptr->h_samp_factor);
+ cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+ compptr->v_samp_factor);
+ }
+
+ /* Compute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Fill in the correct component_index value; don't rely on application */
+ compptr->component_index = ci;
+ /* In selecting the actual DCT scaling for each component, we try to
+ * scale down the chroma components via DCT scaling rather than downsampling.
+ * This saves time if the downsampler gets to use 1:1 scaling.
+ * Note this code adapts subsampling ratios which are powers of 2.
+ */
+ ssize = 1;
+#ifdef DCT_SCALING_SUPPORTED
+ while (cinfo->min_DCT_h_scaled_size * ssize <=
+ (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+#endif
+ compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
+ ssize = 1;
+#ifdef DCT_SCALING_SUPPORTED
+ while (cinfo->min_DCT_v_scaled_size * ssize <=
+ (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+#endif
+ compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
+
+ /* We don't support DCT ratios larger than 2. */
+ if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
+ compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
+ else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
+ compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
+
+ /* Size in DCT blocks */
+ compptr->width_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->height_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ /* Size in samples */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_width *
+ (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height *
+ (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ /* Mark component needed (this flag isn't actually used for compression) */
+ compptr->component_needed = TRUE;
+ }
+
+ /* Compute number of fully interleaved MCU rows (number of times that
+ * main controller will call coefficient controller).
+ */
+ cinfo->total_iMCU_rows = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+}
+
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+
+LOCAL(void)
+validate_script (j_compress_ptr cinfo)
+/* Verify that the scan script in cinfo->scan_info[] is valid; also
+ * determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
+ */
+{
+ const jpeg_scan_info * scanptr;
+ int scanno, ncomps, ci, coefi, thisi;
+ int Ss, Se, Ah, Al;
+ boolean component_sent[MAX_COMPONENTS];
+#ifdef C_PROGRESSIVE_SUPPORTED
+ int * last_bitpos_ptr;
+ int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
+ /* -1 until that coefficient has been seen; then last Al for it */
+#endif
+
+ if (cinfo->num_scans <= 0)
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
+
+ /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
+ * for progressive JPEG, no scan can have this.
+ */
+ scanptr = cinfo->scan_info;
+ if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+ cinfo->progressive_mode = TRUE;
+ last_bitpos_ptr = & last_bitpos[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (coefi = 0; coefi < DCTSIZE2; coefi++)
+ *last_bitpos_ptr++ = -1;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ cinfo->progressive_mode = FALSE;
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ component_sent[ci] = FALSE;
+ }
+
+ for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
+ /* Validate component indexes */
+ ncomps = scanptr->comps_in_scan;
+ if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
+ for (ci = 0; ci < ncomps; ci++) {
+ thisi = scanptr->component_index[ci];
+ if (thisi < 0 || thisi >= cinfo->num_components)
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+ /* Components must appear in SOF order within each scan */
+ if (ci > 0 && thisi <= scanptr->component_index[ci-1])
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+ }
+ /* Validate progression parameters */
+ Ss = scanptr->Ss;
+ Se = scanptr->Se;
+ Ah = scanptr->Ah;
+ Al = scanptr->Al;
+ if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+ /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
+ * seems wrong: the upper bound ought to depend on data precision.
+ * Perhaps they really meant 0..N+1 for N-bit precision.
+ * Here we allow 0..10 for 8-bit data; Al larger than 10 results in
+ * out-of-range reconstructed DC values during the first DC scan,
+ * which might cause problems for some decoders.
+ */
+#if BITS_IN_JSAMPLE == 8
+#define MAX_AH_AL 10
+#else
+#define MAX_AH_AL 13
+#endif
+ if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
+ Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ if (Ss == 0) {
+ if (Se != 0) /* DC and AC together not OK */
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ } else {
+ if (ncomps != 1) /* AC scans must be for only one component */
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ }
+ for (ci = 0; ci < ncomps; ci++) {
+ last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
+ if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ for (coefi = Ss; coefi <= Se; coefi++) {
+ if (last_bitpos_ptr[coefi] < 0) {
+ /* first scan of this coefficient */
+ if (Ah != 0)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ } else {
+ /* not first scan */
+ if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ }
+ last_bitpos_ptr[coefi] = Al;
+ }
+ }
+#endif
+ } else {
+ /* For sequential JPEG, all progression parameters must be these: */
+ if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ /* Make sure components are not sent twice */
+ for (ci = 0; ci < ncomps; ci++) {
+ thisi = scanptr->component_index[ci];
+ if (component_sent[thisi])
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+ component_sent[thisi] = TRUE;
+ }
+ }
+ }
+
+ /* Now verify that everything got sent. */
+ if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+ /* For progressive mode, we only check that at least some DC data
+ * got sent for each component; the spec does not require that all bits
+ * of all coefficients be transmitted. Would it be wiser to enforce
+ * transmission of all coefficient bits??
+ */
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ if (last_bitpos[ci][0] < 0)
+ ERREXIT(cinfo, JERR_MISSING_DATA);
+ }
+#endif
+ } else {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ if (! component_sent[ci])
+ ERREXIT(cinfo, JERR_MISSING_DATA);
+ }
+ }
+}
+
+
+LOCAL(void)
+reduce_script (j_compress_ptr cinfo)
+/* Adapt scan script for use with reduced block size;
+ * assume that script has been validated before.
+ */
+{
+ jpeg_scan_info * scanptr;
+ int idxout, idxin;
+
+ /* Circumvent const declaration for this function */
+ scanptr = (jpeg_scan_info *) cinfo->scan_info;
+ idxout = 0;
+
+ for (idxin = 0; idxin < cinfo->num_scans; idxin++) {
+ /* After skipping, idxout becomes smaller than idxin */
+ if (idxin != idxout)
+ /* Copy rest of data;
+ * note we stay in given chunk of allocated memory.
+ */
+ scanptr[idxout] = scanptr[idxin];
+ if (scanptr[idxout].Ss > cinfo->lim_Se)
+ /* Entire scan out of range - skip this entry */
+ continue;
+ if (scanptr[idxout].Se > cinfo->lim_Se)
+ /* Limit scan to end of block */
+ scanptr[idxout].Se = cinfo->lim_Se;
+ idxout++;
+ }
+
+ cinfo->num_scans = idxout;
+}
+
+#endif /* C_MULTISCAN_FILES_SUPPORTED */
+
+
+LOCAL(void)
+select_scan_parameters (j_compress_ptr cinfo)
+/* Set up the scan parameters for the current scan */
+{
+ int ci;
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ if (cinfo->scan_info != NULL) {
+ /* Prepare for current scan --- the script is already validated */
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+ const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
+
+ cinfo->comps_in_scan = scanptr->comps_in_scan;
+ for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
+ cinfo->cur_comp_info[ci] =
+ &cinfo->comp_info[scanptr->component_index[ci]];
+ }
+ if (cinfo->progressive_mode) {
+ cinfo->Ss = scanptr->Ss;
+ cinfo->Se = scanptr->Se;
+ cinfo->Ah = scanptr->Ah;
+ cinfo->Al = scanptr->Al;
+ return;
+ }
+ }
+ else
+#endif
+ {
+ /* Prepare for single sequential-JPEG scan containing all components */
+ if (cinfo->num_components > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPS_IN_SCAN);
+ cinfo->comps_in_scan = cinfo->num_components;
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
+ }
+ }
+ cinfo->Ss = 0;
+ cinfo->Se = cinfo->block_size * cinfo->block_size - 1;
+ cinfo->Ah = 0;
+ cinfo->Al = 0;
+}
+
+
+LOCAL(void)
+per_scan_setup (j_compress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
+{
+ int ci, mcublks, tmp;
+ jpeg_component_info *compptr;
+
+ if (cinfo->comps_in_scan == 1) {
+
+ /* Noninterleaved (single-component) scan */
+ compptr = cinfo->cur_comp_info[0];
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = compptr->width_in_blocks;
+ cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+
+ /* For noninterleaved scan, always one block per MCU */
+ compptr->MCU_width = 1;
+ compptr->MCU_height = 1;
+ compptr->MCU_blocks = 1;
+ compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
+ compptr->last_col_width = 1;
+ /* For noninterleaved scans, it is convenient to define last_row_height
+ * as the number of block rows present in the last iMCU row.
+ */
+ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (tmp == 0) tmp = compptr->v_samp_factor;
+ compptr->last_row_height = tmp;
+
+ /* Prepare array describing MCU composition */
+ cinfo->blocks_in_MCU = 1;
+ cinfo->MCU_membership[0] = 0;
+
+ } else {
+
+ /* Interleaved (multi-component) scan */
+ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+ MAX_COMPS_IN_SCAN);
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_width,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ cinfo->MCU_rows_in_scan = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+
+ cinfo->blocks_in_MCU = 0;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Sampling factors give # of blocks of component in each MCU */
+ compptr->MCU_width = compptr->h_samp_factor;
+ compptr->MCU_height = compptr->v_samp_factor;
+ compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+ compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
+ /* Figure number of non-dummy blocks in last MCU column & row */
+ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+ if (tmp == 0) tmp = compptr->MCU_width;
+ compptr->last_col_width = tmp;
+ tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+ if (tmp == 0) tmp = compptr->MCU_height;
+ compptr->last_row_height = tmp;
+ /* Prepare array describing MCU composition */
+ mcublks = compptr->MCU_blocks;
+ if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
+ ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+ while (mcublks-- > 0) {
+ cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+ }
+ }
+
+ }
+
+ /* Convert restart specified in rows to actual MCU count. */
+ /* Note that count must fit in 16 bits, so we provide limiting. */
+ if (cinfo->restart_in_rows > 0) {
+ long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
+ cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
+ }
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each pass. We determine which modules
+ * will be active during this pass and give them appropriate start_pass calls.
+ * We also set is_last_pass to indicate whether any more passes will be
+ * required.
+ */
+
+METHODDEF(void)
+prepare_for_pass (j_compress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ switch (master->pass_type) {
+ case main_pass:
+ /* Initial pass: will collect input data, and do either Huffman
+ * optimization or data output for the first scan.
+ */
+ select_scan_parameters(cinfo);
+ per_scan_setup(cinfo);
+ if (! cinfo->raw_data_in) {
+ (*cinfo->cconvert->start_pass) (cinfo);
+ (*cinfo->downsample->start_pass) (cinfo);
+ (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
+ }
+ (*cinfo->fdct->start_pass) (cinfo);
+ (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
+ (*cinfo->coef->start_pass) (cinfo,
+ (master->total_passes > 1 ?
+ JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+ (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+ if (cinfo->optimize_coding) {
+ /* No immediate data output; postpone writing frame/scan headers */
+ master->pub.call_pass_startup = FALSE;
+ } else {
+ /* Will write frame/scan headers at first jpeg_write_scanlines call */
+ master->pub.call_pass_startup = TRUE;
+ }
+ break;
+#ifdef ENTROPY_OPT_SUPPORTED
+ case huff_opt_pass:
+ /* Do Huffman optimization for a scan after the first one. */
+ select_scan_parameters(cinfo);
+ per_scan_setup(cinfo);
+ if (cinfo->Ss != 0 || cinfo->Ah == 0) {
+ (*cinfo->entropy->start_pass) (cinfo, TRUE);
+ (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+ master->pub.call_pass_startup = FALSE;
+ break;
+ }
+ /* Special case: Huffman DC refinement scans need no Huffman table
+ * and therefore we can skip the optimization pass for them.
+ */
+ master->pass_type = output_pass;
+ master->pass_number++;
+ /*FALLTHROUGH*/
+#endif
+ case output_pass:
+ /* Do a data-output pass. */
+ /* We need not repeat per-scan setup if prior optimization pass did it. */
+ if (! cinfo->optimize_coding) {
+ select_scan_parameters(cinfo);
+ per_scan_setup(cinfo);
+ }
+ (*cinfo->entropy->start_pass) (cinfo, FALSE);
+ (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+ /* We emit frame/scan headers now */
+ if (master->scan_number == 0)
+ (*cinfo->marker->write_frame_header) (cinfo);
+ (*cinfo->marker->write_scan_header) (cinfo);
+ master->pub.call_pass_startup = FALSE;
+ break;
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ }
+
+ master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
+
+ /* Set up progress monitor's pass info if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->completed_passes = master->pass_number;
+ cinfo->progress->total_passes = master->total_passes;
+ }
+}
+
+
+/*
+ * Special start-of-pass hook.
+ * This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
+ * In single-pass processing, we need this hook because we don't want to
+ * write frame/scan headers during jpeg_start_compress; we want to let the
+ * application write COM markers etc. between jpeg_start_compress and the
+ * jpeg_write_scanlines loop.
+ * In multi-pass processing, this routine is not used.
+ */
+
+METHODDEF(void)
+pass_startup (j_compress_ptr cinfo)
+{
+ cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
+
+ (*cinfo->marker->write_frame_header) (cinfo);
+ (*cinfo->marker->write_scan_header) (cinfo);
+}
+
+
+/*
+ * Finish up at end of pass.
+ */
+
+METHODDEF(void)
+finish_pass_master (j_compress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ /* The entropy coder always needs an end-of-pass call,
+ * either to analyze statistics or to flush its output buffer.
+ */
+ (*cinfo->entropy->finish_pass) (cinfo);
+
+ /* Update state for next pass */
+ switch (master->pass_type) {
+ case main_pass:
+ /* next pass is either output of scan 0 (after optimization)
+ * or output of scan 1 (if no optimization).
+ */
+ master->pass_type = output_pass;
+ if (! cinfo->optimize_coding)
+ master->scan_number++;
+ break;
+ case huff_opt_pass:
+ /* next pass is always output of current scan */
+ master->pass_type = output_pass;
+ break;
+ case output_pass:
+ /* next pass is either optimization or output of next scan */
+ if (cinfo->optimize_coding)
+ master->pass_type = huff_opt_pass;
+ master->scan_number++;
+ break;
+ }
+
+ master->pass_number++;
+}
+
+
+/*
+ * Initialize master compression control.
+ */
+
+GLOBAL(void)
+jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
+{
+ my_master_ptr master;
+
+ master = (my_master_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_comp_master));
+ cinfo->master = (struct jpeg_comp_master *) master;
+ master->pub.prepare_for_pass = prepare_for_pass;
+ master->pub.pass_startup = pass_startup;
+ master->pub.finish_pass = finish_pass_master;
+ master->pub.is_last_pass = FALSE;
+
+ /* Validate parameters, determine derived values */
+ initial_setup(cinfo, transcode_only);
+
+ if (cinfo->scan_info != NULL) {
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ validate_script(cinfo);
+ if (cinfo->block_size < DCTSIZE)
+ reduce_script(cinfo);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ cinfo->progressive_mode = FALSE;
+ cinfo->num_scans = 1;
+ }
+
+ if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) &&
+ !cinfo->arith_code) /* TEMPORARY HACK ??? */
+ /* assume default tables no good for progressive or downscale mode */
+ cinfo->optimize_coding = TRUE;
+
+ /* Initialize my private state */
+ if (transcode_only) {
+ /* no main pass in transcoding */
+ if (cinfo->optimize_coding)
+ master->pass_type = huff_opt_pass;
+ else
+ master->pass_type = output_pass;
+ } else {
+ /* for normal compression, first pass is always this type: */
+ master->pass_type = main_pass;
+ }
+ master->scan_number = 0;
+ master->pass_number = 0;
+ if (cinfo->optimize_coding)
+ master->total_passes = cinfo->num_scans * 2;
+ else
+ master->total_passes = cinfo->num_scans;
+}
diff --git a/src/3rdparty/libjpeg/jcomapi.c b/src/3rdparty/libjpeg/jcomapi.c
new file mode 100644
index 0000000..9b1fa75
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcomapi.c
@@ -0,0 +1,106 @@
+/*
+ * jcomapi.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface routines that are used for both
+ * compression and decompression.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Abort processing of a JPEG compression or decompression operation,
+ * but don't destroy the object itself.
+ *
+ * For this, we merely clean up all the nonpermanent memory pools.
+ * Note that temp files (virtual arrays) are not allowed to belong to
+ * the permanent pool, so we will be able to close all temp files here.
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL(void)
+jpeg_abort (j_common_ptr cinfo)
+{
+ int pool;
+
+ /* Do nothing if called on a not-initialized or destroyed JPEG object. */
+ if (cinfo->mem == NULL)
+ return;
+
+ /* Releasing pools in reverse order might help avoid fragmentation
+ * with some (brain-damaged) malloc libraries.
+ */
+ for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
+ (*cinfo->mem->free_pool) (cinfo, pool);
+ }
+
+ /* Reset overall state for possible reuse of object */
+ if (cinfo->is_decompressor) {
+ cinfo->global_state = DSTATE_START;
+ /* Try to keep application from accessing now-deleted marker list.
+ * A bit kludgy to do it here, but this is the most central place.
+ */
+ ((j_decompress_ptr) cinfo)->marker_list = NULL;
+ } else {
+ cinfo->global_state = CSTATE_START;
+ }
+}
+
+
+/*
+ * Destruction of a JPEG object.
+ *
+ * Everything gets deallocated except the master jpeg_compress_struct itself
+ * and the error manager struct. Both of these are supplied by the application
+ * and must be freed, if necessary, by the application. (Often they are on
+ * the stack and so don't need to be freed anyway.)
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL(void)
+jpeg_destroy (j_common_ptr cinfo)
+{
+ /* We need only tell the memory manager to release everything. */
+ /* NB: mem pointer is NULL if memory mgr failed to initialize. */
+ if (cinfo->mem != NULL)
+ (*cinfo->mem->self_destruct) (cinfo);
+ cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
+ cinfo->global_state = 0; /* mark it destroyed */
+}
+
+
+/*
+ * Convenience routines for allocating quantization and Huffman tables.
+ * (Would jutils.c be a more reasonable place to put these?)
+ */
+
+GLOBAL(JQUANT_TBL *)
+jpeg_alloc_quant_table (j_common_ptr cinfo)
+{
+ JQUANT_TBL *tbl;
+
+ tbl = (JQUANT_TBL *)
+ (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
+ tbl->sent_table = FALSE; /* make sure this is false in any new table */
+ return tbl;
+}
+
+
+GLOBAL(JHUFF_TBL *)
+jpeg_alloc_huff_table (j_common_ptr cinfo)
+{
+ JHUFF_TBL *tbl;
+
+ tbl = (JHUFF_TBL *)
+ (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
+ tbl->sent_table = FALSE; /* make sure this is false in any new table */
+ return tbl;
+}
diff --git a/src/3rdparty/libjpeg/jconfig.bcc b/src/3rdparty/libjpeg/jconfig.bcc
new file mode 100644
index 0000000..e4da3d7
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.bcc
@@ -0,0 +1,48 @@
+/* jconfig.bcc --- jconfig.h for Borland C (Turbo C) on MS-DOS or OS/2. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#ifdef __MSDOS__
+#define NEED_FAR_POINTERS /* for small or medium memory model */
+#endif
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN /* this assumes you have -w-stu in CFLAGS */
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#ifdef __MSDOS__
+#define USE_MSDOS_MEMMGR /* Define this if you use jmemdos.c */
+#define MAX_ALLOC_CHUNK 65520L /* Maximum request to malloc() */
+#define USE_FMEM /* Borland has _fmemcpy() and _fmemset() */
+#endif
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE
+#define USE_SETMODE /* Borland has setmode() */
+#ifdef __MSDOS__
+#define NEED_SIGNAL_CATCHER /* Define this if you use jmemdos.c */
+#endif
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.cfg b/src/3rdparty/libjpeg/jconfig.cfg
new file mode 100644
index 0000000..a23758a
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.cfg
@@ -0,0 +1,45 @@
+/* jconfig.cfg --- source file edited by configure script */
+/* see jconfig.txt for explanations */
+
+#undef HAVE_PROTOTYPES
+#undef HAVE_UNSIGNED_CHAR
+#undef HAVE_UNSIGNED_SHORT
+#undef void
+#undef const
+#undef CHAR_IS_UNSIGNED
+#undef HAVE_STDDEF_H
+#undef HAVE_STDLIB_H
+#undef HAVE_LOCALE_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS
+#undef NEED_SHORT_EXTERNAL_NAMES
+/* Define this if you get warnings about undefined structures. */
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+#undef INLINE
+/* These are for configuring the JPEG memory manager. */
+#undef DEFAULT_MAX_MEM
+#undef NO_MKTEMP
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#undef TWO_FILE_COMMANDLINE
+#undef NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+
+/* Define this if you want percent-done progress reports from cjpeg/djpeg. */
+#undef PROGRESS_REPORT
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.dj b/src/3rdparty/libjpeg/jconfig.dj
new file mode 100644
index 0000000..a0d4092
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.dj
@@ -0,0 +1,38 @@
+/* jconfig.dj --- jconfig.h for DJGPP (Delorie's GNU C port) on MS-DOS. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS /* DJGPP uses flat 32-bit addressing */
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#undef TWO_FILE_COMMANDLINE /* optional */
+#define USE_SETMODE /* Needed to make one-file style work in DJGPP */
+#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.mac b/src/3rdparty/libjpeg/jconfig.mac
new file mode 100644
index 0000000..70ed66c
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.mac
@@ -0,0 +1,43 @@
+/* jconfig.mac --- jconfig.h for CodeWarrior on Apple Macintosh */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#define USE_MAC_MEMMGR /* Define this if you use jmemmac.c */
+
+#define ALIGN_TYPE long /* Needed for 680x0 Macs */
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define USE_CCOMMAND /* Command line reader for Macintosh */
+#define TWO_FILE_COMMANDLINE /* Binary I/O thru stdin/stdout doesn't work */
+
+#undef NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.manx b/src/3rdparty/libjpeg/jconfig.manx
new file mode 100644
index 0000000..cd529d7
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.manx
@@ -0,0 +1,43 @@
+/* jconfig.manx --- jconfig.h for Amiga systems using Manx Aztec C ver 5.x. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#define TEMP_DIRECTORY "JPEGTMP:" /* recommended setting for Amiga */
+
+#define SHORTxSHORT_32 /* produces better DCT code with Aztec C */
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE
+#define NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#define signal_catcher _abort /* hack for Aztec C naming requirements */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.mc6 b/src/3rdparty/libjpeg/jconfig.mc6
new file mode 100644
index 0000000..1b18523
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.mc6
@@ -0,0 +1,52 @@
+/* jconfig.mc6 --- jconfig.h for Microsoft C on MS-DOS, version 6.00A & up. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#define NEED_FAR_POINTERS /* for small or medium memory model */
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#define USE_MSDOS_MEMMGR /* Define this if you use jmemdos.c */
+
+#define MAX_ALLOC_CHUNK 65520L /* Maximum request to malloc() */
+
+#define USE_FMEM /* Microsoft has _fmemcpy() and _fmemset() */
+
+#define NEED_FHEAPMIN /* far heap management routines are broken */
+
+#define SHORTxLCONST_32 /* enable compiler-specific DCT optimization */
+/* Note: the above define is known to improve the code with Microsoft C 6.00A.
+ * I do not know whether it is good for later compiler versions.
+ * Please report any info on this point to jpeg-info@uunet.uu.net.
+ */
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE
+#define USE_SETMODE /* Microsoft has setmode() */
+#define NEED_SIGNAL_CATCHER /* Define this if you use jmemdos.c */
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.sas b/src/3rdparty/libjpeg/jconfig.sas
new file mode 100644
index 0000000..b8a1819
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.sas
@@ -0,0 +1,43 @@
+/* jconfig.sas --- jconfig.h for Amiga systems using SAS C 6.0 and up. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#define TEMP_DIRECTORY "JPEGTMP:" /* recommended setting for Amiga */
+
+#define NO_MKTEMP /* SAS C doesn't have mktemp() */
+
+#define SHORTxSHORT_32 /* produces better DCT code with SAS C */
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE
+#define NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.st b/src/3rdparty/libjpeg/jconfig.st
new file mode 100644
index 0000000..5afa0b6
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.st
@@ -0,0 +1,42 @@
+/* jconfig.st --- jconfig.h for Atari ST/STE/TT using Pure C or Turbo C. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS
+#undef NEED_SHORT_EXTERNAL_NAMES
+#define INCOMPLETE_TYPES_BROKEN /* suppress undefined-structure warnings */
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#define ALIGN_TYPE long /* apparently double is a weird size? */
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE /* optional -- undef if you like Unix style */
+/* Note: if you undef TWO_FILE_COMMANDLINE, you may need to define
+ * USE_SETMODE. Some Atari compilers require it, some do not.
+ */
+#define NEED_SIGNAL_CATCHER /* needed if you use jmemname.c */
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.txt b/src/3rdparty/libjpeg/jconfig.txt
new file mode 100644
index 0000000..8819e79
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.txt
@@ -0,0 +1,155 @@
+/*
+ * jconfig.txt
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file documents the configuration options that are required to
+ * customize the JPEG software for a particular system.
+ *
+ * The actual configuration options for a particular installation are stored
+ * in jconfig.h. On many machines, jconfig.h can be generated automatically
+ * or copied from one of the "canned" jconfig files that we supply. But if
+ * you need to generate a jconfig.h file by hand, this file tells you how.
+ *
+ * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
+ * EDIT A COPY NAMED JCONFIG.H.
+ */
+
+
+/*
+ * These symbols indicate the properties of your machine or compiler.
+ * #define the symbol if yes, #undef it if no.
+ */
+
+/* Does your compiler support function prototypes?
+ * (If not, you also need to use ansi2knr, see install.txt)
+ */
+#define HAVE_PROTOTYPES
+
+/* Does your compiler support the declaration "unsigned char" ?
+ * How about "unsigned short" ?
+ */
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+
+/* Define "void" as "char" if your compiler doesn't know about type void.
+ * NOTE: be sure to define void such that "void *" represents the most general
+ * pointer type, e.g., that returned by malloc().
+ */
+/* #define void char */
+
+/* Define "const" as empty if your compiler doesn't know the "const" keyword.
+ */
+/* #define const */
+
+/* Define this if an ordinary "char" type is unsigned.
+ * If you're not sure, leaving it undefined will work at some cost in speed.
+ * If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
+ */
+#undef CHAR_IS_UNSIGNED
+
+/* Define this if your system has an ANSI-conforming <stddef.h> file.
+ */
+#define HAVE_STDDEF_H
+
+/* Define this if your system has an ANSI-conforming <stdlib.h> file.
+ */
+#define HAVE_STDLIB_H
+
+/* Define this if your system does not have an ANSI/SysV <string.h>,
+ * but does have a BSD-style <strings.h>.
+ */
+#undef NEED_BSD_STRINGS
+
+/* Define this if your system does not provide typedef size_t in any of the
+ * ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
+ * <sys/types.h> instead.
+ */
+#undef NEED_SYS_TYPES_H
+
+/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
+ * unless you are using a large-data memory model or 80386 flat-memory mode.
+ * On less brain-damaged CPUs this symbol must not be defined.
+ * (Defining this symbol causes large data structures to be referenced through
+ * "far" pointers and to be allocated with a special version of malloc.)
+ */
+#undef NEED_FAR_POINTERS
+
+/* Define this if your linker needs global names to be unique in less
+ * than the first 15 characters.
+ */
+#undef NEED_SHORT_EXTERNAL_NAMES
+
+/* Although a real ANSI C compiler can deal perfectly well with pointers to
+ * unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
+ * and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
+ * define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you
+ * actually get "missing structure definition" warnings or errors while
+ * compiling the JPEG code.
+ */
+#undef INCOMPLETE_TYPES_BROKEN
+
+
+/*
+ * The following options affect code selection within the JPEG library,
+ * but they don't need to be visible to applications using the library.
+ * To minimize application namespace pollution, the symbols won't be
+ * defined unless JPEG_INTERNALS has been defined.
+ */
+
+#ifdef JPEG_INTERNALS
+
+/* Define this if your compiler implements ">>" on signed values as a logical
+ * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
+ * which is the normal and rational definition.
+ */
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+
+#endif /* JPEG_INTERNALS */
+
+
+/*
+ * The remaining options do not affect the JPEG library proper,
+ * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
+ * Other applications can ignore these.
+ */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+/* These defines indicate which image (non-JPEG) file formats are allowed. */
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+/* Define this if you want to name both input and output files on the command
+ * line, rather than using stdout and optionally stdin. You MUST do this if
+ * your system can't cope with binary I/O to stdin/stdout. See comments at
+ * head of cjpeg.c or djpeg.c.
+ */
+#undef TWO_FILE_COMMANDLINE
+
+/* Define this if your system needs explicit cleanup of temporary files.
+ * This is crucial under MS-DOS, where the temporary "files" may be areas
+ * of extended memory; on most other systems it's not as important.
+ */
+#undef NEED_SIGNAL_CATCHER
+
+/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
+ * This is necessary on systems that distinguish text files from binary files,
+ * and is harmless on most systems that don't. If you have one of the rare
+ * systems that complains about the "b" spec, define this symbol.
+ */
+#undef DONT_USE_B_MODE
+
+/* Define this if you want percent-done progress reports from cjpeg/djpeg.
+ */
+#undef PROGRESS_REPORT
+
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.vc b/src/3rdparty/libjpeg/jconfig.vc
new file mode 100644
index 0000000..679404d
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.vc
@@ -0,0 +1,45 @@
+/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+/* Define "boolean" as unsigned char, not int, per Windows custom */
+#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
+typedef unsigned char boolean;
+#endif
+#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
+
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE /* optional */
+#define USE_SETMODE /* Microsoft has setmode() */
+#undef NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.vms b/src/3rdparty/libjpeg/jconfig.vms
new file mode 100644
index 0000000..8337b0b
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.vms
@@ -0,0 +1,37 @@
+/* jconfig.vms --- jconfig.h for use on Digital VMS. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE /* Needed on VMS */
+#undef NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jconfig.wat b/src/3rdparty/libjpeg/jconfig.wat
new file mode 100644
index 0000000..190cc75
--- /dev/null
+++ b/src/3rdparty/libjpeg/jconfig.wat
@@ -0,0 +1,38 @@
+/* jconfig.wat --- jconfig.h for Watcom C/C++ on MS-DOS or OS/2. */
+/* see jconfig.txt for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#define CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS /* Watcom uses flat 32-bit addressing */
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#undef TWO_FILE_COMMANDLINE /* optional */
+#define USE_SETMODE /* Needed to make one-file style work in Watcom */
+#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/3rdparty/libjpeg/jcparam.c b/src/3rdparty/libjpeg/jcparam.c
new file mode 100644
index 0000000..c5e85dd
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcparam.c
@@ -0,0 +1,632 @@
+/*
+ * jcparam.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2003-2008 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains optional default-setting code for the JPEG compressor.
+ * Applications do not have to use this file, but those that don't use it
+ * must know a lot more about the innards of the JPEG code.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Quantization table setup routines
+ */
+
+GLOBAL(void)
+jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
+ const unsigned int *basic_table,
+ int scale_factor, boolean force_baseline)
+/* Define a quantization table equal to the basic_table times
+ * a scale factor (given as a percentage).
+ * If force_baseline is TRUE, the computed quantization table entries
+ * are limited to 1..255 for JPEG baseline compatibility.
+ */
+{
+ JQUANT_TBL ** qtblptr;
+ int i;
+ long temp;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
+ ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
+
+ qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
+
+ if (*qtblptr == NULL)
+ *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
+ /* limit the values to the valid range */
+ if (temp <= 0L) temp = 1L;
+ if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
+ if (force_baseline && temp > 255L)
+ temp = 255L; /* limit to baseline range if requested */
+ (*qtblptr)->quantval[i] = (UINT16) temp;
+ }
+
+ /* Initialize sent_table FALSE so table will be written to JPEG file. */
+ (*qtblptr)->sent_table = FALSE;
+}
+
+
+/* These are the sample quantization tables given in JPEG spec section K.1.
+ * The spec says that the values given produce "good" quality, and
+ * when divided by 2, "very good" quality.
+ */
+static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
+ 16, 11, 10, 16, 24, 40, 51, 61,
+ 12, 12, 14, 19, 26, 58, 60, 55,
+ 14, 13, 16, 24, 40, 57, 69, 56,
+ 14, 17, 22, 29, 51, 87, 80, 62,
+ 18, 22, 37, 56, 68, 109, 103, 77,
+ 24, 35, 55, 64, 81, 104, 113, 92,
+ 49, 64, 78, 87, 103, 121, 120, 101,
+ 72, 92, 95, 98, 112, 100, 103, 99
+};
+static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
+ 17, 18, 24, 47, 99, 99, 99, 99,
+ 18, 21, 26, 66, 99, 99, 99, 99,
+ 24, 26, 56, 99, 99, 99, 99, 99,
+ 47, 66, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99
+};
+
+
+GLOBAL(void)
+jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables
+ * and straight percentage-scaling quality scales.
+ * This entry point allows different scalings for luminance and chrominance.
+ */
+{
+ /* Set up two quantization tables using the specified scaling */
+ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+ cinfo->q_scale_factor[0], force_baseline);
+ jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+ cinfo->q_scale_factor[1], force_baseline);
+}
+
+
+GLOBAL(void)
+jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
+ boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables
+ * and a straight percentage-scaling quality scale. In most cases it's better
+ * to use jpeg_set_quality (below); this entry point is provided for
+ * applications that insist on a linear percentage scaling.
+ */
+{
+ /* Set up two quantization tables using the specified scaling */
+ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+ scale_factor, force_baseline);
+ jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+ scale_factor, force_baseline);
+}
+
+
+GLOBAL(int)
+jpeg_quality_scaling (int quality)
+/* Convert a user-specified quality rating to a percentage scaling factor
+ * for an underlying quantization table, using our recommended scaling curve.
+ * The input 'quality' factor should be 0 (terrible) to 100 (very good).
+ */
+{
+ /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
+ if (quality <= 0) quality = 1;
+ if (quality > 100) quality = 100;
+
+ /* The basic table is used as-is (scaling 100) for a quality of 50.
+ * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
+ * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
+ * to make all the table entries 1 (hence, minimum quantization loss).
+ * Qualities 1..50 are converted to scaling percentage 5000/Q.
+ */
+ if (quality < 50)
+ quality = 5000 / quality;
+ else
+ quality = 200 - quality*2;
+
+ return quality;
+}
+
+
+GLOBAL(void)
+jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables.
+ * This is the standard quality-adjusting entry point for typical user
+ * interfaces; only those who want detailed control over quantization tables
+ * would use the preceding three routines directly.
+ */
+{
+ /* Convert user 0-100 rating to percentage scaling */
+ quality = jpeg_quality_scaling(quality);
+
+ /* Set up standard quality tables */
+ jpeg_set_linear_quality(cinfo, quality, force_baseline);
+}
+
+
+/*
+ * Huffman table setup routines
+ */
+
+LOCAL(void)
+add_huff_table (j_compress_ptr cinfo,
+ JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
+/* Define a Huffman table */
+{
+ int nsymbols, len;
+
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+
+ /* Copy the number-of-symbols-of-each-code-length counts */
+ MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+
+ /* Validate the counts. We do this here mainly so we can copy the right
+ * number of symbols from the val[] array, without risking marching off
+ * the end of memory. jchuff.c will do a more thorough test later.
+ */
+ nsymbols = 0;
+ for (len = 1; len <= 16; len++)
+ nsymbols += bits[len];
+ if (nsymbols < 1 || nsymbols > 256)
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+
+ MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
+
+ /* Initialize sent_table FALSE so table will be written to JPEG file. */
+ (*htblptr)->sent_table = FALSE;
+}
+
+
+LOCAL(void)
+std_huff_tables (j_compress_ptr cinfo)
+/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
+/* IMPORTANT: these are only valid for 8-bit data precision! */
+{
+ static const UINT8 bits_dc_luminance[17] =
+ { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
+ static const UINT8 val_dc_luminance[] =
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+
+ static const UINT8 bits_dc_chrominance[17] =
+ { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
+ static const UINT8 val_dc_chrominance[] =
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+
+ static const UINT8 bits_ac_luminance[17] =
+ { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
+ static const UINT8 val_ac_luminance[] =
+ { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
+ 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+ 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
+ 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
+ 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
+ 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
+ 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
+ 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+ 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
+ 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+ 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
+ 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+ 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
+ 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
+ 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
+ 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
+ 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
+ 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
+ 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa };
+
+ static const UINT8 bits_ac_chrominance[17] =
+ { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
+ static const UINT8 val_ac_chrominance[] =
+ { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
+ 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+ 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
+ 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
+ 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
+ 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
+ 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
+ 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+ 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+ 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+ 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+ 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
+ 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
+ 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
+ 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
+ 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
+ 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
+ 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
+ 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa };
+
+ add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
+ bits_dc_luminance, val_dc_luminance);
+ add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
+ bits_ac_luminance, val_ac_luminance);
+ add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
+ bits_dc_chrominance, val_dc_chrominance);
+ add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
+ bits_ac_chrominance, val_ac_chrominance);
+}
+
+
+/*
+ * Default parameter setup for compression.
+ *
+ * Applications that don't choose to use this routine must do their
+ * own setup of all these parameters. Alternately, you can call this
+ * to establish defaults and then alter parameters selectively. This
+ * is the recommended approach since, if we add any new parameters,
+ * your code will still work (they'll be set to reasonable defaults).
+ */
+
+GLOBAL(void)
+jpeg_set_defaults (j_compress_ptr cinfo)
+{
+ int i;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* Allocate comp_info array large enough for maximum component count.
+ * Array is made permanent in case application wants to compress
+ * multiple images at same param settings.
+ */
+ if (cinfo->comp_info == NULL)
+ cinfo->comp_info = (jpeg_component_info *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ MAX_COMPONENTS * SIZEOF(jpeg_component_info));
+
+ /* Initialize everything not dependent on the color space */
+
+ cinfo->scale_num = 1; /* 1:1 scaling */
+ cinfo->scale_denom = 1;
+ cinfo->data_precision = BITS_IN_JSAMPLE;
+ /* Set up two quantization tables using default quality of 75 */
+ jpeg_set_quality(cinfo, 75, TRUE);
+ /* Set up two Huffman tables */
+ std_huff_tables(cinfo);
+
+ /* Initialize default arithmetic coding conditioning */
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ cinfo->arith_dc_L[i] = 0;
+ cinfo->arith_dc_U[i] = 1;
+ cinfo->arith_ac_K[i] = 5;
+ }
+
+ /* Default is no multiple-scan output */
+ cinfo->scan_info = NULL;
+ cinfo->num_scans = 0;
+
+ /* Expect normal source image, not raw downsampled data */
+ cinfo->raw_data_in = FALSE;
+
+ /* Use Huffman coding, not arithmetic coding, by default */
+ cinfo->arith_code = FALSE;
+
+ /* By default, don't do extra passes to optimize entropy coding */
+ cinfo->optimize_coding = FALSE;
+ /* The standard Huffman tables are only valid for 8-bit data precision.
+ * If the precision is higher, force optimization on so that usable
+ * tables will be computed. This test can be removed if default tables
+ * are supplied that are valid for the desired precision.
+ */
+ if (cinfo->data_precision > 8)
+ cinfo->optimize_coding = TRUE;
+
+ /* By default, use the simpler non-cosited sampling alignment */
+ cinfo->CCIR601_sampling = FALSE;
+
+ /* By default, apply fancy downsampling */
+ cinfo->do_fancy_downsampling = TRUE;
+
+ /* No input smoothing */
+ cinfo->smoothing_factor = 0;
+
+ /* DCT algorithm preference */
+ cinfo->dct_method = JDCT_DEFAULT;
+
+ /* No restart markers */
+ cinfo->restart_interval = 0;
+ cinfo->restart_in_rows = 0;
+
+ /* Fill in default JFIF marker parameters. Note that whether the marker
+ * will actually be written is determined by jpeg_set_colorspace.
+ *
+ * By default, the library emits JFIF version code 1.01.
+ * An application that wants to emit JFIF 1.02 extension markers should set
+ * JFIF_minor_version to 2. We could probably get away with just defaulting
+ * to 1.02, but there may still be some decoders in use that will complain
+ * about that; saying 1.01 should minimize compatibility problems.
+ */
+ cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
+ cinfo->JFIF_minor_version = 1;
+ cinfo->density_unit = 0; /* Pixel size is unknown by default */
+ cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
+ cinfo->Y_density = 1;
+
+ /* Choose JPEG colorspace based on input space, set defaults accordingly */
+
+ jpeg_default_colorspace(cinfo);
+}
+
+
+/*
+ * Select an appropriate JPEG colorspace for in_color_space.
+ */
+
+GLOBAL(void)
+jpeg_default_colorspace (j_compress_ptr cinfo)
+{
+ switch (cinfo->in_color_space) {
+ case JCS_GRAYSCALE:
+ jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
+ break;
+ case JCS_RGB:
+ jpeg_set_colorspace(cinfo, JCS_YCbCr);
+ break;
+ case JCS_YCbCr:
+ jpeg_set_colorspace(cinfo, JCS_YCbCr);
+ break;
+ case JCS_CMYK:
+ jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
+ break;
+ case JCS_YCCK:
+ jpeg_set_colorspace(cinfo, JCS_YCCK);
+ break;
+ case JCS_UNKNOWN:
+ jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ }
+}
+
+
+/*
+ * Set the JPEG colorspace, and choose colorspace-dependent default values.
+ */
+
+GLOBAL(void)
+jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
+{
+ jpeg_component_info * compptr;
+ int ci;
+
+#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
+ (compptr = &cinfo->comp_info[index], \
+ compptr->component_id = (id), \
+ compptr->h_samp_factor = (hsamp), \
+ compptr->v_samp_factor = (vsamp), \
+ compptr->quant_tbl_no = (quant), \
+ compptr->dc_tbl_no = (dctbl), \
+ compptr->ac_tbl_no = (actbl) )
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
+ * tables 1 for chrominance components.
+ */
+
+ cinfo->jpeg_color_space = colorspace;
+
+ cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
+ cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
+
+ switch (colorspace) {
+ case JCS_GRAYSCALE:
+ cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+ cinfo->num_components = 1;
+ /* JFIF specifies component ID 1 */
+ SET_COMP(0, 1, 1,1, 0, 0,0);
+ break;
+ case JCS_RGB:
+ cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
+ cinfo->num_components = 3;
+ SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
+ SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
+ SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
+ break;
+ case JCS_YCbCr:
+ cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+ cinfo->num_components = 3;
+ /* JFIF specifies component IDs 1,2,3 */
+ /* We default to 2x2 subsamples of chrominance */
+ SET_COMP(0, 1, 2,2, 0, 0,0);
+ SET_COMP(1, 2, 1,1, 1, 1,1);
+ SET_COMP(2, 3, 1,1, 1, 1,1);
+ break;
+ case JCS_CMYK:
+ cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
+ cinfo->num_components = 4;
+ SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
+ SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
+ SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
+ SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
+ break;
+ case JCS_YCCK:
+ cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
+ cinfo->num_components = 4;
+ SET_COMP(0, 1, 2,2, 0, 0,0);
+ SET_COMP(1, 2, 1,1, 1, 1,1);
+ SET_COMP(2, 3, 1,1, 1, 1,1);
+ SET_COMP(3, 4, 2,2, 0, 0,0);
+ break;
+ case JCS_UNKNOWN:
+ cinfo->num_components = cinfo->input_components;
+ if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ SET_COMP(ci, ci, 1,1, 0, 0,0);
+ }
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ }
+}
+
+
+#ifdef C_PROGRESSIVE_SUPPORTED
+
+LOCAL(jpeg_scan_info *)
+fill_a_scan (jpeg_scan_info * scanptr, int ci,
+ int Ss, int Se, int Ah, int Al)
+/* Support routine: generate one scan for specified component */
+{
+ scanptr->comps_in_scan = 1;
+ scanptr->component_index[0] = ci;
+ scanptr->Ss = Ss;
+ scanptr->Se = Se;
+ scanptr->Ah = Ah;
+ scanptr->Al = Al;
+ scanptr++;
+ return scanptr;
+}
+
+LOCAL(jpeg_scan_info *)
+fill_scans (jpeg_scan_info * scanptr, int ncomps,
+ int Ss, int Se, int Ah, int Al)
+/* Support routine: generate one scan for each component */
+{
+ int ci;
+
+ for (ci = 0; ci < ncomps; ci++) {
+ scanptr->comps_in_scan = 1;
+ scanptr->component_index[0] = ci;
+ scanptr->Ss = Ss;
+ scanptr->Se = Se;
+ scanptr->Ah = Ah;
+ scanptr->Al = Al;
+ scanptr++;
+ }
+ return scanptr;
+}
+
+LOCAL(jpeg_scan_info *)
+fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
+/* Support routine: generate interleaved DC scan if possible, else N scans */
+{
+ int ci;
+
+ if (ncomps <= MAX_COMPS_IN_SCAN) {
+ /* Single interleaved DC scan */
+ scanptr->comps_in_scan = ncomps;
+ for (ci = 0; ci < ncomps; ci++)
+ scanptr->component_index[ci] = ci;
+ scanptr->Ss = scanptr->Se = 0;
+ scanptr->Ah = Ah;
+ scanptr->Al = Al;
+ scanptr++;
+ } else {
+ /* Noninterleaved DC scan for each component */
+ scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
+ }
+ return scanptr;
+}
+
+
+/*
+ * Create a recommended progressive-JPEG script.
+ * cinfo->num_components and cinfo->jpeg_color_space must be correct.
+ */
+
+GLOBAL(void)
+jpeg_simple_progression (j_compress_ptr cinfo)
+{
+ int ncomps = cinfo->num_components;
+ int nscans;
+ jpeg_scan_info * scanptr;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* Figure space needed for script. Calculation must match code below! */
+ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+ /* Custom script for YCbCr color images. */
+ nscans = 10;
+ } else {
+ /* All-purpose script for other color spaces. */
+ if (ncomps > MAX_COMPS_IN_SCAN)
+ nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
+ else
+ nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
+ }
+
+ /* Allocate space for script.
+ * We need to put it in the permanent pool in case the application performs
+ * multiple compressions without changing the settings. To avoid a memory
+ * leak if jpeg_simple_progression is called repeatedly for the same JPEG
+ * object, we try to re-use previously allocated space, and we allocate
+ * enough space to handle YCbCr even if initially asked for grayscale.
+ */
+ if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
+ cinfo->script_space_size = MAX(nscans, 10);
+ cinfo->script_space = (jpeg_scan_info *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ cinfo->script_space_size * SIZEOF(jpeg_scan_info));
+ }
+ scanptr = cinfo->script_space;
+ cinfo->scan_info = scanptr;
+ cinfo->num_scans = nscans;
+
+ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+ /* Custom script for YCbCr color images. */
+ /* Initial DC scan */
+ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+ /* Initial AC scan: get some luma data out in a hurry */
+ scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
+ /* Chroma data is too small to be worth expending many scans on */
+ scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
+ scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
+ /* Complete spectral selection for luma AC */
+ scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
+ /* Refine next bit of luma AC */
+ scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
+ /* Finish DC successive approximation */
+ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+ /* Finish AC successive approximation */
+ scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
+ scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
+ /* Luma bottom bit comes last since it's usually largest scan */
+ scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
+ } else {
+ /* All-purpose script for other color spaces. */
+ /* Successive approximation first pass */
+ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+ scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
+ scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
+ /* Successive approximation second pass */
+ scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
+ /* Successive approximation final pass */
+ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+ scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
+ }
+}
+
+#endif /* C_PROGRESSIVE_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jcprepct.c b/src/3rdparty/libjpeg/jcprepct.c
new file mode 100644
index 0000000..be44cc4
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcprepct.c
@@ -0,0 +1,358 @@
+/*
+ * jcprepct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the compression preprocessing controller.
+ * This controller manages the color conversion, downsampling,
+ * and edge expansion steps.
+ *
+ * Most of the complexity here is associated with buffering input rows
+ * as required by the downsampler. See the comments at the head of
+ * jcsample.c for the downsampler's needs.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* At present, jcsample.c can request context rows only for smoothing.
+ * In the future, we might also need context rows for CCIR601 sampling
+ * or other more-complex downsampling procedures. The code to support
+ * context rows should be compiled only if needed.
+ */
+#ifdef INPUT_SMOOTHING_SUPPORTED
+#define CONTEXT_ROWS_SUPPORTED
+#endif
+
+
+/*
+ * For the simple (no-context-row) case, we just need to buffer one
+ * row group's worth of pixels for the downsampling step. At the bottom of
+ * the image, we pad to a full row group by replicating the last pixel row.
+ * The downsampler's last output row is then replicated if needed to pad
+ * out to a full iMCU row.
+ *
+ * When providing context rows, we must buffer three row groups' worth of
+ * pixels. Three row groups are physically allocated, but the row pointer
+ * arrays are made five row groups high, with the extra pointers above and
+ * below "wrapping around" to point to the last and first real row groups.
+ * This allows the downsampler to access the proper context rows.
+ * At the top and bottom of the image, we create dummy context rows by
+ * copying the first or last real pixel row. This copying could be avoided
+ * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
+ * trouble on the compression side.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_prep_controller pub; /* public fields */
+
+ /* Downsampling input buffer. This buffer holds color-converted data
+ * until we have enough to do a downsample step.
+ */
+ JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+ JDIMENSION rows_to_go; /* counts rows remaining in source image */
+ int next_buf_row; /* index of next row to store in color_buf */
+
+#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
+ int this_row_group; /* starting row index of group to process */
+ int next_buf_stop; /* downsample when we reach this index */
+#endif
+} my_prep_controller;
+
+typedef my_prep_controller * my_prep_ptr;
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+
+ if (pass_mode != JBUF_PASS_THRU)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ /* Initialize total-height counter for detecting bottom of image */
+ prep->rows_to_go = cinfo->image_height;
+ /* Mark the conversion buffer empty */
+ prep->next_buf_row = 0;
+#ifdef CONTEXT_ROWS_SUPPORTED
+ /* Preset additional state variables for context mode.
+ * These aren't used in non-context mode, so we needn't test which mode.
+ */
+ prep->this_row_group = 0;
+ /* Set next_buf_stop to stop after two row groups have been read in. */
+ prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
+#endif
+}
+
+
+/*
+ * Expand an image vertically from height input_rows to height output_rows,
+ * by duplicating the bottom row.
+ */
+
+LOCAL(void)
+expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
+ int input_rows, int output_rows)
+{
+ register int row;
+
+ for (row = input_rows; row < output_rows; row++) {
+ jcopy_sample_rows(image_data, input_rows-1, image_data, row,
+ 1, num_cols);
+ }
+}
+
+
+/*
+ * Process some data in the simple no-context case.
+ *
+ * Preprocessor output data is counted in "row groups". A row group
+ * is defined to be v_samp_factor sample rows of each component.
+ * Downsampling will produce this much data from each max_v_samp_factor
+ * input rows.
+ */
+
+METHODDEF(void)
+pre_process_data (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+ int numrows, ci;
+ JDIMENSION inrows;
+ jpeg_component_info * compptr;
+
+ while (*in_row_ctr < in_rows_avail &&
+ *out_row_group_ctr < out_row_groups_avail) {
+ /* Do color conversion to fill the conversion buffer. */
+ inrows = in_rows_avail - *in_row_ctr;
+ numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
+ numrows = (int) MIN((JDIMENSION) numrows, inrows);
+ (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+ prep->color_buf,
+ (JDIMENSION) prep->next_buf_row,
+ numrows);
+ *in_row_ctr += numrows;
+ prep->next_buf_row += numrows;
+ prep->rows_to_go -= numrows;
+ /* If at bottom of image, pad to fill the conversion buffer. */
+ if (prep->rows_to_go == 0 &&
+ prep->next_buf_row < cinfo->max_v_samp_factor) {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+ prep->next_buf_row, cinfo->max_v_samp_factor);
+ }
+ prep->next_buf_row = cinfo->max_v_samp_factor;
+ }
+ /* If we've filled the conversion buffer, empty it. */
+ if (prep->next_buf_row == cinfo->max_v_samp_factor) {
+ (*cinfo->downsample->downsample) (cinfo,
+ prep->color_buf, (JDIMENSION) 0,
+ output_buf, *out_row_group_ctr);
+ prep->next_buf_row = 0;
+ (*out_row_group_ctr)++;
+ }
+ /* If at bottom of image, pad the output to a full iMCU height.
+ * Note we assume the caller is providing a one-iMCU-height output buffer!
+ */
+ if (prep->rows_to_go == 0 &&
+ *out_row_group_ctr < out_row_groups_avail) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size;
+ expand_bottom_edge(output_buf[ci],
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (int) (*out_row_group_ctr * numrows),
+ (int) (out_row_groups_avail * numrows));
+ }
+ *out_row_group_ctr = out_row_groups_avail;
+ break; /* can exit outer loop without test */
+ }
+ }
+}
+
+
+#ifdef CONTEXT_ROWS_SUPPORTED
+
+/*
+ * Process some data in the context case.
+ */
+
+METHODDEF(void)
+pre_process_context (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+ int numrows, ci;
+ int buf_height = cinfo->max_v_samp_factor * 3;
+ JDIMENSION inrows;
+
+ while (*out_row_group_ctr < out_row_groups_avail) {
+ if (*in_row_ctr < in_rows_avail) {
+ /* Do color conversion to fill the conversion buffer. */
+ inrows = in_rows_avail - *in_row_ctr;
+ numrows = prep->next_buf_stop - prep->next_buf_row;
+ numrows = (int) MIN((JDIMENSION) numrows, inrows);
+ (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+ prep->color_buf,
+ (JDIMENSION) prep->next_buf_row,
+ numrows);
+ /* Pad at top of image, if first time through */
+ if (prep->rows_to_go == cinfo->image_height) {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ int row;
+ for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
+ jcopy_sample_rows(prep->color_buf[ci], 0,
+ prep->color_buf[ci], -row,
+ 1, cinfo->image_width);
+ }
+ }
+ }
+ *in_row_ctr += numrows;
+ prep->next_buf_row += numrows;
+ prep->rows_to_go -= numrows;
+ } else {
+ /* Return for more data, unless we are at the bottom of the image. */
+ if (prep->rows_to_go != 0)
+ break;
+ /* When at bottom of image, pad to fill the conversion buffer. */
+ if (prep->next_buf_row < prep->next_buf_stop) {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+ prep->next_buf_row, prep->next_buf_stop);
+ }
+ prep->next_buf_row = prep->next_buf_stop;
+ }
+ }
+ /* If we've gotten enough data, downsample a row group. */
+ if (prep->next_buf_row == prep->next_buf_stop) {
+ (*cinfo->downsample->downsample) (cinfo,
+ prep->color_buf,
+ (JDIMENSION) prep->this_row_group,
+ output_buf, *out_row_group_ctr);
+ (*out_row_group_ctr)++;
+ /* Advance pointers with wraparound as necessary. */
+ prep->this_row_group += cinfo->max_v_samp_factor;
+ if (prep->this_row_group >= buf_height)
+ prep->this_row_group = 0;
+ if (prep->next_buf_row >= buf_height)
+ prep->next_buf_row = 0;
+ prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
+ }
+ }
+}
+
+
+/*
+ * Create the wrapped-around downsampling input buffer needed for context mode.
+ */
+
+LOCAL(void)
+create_context_buffer (j_compress_ptr cinfo)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+ int rgroup_height = cinfo->max_v_samp_factor;
+ int ci, i;
+ jpeg_component_info * compptr;
+ JSAMPARRAY true_buffer, fake_buffer;
+
+ /* Grab enough space for fake row pointers for all the components;
+ * we need five row groups' worth of pointers for each component.
+ */
+ fake_buffer = (JSAMPARRAY)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (cinfo->num_components * 5 * rgroup_height) *
+ SIZEOF(JSAMPROW));
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Allocate the actual buffer space (3 row groups) for this component.
+ * We make the buffer wide enough to allow the downsampler to edge-expand
+ * horizontally within the buffer, if it so chooses.
+ */
+ true_buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (((long) compptr->width_in_blocks *
+ cinfo->min_DCT_h_scaled_size *
+ cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+ (JDIMENSION) (3 * rgroup_height));
+ /* Copy true buffer row pointers into the middle of the fake row array */
+ MEMCOPY(fake_buffer + rgroup_height, true_buffer,
+ 3 * rgroup_height * SIZEOF(JSAMPROW));
+ /* Fill in the above and below wraparound pointers */
+ for (i = 0; i < rgroup_height; i++) {
+ fake_buffer[i] = true_buffer[2 * rgroup_height + i];
+ fake_buffer[4 * rgroup_height + i] = true_buffer[i];
+ }
+ prep->color_buf[ci] = fake_buffer + rgroup_height;
+ fake_buffer += 5 * rgroup_height; /* point to space for next component */
+ }
+}
+
+#endif /* CONTEXT_ROWS_SUPPORTED */
+
+
+/*
+ * Initialize preprocessing controller.
+ */
+
+GLOBAL(void)
+jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+ my_prep_ptr prep;
+ int ci;
+ jpeg_component_info * compptr;
+
+ if (need_full_buffer) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ prep = (my_prep_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_prep_controller));
+ cinfo->prep = (struct jpeg_c_prep_controller *) prep;
+ prep->pub.start_pass = start_pass_prep;
+
+ /* Allocate the color conversion buffer.
+ * We make the buffer wide enough to allow the downsampler to edge-expand
+ * horizontally within the buffer, if it so chooses.
+ */
+ if (cinfo->downsample->need_context_rows) {
+ /* Set up to provide context rows */
+#ifdef CONTEXT_ROWS_SUPPORTED
+ prep->pub.pre_process_data = pre_process_context;
+ create_context_buffer(cinfo);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* No context, just make it tall enough for one row group */
+ prep->pub.pre_process_data = pre_process_data;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (((long) compptr->width_in_blocks *
+ cinfo->min_DCT_h_scaled_size *
+ cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+ (JDIMENSION) cinfo->max_v_samp_factor);
+ }
+ }
+}
diff --git a/src/3rdparty/libjpeg/jcsample.c b/src/3rdparty/libjpeg/jcsample.c
new file mode 100644
index 0000000..4d36f85
--- /dev/null
+++ b/src/3rdparty/libjpeg/jcsample.c
@@ -0,0 +1,545 @@
+/*
+ * jcsample.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains downsampling routines.
+ *
+ * Downsampling input data is counted in "row groups". A row group
+ * is defined to be max_v_samp_factor pixel rows of each component,
+ * from which the downsampler produces v_samp_factor sample rows.
+ * A single row group is processed in each call to the downsampler module.
+ *
+ * The downsampler is responsible for edge-expansion of its output data
+ * to fill an integral number of DCT blocks horizontally. The source buffer
+ * may be modified if it is helpful for this purpose (the source buffer is
+ * allocated wide enough to correspond to the desired output width).
+ * The caller (the prep controller) is responsible for vertical padding.
+ *
+ * The downsampler may request "context rows" by setting need_context_rows
+ * during startup. In this case, the input arrays will contain at least
+ * one row group's worth of pixels above and below the passed-in data;
+ * the caller will create dummy rows at image top and bottom by replicating
+ * the first or last real pixel row.
+ *
+ * An excellent reference for image resampling is
+ * Digital Image Warping, George Wolberg, 1990.
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ *
+ * The downsampling algorithm used here is a simple average of the source
+ * pixels covered by the output pixel. The hi-falutin sampling literature
+ * refers to this as a "box filter". In general the characteristics of a box
+ * filter are not very good, but for the specific cases we normally use (1:1
+ * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
+ * nearly so bad. If you intend to use other sampling ratios, you'd be well
+ * advised to improve this code.
+ *
+ * A simple input-smoothing capability is provided. This is mainly intended
+ * for cleaning up color-dithered GIF input files (if you find it inadequate,
+ * we suggest using an external filtering program such as pnmconvol). When
+ * enabled, each input pixel P is replaced by a weighted sum of itself and its
+ * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
+ * where SF = (smoothing_factor / 1024).
+ * Currently, smoothing is only supported for 2h2v sampling factors.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Pointer to routine to downsample a single component */
+typedef JMETHOD(void, downsample1_ptr,
+ (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data));
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_downsampler pub; /* public fields */
+
+ /* Downsampling method pointers, one per component */
+ downsample1_ptr methods[MAX_COMPONENTS];
+
+ /* Height of an output row group for each component. */
+ int rowgroup_height[MAX_COMPONENTS];
+
+ /* These arrays save pixel expansion factors so that int_downsample need not
+ * recompute them each time. They are unused for other downsampling methods.
+ */
+ UINT8 h_expand[MAX_COMPONENTS];
+ UINT8 v_expand[MAX_COMPONENTS];
+} my_downsampler;
+
+typedef my_downsampler * my_downsample_ptr;
+
+
+/*
+ * Initialize for a downsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_downsample (j_compress_ptr cinfo)
+{
+ /* no work for now */
+}
+
+
+/*
+ * Expand a component horizontally from width input_cols to width output_cols,
+ * by duplicating the rightmost samples.
+ */
+
+LOCAL(void)
+expand_right_edge (JSAMPARRAY image_data, int num_rows,
+ JDIMENSION input_cols, JDIMENSION output_cols)
+{
+ register JSAMPROW ptr;
+ register JSAMPLE pixval;
+ register int count;
+ int row;
+ int numcols = (int) (output_cols - input_cols);
+
+ if (numcols > 0) {
+ for (row = 0; row < num_rows; row++) {
+ ptr = image_data[row] + input_cols;
+ pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
+ for (count = numcols; count > 0; count--)
+ *ptr++ = pixval;
+ }
+ }
+}
+
+
+/*
+ * Do downsampling for a whole row group (all components).
+ *
+ * In this version we simply downsample each component independently.
+ */
+
+METHODDEF(void)
+sep_downsample (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+ JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
+{
+ my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
+ int ci;
+ jpeg_component_info * compptr;
+ JSAMPARRAY in_ptr, out_ptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ in_ptr = input_buf[ci] + in_row_index;
+ out_ptr = output_buf[ci] +
+ (out_row_group_index * downsample->rowgroup_height[ci]);
+ (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * One row group is processed per call.
+ * This version handles arbitrary integral sampling ratios, without smoothing.
+ * Note that this version is not actually used for customary sampling ratios.
+ */
+
+METHODDEF(void)
+int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
+ int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
+ JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ JSAMPROW inptr, outptr;
+ INT32 outvalue;
+
+ h_expand = downsample->h_expand[compptr->component_index];
+ v_expand = downsample->v_expand[compptr->component_index];
+ numpix = h_expand * v_expand;
+ numpix2 = numpix/2;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data, cinfo->max_v_samp_factor,
+ cinfo->image_width, output_cols * h_expand);
+
+ inrow = outrow = 0;
+ while (inrow < cinfo->max_v_samp_factor) {
+ outptr = output_data[outrow];
+ for (outcol = 0, outcol_h = 0; outcol < output_cols;
+ outcol++, outcol_h += h_expand) {
+ outvalue = 0;
+ for (v = 0; v < v_expand; v++) {
+ inptr = input_data[inrow+v] + outcol_h;
+ for (h = 0; h < h_expand; h++) {
+ outvalue += (INT32) GETJSAMPLE(*inptr++);
+ }
+ }
+ *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
+ }
+ inrow += v_expand;
+ outrow++;
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the special case of a full-size component,
+ * without smoothing.
+ */
+
+METHODDEF(void)
+fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ /* Copy the data */
+ jcopy_sample_rows(input_data, 0, output_data, 0,
+ cinfo->max_v_samp_factor, cinfo->image_width);
+ /* Edge-expand */
+ expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size);
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the common case of 2:1 horizontal and 1:1 vertical,
+ * without smoothing.
+ *
+ * A note about the "bias" calculations: when rounding fractional values to
+ * integer, we do not want to always round 0.5 up to the next integer.
+ * If we did that, we'd introduce a noticeable bias towards larger values.
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at
+ * alternate pixel locations (a simple ordered dither pattern).
+ */
+
+METHODDEF(void)
+h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow;
+ JDIMENSION outcol;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr, outptr;
+ register int bias;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data, cinfo->max_v_samp_factor,
+ cinfo->image_width, output_cols * 2);
+
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+ outptr = output_data[inrow];
+ inptr = input_data[inrow];
+ bias = 0; /* bias = 0,1,0,1,... for successive samples */
+ for (outcol = 0; outcol < output_cols; outcol++) {
+ *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+ + bias) >> 1);
+ bias ^= 1; /* 0=>1, 1=>0 */
+ inptr += 2;
+ }
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+ * without smoothing.
+ */
+
+METHODDEF(void)
+h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow, outrow;
+ JDIMENSION outcol;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr0, inptr1, outptr;
+ register int bias;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data, cinfo->max_v_samp_factor,
+ cinfo->image_width, output_cols * 2);
+
+ inrow = outrow = 0;
+ while (inrow < cinfo->max_v_samp_factor) {
+ outptr = output_data[outrow];
+ inptr0 = input_data[inrow];
+ inptr1 = input_data[inrow+1];
+ bias = 1; /* bias = 1,2,1,2,... for successive samples */
+ for (outcol = 0; outcol < output_cols; outcol++) {
+ *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+ + bias) >> 2);
+ bias ^= 3; /* 1=>2, 2=>1 */
+ inptr0 += 2; inptr1 += 2;
+ }
+ inrow += 2;
+ outrow++;
+ }
+}
+
+
+#ifdef INPUT_SMOOTHING_SUPPORTED
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+ * with smoothing. One row of context is required.
+ */
+
+METHODDEF(void)
+h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow, outrow;
+ JDIMENSION colctr;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
+ INT32 membersum, neighsum, memberscale, neighscale;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+ cinfo->image_width, output_cols * 2);
+
+ /* We don't bother to form the individual "smoothed" input pixel values;
+ * we can directly compute the output which is the average of the four
+ * smoothed values. Each of the four member pixels contributes a fraction
+ * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
+ * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
+ * output. The four corner-adjacent neighbor pixels contribute a fraction
+ * SF to just one smoothed pixel, or SF/4 to the final output; while the
+ * eight edge-adjacent neighbors contribute SF to each of two smoothed
+ * pixels, or SF/2 overall. In order to use integer arithmetic, these
+ * factors are scaled by 2^16 = 65536.
+ * Also recall that SF = smoothing_factor / 1024.
+ */
+
+ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
+ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
+
+ inrow = outrow = 0;
+ while (inrow < cinfo->max_v_samp_factor) {
+ outptr = output_data[outrow];
+ inptr0 = input_data[inrow];
+ inptr1 = input_data[inrow+1];
+ above_ptr = input_data[inrow-1];
+ below_ptr = input_data[inrow+2];
+
+ /* Special case for first column: pretend column -1 is same as column 0 */
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+ GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
+ neighsum += neighsum;
+ neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+
+ for (colctr = output_cols - 2; colctr > 0; colctr--) {
+ /* sum of pixels directly mapped to this output element */
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+ /* sum of edge-neighbor pixels */
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+ GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
+ GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
+ /* The edge-neighbors count twice as much as corner-neighbors */
+ neighsum += neighsum;
+ /* Add in the corner-neighbors */
+ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
+ GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
+ /* form final output scaled up by 2^16 */
+ membersum = membersum * memberscale + neighsum * neighscale;
+ /* round, descale and output it */
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+ }
+
+ /* Special case for last column */
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+ GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
+ neighsum += neighsum;
+ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+
+ inrow += 2;
+ outrow++;
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the special case of a full-size component,
+ * with smoothing. One row of context is required.
+ */
+
+METHODDEF(void)
+fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow;
+ JDIMENSION colctr;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr, above_ptr, below_ptr, outptr;
+ INT32 membersum, neighsum, memberscale, neighscale;
+ int colsum, lastcolsum, nextcolsum;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+ cinfo->image_width, output_cols);
+
+ /* Each of the eight neighbor pixels contributes a fraction SF to the
+ * smoothed pixel, while the main pixel contributes (1-8*SF). In order
+ * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
+ * Also recall that SF = smoothing_factor / 1024.
+ */
+
+ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
+ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
+
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+ outptr = output_data[inrow];
+ inptr = input_data[inrow];
+ above_ptr = input_data[inrow-1];
+ below_ptr = input_data[inrow+1];
+
+ /* Special case for first column */
+ colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
+ GETJSAMPLE(*inptr);
+ membersum = GETJSAMPLE(*inptr++);
+ nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+ GETJSAMPLE(*inptr);
+ neighsum = colsum + (colsum - membersum) + nextcolsum;
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ lastcolsum = colsum; colsum = nextcolsum;
+
+ for (colctr = output_cols - 2; colctr > 0; colctr--) {
+ membersum = GETJSAMPLE(*inptr++);
+ above_ptr++; below_ptr++;
+ nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+ GETJSAMPLE(*inptr);
+ neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ lastcolsum = colsum; colsum = nextcolsum;
+ }
+
+ /* Special case for last column */
+ membersum = GETJSAMPLE(*inptr);
+ neighsum = lastcolsum + (colsum - membersum) + colsum;
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+
+ }
+}
+
+#endif /* INPUT_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Module initialization routine for downsampling.
+ * Note that we must select a routine for each component.
+ */
+
+GLOBAL(void)
+jinit_downsampler (j_compress_ptr cinfo)
+{
+ my_downsample_ptr downsample;
+ int ci;
+ jpeg_component_info * compptr;
+ boolean smoothok = TRUE;
+ int h_in_group, v_in_group, h_out_group, v_out_group;
+
+ downsample = (my_downsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_downsampler));
+ cinfo->downsample = (struct jpeg_downsampler *) downsample;
+ downsample->pub.start_pass = start_pass_downsample;
+ downsample->pub.downsample = sep_downsample;
+ downsample->pub.need_context_rows = FALSE;
+
+ if (cinfo->CCIR601_sampling)
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+ /* Verify we can handle the sampling factors, and set up method pointers */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Compute size of an "output group" for DCT scaling. This many samples
+ * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
+ */
+ h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
+ cinfo->min_DCT_h_scaled_size;
+ v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size;
+ h_in_group = cinfo->max_h_samp_factor;
+ v_in_group = cinfo->max_v_samp_factor;
+ downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
+ if (h_in_group == h_out_group && v_in_group == v_out_group) {
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ if (cinfo->smoothing_factor) {
+ downsample->methods[ci] = fullsize_smooth_downsample;
+ downsample->pub.need_context_rows = TRUE;
+ } else
+#endif
+ downsample->methods[ci] = fullsize_downsample;
+ } else if (h_in_group == h_out_group * 2 &&
+ v_in_group == v_out_group) {
+ smoothok = FALSE;
+ downsample->methods[ci] = h2v1_downsample;
+ } else if (h_in_group == h_out_group * 2 &&
+ v_in_group == v_out_group * 2) {
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ if (cinfo->smoothing_factor) {
+ downsample->methods[ci] = h2v2_smooth_downsample;
+ downsample->pub.need_context_rows = TRUE;
+ } else
+#endif
+ downsample->methods[ci] = h2v2_downsample;
+ } else if ((h_in_group % h_out_group) == 0 &&
+ (v_in_group % v_out_group) == 0) {
+ smoothok = FALSE;
+ downsample->methods[ci] = int_downsample;
+ downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
+ downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
+ } else
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+ }
+
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ if (cinfo->smoothing_factor && !smoothok)
+ TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
+#endif
+}
diff --git a/src/3rdparty/libjpeg/jctrans.c b/src/3rdparty/libjpeg/jctrans.c
new file mode 100644
index 0000000..cee6b0f
--- /dev/null
+++ b/src/3rdparty/libjpeg/jctrans.c
@@ -0,0 +1,382 @@
+/*
+ * jctrans.c
+ *
+ * Copyright (C) 1995-1998, Thomas G. Lane.
+ * Modified 2000-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding compression,
+ * that is, writing raw DCT coefficient arrays to an output JPEG file.
+ * The routines in jcapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(void) transencode_master_selection
+ JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+LOCAL(void) transencode_coef_controller
+ JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+
+
+/*
+ * Compression initialization for writing raw-coefficient data.
+ * Before calling this, all parameters and a data destination must be set up.
+ * Call jpeg_finish_compress() to actually write the data.
+ *
+ * The number of passed virtual arrays must match cinfo->num_components.
+ * Note that the virtual arrays need not be filled or even realized at
+ * the time write_coefficients is called; indeed, if the virtual arrays
+ * were requested from this compression object's memory manager, they
+ * typically will be realized during this routine and filled afterwards.
+ */
+
+GLOBAL(void)
+jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
+{
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Mark all tables to be written */
+ jpeg_suppress_tables(cinfo, FALSE);
+ /* (Re)initialize error mgr and destination modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->dest->init_destination) (cinfo);
+ /* Perform master selection of active modules */
+ transencode_master_selection(cinfo, coef_arrays);
+ /* Wait for jpeg_finish_compress() call */
+ cinfo->next_scanline = 0; /* so jpeg_write_marker works */
+ cinfo->global_state = CSTATE_WRCOEFS;
+}
+
+
+/*
+ * Initialize the compression object with default parameters,
+ * then copy from the source object all parameters needed for lossless
+ * transcoding. Parameters that can be varied without loss (such as
+ * scan script and Huffman optimization) are left in their default states.
+ */
+
+GLOBAL(void)
+jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo)
+{
+ JQUANT_TBL ** qtblptr;
+ jpeg_component_info *incomp, *outcomp;
+ JQUANT_TBL *c_quant, *slot_quant;
+ int tblno, ci, coefi;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (dstinfo->global_state != CSTATE_START)
+ ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
+ /* Copy fundamental image dimensions */
+ dstinfo->image_width = srcinfo->image_width;
+ dstinfo->image_height = srcinfo->image_height;
+ dstinfo->input_components = srcinfo->num_components;
+ dstinfo->in_color_space = srcinfo->jpeg_color_space;
+ dstinfo->jpeg_width = srcinfo->output_width;
+ dstinfo->jpeg_height = srcinfo->output_height;
+ dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
+ dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
+ /* Initialize all parameters to default values */
+ jpeg_set_defaults(dstinfo);
+ /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
+ * Fix it to get the right header markers for the image colorspace.
+ */
+ jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
+ dstinfo->data_precision = srcinfo->data_precision;
+ dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
+ /* Copy the source's quantization tables. */
+ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+ if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
+ qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
+ if (*qtblptr == NULL)
+ *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
+ MEMCOPY((*qtblptr)->quantval,
+ srcinfo->quant_tbl_ptrs[tblno]->quantval,
+ SIZEOF((*qtblptr)->quantval));
+ (*qtblptr)->sent_table = FALSE;
+ }
+ }
+ /* Copy the source's per-component info.
+ * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
+ */
+ dstinfo->num_components = srcinfo->num_components;
+ if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
+ MAX_COMPONENTS);
+ for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
+ ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
+ outcomp->component_id = incomp->component_id;
+ outcomp->h_samp_factor = incomp->h_samp_factor;
+ outcomp->v_samp_factor = incomp->v_samp_factor;
+ outcomp->quant_tbl_no = incomp->quant_tbl_no;
+ /* Make sure saved quantization table for component matches the qtable
+ * slot. If not, the input file re-used this qtable slot.
+ * IJG encoder currently cannot duplicate this.
+ */
+ tblno = outcomp->quant_tbl_no;
+ if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
+ srcinfo->quant_tbl_ptrs[tblno] == NULL)
+ ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
+ slot_quant = srcinfo->quant_tbl_ptrs[tblno];
+ c_quant = incomp->quant_table;
+ if (c_quant != NULL) {
+ for (coefi = 0; coefi < DCTSIZE2; coefi++) {
+ if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
+ ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
+ }
+ }
+ /* Note: we do not copy the source's Huffman table assignments;
+ * instead we rely on jpeg_set_colorspace to have made a suitable choice.
+ */
+ }
+ /* Also copy JFIF version and resolution information, if available.
+ * Strictly speaking this isn't "critical" info, but it's nearly
+ * always appropriate to copy it if available. In particular,
+ * if the application chooses to copy JFIF 1.02 extension markers from
+ * the source file, we need to copy the version to make sure we don't
+ * emit a file that has 1.02 extensions but a claimed version of 1.01.
+ * We will *not*, however, copy version info from mislabeled "2.01" files.
+ */
+ if (srcinfo->saw_JFIF_marker) {
+ if (srcinfo->JFIF_major_version == 1) {
+ dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
+ dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
+ }
+ dstinfo->density_unit = srcinfo->density_unit;
+ dstinfo->X_density = srcinfo->X_density;
+ dstinfo->Y_density = srcinfo->Y_density;
+ }
+}
+
+
+/*
+ * Master selection of compression modules for transcoding.
+ * This substitutes for jcinit.c's initialization of the full compressor.
+ */
+
+LOCAL(void)
+transencode_master_selection (j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays)
+{
+ /* Initialize master control (includes parameter checking/processing) */
+ jinit_c_master_control(cinfo, TRUE /* transcode only */);
+
+ /* Entropy encoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_encoder(cinfo);
+ else {
+ jinit_huff_encoder(cinfo);
+ }
+
+ /* We need a special coefficient buffer controller. */
+ transencode_coef_controller(cinfo, coef_arrays);
+
+ jinit_marker_writer(cinfo);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Write the datastream header (SOI, JFIF) immediately.
+ * Frame and scan headers are postponed till later.
+ * This lets application insert special markers after the SOI.
+ */
+ (*cinfo->marker->write_file_header) (cinfo);
+}
+
+
+/*
+ * The rest of this file is a special implementation of the coefficient
+ * buffer controller. This is similar to jccoefct.c, but it handles only
+ * output from presupplied virtual arrays. Furthermore, we generate any
+ * dummy padding blocks on-the-fly rather than expecting them to be present
+ * in the arrays.
+ */
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_coef_controller pub; /* public fields */
+
+ JDIMENSION iMCU_row_num; /* iMCU row # within image */
+ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* Virtual block array for each component. */
+ jvirt_barray_ptr * whole_image;
+
+ /* Workspace for constructing dummy blocks at right/bottom edges. */
+ JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+LOCAL(void)
+start_iMCU_row (j_compress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->mcu_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ if (pass_mode != JBUF_CRANK_DEST)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ coef->iMCU_row_num = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Process some data.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF(boolean)
+compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, blockcnt;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ coef->iMCU_row_num * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (coef->iMCU_row_num < last_iMCU_row ||
+ yindex+yoffset < compptr->last_row_height) {
+ /* Fill in pointers to real blocks in this row */
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < blockcnt; xindex++)
+ MCU_buffer[blkn++] = buffer_ptr++;
+ } else {
+ /* At bottom of image, need a whole row of dummy blocks */
+ xindex = 0;
+ }
+ /* Fill in any dummy blocks needed in this row.
+ * Dummy blocks are filled in the same way as in jccoefct.c:
+ * all zeroes in the AC entries, DC entries equal to previous
+ * block's DC value. The init routine has already zeroed the
+ * AC entries, so we need only set the DC entries correctly.
+ */
+ for (; xindex < compptr->MCU_width; xindex++) {
+ MCU_buffer[blkn] = coef->dummy_buffer[blkn];
+ MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
+ blkn++;
+ }
+ }
+ }
+ /* Try to write the MCU. */
+ if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->mcu_ctr = MCU_col_num;
+ return FALSE;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->mcu_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ coef->iMCU_row_num++;
+ start_iMCU_row(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Initialize coefficient buffer controller.
+ *
+ * Each passed coefficient array must be the right size for that
+ * coefficient: width_in_blocks wide and height_in_blocks high,
+ * with unitheight at least v_samp_factor.
+ */
+
+LOCAL(void)
+transencode_coef_controller (j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays)
+{
+ my_coef_ptr coef;
+ JBLOCKROW buffer;
+ int i;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+ coef->pub.start_pass = start_pass_coef;
+ coef->pub.compress_data = compress_output;
+
+ /* Save pointer to virtual arrays */
+ coef->whole_image = coef_arrays;
+
+ /* Allocate and pre-zero space for dummy DCT blocks. */
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+ coef->dummy_buffer[i] = buffer + i;
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdapimin.c b/src/3rdparty/libjpeg/jdapimin.c
new file mode 100644
index 0000000..7f1ce4c
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdapimin.c
@@ -0,0 +1,396 @@
+/*
+ * jdapimin.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library. These are the "minimum" API routines that may be
+ * needed in either the normal full-decompression case or the
+ * transcoding-only case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jdapistd.c. But also see jcomapi.c for routines
+ * shared by compression and decompression, and jdtrans.c for the transcoding
+ * case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG decompression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL(void)
+jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
+{
+ int i;
+
+ /* Guard against version mismatches between library and caller. */
+ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
+ if (version != JPEG_LIB_VERSION)
+ ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+ if (structsize != SIZEOF(struct jpeg_decompress_struct))
+ ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
+ (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
+
+ /* For debugging purposes, we zero the whole master structure.
+ * But the application has already set the err pointer, and may have set
+ * client_data, so we have to save and restore those fields.
+ * Note: if application hasn't set client_data, tools like Purify may
+ * complain here.
+ */
+ {
+ struct jpeg_error_mgr * err = cinfo->err;
+ void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+ MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
+ cinfo->err = err;
+ cinfo->client_data = client_data;
+ }
+ cinfo->is_decompressor = TRUE;
+
+ /* Initialize a memory manager instance for this object */
+ jinit_memory_mgr((j_common_ptr) cinfo);
+
+ /* Zero out pointers to permanent structures. */
+ cinfo->progress = NULL;
+ cinfo->src = NULL;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++)
+ cinfo->quant_tbl_ptrs[i] = NULL;
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ cinfo->dc_huff_tbl_ptrs[i] = NULL;
+ cinfo->ac_huff_tbl_ptrs[i] = NULL;
+ }
+
+ /* Initialize marker processor so application can override methods
+ * for COM, APPn markers before calling jpeg_read_header.
+ */
+ cinfo->marker_list = NULL;
+ jinit_marker_reader(cinfo);
+
+ /* And initialize the overall input controller. */
+ jinit_input_controller(cinfo);
+
+ /* OK, I'm ready */
+ cinfo->global_state = DSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG decompression object
+ */
+
+GLOBAL(void)
+jpeg_destroy_decompress (j_decompress_ptr cinfo)
+{
+ jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG decompression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL(void)
+jpeg_abort_decompress (j_decompress_ptr cinfo)
+{
+ jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Set default decompression parameters.
+ */
+
+LOCAL(void)
+default_decompress_parms (j_decompress_ptr cinfo)
+{
+ /* Guess the input colorspace, and set output colorspace accordingly. */
+ /* (Wish JPEG committee had provided a real way to specify this...) */
+ /* Note application may override our guesses. */
+ switch (cinfo->num_components) {
+ case 1:
+ cinfo->jpeg_color_space = JCS_GRAYSCALE;
+ cinfo->out_color_space = JCS_GRAYSCALE;
+ break;
+
+ case 3:
+ if (cinfo->saw_JFIF_marker) {
+ cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
+ } else if (cinfo->saw_Adobe_marker) {
+ switch (cinfo->Adobe_transform) {
+ case 0:
+ cinfo->jpeg_color_space = JCS_RGB;
+ break;
+ case 1:
+ cinfo->jpeg_color_space = JCS_YCbCr;
+ break;
+ default:
+ WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+ break;
+ }
+ } else {
+ /* Saw no special markers, try to guess from the component IDs */
+ int cid0 = cinfo->comp_info[0].component_id;
+ int cid1 = cinfo->comp_info[1].component_id;
+ int cid2 = cinfo->comp_info[2].component_id;
+
+ if (cid0 == 1 && cid1 == 2 && cid2 == 3)
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
+ else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
+ cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
+ else {
+ TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+ }
+ }
+ /* Always guess RGB is proper output colorspace. */
+ cinfo->out_color_space = JCS_RGB;
+ break;
+
+ case 4:
+ if (cinfo->saw_Adobe_marker) {
+ switch (cinfo->Adobe_transform) {
+ case 0:
+ cinfo->jpeg_color_space = JCS_CMYK;
+ break;
+ case 2:
+ cinfo->jpeg_color_space = JCS_YCCK;
+ break;
+ default:
+ WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+ cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
+ break;
+ }
+ } else {
+ /* No special markers, assume straight CMYK. */
+ cinfo->jpeg_color_space = JCS_CMYK;
+ }
+ cinfo->out_color_space = JCS_CMYK;
+ break;
+
+ default:
+ cinfo->jpeg_color_space = JCS_UNKNOWN;
+ cinfo->out_color_space = JCS_UNKNOWN;
+ break;
+ }
+
+ /* Set defaults for other decompression parameters. */
+ cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */
+ cinfo->scale_denom = cinfo->block_size;
+ cinfo->output_gamma = 1.0;
+ cinfo->buffered_image = FALSE;
+ cinfo->raw_data_out = FALSE;
+ cinfo->dct_method = JDCT_DEFAULT;
+ cinfo->do_fancy_upsampling = TRUE;
+ cinfo->do_block_smoothing = TRUE;
+ cinfo->quantize_colors = FALSE;
+ /* We set these in case application only sets quantize_colors. */
+ cinfo->dither_mode = JDITHER_FS;
+#ifdef QUANT_2PASS_SUPPORTED
+ cinfo->two_pass_quantize = TRUE;
+#else
+ cinfo->two_pass_quantize = FALSE;
+#endif
+ cinfo->desired_number_of_colors = 256;
+ cinfo->colormap = NULL;
+ /* Initialize for no mode change in buffered-image mode. */
+ cinfo->enable_1pass_quant = FALSE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+}
+
+
+/*
+ * Decompression startup: read start of JPEG datastream to see what's there.
+ * Need only initialize JPEG object and supply a data source before calling.
+ *
+ * This routine will read as far as the first SOS marker (ie, actual start of
+ * compressed data), and will save all tables and parameters in the JPEG
+ * object. It will also initialize the decompression parameters to default
+ * values, and finally return JPEG_HEADER_OK. On return, the application may
+ * adjust the decompression parameters and then call jpeg_start_decompress.
+ * (Or, if the application only wanted to determine the image parameters,
+ * the data need not be decompressed. In that case, call jpeg_abort or
+ * jpeg_destroy to release any temporary space.)
+ * If an abbreviated (tables only) datastream is presented, the routine will
+ * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
+ * re-use the JPEG object to read the abbreviated image datastream(s).
+ * It is unnecessary (but OK) to call jpeg_abort in this case.
+ * The JPEG_SUSPENDED return code only occurs if the data source module
+ * requests suspension of the decompressor. In this case the application
+ * should load more source data and then re-call jpeg_read_header to resume
+ * processing.
+ * If a non-suspending data source is used and require_image is TRUE, then the
+ * return code need not be inspected since only JPEG_HEADER_OK is possible.
+ *
+ * This routine is now just a front end to jpeg_consume_input, with some
+ * extra error checking.
+ */
+
+GLOBAL(int)
+jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
+{
+ int retcode;
+
+ if (cinfo->global_state != DSTATE_START &&
+ cinfo->global_state != DSTATE_INHEADER)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ retcode = jpeg_consume_input(cinfo);
+
+ switch (retcode) {
+ case JPEG_REACHED_SOS:
+ retcode = JPEG_HEADER_OK;
+ break;
+ case JPEG_REACHED_EOI:
+ if (require_image) /* Complain if application wanted an image */
+ ERREXIT(cinfo, JERR_NO_IMAGE);
+ /* Reset to start state; it would be safer to require the application to
+ * call jpeg_abort, but we can't change it now for compatibility reasons.
+ * A side effect is to free any temporary memory (there shouldn't be any).
+ */
+ jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
+ retcode = JPEG_HEADER_TABLES_ONLY;
+ break;
+ case JPEG_SUSPENDED:
+ /* no work */
+ break;
+ }
+
+ return retcode;
+}
+
+
+/*
+ * Consume data in advance of what the decompressor requires.
+ * This can be called at any time once the decompressor object has
+ * been created and a data source has been set up.
+ *
+ * This routine is essentially a state machine that handles a couple
+ * of critical state-transition actions, namely initial setup and
+ * transition from header scanning to ready-for-start_decompress.
+ * All the actual input is done via the input controller's consume_input
+ * method.
+ */
+
+GLOBAL(int)
+jpeg_consume_input (j_decompress_ptr cinfo)
+{
+ int retcode = JPEG_SUSPENDED;
+
+ /* NB: every possible DSTATE value should be listed in this switch */
+ switch (cinfo->global_state) {
+ case DSTATE_START:
+ /* Start-of-datastream actions: reset appropriate modules */
+ (*cinfo->inputctl->reset_input_controller) (cinfo);
+ /* Initialize application's data source module */
+ (*cinfo->src->init_source) (cinfo);
+ cinfo->global_state = DSTATE_INHEADER;
+ /*FALLTHROUGH*/
+ case DSTATE_INHEADER:
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
+ /* Set up default parameters based on header data */
+ default_decompress_parms(cinfo);
+ /* Set global state: ready for start_decompress */
+ cinfo->global_state = DSTATE_READY;
+ }
+ break;
+ case DSTATE_READY:
+ /* Can't advance past first SOS until start_decompress is called */
+ retcode = JPEG_REACHED_SOS;
+ break;
+ case DSTATE_PRELOAD:
+ case DSTATE_PRESCAN:
+ case DSTATE_SCANNING:
+ case DSTATE_RAW_OK:
+ case DSTATE_BUFIMAGE:
+ case DSTATE_BUFPOST:
+ case DSTATE_STOPPING:
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ break;
+ default:
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ return retcode;
+}
+
+
+/*
+ * Have we finished reading the input file?
+ */
+
+GLOBAL(boolean)
+jpeg_input_complete (j_decompress_ptr cinfo)
+{
+ /* Check for valid jpeg object */
+ if (cinfo->global_state < DSTATE_START ||
+ cinfo->global_state > DSTATE_STOPPING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return cinfo->inputctl->eoi_reached;
+}
+
+
+/*
+ * Is there more than one scan?
+ */
+
+GLOBAL(boolean)
+jpeg_has_multiple_scans (j_decompress_ptr cinfo)
+{
+ /* Only valid after jpeg_read_header completes */
+ if (cinfo->global_state < DSTATE_READY ||
+ cinfo->global_state > DSTATE_STOPPING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return cinfo->inputctl->has_multiple_scans;
+}
+
+
+/*
+ * Finish JPEG decompression.
+ *
+ * This will normally just verify the file trailer and release temp storage.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_finish_decompress (j_decompress_ptr cinfo)
+{
+ if ((cinfo->global_state == DSTATE_SCANNING ||
+ cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
+ /* Terminate final pass of non-buffered mode */
+ if (cinfo->output_scanline < cinfo->output_height)
+ ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+ (*cinfo->master->finish_output_pass) (cinfo);
+ cinfo->global_state = DSTATE_STOPPING;
+ } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
+ /* Finishing after a buffered-image operation */
+ cinfo->global_state = DSTATE_STOPPING;
+ } else if (cinfo->global_state != DSTATE_STOPPING) {
+ /* STOPPING = repeat call after a suspension, anything else is error */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ /* Read until EOI */
+ while (! cinfo->inputctl->eoi_reached) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return FALSE; /* Suspend, come back later */
+ }
+ /* Do final cleanup */
+ (*cinfo->src->term_source) (cinfo);
+ /* We can use jpeg_abort to release memory and reset global_state */
+ jpeg_abort((j_common_ptr) cinfo);
+ return TRUE;
+}
diff --git a/src/3rdparty/libjpeg/jdapistd.c b/src/3rdparty/libjpeg/jdapistd.c
new file mode 100644
index 0000000..9d74537
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdapistd.c
@@ -0,0 +1,275 @@
+/*
+ * jdapistd.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library. These are the "standard" API routines that are
+ * used in the normal full-decompression case. They are not used by a
+ * transcoding-only application. Note that if an application links in
+ * jpeg_start_decompress, it will end up linking in the entire decompressor.
+ * We thus must separate this file from jdapimin.c to avoid linking the
+ * whole decompression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Decompression initialization.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * If a multipass operating mode was selected, this will do all but the
+ * last pass, and thus may take a great deal of time.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_start_decompress (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state == DSTATE_READY) {
+ /* First call: initialize master control, select active modules */
+ jinit_master_decompress(cinfo);
+ if (cinfo->buffered_image) {
+ /* No more work here; expecting jpeg_start_output next */
+ cinfo->global_state = DSTATE_BUFIMAGE;
+ return TRUE;
+ }
+ cinfo->global_state = DSTATE_PRELOAD;
+ }
+ if (cinfo->global_state == DSTATE_PRELOAD) {
+ /* If file has multiple scans, absorb them all into the coef buffer */
+ if (cinfo->inputctl->has_multiple_scans) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ for (;;) {
+ int retcode;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL)
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ /* Absorb some more input */
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_SUSPENDED)
+ return FALSE;
+ if (retcode == JPEG_REACHED_EOI)
+ break;
+ /* Advance progress counter if appropriate */
+ if (cinfo->progress != NULL &&
+ (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+ if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+ /* jdmaster underestimated number of scans; ratchet up one scan */
+ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+ }
+ }
+ }
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+ }
+ cinfo->output_scan_number = cinfo->input_scan_number;
+ } else if (cinfo->global_state != DSTATE_PRESCAN)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Perform any dummy output passes, and set up for the final pass */
+ return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Set up for an output pass, and perform any dummy pass(es) needed.
+ * Common subroutine for jpeg_start_decompress and jpeg_start_output.
+ * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
+ * Exit: If done, returns TRUE and sets global_state for proper output mode.
+ * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
+ */
+
+LOCAL(boolean)
+output_pass_setup (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state != DSTATE_PRESCAN) {
+ /* First call: do pass setup */
+ (*cinfo->master->prepare_for_output_pass) (cinfo);
+ cinfo->output_scanline = 0;
+ cinfo->global_state = DSTATE_PRESCAN;
+ }
+ /* Loop over any required dummy passes */
+ while (cinfo->master->is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+ /* Crank through the dummy pass */
+ while (cinfo->output_scanline < cinfo->output_height) {
+ JDIMENSION last_scanline;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+ /* Process some data */
+ last_scanline = cinfo->output_scanline;
+ (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
+ &cinfo->output_scanline, (JDIMENSION) 0);
+ if (cinfo->output_scanline == last_scanline)
+ return FALSE; /* No progress made, must suspend */
+ }
+ /* Finish up dummy pass, and set up for another one */
+ (*cinfo->master->finish_output_pass) (cinfo);
+ (*cinfo->master->prepare_for_output_pass) (cinfo);
+ cinfo->output_scanline = 0;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+ }
+ /* Ready for application to drive output pass through
+ * jpeg_read_scanlines or jpeg_read_raw_data.
+ */
+ cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
+ return TRUE;
+}
+
+
+/*
+ * Read some scanlines of data from the JPEG decompressor.
+ *
+ * The return value will be the number of lines actually read.
+ * This may be less than the number requested in several cases,
+ * including bottom of image, data source suspension, and operating
+ * modes that emit multiple scanlines at a time.
+ *
+ * Note: we warn about excess calls to jpeg_read_scanlines() since
+ * this likely signals an application programmer error. However,
+ * an oversize buffer (max_lines > scanlines remaining) is not an error.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
+ JDIMENSION max_lines)
+{
+ JDIMENSION row_ctr;
+
+ if (cinfo->global_state != DSTATE_SCANNING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->output_scanline >= cinfo->output_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Process some data */
+ row_ctr = 0;
+ (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
+ cinfo->output_scanline += row_ctr;
+ return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to read raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
+ JDIMENSION max_lines)
+{
+ JDIMENSION lines_per_iMCU_row;
+
+ if (cinfo->global_state != DSTATE_RAW_OK)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->output_scanline >= cinfo->output_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Verify that at least one iMCU row can be returned. */
+ lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
+ if (max_lines < lines_per_iMCU_row)
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* Decompress directly into user's buffer. */
+ if (! (*cinfo->coef->decompress_data) (cinfo, data))
+ return 0; /* suspension forced, can do nothing more */
+
+ /* OK, we processed one iMCU row. */
+ cinfo->output_scanline += lines_per_iMCU_row;
+ return lines_per_iMCU_row;
+}
+
+
+/* Additional entry points for buffered-image mode. */
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Initialize for an output pass in buffered-image mode.
+ */
+
+GLOBAL(boolean)
+jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
+{
+ if (cinfo->global_state != DSTATE_BUFIMAGE &&
+ cinfo->global_state != DSTATE_PRESCAN)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Limit scan number to valid range */
+ if (scan_number <= 0)
+ scan_number = 1;
+ if (cinfo->inputctl->eoi_reached &&
+ scan_number > cinfo->input_scan_number)
+ scan_number = cinfo->input_scan_number;
+ cinfo->output_scan_number = scan_number;
+ /* Perform any dummy output passes, and set up for the real pass */
+ return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Finish up after an output pass in buffered-image mode.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_finish_output (j_decompress_ptr cinfo)
+{
+ if ((cinfo->global_state == DSTATE_SCANNING ||
+ cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
+ /* Terminate this pass. */
+ /* We do not require the whole pass to have been completed. */
+ (*cinfo->master->finish_output_pass) (cinfo);
+ cinfo->global_state = DSTATE_BUFPOST;
+ } else if (cinfo->global_state != DSTATE_BUFPOST) {
+ /* BUFPOST = repeat call after a suspension, anything else is error */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ /* Read markers looking for SOS or EOI */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ ! cinfo->inputctl->eoi_reached) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return FALSE; /* Suspend, come back later */
+ }
+ cinfo->global_state = DSTATE_BUFIMAGE;
+ return TRUE;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jdarith.c b/src/3rdparty/libjpeg/jdarith.c
new file mode 100644
index 0000000..c858b24
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdarith.c
@@ -0,0 +1,772 @@
+/*
+ * jdarith.c
+ *
+ * Developed 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy decoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy decoder object for arithmetic decoding. */
+
+typedef struct {
+ struct jpeg_entropy_decoder pub; /* public fields */
+
+ INT32 c; /* C register, base of coding interval + input bit buffer */
+ INT32 a; /* A register, normalized size of coding interval */
+ int ct; /* bit shift counter, # of bits left in bit buffer part of C */
+ /* init: ct = -16 */
+ /* run: ct = 0..7 */
+ /* error: ct = -1 */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+
+ /* Pointers to statistics areas (these workspaces have image lifespan) */
+ unsigned char * dc_stats[NUM_ARITH_TBLS];
+ unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+ /* Statistics bin for coding with fixed probability 0.5 */
+ unsigned char fixed_bin[4];
+} arith_entropy_decoder;
+
+typedef arith_entropy_decoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+
+LOCAL(int)
+get_byte (j_decompress_ptr cinfo)
+/* Read next input byte; we do not support suspension in this module. */
+{
+ struct jpeg_source_mgr * src = cinfo->src;
+
+ if (src->bytes_in_buffer == 0)
+ if (! (*src->fill_input_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ src->bytes_in_buffer--;
+ return GETJOCTET(*src->next_input_byte++);
+}
+
+
+/*
+ * The core arithmetic decoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Return value is 0 or 1 (binary decision).
+ *
+ * Note: I've changed the handling of the code base & bit
+ * buffer register C compared to other implementations
+ * based on the standards layout & procedures.
+ * While it also contains both the actual base of the
+ * coding interval (16 bits) and the next-bits buffer,
+ * the cut-point between these two parts is floating
+ * (instead of fixed) with the bit shift counter CT.
+ * Thus, we also need only one (variable instead of
+ * fixed size) shift for the LPS/MPS decision, and
+ * we can get away with any renormalization update
+ * of C (except for new data insertion, of course).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(int)
+arith_decode (j_decompress_ptr cinfo, unsigned char *st)
+{
+ register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+ register unsigned char nl, nm;
+ register INT32 qe, temp;
+ register int sv, data;
+
+ /* Renormalization & data input per section D.2.6 */
+ while (e->a < 0x8000L) {
+ if (--e->ct < 0) {
+ /* Need to fetch next data byte */
+ if (cinfo->unread_marker)
+ data = 0; /* stuff zero data */
+ else {
+ data = get_byte(cinfo); /* read next input byte */
+ if (data == 0xFF) { /* zero stuff or marker code */
+ do data = get_byte(cinfo);
+ while (data == 0xFF); /* swallow extra 0xFF bytes */
+ if (data == 0)
+ data = 0xFF; /* discard stuffed zero byte */
+ else {
+ /* Note: Different from the Huffman decoder, hitting
+ * a marker while processing the compressed data
+ * segment is legal in arithmetic coding.
+ * The convention is to supply zero data
+ * then until decoding is complete.
+ */
+ cinfo->unread_marker = data;
+ data = 0;
+ }
+ }
+ }
+ e->c = (e->c << 8) | data; /* insert data into C register */
+ if ((e->ct += 8) < 0) /* update bit shift counter */
+ /* Need more initial bytes */
+ if (++e->ct == 0)
+ /* Got 2 initial bytes -> re-init A and exit loop */
+ e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
+ }
+ e->a <<= 1;
+ }
+
+ /* Fetch values from our compact representation of Table D.2:
+ * Qe values and probability estimation state machine
+ */
+ sv = *st;
+ qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
+ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
+ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
+
+ /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
+ temp = e->a - qe;
+ e->a = temp;
+ temp <<= e->ct;
+ if (e->c >= temp) {
+ e->c -= temp;
+ /* Conditional LPS (less probable symbol) exchange */
+ if (e->a < qe) {
+ e->a = qe;
+ *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
+ } else {
+ e->a = qe;
+ *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
+ sv ^= 0x80; /* Exchange LPS/MPS */
+ }
+ } else if (e->a < 0x8000L) {
+ /* Conditional MPS (more probable symbol) exchange */
+ if (e->a < qe) {
+ *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
+ sv ^= 0x80; /* Exchange LPS/MPS */
+ } else {
+ *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
+ }
+ }
+
+ return sv >> 7;
+}
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ */
+
+LOCAL(void)
+process_restart (j_decompress_ptr cinfo)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci;
+ jpeg_component_info * compptr;
+
+ /* Advance past the RSTn marker */
+ if (! (*cinfo->marker->read_restart_marker) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+ /* Re-initialize statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+ MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+ /* Reset DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
+ (cinfo->progressive_mode && cinfo->Ss)) {
+ MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+ }
+ }
+
+ /* Reset arithmetic decoding variables */
+ entropy->c = 0;
+ entropy->a = 0;
+ entropy->ct = -16; /* force reading 2 initial bytes to fill C */
+
+ /* Reset restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Arithmetic MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * arithmetic-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl, sign;
+ int v, m;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+ /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.19: Decode_DC_DIFF */
+ if (arith_decode(cinfo, st) == 0)
+ entropy->dc_context[ci] = 0;
+ else {
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, st + 1);
+ st += 2; st += sign;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+ else
+ entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ entropy->last_dc_val[ci] += v;
+ }
+
+ /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
+ (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int tbl, sign, k;
+ int v, m;
+ const int * natural_order;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ natural_order = cinfo->natural_order;
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+ /* Figure F.20: Decode_AC_coefficients */
+ for (k = cinfo->Ss; k <= cinfo->Se; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (arith_decode(cinfo, st)) break; /* EOB flag */
+ while (arith_decode(cinfo, st + 1) == 0) {
+ st += 3; k++;
+ if (k > cinfo->Se) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* spectral overflow */
+ return TRUE;
+ }
+ }
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, entropy->fixed_bin);
+ st += 2;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ if (arith_decode(cinfo, st)) {
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ }
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ /* Scale and output coefficient in natural (dezigzagged) order */
+ (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ unsigned char *st;
+ int p1, blkn;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ st = entropy->fixed_bin; /* use fixed probability estimation */
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ /* Encoded data is simply the next bit of the two's-complement DC value */
+ if (arith_decode(cinfo, st))
+ MCU_data[blkn][0][0] |= p1;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ JCOEFPTR thiscoef;
+ unsigned char *st;
+ int tbl, k, kex;
+ int p1, m1;
+ const int * natural_order;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ natural_order = cinfo->natural_order;
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
+
+ /* Establish EOBx (previous stage end-of-block) index */
+ for (kex = cinfo->Se; kex > 0; kex--)
+ if ((*block)[natural_order[kex]]) break;
+
+ for (k = cinfo->Ss; k <= cinfo->Se; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (k > kex)
+ if (arith_decode(cinfo, st)) break; /* EOB flag */
+ for (;;) {
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef) { /* previously nonzero coef */
+ if (arith_decode(cinfo, st + 2)) {
+ if (*thiscoef < 0)
+ *thiscoef += m1;
+ else
+ *thiscoef += p1;
+ }
+ break;
+ }
+ if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
+ if (arith_decode(cinfo, entropy->fixed_bin))
+ *thiscoef = m1;
+ else
+ *thiscoef = p1;
+ break;
+ }
+ st += 3; k++;
+ if (k > cinfo->Se) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* spectral overflow */
+ return TRUE;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ jpeg_component_info * compptr;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl, sign, k;
+ int v, m;
+ const int * natural_order;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ natural_order = cinfo->natural_order;
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+
+ /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+ tbl = compptr->dc_tbl_no;
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.19: Decode_DC_DIFF */
+ if (arith_decode(cinfo, st) == 0)
+ entropy->dc_context[ci] = 0;
+ else {
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, st + 1);
+ st += 2; st += sign;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+ else
+ entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ entropy->last_dc_val[ci] += v;
+ }
+
+ (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
+
+ /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+ tbl = compptr->ac_tbl_no;
+
+ /* Figure F.20: Decode_AC_coefficients */
+ for (k = 1; k <= cinfo->lim_Se; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (arith_decode(cinfo, st)) break; /* EOB flag */
+ while (arith_decode(cinfo, st + 1) == 0) {
+ st += 3; k++;
+ if (k > cinfo->lim_Se) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* spectral overflow */
+ return TRUE;
+ }
+ }
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, entropy->fixed_bin);
+ st += 2;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ if (arith_decode(cinfo, st)) {
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ }
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ (*block)[natural_order[k]] = (JCOEF) v;
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+
+ if (cinfo->progressive_mode) {
+ /* Validate progressive scan parameters */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Se != 0)
+ goto bad;
+ } else {
+ /* need not check Ss/Se < 0 since they came from unsigned bytes */
+ if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
+ goto bad;
+ /* AC scans may have only one component */
+ if (cinfo->comps_in_scan != 1)
+ goto bad;
+ }
+ if (cinfo->Ah != 0) {
+ /* Successive approximation refinement scan: must have Al = Ah-1. */
+ if (cinfo->Ah-1 != cinfo->Al)
+ goto bad;
+ }
+ if (cinfo->Al > 13) { /* need not check for < 0 */
+ bad:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ }
+ /* Update progression status, and verify that scan order is legal.
+ * Note that inter-scan inconsistencies are treated as warnings
+ * not fatal errors ... not clear if this is right way to behave.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+ int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+ if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+ for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+ int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+ if (cinfo->Ah != expected)
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+ coef_bit_ptr[coefi] = cinfo->Al;
+ }
+ }
+ /* Select MCU decoding routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_first;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_refine;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_refine;
+ }
+ } else {
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+ * This ought to be an error condition, but we make it a warning.
+ */
+ if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+ (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+ /* Select MCU decoding routine */
+ entropy->pub.decode_mcu = decode_mcu;
+ }
+
+ /* Allocate & initialize requested statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+ tbl = compptr->dc_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->dc_stats[tbl] == NULL)
+ entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+ MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+ /* Initialize DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
+ (cinfo->progressive_mode && cinfo->Ss)) {
+ tbl = compptr->ac_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->ac_stats[tbl] == NULL)
+ entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+ MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+ }
+ }
+
+ /* Initialize arithmetic decoding variables */
+ entropy->c = 0;
+ entropy->a = 0;
+ entropy->ct = -16; /* force reading 2 initial bytes to fill C */
+
+ /* Initialize restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_arith_decoder (j_decompress_ptr cinfo)
+{
+ arith_entropy_ptr entropy;
+ int i;
+
+ entropy = (arith_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(arith_entropy_decoder));
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+ entropy->pub.start_pass = start_pass;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ entropy->dc_stats[i] = NULL;
+ entropy->ac_stats[i] = NULL;
+ }
+
+ /* Initialize index for fixed probability estimation */
+ entropy->fixed_bin[0] = 113;
+
+ if (cinfo->progressive_mode) {
+ /* Create progression status table */
+ int *coef_bit_ptr, ci;
+ cinfo->coef_bits = (int (*)[DCTSIZE2])
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components*DCTSIZE2*SIZEOF(int));
+ coef_bit_ptr = & cinfo->coef_bits[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (i = 0; i < DCTSIZE2; i++)
+ *coef_bit_ptr++ = -1;
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdatadst.c b/src/3rdparty/libjpeg/jdatadst.c
new file mode 100644
index 0000000..472d5f3
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdatadst.c
@@ -0,0 +1,267 @@
+/*
+ * jdatadst.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains compression data destination routines for the case of
+ * emitting JPEG data to memory or to a file (or any stdio stream).
+ * While these routines are sufficient for most applications,
+ * some will want to use a different destination manager.
+ * IMPORTANT: we assume that fwrite() will correctly transcribe an array of
+ * JOCTETs into 8-bit-wide elements on external storage. If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+
+/* Expanded data destination object for stdio output */
+
+typedef struct {
+ struct jpeg_destination_mgr pub; /* public fields */
+
+ FILE * outfile; /* target stream */
+ JOCTET * buffer; /* start of buffer */
+} my_destination_mgr;
+
+typedef my_destination_mgr * my_dest_ptr;
+
+#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
+
+
+/* Expanded data destination object for memory output */
+
+typedef struct {
+ struct jpeg_destination_mgr pub; /* public fields */
+
+ unsigned char ** outbuffer; /* target buffer */
+ unsigned long * outsize;
+ unsigned char * newbuffer; /* newly allocated buffer */
+ JOCTET * buffer; /* start of buffer */
+ size_t bufsize;
+} my_mem_destination_mgr;
+
+typedef my_mem_destination_mgr * my_mem_dest_ptr;
+
+
+/*
+ * Initialize destination --- called by jpeg_start_compress
+ * before any data is actually written.
+ */
+
+METHODDEF(void)
+init_destination (j_compress_ptr cinfo)
+{
+ my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
+
+ /* Allocate the output buffer --- it will be released when done with image */
+ dest->buffer = (JOCTET *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
+
+ dest->pub.next_output_byte = dest->buffer;
+ dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
+}
+
+METHODDEF(void)
+init_mem_destination (j_compress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Empty the output buffer --- called whenever buffer fills up.
+ *
+ * In typical applications, this should write the entire output buffer
+ * (ignoring the current state of next_output_byte & free_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been dumped.
+ *
+ * In applications that need to be able to suspend compression due to output
+ * overrun, a FALSE return indicates that the buffer cannot be emptied now.
+ * In this situation, the compressor will return to its caller (possibly with
+ * an indication that it has not accepted all the supplied scanlines). The
+ * application should resume compression after it has made more room in the
+ * output buffer. Note that there are substantial restrictions on the use of
+ * suspension --- see the documentation.
+ *
+ * When suspending, the compressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_output_byte & free_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point will be regenerated after resumption, so do not
+ * write it out when emptying the buffer externally.
+ */
+
+METHODDEF(boolean)
+empty_output_buffer (j_compress_ptr cinfo)
+{
+ my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
+
+ if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
+ (size_t) OUTPUT_BUF_SIZE)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+
+ dest->pub.next_output_byte = dest->buffer;
+ dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
+
+ return TRUE;
+}
+
+METHODDEF(boolean)
+empty_mem_output_buffer (j_compress_ptr cinfo)
+{
+ size_t nextsize;
+ JOCTET * nextbuffer;
+ my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
+
+ /* Try to allocate new buffer with double size */
+ nextsize = dest->bufsize * 2;
+ nextbuffer = malloc(nextsize);
+
+ if (nextbuffer == NULL)
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
+
+ MEMCOPY(nextbuffer, dest->buffer, dest->bufsize);
+
+ if (dest->newbuffer != NULL)
+ free(dest->newbuffer);
+
+ dest->newbuffer = nextbuffer;
+
+ dest->pub.next_output_byte = nextbuffer + dest->bufsize;
+ dest->pub.free_in_buffer = dest->bufsize;
+
+ dest->buffer = nextbuffer;
+ dest->bufsize = nextsize;
+
+ return TRUE;
+}
+
+
+/*
+ * Terminate destination --- called by jpeg_finish_compress
+ * after all data has been written. Usually needs to flush buffer.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF(void)
+term_destination (j_compress_ptr cinfo)
+{
+ my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
+ size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
+
+ /* Write any data remaining in the buffer */
+ if (datacount > 0) {
+ if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+ }
+ fflush(dest->outfile);
+ /* Make sure we wrote the output file OK */
+ if (ferror(dest->outfile))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+METHODDEF(void)
+term_mem_destination (j_compress_ptr cinfo)
+{
+ my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
+
+ *dest->outbuffer = dest->buffer;
+ *dest->outsize = dest->bufsize - dest->pub.free_in_buffer;
+}
+
+
+/*
+ * Prepare for output to a stdio stream.
+ * The caller must have already opened the stream, and is responsible
+ * for closing it after finishing compression.
+ */
+
+GLOBAL(void)
+jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
+{
+ my_dest_ptr dest;
+
+ /* The destination object is made permanent so that multiple JPEG images
+ * can be written to the same file without re-executing jpeg_stdio_dest.
+ * This makes it dangerous to use this manager and a different destination
+ * manager serially with the same JPEG object, because their private object
+ * sizes may be different. Caveat programmer.
+ */
+ if (cinfo->dest == NULL) { /* first time for this JPEG object? */
+ cinfo->dest = (struct jpeg_destination_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_destination_mgr));
+ }
+
+ dest = (my_dest_ptr) cinfo->dest;
+ dest->pub.init_destination = init_destination;
+ dest->pub.empty_output_buffer = empty_output_buffer;
+ dest->pub.term_destination = term_destination;
+ dest->outfile = outfile;
+}
+
+
+/*
+ * Prepare for output to a memory buffer.
+ * The caller may supply an own initial buffer with appropriate size.
+ * Otherwise, or when the actual data output exceeds the given size,
+ * the library adapts the buffer size as necessary.
+ * The standard library functions malloc/free are used for allocating
+ * larger memory, so the buffer is available to the application after
+ * finishing compression, and then the application is responsible for
+ * freeing the requested memory.
+ */
+
+GLOBAL(void)
+jpeg_mem_dest (j_compress_ptr cinfo,
+ unsigned char ** outbuffer, unsigned long * outsize)
+{
+ my_mem_dest_ptr dest;
+
+ if (outbuffer == NULL || outsize == NULL) /* sanity check */
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* The destination object is made permanent so that multiple JPEG images
+ * can be written to the same buffer without re-executing jpeg_mem_dest.
+ */
+ if (cinfo->dest == NULL) { /* first time for this JPEG object? */
+ cinfo->dest = (struct jpeg_destination_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_mem_destination_mgr));
+ }
+
+ dest = (my_mem_dest_ptr) cinfo->dest;
+ dest->pub.init_destination = init_mem_destination;
+ dest->pub.empty_output_buffer = empty_mem_output_buffer;
+ dest->pub.term_destination = term_mem_destination;
+ dest->outbuffer = outbuffer;
+ dest->outsize = outsize;
+ dest->newbuffer = NULL;
+
+ if (*outbuffer == NULL || *outsize == 0) {
+ /* Allocate initial buffer */
+ dest->newbuffer = *outbuffer = malloc(OUTPUT_BUF_SIZE);
+ if (dest->newbuffer == NULL)
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
+ *outsize = OUTPUT_BUF_SIZE;
+ }
+
+ dest->pub.next_output_byte = dest->buffer = *outbuffer;
+ dest->pub.free_in_buffer = dest->bufsize = *outsize;
+}
diff --git a/src/3rdparty/libjpeg/jdatasrc.c b/src/3rdparty/libjpeg/jdatasrc.c
new file mode 100644
index 0000000..d3136db
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdatasrc.c
@@ -0,0 +1,274 @@
+/*
+ * jdatasrc.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains decompression data source routines for the case of
+ * reading JPEG data from memory or from a file (or any stdio stream).
+ * While these routines are sufficient for most applications,
+ * some will want to use a different source manager.
+ * IMPORTANT: we assume that fread() will correctly transcribe an array of
+ * JOCTETs from 8-bit-wide elements on external storage. If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+
+/* Expanded data source object for stdio input */
+
+typedef struct {
+ struct jpeg_source_mgr pub; /* public fields */
+
+ FILE * infile; /* source stream */
+ JOCTET * buffer; /* start of buffer */
+ boolean start_of_file; /* have we gotten any data yet? */
+} my_source_mgr;
+
+typedef my_source_mgr * my_src_ptr;
+
+#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
+
+
+/*
+ * Initialize source --- called by jpeg_read_header
+ * before any data is actually read.
+ */
+
+METHODDEF(void)
+init_source (j_decompress_ptr cinfo)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+
+ /* We reset the empty-input-file flag for each image,
+ * but we don't clear the input buffer.
+ * This is correct behavior for reading a series of images from one source.
+ */
+ src->start_of_file = TRUE;
+}
+
+METHODDEF(void)
+init_mem_source (j_decompress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Fill the input buffer --- called whenever buffer is emptied.
+ *
+ * In typical applications, this should read fresh data into the buffer
+ * (ignoring the current state of next_input_byte & bytes_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been reloaded. It is not necessary to
+ * fill the buffer entirely, only to obtain at least one more byte.
+ *
+ * There is no such thing as an EOF return. If the end of the file has been
+ * reached, the routine has a choice of ERREXIT() or inserting fake data into
+ * the buffer. In most cases, generating a warning message and inserting a
+ * fake EOI marker is the best course of action --- this will allow the
+ * decompressor to output however much of the image is there. However,
+ * the resulting error message is misleading if the real problem is an empty
+ * input file, so we handle that case specially.
+ *
+ * In applications that need to be able to suspend compression due to input
+ * not being available yet, a FALSE return indicates that no more data can be
+ * obtained right now, but more may be forthcoming later. In this situation,
+ * the decompressor will return to its caller (with an indication of the
+ * number of scanlines it has read, if any). The application should resume
+ * decompression after it has loaded more data into the input buffer. Note
+ * that there are substantial restrictions on the use of suspension --- see
+ * the documentation.
+ *
+ * When suspending, the decompressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point must be rescanned after resumption, so move it to
+ * the front of the buffer rather than discarding it.
+ */
+
+METHODDEF(boolean)
+fill_input_buffer (j_decompress_ptr cinfo)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+ size_t nbytes;
+
+ nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
+
+ if (nbytes <= 0) {
+ if (src->start_of_file) /* Treat empty input file as fatal error */
+ ERREXIT(cinfo, JERR_INPUT_EMPTY);
+ WARNMS(cinfo, JWRN_JPEG_EOF);
+ /* Insert a fake EOI marker */
+ src->buffer[0] = (JOCTET) 0xFF;
+ src->buffer[1] = (JOCTET) JPEG_EOI;
+ nbytes = 2;
+ }
+
+ src->pub.next_input_byte = src->buffer;
+ src->pub.bytes_in_buffer = nbytes;
+ src->start_of_file = FALSE;
+
+ return TRUE;
+}
+
+METHODDEF(boolean)
+fill_mem_input_buffer (j_decompress_ptr cinfo)
+{
+ static JOCTET mybuffer[4];
+
+ /* The whole JPEG data is expected to reside in the supplied memory
+ * buffer, so any request for more data beyond the given buffer size
+ * is treated as an error.
+ */
+ WARNMS(cinfo, JWRN_JPEG_EOF);
+ /* Insert a fake EOI marker */
+ mybuffer[0] = (JOCTET) 0xFF;
+ mybuffer[1] = (JOCTET) JPEG_EOI;
+
+ cinfo->src->next_input_byte = mybuffer;
+ cinfo->src->bytes_in_buffer = 2;
+
+ return TRUE;
+}
+
+
+/*
+ * Skip data --- used to skip over a potentially large amount of
+ * uninteresting data (such as an APPn marker).
+ *
+ * Writers of suspendable-input applications must note that skip_input_data
+ * is not granted the right to give a suspension return. If the skip extends
+ * beyond the data currently in the buffer, the buffer can be marked empty so
+ * that the next read will cause a fill_input_buffer call that can suspend.
+ * Arranging for additional bytes to be discarded before reloading the input
+ * buffer is the application writer's problem.
+ */
+
+METHODDEF(void)
+skip_input_data (j_decompress_ptr cinfo, long num_bytes)
+{
+ struct jpeg_source_mgr * src = cinfo->src;
+
+ /* Just a dumb implementation for now. Could use fseek() except
+ * it doesn't work on pipes. Not clear that being smart is worth
+ * any trouble anyway --- large skips are infrequent.
+ */
+ if (num_bytes > 0) {
+ while (num_bytes > (long) src->bytes_in_buffer) {
+ num_bytes -= (long) src->bytes_in_buffer;
+ (void) fill_input_buffer(cinfo);
+ /* note we assume that fill_input_buffer will never return FALSE,
+ * so suspension need not be handled.
+ */
+ }
+ src->next_input_byte += (size_t) num_bytes;
+ src->bytes_in_buffer -= (size_t) num_bytes;
+ }
+}
+
+
+/*
+ * An additional method that can be provided by data source modules is the
+ * resync_to_restart method for error recovery in the presence of RST markers.
+ * For the moment, this source module just uses the default resync method
+ * provided by the JPEG library. That method assumes that no backtracking
+ * is possible.
+ */
+
+
+/*
+ * Terminate source --- called by jpeg_finish_decompress
+ * after all data has been read. Often a no-op.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF(void)
+term_source (j_decompress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Prepare for input from a stdio stream.
+ * The caller must have already opened the stream, and is responsible
+ * for closing it after finishing decompression.
+ */
+
+GLOBAL(void)
+jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
+{
+ my_src_ptr src;
+
+ /* The source object and input buffer are made permanent so that a series
+ * of JPEG images can be read from the same file by calling jpeg_stdio_src
+ * only before the first one. (If we discarded the buffer at the end of
+ * one image, we'd likely lose the start of the next one.)
+ * This makes it unsafe to use this manager and a different source
+ * manager serially with the same JPEG object. Caveat programmer.
+ */
+ if (cinfo->src == NULL) { /* first time for this JPEG object? */
+ cinfo->src = (struct jpeg_source_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_source_mgr));
+ src = (my_src_ptr) cinfo->src;
+ src->buffer = (JOCTET *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ INPUT_BUF_SIZE * SIZEOF(JOCTET));
+ }
+
+ src = (my_src_ptr) cinfo->src;
+ src->pub.init_source = init_source;
+ src->pub.fill_input_buffer = fill_input_buffer;
+ src->pub.skip_input_data = skip_input_data;
+ src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
+ src->pub.term_source = term_source;
+ src->infile = infile;
+ src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
+ src->pub.next_input_byte = NULL; /* until buffer loaded */
+}
+
+
+/*
+ * Prepare for input from a supplied memory buffer.
+ * The buffer must contain the whole JPEG data.
+ */
+
+GLOBAL(void)
+jpeg_mem_src (j_decompress_ptr cinfo,
+ unsigned char * inbuffer, unsigned long insize)
+{
+ struct jpeg_source_mgr * src;
+
+ if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
+ ERREXIT(cinfo, JERR_INPUT_EMPTY);
+
+ /* The source object is made permanent so that a series of JPEG images
+ * can be read from the same buffer by calling jpeg_mem_src only before
+ * the first one.
+ */
+ if (cinfo->src == NULL) { /* first time for this JPEG object? */
+ cinfo->src = (struct jpeg_source_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(struct jpeg_source_mgr));
+ }
+
+ src = cinfo->src;
+ src->init_source = init_mem_source;
+ src->fill_input_buffer = fill_mem_input_buffer;
+ src->skip_input_data = skip_input_data;
+ src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
+ src->term_source = term_source;
+ src->bytes_in_buffer = (size_t) insize;
+ src->next_input_byte = (JOCTET *) inbuffer;
+}
diff --git a/src/3rdparty/libjpeg/jdcoefct.c b/src/3rdparty/libjpeg/jdcoefct.c
new file mode 100644
index 0000000..462e92c
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdcoefct.c
@@ -0,0 +1,736 @@
+/*
+ * jdcoefct.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for decompression.
+ * This controller is the top level of the JPEG decompressor proper.
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+ *
+ * In buffered-image mode, this controller is the interface between
+ * input-oriented processing and output-oriented processing.
+ * Also, the input side (only) is used when reading a file for transcoding.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+/* Block smoothing is only applicable for progressive JPEG, so: */
+#ifndef D_PROGRESSIVE_SUPPORTED
+#undef BLOCK_SMOOTHING_SUPPORTED
+#endif
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_coef_controller pub; /* public fields */
+
+ /* These variables keep track of the current location of the input side. */
+ /* cinfo->input_iMCU_row is also used for this. */
+ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* The output side's location is represented by cinfo->output_iMCU_row. */
+
+ /* In single-pass modes, it's sufficient to buffer just one MCU.
+ * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
+ * and let the entropy decoder write into that workspace each time.
+ * (On 80x86, the workspace is FAR even though it's not really very big;
+ * this is to keep the module interfaces unchanged when a large coefficient
+ * buffer is necessary.)
+ * In multi-pass modes, this array points to the current MCU's blocks
+ * within the virtual arrays; it is used only by the input side.
+ */
+ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* In multi-pass modes, we need a virtual block array for each component. */
+ jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+#endif
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* When doing block smoothing, we latch coefficient Al values here */
+ int * coef_bits_latch;
+#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
+#endif
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+/* Forward declarations */
+METHODDEF(int) decompress_onepass
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+METHODDEF(int) decompress_data
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
+METHODDEF(int) decompress_smooth_data
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+
+
+LOCAL(void)
+start_iMCU_row (j_decompress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row (input side) */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->MCU_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for an input processing pass.
+ */
+
+METHODDEF(void)
+start_input_pass (j_decompress_ptr cinfo)
+{
+ cinfo->input_iMCU_row = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Initialize for an output processing pass.
+ */
+
+METHODDEF(void)
+start_output_pass (j_decompress_ptr cinfo)
+{
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* If multipass, check to see whether to use block smoothing on this pass */
+ if (coef->pub.coef_arrays != NULL) {
+ if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+ coef->pub.decompress_data = decompress_smooth_data;
+ else
+ coef->pub.decompress_data = decompress_data;
+ }
+#endif
+ cinfo->output_iMCU_row = 0;
+}
+
+
+/*
+ * Decompress and return some data in the single-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Input and output must run in lockstep since we have only a one-MCU buffer.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(int)
+decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, useful_width;
+ JSAMPARRAY output_ptr;
+ JDIMENSION start_col, output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Loop to process as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
+ jzero_far((void FAR *) coef->MCU_buffer[0],
+ (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ /* Determine where data should go in output_buf and do the IDCT thing.
+ * We skip dummy blocks at the right and bottom edges (but blkn gets
+ * incremented past them!). Note the inner loop relies on having
+ * allocated the MCU_buffer[] blocks sequentially.
+ */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed) {
+ blkn += compptr->MCU_blocks;
+ continue;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+ useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ output_ptr = output_buf[compptr->component_index] +
+ yoffset * compptr->DCT_v_scaled_size;
+ start_col = MCU_col_num * compptr->MCU_sample_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (cinfo->input_iMCU_row < last_iMCU_row ||
+ yoffset+yindex < compptr->last_row_height) {
+ output_col = start_col;
+ for (xindex = 0; xindex < useful_width; xindex++) {
+ (*inverse_DCT) (cinfo, compptr,
+ (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
+ output_ptr, output_col);
+ output_col += compptr->DCT_h_scaled_size;
+ }
+ }
+ blkn += compptr->MCU_width;
+ output_ptr += compptr->DCT_v_scaled_size;
+ }
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ cinfo->output_iMCU_row++;
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Dummy consume-input routine for single-pass operation.
+ */
+
+METHODDEF(int)
+dummy_consume_data (j_decompress_ptr cinfo)
+{
+ return JPEG_SUSPENDED; /* Always indicate nothing was done */
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Consume input data and store it in the full-image coefficient buffer.
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+ * ie, v_samp_factor block rows for each component in the scan.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ */
+
+METHODDEF(int)
+consume_data (j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ cinfo->input_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ /* Note: entropy decoder expects buffer to be zeroed,
+ * but this is handled automatically by the memory manager
+ * because we requested a pre-zeroed array.
+ */
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ /* Try to fetch the MCU. */
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Decompress and return some data in the multi-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ */
+
+METHODDEF(int)
+decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num;
+ int ci, block_row, block_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number < cinfo->output_scan_number ||
+ (cinfo->input_scan_number == cinfo->output_scan_number &&
+ cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed)
+ continue;
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ cinfo->output_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row];
+ output_col = 0;
+ for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
+ output_ptr, output_col);
+ buffer_ptr++;
+ output_col += compptr->DCT_h_scaled_size;
+ }
+ output_ptr += compptr->DCT_v_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+
+/*
+ * This code applies interblock smoothing as described by section K.8
+ * of the JPEG standard: the first 5 AC coefficients are estimated from
+ * the DC values of a DCT block and its 8 neighboring blocks.
+ * We apply smoothing only for progressive JPEG decoding, and only if
+ * the coefficients it can estimate are not yet known to full precision.
+ */
+
+/* Natural-order array positions of the first 5 zigzag-order coefficients */
+#define Q01_POS 1
+#define Q10_POS 8
+#define Q20_POS 16
+#define Q11_POS 9
+#define Q02_POS 2
+
+/*
+ * Determine whether block smoothing is applicable and safe.
+ * We also latch the current states of the coef_bits[] entries for the
+ * AC coefficients; otherwise, if the input side of the decompressor
+ * advances into a new scan, we might think the coefficients are known
+ * more accurately than they really are.
+ */
+
+LOCAL(boolean)
+smoothing_ok (j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ boolean smoothing_useful = FALSE;
+ int ci, coefi;
+ jpeg_component_info *compptr;
+ JQUANT_TBL * qtable;
+ int * coef_bits;
+ int * coef_bits_latch;
+
+ if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
+ return FALSE;
+
+ /* Allocate latch area if not already done */
+ if (coef->coef_bits_latch == NULL)
+ coef->coef_bits_latch = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components *
+ (SAVED_COEFS * SIZEOF(int)));
+ coef_bits_latch = coef->coef_bits_latch;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* All components' quantization values must already be latched. */
+ if ((qtable = compptr->quant_table) == NULL)
+ return FALSE;
+ /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
+ if (qtable->quantval[0] == 0 ||
+ qtable->quantval[Q01_POS] == 0 ||
+ qtable->quantval[Q10_POS] == 0 ||
+ qtable->quantval[Q20_POS] == 0 ||
+ qtable->quantval[Q11_POS] == 0 ||
+ qtable->quantval[Q02_POS] == 0)
+ return FALSE;
+ /* DC values must be at least partly known for all components. */
+ coef_bits = cinfo->coef_bits[ci];
+ if (coef_bits[0] < 0)
+ return FALSE;
+ /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+ for (coefi = 1; coefi <= 5; coefi++) {
+ coef_bits_latch[coefi] = coef_bits[coefi];
+ if (coef_bits[coefi] != 0)
+ smoothing_useful = TRUE;
+ }
+ coef_bits_latch += SAVED_COEFS;
+ }
+
+ return smoothing_useful;
+}
+
+
+/*
+ * Variant of decompress_data for use when doing block smoothing.
+ */
+
+METHODDEF(int)
+decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num, last_block_column;
+ int ci, block_row, block_rows, access_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+ boolean first_row, last_row;
+ JBLOCK workspace;
+ int *coef_bits;
+ JQUANT_TBL *quanttbl;
+ INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
+ int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
+ int Al, pred;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ ! cinfo->inputctl->eoi_reached) {
+ if (cinfo->input_scan_number == cinfo->output_scan_number) {
+ /* If input is working on current scan, we ordinarily want it to
+ * have completed the current row. But if input scan is DC,
+ * we want it to keep one row ahead so that next block row's DC
+ * values are up to date.
+ */
+ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
+ if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
+ break;
+ }
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed)
+ continue;
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row) {
+ block_rows = compptr->v_samp_factor;
+ access_rows = block_rows * 2; /* this and next iMCU row */
+ last_row = FALSE;
+ } else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ access_rows = block_rows; /* this iMCU row only */
+ last_row = TRUE;
+ }
+ /* Align the virtual buffer for this component. */
+ if (cinfo->output_iMCU_row > 0) {
+ access_rows += compptr->v_samp_factor; /* prior iMCU row too */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+ (JDIMENSION) access_rows, FALSE);
+ buffer += compptr->v_samp_factor; /* point to current iMCU row */
+ first_row = FALSE;
+ } else {
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
+ first_row = TRUE;
+ }
+ /* Fetch component-dependent info */
+ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+ quanttbl = compptr->quant_table;
+ Q00 = quanttbl->quantval[0];
+ Q01 = quanttbl->quantval[Q01_POS];
+ Q10 = quanttbl->quantval[Q10_POS];
+ Q20 = quanttbl->quantval[Q20_POS];
+ Q11 = quanttbl->quantval[Q11_POS];
+ Q02 = quanttbl->quantval[Q02_POS];
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row];
+ if (first_row && block_row == 0)
+ prev_block_row = buffer_ptr;
+ else
+ prev_block_row = buffer[block_row-1];
+ if (last_row && block_row == block_rows-1)
+ next_block_row = buffer_ptr;
+ else
+ next_block_row = buffer[block_row+1];
+ /* We fetch the surrounding DC values using a sliding-register approach.
+ * Initialize all nine here so as to do the right thing on narrow pics.
+ */
+ DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
+ DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
+ DC7 = DC8 = DC9 = (int) next_block_row[0][0];
+ output_col = 0;
+ last_block_column = compptr->width_in_blocks - 1;
+ for (block_num = 0; block_num <= last_block_column; block_num++) {
+ /* Fetch current DCT block into workspace so we can modify it. */
+ jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
+ /* Update DC values */
+ if (block_num < last_block_column) {
+ DC3 = (int) prev_block_row[1][0];
+ DC6 = (int) buffer_ptr[1][0];
+ DC9 = (int) next_block_row[1][0];
+ }
+ /* Compute coefficient estimates per K.8.
+ * An estimate is applied only if coefficient is still zero,
+ * and is not known to be fully accurate.
+ */
+ /* AC01 */
+ if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
+ num = 36 * Q00 * (DC4 - DC6);
+ if (num >= 0) {
+ pred = (int) (((Q01<<7) + num) / (Q01<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q01<<7) - num) / (Q01<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[1] = (JCOEF) pred;
+ }
+ /* AC10 */
+ if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
+ num = 36 * Q00 * (DC2 - DC8);
+ if (num >= 0) {
+ pred = (int) (((Q10<<7) + num) / (Q10<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q10<<7) - num) / (Q10<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[8] = (JCOEF) pred;
+ }
+ /* AC20 */
+ if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
+ num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
+ if (num >= 0) {
+ pred = (int) (((Q20<<7) + num) / (Q20<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q20<<7) - num) / (Q20<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[16] = (JCOEF) pred;
+ }
+ /* AC11 */
+ if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
+ num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
+ if (num >= 0) {
+ pred = (int) (((Q11<<7) + num) / (Q11<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q11<<7) - num) / (Q11<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[9] = (JCOEF) pred;
+ }
+ /* AC02 */
+ if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
+ num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
+ if (num >= 0) {
+ pred = (int) (((Q02<<7) + num) / (Q02<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q02<<7) - num) / (Q02<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[2] = (JCOEF) pred;
+ }
+ /* OK, do the IDCT */
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
+ output_ptr, output_col);
+ /* Advance for next column */
+ DC1 = DC2; DC2 = DC3;
+ DC4 = DC5; DC5 = DC6;
+ DC7 = DC8; DC8 = DC9;
+ buffer_ptr++, prev_block_row++, next_block_row++;
+ output_col += compptr->DCT_h_scaled_size;
+ }
+ output_ptr += compptr->DCT_v_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* BLOCK_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_d_coef_controller *) coef;
+ coef->pub.start_input_pass = start_input_pass;
+ coef->pub.start_output_pass = start_output_pass;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ coef->coef_bits_latch = NULL;
+#endif
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ /* Note we ask for a pre-zeroed array. */
+ int ci, access_rows;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ access_rows = compptr->v_samp_factor;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* If block smoothing could be used, need a bigger window */
+ if (cinfo->progressive_mode)
+ access_rows *= 3;
+#endif
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) access_rows);
+ }
+ coef->pub.consume_data = consume_data;
+ coef->pub.decompress_data = decompress_data;
+ coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ coef->pub.consume_data = dummy_consume_data;
+ coef->pub.decompress_data = decompress_onepass;
+ coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdcolor.c b/src/3rdparty/libjpeg/jdcolor.c
new file mode 100644
index 0000000..6c04dfe
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdcolor.c
@@ -0,0 +1,396 @@
+/*
+ * jdcolor.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains output colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_deconverter pub; /* public fields */
+
+ /* Private state for YCC->RGB conversion */
+ int * Cr_r_tab; /* => table for Cr to R conversion */
+ int * Cb_b_tab; /* => table for Cb to B conversion */
+ INT32 * Cr_g_tab; /* => table for Cr to G conversion */
+ INT32 * Cb_g_tab; /* => table for Cb to G conversion */
+} my_color_deconverter;
+
+typedef my_color_deconverter * my_cconvert_ptr;
+
+
+/**************** YCbCr -> RGB conversion: most common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ * R = Y + 1.40200 * Cr
+ * G = Y - 0.34414 * Cb - 0.71414 * Cr
+ * B = Y + 1.77200 * Cb
+ * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ * Notice that Y, being an integral input, does not contribute any fraction
+ * so it need not participate in the rounding.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times Cb and Cr for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable. It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
+ * values for the G calculation are left scaled up, since we must add them
+ * together before rounding.
+ */
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ */
+
+LOCAL(void)
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ int i;
+ INT32 x;
+ SHIFT_TEMPS
+
+ cconvert->Cr_r_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ cconvert->Cb_b_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ cconvert->Cr_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+ cconvert->Cb_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+
+ for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+ /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+ /* Cr=>R value is nearest int to 1.40200 * x */
+ cconvert->Cr_r_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+ /* Cb=>B value is nearest int to 1.77200 * x */
+ cconvert->Cb_b_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+ /* Cr=>G value is scaled-up -0.71414 * x */
+ cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+ /* Cb=>G value is scaled-up -0.34414 * x */
+ /* We also add in ONE_HALF so that need not do it in inner loop */
+ cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the output colorspace.
+ *
+ * Note that we change from noninterleaved, one-plane-per-component format
+ * to interleaved-pixel format. The output buffer is therefore three times
+ * as wide as the input buffer.
+ * A starting row offset is provided only for the input buffer. The caller
+ * can easily adjust the passed output_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+METHODDEF(void)
+ycc_rgb_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int y, cb, cr;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ register int * Crrtab = cconvert->Cr_r_tab;
+ register int * Cbbtab = cconvert->Cb_b_tab;
+ register INT32 * Crgtab = cconvert->Cr_g_tab;
+ register INT32 * Cbgtab = cconvert->Cb_g_tab;
+ SHIFT_TEMPS
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ y = GETJSAMPLE(inptr0[col]);
+ cb = GETJSAMPLE(inptr1[col]);
+ cr = GETJSAMPLE(inptr2[col]);
+ /* Range-limiting is essential due to noise introduced by DCT losses. */
+ outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
+ outptr[RGB_GREEN] = range_limit[y +
+ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+ SCALEBITS))];
+ outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
+ outptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/**************** Cases other than YCbCr -> RGB **************/
+
+
+/*
+ * Color conversion for no colorspace change: just copy the data,
+ * converting from separate-planes to interleaved representation.
+ */
+
+METHODDEF(void)
+null_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION count;
+ register int num_components = cinfo->num_components;
+ JDIMENSION num_cols = cinfo->output_width;
+ int ci;
+
+ while (--num_rows >= 0) {
+ for (ci = 0; ci < num_components; ci++) {
+ inptr = input_buf[ci][input_row];
+ outptr = output_buf[0] + ci;
+ for (count = num_cols; count > 0; count--) {
+ *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
+ outptr += num_components;
+ }
+ }
+ input_row++;
+ output_buf++;
+ }
+}
+
+
+/*
+ * Color conversion for grayscale: just copy the data.
+ * This also works for YCbCr -> grayscale conversion, in which
+ * we just copy the Y (luminance) component and ignore chrominance.
+ */
+
+METHODDEF(void)
+grayscale_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
+ num_rows, cinfo->output_width);
+}
+
+
+/*
+ * Convert grayscale to RGB: just duplicate the graylevel three times.
+ * This is provided to support applications that don't want to cope
+ * with grayscale as a separate case.
+ */
+
+METHODDEF(void)
+gray_rgb_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+
+ while (--num_rows >= 0) {
+ inptr = input_buf[0][input_row++];
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ /* We can dispense with GETJSAMPLE() here */
+ outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
+ outptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/*
+ * Adobe-style YCCK->CMYK conversion.
+ * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume build_ycc_rgb_table has been called.
+ */
+
+METHODDEF(void)
+ycck_cmyk_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int y, cb, cr;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2, inptr3;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ register int * Crrtab = cconvert->Cr_r_tab;
+ register int * Cbbtab = cconvert->Cb_b_tab;
+ register INT32 * Crgtab = cconvert->Cr_g_tab;
+ register INT32 * Cbgtab = cconvert->Cb_g_tab;
+ SHIFT_TEMPS
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ inptr3 = input_buf[3][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ y = GETJSAMPLE(inptr0[col]);
+ cb = GETJSAMPLE(inptr1[col]);
+ cr = GETJSAMPLE(inptr2[col]);
+ /* Range-limiting is essential due to noise introduced by DCT losses. */
+ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
+ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
+ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+ SCALEBITS)))];
+ outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
+ /* K passes through unchanged */
+ outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
+ outptr += 4;
+ }
+ }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF(void)
+start_pass_dcolor (j_decompress_ptr cinfo)
+{
+ /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for output colorspace conversion.
+ */
+
+GLOBAL(void)
+jinit_color_deconverter (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert;
+ int ci;
+
+ cconvert = (my_cconvert_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_color_deconverter));
+ cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
+ cconvert->pub.start_pass = start_pass_dcolor;
+
+ /* Make sure num_components agrees with jpeg_color_space */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->num_components != 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ case JCS_RGB:
+ case JCS_YCbCr:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ case JCS_CMYK:
+ case JCS_YCCK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ default: /* JCS_UNKNOWN can be anything */
+ if (cinfo->num_components < 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+ }
+
+ /* Set out_color_components and conversion method based on requested space.
+ * Also clear the component_needed flags for any unused components,
+ * so that earlier pipeline stages can avoid useless computation.
+ */
+
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ cinfo->out_color_components = 1;
+ if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
+ cinfo->jpeg_color_space == JCS_YCbCr) {
+ cconvert->pub.color_convert = grayscale_convert;
+ /* For color->grayscale conversion, only the Y (0) component is needed */
+ for (ci = 1; ci < cinfo->num_components; ci++)
+ cinfo->comp_info[ci].component_needed = FALSE;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_RGB:
+ cinfo->out_color_components = RGB_PIXELSIZE;
+ if (cinfo->jpeg_color_space == JCS_YCbCr) {
+ cconvert->pub.color_convert = ycc_rgb_convert;
+ build_ycc_rgb_table(cinfo);
+ } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
+ cconvert->pub.color_convert = gray_rgb_convert;
+ } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
+ cconvert->pub.color_convert = null_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_CMYK:
+ cinfo->out_color_components = 4;
+ if (cinfo->jpeg_color_space == JCS_YCCK) {
+ cconvert->pub.color_convert = ycck_cmyk_convert;
+ build_ycc_rgb_table(cinfo);
+ } else if (cinfo->jpeg_color_space == JCS_CMYK) {
+ cconvert->pub.color_convert = null_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ default:
+ /* Permit null conversion to same output space */
+ if (cinfo->out_color_space == cinfo->jpeg_color_space) {
+ cinfo->out_color_components = cinfo->num_components;
+ cconvert->pub.color_convert = null_convert;
+ } else /* unsupported non-null conversion */
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+ }
+
+ if (cinfo->quantize_colors)
+ cinfo->output_components = 1; /* single colormapped output component */
+ else
+ cinfo->output_components = cinfo->out_color_components;
+}
diff --git a/src/3rdparty/libjpeg/jdct.h b/src/3rdparty/libjpeg/jdct.h
new file mode 100644
index 0000000..360dec8
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdct.h
@@ -0,0 +1,393 @@
+/*
+ * jdct.h
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file contains common declarations for the forward and
+ * inverse DCT modules. These declarations are private to the DCT managers
+ * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
+ * The individual DCT algorithms are kept in separate files to ease
+ * machine-dependent tuning (e.g., assembly coding).
+ */
+
+
+/*
+ * A forward DCT routine is given a pointer to an input sample array and
+ * a pointer to a work area of type DCTELEM[]; the DCT is to be performed
+ * in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
+ * for 12-bit samples. (NOTE: Floating-point DCT implementations use an
+ * array of type FAST_FLOAT, instead.)
+ * The input data is to be fetched from the sample array starting at a
+ * specified column. (Any row offset needed will be applied to the array
+ * pointer before it is passed to the FDCT code.)
+ * Note that the number of samples fetched by the FDCT routine is
+ * DCT_h_scaled_size * DCT_v_scaled_size.
+ * The DCT outputs are returned scaled up by a factor of 8; they therefore
+ * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
+ * convention improves accuracy in integer implementations and saves some
+ * work in floating-point ones.
+ * Quantization of the output coefficients is done by jcdctmgr.c.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef int DCTELEM; /* 16 or 32 bits is fine */
+#else
+typedef INT32 DCTELEM; /* must have 32 bits */
+#endif
+
+typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
+ JSAMPARRAY sample_data,
+ JDIMENSION start_col));
+typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
+ JSAMPARRAY sample_data,
+ JDIMENSION start_col));
+
+
+/*
+ * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
+ * to an output sample array. The routine must dequantize the input data as
+ * well as perform the IDCT; for dequantization, it uses the multiplier table
+ * pointed to by compptr->dct_table. The output data is to be placed into the
+ * sample array starting at a specified column. (Any row offset needed will
+ * be applied to the array pointer before it is passed to the IDCT code.)
+ * Note that the number of samples emitted by the IDCT routine is
+ * DCT_h_scaled_size * DCT_v_scaled_size.
+ */
+
+/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
+
+/*
+ * Each IDCT routine has its own ideas about the best dct_table element type.
+ */
+
+typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
+#if BITS_IN_JSAMPLE == 8
+typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
+#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
+#else
+typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
+#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
+#endif
+typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
+
+
+/*
+ * Each IDCT routine is responsible for range-limiting its results and
+ * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
+ * be quite far out of range if the input data is corrupt, so a bulletproof
+ * range-limiting step is required. We use a mask-and-table-lookup method
+ * to do the combined operations quickly. See the comments with
+ * prepare_range_limit_table (in jdmaster.c) for more info.
+ */
+
+#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
+
+#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_fdct_islow jFDislow
+#define jpeg_fdct_ifast jFDifast
+#define jpeg_fdct_float jFDfloat
+#define jpeg_fdct_7x7 jFD7x7
+#define jpeg_fdct_6x6 jFD6x6
+#define jpeg_fdct_5x5 jFD5x5
+#define jpeg_fdct_4x4 jFD4x4
+#define jpeg_fdct_3x3 jFD3x3
+#define jpeg_fdct_2x2 jFD2x2
+#define jpeg_fdct_1x1 jFD1x1
+#define jpeg_fdct_9x9 jFD9x9
+#define jpeg_fdct_10x10 jFD10x10
+#define jpeg_fdct_11x11 jFD11x11
+#define jpeg_fdct_12x12 jFD12x12
+#define jpeg_fdct_13x13 jFD13x13
+#define jpeg_fdct_14x14 jFD14x14
+#define jpeg_fdct_15x15 jFD15x15
+#define jpeg_fdct_16x16 jFD16x16
+#define jpeg_fdct_16x8 jFD16x8
+#define jpeg_fdct_14x7 jFD14x7
+#define jpeg_fdct_12x6 jFD12x6
+#define jpeg_fdct_10x5 jFD10x5
+#define jpeg_fdct_8x4 jFD8x4
+#define jpeg_fdct_6x3 jFD6x3
+#define jpeg_fdct_4x2 jFD4x2
+#define jpeg_fdct_2x1 jFD2x1
+#define jpeg_fdct_8x16 jFD8x16
+#define jpeg_fdct_7x14 jFD7x14
+#define jpeg_fdct_6x12 jFD6x12
+#define jpeg_fdct_5x10 jFD5x10
+#define jpeg_fdct_4x8 jFD4x8
+#define jpeg_fdct_3x6 jFD3x6
+#define jpeg_fdct_2x4 jFD2x4
+#define jpeg_fdct_1x2 jFD1x2
+#define jpeg_idct_islow jRDislow
+#define jpeg_idct_ifast jRDifast
+#define jpeg_idct_float jRDfloat
+#define jpeg_idct_7x7 jRD7x7
+#define jpeg_idct_6x6 jRD6x6
+#define jpeg_idct_5x5 jRD5x5
+#define jpeg_idct_4x4 jRD4x4
+#define jpeg_idct_3x3 jRD3x3
+#define jpeg_idct_2x2 jRD2x2
+#define jpeg_idct_1x1 jRD1x1
+#define jpeg_idct_9x9 jRD9x9
+#define jpeg_idct_10x10 jRD10x10
+#define jpeg_idct_11x11 jRD11x11
+#define jpeg_idct_12x12 jRD12x12
+#define jpeg_idct_13x13 jRD13x13
+#define jpeg_idct_14x14 jRD14x14
+#define jpeg_idct_15x15 jRD15x15
+#define jpeg_idct_16x16 jRD16x16
+#define jpeg_idct_16x8 jRD16x8
+#define jpeg_idct_14x7 jRD14x7
+#define jpeg_idct_12x6 jRD12x6
+#define jpeg_idct_10x5 jRD10x5
+#define jpeg_idct_8x4 jRD8x4
+#define jpeg_idct_6x3 jRD6x3
+#define jpeg_idct_4x2 jRD4x2
+#define jpeg_idct_2x1 jRD2x1
+#define jpeg_idct_8x16 jRD8x16
+#define jpeg_idct_7x14 jRD7x14
+#define jpeg_idct_6x12 jRD6x12
+#define jpeg_idct_5x10 jRD5x10
+#define jpeg_idct_4x8 jRD4x8
+#define jpeg_idct_3x6 jRD3x8
+#define jpeg_idct_2x4 jRD2x4
+#define jpeg_idct_1x2 jRD1x2
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Extern declarations for the forward and inverse DCT routines. */
+
+EXTERN(void) jpeg_fdct_islow
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_ifast
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_float
+ JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_7x7
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_6x6
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_5x5
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_4x4
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_3x3
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_2x2
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_1x1
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_9x9
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_10x10
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_11x11
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_12x12
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_13x13
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_14x14
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_15x15
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_16x16
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_16x8
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_14x7
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_12x6
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_10x5
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_8x4
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_6x3
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_4x2
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_2x1
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_8x16
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_7x14
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_6x12
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_5x10
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_4x8
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_3x6
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_2x4
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_1x2
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+
+EXTERN(void) jpeg_idct_islow
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_ifast
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_float
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_7x7
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_6x6
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_5x5
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_3x3
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_1x1
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_9x9
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_10x10
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_11x11
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_12x12
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_13x13
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_14x14
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_15x15
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_16x16
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_16x8
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_14x7
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_12x6
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_10x5
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_8x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_6x3
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x1
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_8x16
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_7x14
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_6x12
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_5x10
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x8
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_3x6
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_1x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+
+
+/*
+ * Macros for handling fixed-point arithmetic; these are used by many
+ * but not all of the DCT/IDCT modules.
+ *
+ * All values are expected to be of type INT32.
+ * Fractional constants are scaled left by CONST_BITS bits.
+ * CONST_BITS is defined within each module using these macros,
+ * and may differ from one module to the next.
+ */
+
+#define ONE ((INT32) 1)
+#define CONST_SCALE (ONE << CONST_BITS)
+
+/* Convert a positive real constant to an integer scaled by CONST_SCALE.
+ * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
+ * thus causing a lot of useless floating-point operations at run time.
+ */
+
+#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
+
+/* Descale and correctly round an INT32 value that's scaled by N bits.
+ * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
+ * the fudge factor is correct for either sign of X.
+ */
+
+#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * This macro is used only when the two inputs will actually be no more than
+ * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
+ * full 32x32 multiply. This provides a useful speedup on many machines.
+ * Unfortunately there is no way to specify a 16x16->32 multiply portably
+ * in C, but some C compilers will do the right thing if you provide the
+ * correct combination of casts.
+ */
+
+#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
+#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
+#endif
+#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
+#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
+#endif
+
+#ifndef MULTIPLY16C16 /* default definition */
+#define MULTIPLY16C16(var,const) ((var) * (const))
+#endif
+
+/* Same except both inputs are variables. */
+
+#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
+#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
+#endif
+
+#ifndef MULTIPLY16V16 /* default definition */
+#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
+#endif
diff --git a/src/3rdparty/libjpeg/jddctmgr.c b/src/3rdparty/libjpeg/jddctmgr.c
new file mode 100644
index 0000000..bdbde34
--- /dev/null
+++ b/src/3rdparty/libjpeg/jddctmgr.c
@@ -0,0 +1,382 @@
+/*
+ * jddctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the inverse-DCT management logic.
+ * This code selects a particular IDCT implementation to be used,
+ * and it performs related housekeeping chores. No code in this file
+ * is executed per IDCT step, only during output pass setup.
+ *
+ * Note that the IDCT routines are responsible for performing coefficient
+ * dequantization as well as the IDCT proper. This module sets up the
+ * dequantization multiplier table needed by the IDCT routine.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+
+/*
+ * The decompressor input side (jdinput.c) saves away the appropriate
+ * quantization table for each component at the start of the first scan
+ * involving that component. (This is necessary in order to correctly
+ * decode files that reuse Q-table slots.)
+ * When we are ready to make an output pass, the saved Q-table is converted
+ * to a multiplier table that will actually be used by the IDCT routine.
+ * The multiplier table contents are IDCT-method-dependent. To support
+ * application changes in IDCT method between scans, we can remake the
+ * multiplier tables if necessary.
+ * In buffered-image mode, the first output pass may occur before any data
+ * has been seen for some components, and thus before their Q-tables have
+ * been saved away. To handle this case, multiplier tables are preset
+ * to zeroes; the result of the IDCT will be a neutral gray level.
+ */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+ struct jpeg_inverse_dct pub; /* public fields */
+
+ /* This array contains the IDCT method code that each multiplier table
+ * is currently set up for, or -1 if it's not yet set up.
+ * The actual multiplier tables are pointed to by dct_table in the
+ * per-component comp_info structures.
+ */
+ int cur_method[MAX_COMPONENTS];
+} my_idct_controller;
+
+typedef my_idct_controller * my_idct_ptr;
+
+
+/* Allocated multiplier tables: big enough for any supported variant */
+
+typedef union {
+ ISLOW_MULT_TYPE islow_array[DCTSIZE2];
+#ifdef DCT_IFAST_SUPPORTED
+ IFAST_MULT_TYPE ifast_array[DCTSIZE2];
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ FLOAT_MULT_TYPE float_array[DCTSIZE2];
+#endif
+} multiplier_table;
+
+
+/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef IDCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Prepare for an output pass.
+ * Here we select the proper IDCT routine for each component and build
+ * a matching multiplier table.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+ my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
+ int ci, i;
+ jpeg_component_info *compptr;
+ int method = 0;
+ inverse_DCT_method_ptr method_ptr = NULL;
+ JQUANT_TBL * qtbl;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Select the proper IDCT routine for this component's scaling */
+ switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
+#ifdef IDCT_SCALING_SUPPORTED
+ case ((1 << 8) + 1):
+ method_ptr = jpeg_idct_1x1;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((2 << 8) + 2):
+ method_ptr = jpeg_idct_2x2;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((3 << 8) + 3):
+ method_ptr = jpeg_idct_3x3;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((4 << 8) + 4):
+ method_ptr = jpeg_idct_4x4;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((5 << 8) + 5):
+ method_ptr = jpeg_idct_5x5;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((6 << 8) + 6):
+ method_ptr = jpeg_idct_6x6;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((7 << 8) + 7):
+ method_ptr = jpeg_idct_7x7;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((9 << 8) + 9):
+ method_ptr = jpeg_idct_9x9;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((10 << 8) + 10):
+ method_ptr = jpeg_idct_10x10;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((11 << 8) + 11):
+ method_ptr = jpeg_idct_11x11;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((12 << 8) + 12):
+ method_ptr = jpeg_idct_12x12;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((13 << 8) + 13):
+ method_ptr = jpeg_idct_13x13;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((14 << 8) + 14):
+ method_ptr = jpeg_idct_14x14;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((15 << 8) + 15):
+ method_ptr = jpeg_idct_15x15;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((16 << 8) + 16):
+ method_ptr = jpeg_idct_16x16;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((16 << 8) + 8):
+ method_ptr = jpeg_idct_16x8;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((14 << 8) + 7):
+ method_ptr = jpeg_idct_14x7;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((12 << 8) + 6):
+ method_ptr = jpeg_idct_12x6;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((10 << 8) + 5):
+ method_ptr = jpeg_idct_10x5;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((8 << 8) + 4):
+ method_ptr = jpeg_idct_8x4;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((6 << 8) + 3):
+ method_ptr = jpeg_idct_6x3;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((4 << 8) + 2):
+ method_ptr = jpeg_idct_4x2;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((2 << 8) + 1):
+ method_ptr = jpeg_idct_2x1;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((8 << 8) + 16):
+ method_ptr = jpeg_idct_8x16;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((7 << 8) + 14):
+ method_ptr = jpeg_idct_7x14;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((6 << 8) + 12):
+ method_ptr = jpeg_idct_6x12;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((5 << 8) + 10):
+ method_ptr = jpeg_idct_5x10;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((4 << 8) + 8):
+ method_ptr = jpeg_idct_4x8;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((3 << 8) + 6):
+ method_ptr = jpeg_idct_3x6;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((2 << 8) + 4):
+ method_ptr = jpeg_idct_2x4;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((1 << 8) + 2):
+ method_ptr = jpeg_idct_1x2;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+#endif
+ case ((DCTSIZE << 8) + DCTSIZE):
+ switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+ case JDCT_ISLOW:
+ method_ptr = jpeg_idct_islow;
+ method = JDCT_ISLOW;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ method_ptr = jpeg_idct_ifast;
+ method = JDCT_IFAST;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ method_ptr = jpeg_idct_float;
+ method = JDCT_FLOAT;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ break;
+ default:
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+ compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
+ break;
+ }
+ idct->pub.inverse_DCT[ci] = method_ptr;
+ /* Create multiplier table from quant table.
+ * However, we can skip this if the component is uninteresting
+ * or if we already built the table. Also, if no quant table
+ * has yet been saved for the component, we leave the
+ * multiplier table all-zero; we'll be reading zeroes from the
+ * coefficient controller's buffer anyway.
+ */
+ if (! compptr->component_needed || idct->cur_method[ci] == method)
+ continue;
+ qtbl = compptr->quant_table;
+ if (qtbl == NULL) /* happens if no data yet for component */
+ continue;
+ idct->cur_method[ci] = method;
+ switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+ case JDCT_ISLOW:
+ {
+ /* For LL&M IDCT method, multipliers are equal to raw quantization
+ * coefficients, but are stored as ints to ensure access efficiency.
+ */
+ ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ for (i = 0; i < DCTSIZE2; i++) {
+ ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
+ }
+ }
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ {
+ /* For AA&N IDCT method, multipliers are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * For integer operation, the multiplier table is to be scaled by
+ * IFAST_SCALE_BITS.
+ */
+ IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
+#define CONST_BITS 14
+ static const INT16 aanscales[DCTSIZE2] = {
+ /* precomputed values scaled up by 14 bits */
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
+ };
+ SHIFT_TEMPS
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ ifmtbl[i] = (IFAST_MULT_TYPE)
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+ (INT32) aanscales[i]),
+ CONST_BITS-IFAST_SCALE_BITS);
+ }
+ }
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ {
+ /* For float AA&N IDCT method, multipliers are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ */
+ FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
+ int row, col;
+ static const double aanscalefactor[DCTSIZE] = {
+ 1.0, 1.387039845, 1.306562965, 1.175875602,
+ 1.0, 0.785694958, 0.541196100, 0.275899379
+ };
+
+ i = 0;
+ for (row = 0; row < DCTSIZE; row++) {
+ for (col = 0; col < DCTSIZE; col++) {
+ fmtbl[i] = (FLOAT_MULT_TYPE)
+ ((double) qtbl->quantval[i] *
+ aanscalefactor[row] * aanscalefactor[col]);
+ i++;
+ }
+ }
+ }
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ }
+}
+
+
+/*
+ * Initialize IDCT manager.
+ */
+
+GLOBAL(void)
+jinit_inverse_dct (j_decompress_ptr cinfo)
+{
+ my_idct_ptr idct;
+ int ci;
+ jpeg_component_info *compptr;
+
+ idct = (my_idct_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_idct_controller));
+ cinfo->idct = (struct jpeg_inverse_dct *) idct;
+ idct->pub.start_pass = start_pass;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Allocate and pre-zero a multiplier table for each component */
+ compptr->dct_table =
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(multiplier_table));
+ MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
+ /* Mark multiplier table not yet set up for any method */
+ idct->cur_method[ci] = -1;
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdhuff.c b/src/3rdparty/libjpeg/jdhuff.c
new file mode 100644
index 0000000..06f92fe
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdhuff.c
@@ -0,0 +1,1541 @@
+/*
+ * jdhuff.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2006-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy decoding routines.
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Much of the complexity here has to do with supporting input suspension.
+ * If the data source module demands suspension, we want to be able to back
+ * up to the start of the current MCU. To do this, we copy state variables
+ * into local working storage, and update them back to the permanent
+ * storage only upon successful completion of an MCU.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Derived data constructed for each Huffman table */
+
+#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
+
+typedef struct {
+ /* Basic tables: (element [0] of each array is unused) */
+ INT32 maxcode[18]; /* largest code of length k (-1 if none) */
+ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+ INT32 valoffset[17]; /* huffval[] offset for codes of length k */
+ /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
+ * the smallest code of length k; so given a code of length k, the
+ * corresponding symbol is huffval[code + valoffset[k]]
+ */
+
+ /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+ JHUFF_TBL *pub;
+
+ /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
+ * the input data stream. If the next Huffman code is no more
+ * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+ * the corresponding symbol directly from these tables.
+ */
+ int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
+ UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
+} d_derived_tbl;
+
+
+/*
+ * Fetching the next N bits from the input stream is a time-critical operation
+ * for the Huffman decoders. We implement it with a combination of inline
+ * macros and out-of-line subroutines. Note that N (the number of bits
+ * demanded at one time) never exceeds 15 for JPEG use.
+ *
+ * We read source bytes into get_buffer and dole out bits as needed.
+ * If get_buffer already contains enough bits, they are fetched in-line
+ * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
+ * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
+ * as full as possible (not just to the number of bits needed; this
+ * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
+ * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
+ * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
+ * at least the requested number of bits --- dummy zeroes are inserted if
+ * necessary.
+ */
+
+typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
+#define BIT_BUF_SIZE 32 /* size of buffer in bits */
+
+/* If long is > 32 bits on your machine, and shifting/masking longs is
+ * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
+ * appropriately should be a win. Unfortunately we can't define the size
+ * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
+ * because not all machines measure sizeof in 8-bit bytes.
+ */
+
+typedef struct { /* Bitreading state saved across MCUs */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+} bitread_perm_state;
+
+typedef struct { /* Bitreading working state within an MCU */
+ /* Current data source location */
+ /* We need a copy, rather than munging the original, in case of suspension */
+ const JOCTET * next_input_byte; /* => next byte to read from source */
+ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
+ /* Bit input buffer --- note these values are kept in register variables,
+ * not in this struct, inside the inner loops.
+ */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+ /* Pointer needed by jpeg_fill_bit_buffer. */
+ j_decompress_ptr cinfo; /* back link to decompress master record */
+} bitread_working_state;
+
+/* Macros to declare and load/save bitread local variables. */
+#define BITREAD_STATE_VARS \
+ register bit_buf_type get_buffer; \
+ register int bits_left; \
+ bitread_working_state br_state
+
+#define BITREAD_LOAD_STATE(cinfop,permstate) \
+ br_state.cinfo = cinfop; \
+ br_state.next_input_byte = cinfop->src->next_input_byte; \
+ br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
+ get_buffer = permstate.get_buffer; \
+ bits_left = permstate.bits_left;
+
+#define BITREAD_SAVE_STATE(cinfop,permstate) \
+ cinfop->src->next_input_byte = br_state.next_input_byte; \
+ cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
+ permstate.get_buffer = get_buffer; \
+ permstate.bits_left = bits_left
+
+/*
+ * These macros provide the in-line portion of bit fetching.
+ * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
+ * before using GET_BITS, PEEK_BITS, or DROP_BITS.
+ * The variables get_buffer and bits_left are assumed to be locals,
+ * but the state struct might not be (jpeg_huff_decode needs this).
+ * CHECK_BIT_BUFFER(state,n,action);
+ * Ensure there are N bits in get_buffer; if suspend, take action.
+ * val = GET_BITS(n);
+ * Fetch next N bits.
+ * val = PEEK_BITS(n);
+ * Fetch next N bits without removing them from the buffer.
+ * DROP_BITS(n);
+ * Discard next N bits.
+ * The value N should be a simple variable, not an expression, because it
+ * is evaluated multiple times.
+ */
+
+#define CHECK_BIT_BUFFER(state,nbits,action) \
+ { if (bits_left < (nbits)) { \
+ if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
+ { action; } \
+ get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+
+#define GET_BITS(nbits) \
+ (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
+
+#define PEEK_BITS(nbits) \
+ (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
+
+#define DROP_BITS(nbits) \
+ (bits_left -= (nbits))
+
+
+/*
+ * Code for extracting next Huffman-coded symbol from input bit stream.
+ * Again, this is time-critical and we make the main paths be macros.
+ *
+ * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
+ * without looping. Usually, more than 95% of the Huffman codes will be 8
+ * or fewer bits long. The few overlength codes are handled with a loop,
+ * which need not be inline code.
+ *
+ * Notes about the HUFF_DECODE macro:
+ * 1. Near the end of the data segment, we may fail to get enough bits
+ * for a lookahead. In that case, we do it the hard way.
+ * 2. If the lookahead table contains no entry, the next code must be
+ * more than HUFF_LOOKAHEAD bits long.
+ * 3. jpeg_huff_decode returns -1 if forced to suspend.
+ */
+
+#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
+{ register int nb, look; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ nb = 1; goto slowlabel; \
+ } \
+ } \
+ look = PEEK_BITS(HUFF_LOOKAHEAD); \
+ if ((nb = htbl->look_nbits[look]) != 0) { \
+ DROP_BITS(nb); \
+ result = htbl->look_sym[look]; \
+ } else { \
+ nb = HUFF_LOOKAHEAD+1; \
+slowlabel: \
+ if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+ { failaction; } \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ } \
+}
+
+
+/*
+ * Expanded entropy decoder object for Huffman decoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+ unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment. You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src) ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src) \
+ ((dest).EOBRUN = (src).EOBRUN, \
+ (dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+ struct jpeg_entropy_decoder pub; /* public fields */
+
+ /* These fields are loaded into local variables at start of each MCU.
+ * In case of suspension, we exit WITHOUT updating them.
+ */
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */
+ savable_state saved; /* Other state at start of MCU */
+
+ /* These fields are NOT loaded into local working state. */
+ boolean insufficient_data; /* set TRUE after emitting warning */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+
+ /* Following two fields used only in progressive mode */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+
+ d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
+
+ /* Following fields used only in sequential mode */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+ d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+
+ /* Precalculated info set up by start_pass for use in decode_mcu: */
+
+ /* Pointers to derived tables to be used for each block within an MCU */
+ d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+ d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+ /* Whether we care about the DC and AC coefficient values for each block */
+ int coef_limit[D_MAX_BLOCKS_IN_MCU];
+} huff_entropy_decoder;
+
+typedef huff_entropy_decoder * huff_entropy_ptr;
+
+
+static const int jpeg_zigzag_order[8][8] = {
+ { 0, 1, 5, 6, 14, 15, 27, 28 },
+ { 2, 4, 7, 13, 16, 26, 29, 42 },
+ { 3, 8, 12, 17, 25, 30, 41, 43 },
+ { 9, 11, 18, 24, 31, 40, 44, 53 },
+ { 10, 19, 23, 32, 39, 45, 52, 54 },
+ { 20, 22, 33, 38, 46, 51, 55, 60 },
+ { 21, 34, 37, 47, 50, 56, 59, 61 },
+ { 35, 36, 48, 49, 57, 58, 62, 63 }
+};
+
+static const int jpeg_zigzag_order7[7][7] = {
+ { 0, 1, 5, 6, 14, 15, 27 },
+ { 2, 4, 7, 13, 16, 26, 28 },
+ { 3, 8, 12, 17, 25, 29, 38 },
+ { 9, 11, 18, 24, 30, 37, 39 },
+ { 10, 19, 23, 31, 36, 40, 45 },
+ { 20, 22, 32, 35, 41, 44, 46 },
+ { 21, 33, 34, 42, 43, 47, 48 }
+};
+
+static const int jpeg_zigzag_order6[6][6] = {
+ { 0, 1, 5, 6, 14, 15 },
+ { 2, 4, 7, 13, 16, 25 },
+ { 3, 8, 12, 17, 24, 26 },
+ { 9, 11, 18, 23, 27, 32 },
+ { 10, 19, 22, 28, 31, 33 },
+ { 20, 21, 29, 30, 34, 35 }
+};
+
+static const int jpeg_zigzag_order5[5][5] = {
+ { 0, 1, 5, 6, 14 },
+ { 2, 4, 7, 13, 15 },
+ { 3, 8, 12, 16, 21 },
+ { 9, 11, 17, 20, 22 },
+ { 10, 18, 19, 23, 24 }
+};
+
+static const int jpeg_zigzag_order4[4][4] = {
+ { 0, 1, 5, 6 },
+ { 2, 4, 7, 12 },
+ { 3, 8, 11, 13 },
+ { 9, 10, 14, 15 }
+};
+
+static const int jpeg_zigzag_order3[3][3] = {
+ { 0, 1, 5 },
+ { 2, 4, 6 },
+ { 3, 7, 8 }
+};
+
+static const int jpeg_zigzag_order2[2][2] = {
+ { 0, 1 },
+ { 2, 3 }
+};
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * This routine also performs some validation checks on the table.
+ */
+
+LOCAL(void)
+jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
+ d_derived_tbl ** pdtbl)
+{
+ JHUFF_TBL *htbl;
+ d_derived_tbl *dtbl;
+ int p, i, l, si, numsymbols;
+ int lookbits, ctr;
+ char huffsize[257];
+ unsigned int huffcode[257];
+ unsigned int code;
+
+ /* Note that huffsize[] and huffcode[] are filled in code-length order,
+ * paralleling the order of the symbols themselves in htbl->huffval[].
+ */
+
+ /* Find the input Huffman table */
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+ htbl =
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+ /* Allocate a workspace if we haven't already done so. */
+ if (*pdtbl == NULL)
+ *pdtbl = (d_derived_tbl *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(d_derived_tbl));
+ dtbl = *pdtbl;
+ dtbl->pub = htbl; /* fill in back link */
+
+ /* Figure C.1: make table of Huffman code length for each symbol */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ i = (int) htbl->bits[l];
+ if (i < 0 || p + i > 256) /* protect against table overrun */
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ while (i--)
+ huffsize[p++] = (char) l;
+ }
+ huffsize[p] = 0;
+ numsymbols = p;
+
+ /* Figure C.2: generate the codes themselves */
+ /* We also validate that the counts represent a legal Huffman code tree. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (((int) huffsize[p]) == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ /* code is now 1 more than the last code used for codelength si; but
+ * it must still fit in si bits, since no code is allowed to be all ones.
+ */
+ if (((INT32) code) >= (((INT32) 1) << si))
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure F.15: generate decoding tables for bit-sequential decoding */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ if (htbl->bits[l]) {
+ /* valoffset[l] = huffval[] index of 1st symbol of code length l,
+ * minus the minimum code of length l
+ */
+ dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
+ p += htbl->bits[l];
+ dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+ } else {
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
+ }
+ }
+ dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
+
+ /* Compute lookahead tables to speed up decoding.
+ * First we set all the table entries to 0, indicating "too long";
+ * then we iterate through the Huffman codes that are short enough and
+ * fill in all the entries that correspond to bit sequences starting
+ * with that code.
+ */
+
+ MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
+
+ p = 0;
+ for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
+ for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
+ /* l = current code's length, p = its index in huffcode[] & huffval[]. */
+ /* Generate left-justified code followed by all possible bit sequences */
+ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
+ for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
+ dtbl->look_nbits[lookbits] = l;
+ dtbl->look_sym[lookbits] = htbl->huffval[p];
+ lookbits++;
+ }
+ }
+ }
+
+ /* Validate symbols as being reasonable.
+ * For AC tables, we make no check, but accept all byte values 0..255.
+ * For DC tables, we require the symbols to be in range 0..15.
+ * (Tighter bounds could be applied depending on the data depth and mode,
+ * but this is sufficient to ensure safe decoding.)
+ */
+ if (isDC) {
+ for (i = 0; i < numsymbols; i++) {
+ int sym = htbl->huffval[i];
+ if (sym < 0 || sym > 15)
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ }
+ }
+}
+
+
+/*
+ * Out-of-line code for bit fetching.
+ * Note: current values of get_buffer and bits_left are passed as parameters,
+ * but are returned in the corresponding fields of the state struct.
+ *
+ * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
+ * of get_buffer to be used. (On machines with wider words, an even larger
+ * buffer could be used.) However, on some machines 32-bit shifts are
+ * quite slow and take time proportional to the number of places shifted.
+ * (This is true with most PC compilers, for instance.) In this case it may
+ * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
+ * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
+ */
+
+#ifdef SLOW_SHIFT_32
+#define MIN_GET_BITS 15 /* minimum allowable value */
+#else
+#define MIN_GET_BITS (BIT_BUF_SIZE-7)
+#endif
+
+
+LOCAL(boolean)
+jpeg_fill_bit_buffer (bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ int nbits)
+/* Load up the bit buffer to a depth of at least nbits */
+{
+ /* Copy heavily used state fields into locals (hopefully registers) */
+ register const JOCTET * next_input_byte = state->next_input_byte;
+ register size_t bytes_in_buffer = state->bytes_in_buffer;
+ j_decompress_ptr cinfo = state->cinfo;
+
+ /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
+ /* (It is assumed that no request will be for more than that many bits.) */
+ /* We fail to do so only if we hit a marker or are forced to suspend. */
+
+ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
+ while (bits_left < MIN_GET_BITS) {
+ register int c;
+
+ /* Attempt to read a byte */
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+
+ /* If it's 0xFF, check and discard stuffed zero byte */
+ if (c == 0xFF) {
+ /* Loop here to discard any padding FF's on terminating marker,
+ * so that we can save a valid unread_marker value. NOTE: we will
+ * accept multiple FF's followed by a 0 as meaning a single FF data
+ * byte. This data pattern is not valid according to the standard.
+ */
+ do {
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+ } while (c == 0xFF);
+
+ if (c == 0) {
+ /* Found FF/00, which represents an FF data byte */
+ c = 0xFF;
+ } else {
+ /* Oops, it's actually a marker indicating end of compressed data.
+ * Save the marker code for later use.
+ * Fine point: it might appear that we should save the marker into
+ * bitread working state, not straight into permanent state. But
+ * once we have hit a marker, we cannot need to suspend within the
+ * current MCU, because we will read no more bytes from the data
+ * source. So it is OK to update permanent state right away.
+ */
+ cinfo->unread_marker = c;
+ /* See if we need to insert some fake zero bits. */
+ goto no_more_bytes;
+ }
+ }
+
+ /* OK, load c into get_buffer */
+ get_buffer = (get_buffer << 8) | c;
+ bits_left += 8;
+ } /* end while */
+ } else {
+ no_more_bytes:
+ /* We get here if we've read the marker that terminates the compressed
+ * data segment. There should be enough bits in the buffer register
+ * to satisfy the request; if so, no problem.
+ */
+ if (nbits > bits_left) {
+ /* Uh-oh. Report corrupted data to user and stuff zeroes into
+ * the data stream, so that we can produce some kind of image.
+ * We use a nonvolatile flag to ensure that only one warning message
+ * appears per data segment.
+ */
+ if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
+ WARNMS(cinfo, JWRN_HIT_MARKER);
+ ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
+ }
+ /* Fill the buffer with zero bits */
+ get_buffer <<= MIN_GET_BITS - bits_left;
+ bits_left = MIN_GET_BITS;
+ }
+ }
+
+ /* Unload the local registers */
+ state->next_input_byte = next_input_byte;
+ state->bytes_in_buffer = bytes_in_buffer;
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ return TRUE;
+}
+
+
+/*
+ * Figure F.12: extend sign bit.
+ * On some machines, a shift and sub will be faster than a table lookup.
+ */
+
+#ifdef AVOID_TABLES
+
+#define BIT_MASK(nbits) ((1<<(nbits))-1)
+#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
+
+#else
+
+#define BIT_MASK(nbits) bmask[nbits]
+#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
+
+static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
+ { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
+ 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
+
+#endif /* AVOID_TABLES */
+
+
+/*
+ * Out-of-line code for Huffman code decoding.
+ */
+
+LOCAL(int)
+jpeg_huff_decode (bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits)
+{
+ register int l = min_bits;
+ register INT32 code;
+
+ /* HUFF_DECODE has determined that the code is at least min_bits */
+ /* bits long, so fetch that many bits in one swoop. */
+
+ CHECK_BIT_BUFFER(*state, l, return -1);
+ code = GET_BITS(l);
+
+ /* Collect the rest of the Huffman code one bit at a time. */
+ /* This is per Figure F.16 in the JPEG spec. */
+
+ while (code > htbl->maxcode[l]) {
+ code <<= 1;
+ CHECK_BIT_BUFFER(*state, 1, return -1);
+ code |= GET_BITS(1);
+ l++;
+ }
+
+ /* Unload the local registers */
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ /* With garbage input we may reach the sentinel value l = 17. */
+
+ if (l > 16) {
+ WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
+ return 0; /* fake a zero as the safest result */
+ }
+
+ return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
+}
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ * Returns FALSE if must suspend.
+ */
+
+LOCAL(boolean)
+process_restart (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci;
+
+ /* Throw away any unused bits remaining in bit buffer; */
+ /* include any full bytes in next_marker's count of discarded bytes */
+ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+ entropy->bitstate.bits_left = 0;
+
+ /* Advance past the RSTn marker */
+ if (! (*cinfo->marker->read_restart_marker) (cinfo))
+ return FALSE;
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ /* Re-init EOB run count, too */
+ entropy->saved.EOBRUN = 0;
+
+ /* Reset restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+
+ /* Reset out-of-data flag, unless read_restart_marker left us smack up
+ * against a marker. In that case we will end up treating the next data
+ * segment as empty, and we can avoid producing bogus output pixels by
+ * leaving the flag set.
+ */
+ if (cinfo->unread_marker == 0)
+ entropy->insufficient_data = FALSE;
+
+ return TRUE;
+}
+
+
+/*
+ * Huffman MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * Huffman-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ * (Wholesale zeroing is usually a little faster than retail...)
+ *
+ * We return FALSE if data source requested suspension. In that case no
+ * changes have been made to permanent state. (Exception: some output
+ * coefficients may already have been assigned. This is harmless for
+ * spectral selection, since we'll just re-assign them on the next call.
+ * Successive approximation AC refinement has to be more careful, however.)
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int Al = cinfo->Al;
+ register int s, r;
+ int blkn, ci;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ savable_state state;
+ d_derived_tbl * tbl;
+ jpeg_component_info * compptr;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ tbl = entropy->derived_tbls[compptr->dc_tbl_no];
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+
+ /* Convert DC difference to actual value, update last_dc_val */
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
+ (*block)[0] = (JCOEF) (s << Al);
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ unsigned int EOBRUN;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ d_derived_tbl * tbl;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
+
+ /* Load up working state.
+ * We can avoid loading/saving bitread state if in an EOB run.
+ */
+ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+ /* There is always only one block per MCU */
+
+ if (EOBRUN > 0) /* if it's a band of zeroes... */
+ EOBRUN--; /* ...process it now (we do nothing) */
+ else {
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ block = MCU_data[0];
+ tbl = entropy->ac_derived_tbl;
+
+ for (k = cinfo->Ss; k <= Se; k++) {
+ HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
+ r = s >> 4;
+ s &= 15;
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Scale and output coefficient in natural (dezigzagged) order */
+ (*block)[natural_order[k]] = (JCOEF) (s << Al);
+ } else {
+ if (r == 15) { /* ZRL */
+ k += 15; /* skip 15 zeroes in band */
+ } else { /* EOBr, run length is 2^r + appended bits */
+ EOBRUN = 1 << r;
+ if (r) { /* EOBr, r > 0 */
+ CHECK_BIT_BUFFER(br_state, r, return FALSE);
+ r = GET_BITS(r);
+ EOBRUN += r;
+ }
+ EOBRUN--; /* this band is processed at this moment */
+ break; /* force end-of-band */
+ }
+ }
+ }
+
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ }
+
+ /* Completed MCU, so update state */
+ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ int blkn;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* Not worth the cycles to check insufficient_data here,
+ * since we will not change the data anyway if we read zeroes.
+ */
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+
+ /* Encoded data is simply the next bit of the two's-complement DC value */
+ CHECK_BIT_BUFFER(br_state, 1, return FALSE);
+ if (GET_BITS(1))
+ (*block)[0] |= p1;
+ /* Note: since we use |=, repeating the assignment later is safe */
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ unsigned int EOBRUN;
+ int Se, p1, m1;
+ const int * natural_order;
+ JBLOCKROW block;
+ JCOEFPTR thiscoef;
+ BITREAD_STATE_VARS;
+ d_derived_tbl * tbl;
+ int num_newnz;
+ int newnz_pos[DCTSIZE2];
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, don't modify the MCU.
+ */
+ if (! entropy->insufficient_data) {
+
+ Se = cinfo->Se;
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
+ natural_order = cinfo->natural_order;
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = entropy->ac_derived_tbl;
+
+ /* If we are forced to suspend, we must undo the assignments to any newly
+ * nonzero coefficients in the block, because otherwise we'd get confused
+ * next time about which coefficients were already nonzero.
+ * But we need not undo addition of bits to already-nonzero coefficients;
+ * instead, we can test the current bit to see if we already did it.
+ */
+ num_newnz = 0;
+
+ /* initialize coefficient loop counter to start of band */
+ k = cinfo->Ss;
+
+ if (EOBRUN == 0) {
+ for (; k <= Se; k++) {
+ HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
+ r = s >> 4;
+ s &= 15;
+ if (s) {
+ if (s != 1) /* size of new coef should always be 1 */
+ WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1))
+ s = p1; /* newly nonzero coef is positive */
+ else
+ s = m1; /* newly nonzero coef is negative */
+ } else {
+ if (r != 15) {
+ EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
+ if (r) {
+ CHECK_BIT_BUFFER(br_state, r, goto undoit);
+ r = GET_BITS(r);
+ EOBRUN += r;
+ }
+ break; /* rest of block is handled by EOB logic */
+ }
+ /* note s = 0 for processing ZRL */
+ }
+ /* Advance over already-nonzero coefs and r still-zero coefs,
+ * appending correction bits to the nonzeroes. A correction bit is 1
+ * if the absolute value of the coefficient must be increased.
+ */
+ do {
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef != 0) {
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1)) {
+ if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
+ if (*thiscoef >= 0)
+ *thiscoef += p1;
+ else
+ *thiscoef += m1;
+ }
+ }
+ } else {
+ if (--r < 0)
+ break; /* reached target zero coefficient */
+ }
+ k++;
+ } while (k <= Se);
+ if (s) {
+ int pos = natural_order[k];
+ /* Output newly nonzero coefficient */
+ (*block)[pos] = (JCOEF) s;
+ /* Remember its position in case we have to suspend */
+ newnz_pos[num_newnz++] = pos;
+ }
+ }
+ }
+
+ if (EOBRUN > 0) {
+ /* Scan any remaining coefficient positions after the end-of-band
+ * (the last newly nonzero coefficient, if any). Append a correction
+ * bit to each already-nonzero coefficient. A correction bit is 1
+ * if the absolute value of the coefficient must be increased.
+ */
+ for (; k <= Se; k++) {
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef != 0) {
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1)) {
+ if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
+ if (*thiscoef >= 0)
+ *thiscoef += p1;
+ else
+ *thiscoef += m1;
+ }
+ }
+ }
+ }
+ /* Count one block completed in EOB run */
+ EOBRUN--;
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+
+undoit:
+ /* Re-zero any output coefficients that we made newly nonzero */
+ while (num_newnz > 0)
+ (*block)[newnz_pos[--num_newnz]] = 0;
+
+ return FALSE;
+}
+
+
+/*
+ * Decode one MCU's worth of Huffman-compressed coefficients,
+ * partial blocks.
+ */
+
+METHODDEF(boolean)
+decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ const int * natural_order;
+ int Se, blkn;
+ BITREAD_STATE_VARS;
+ savable_state state;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ natural_order = cinfo->natural_order;
+ Se = cinfo->lim_Se;
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ JBLOCKROW block = MCU_data[blkn];
+ d_derived_tbl * htbl;
+ register int s, k, r;
+ int coef_limit, ci;
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ htbl = entropy->dc_cur_tbls[blkn];
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+
+ htbl = entropy->ac_cur_tbls[blkn];
+ k = 1;
+ coef_limit = entropy->coef_limit[blkn];
+ if (coef_limit) {
+ /* Convert DC difference to actual value, update last_dc_val */
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+ ci = cinfo->MCU_membership[blkn];
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient */
+ (*block)[0] = (JCOEF) s;
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (; k < coef_limit; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in natural_order[] will save us
+ * if k > Se, which could happen if the data is corrupted.
+ */
+ (*block)[natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ goto EndOfBlock;
+ k += 15;
+ }
+ }
+ } else {
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ }
+ }
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (; k <= Se; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
+
+ EndOfBlock: ;
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of Huffman-compressed coefficients,
+ * full-size blocks.
+ */
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int blkn;
+ BITREAD_STATE_VARS;
+ savable_state state;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ JBLOCKROW block = MCU_data[blkn];
+ d_derived_tbl * htbl;
+ register int s, k, r;
+ int coef_limit, ci;
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ htbl = entropy->dc_cur_tbls[blkn];
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+
+ htbl = entropy->ac_cur_tbls[blkn];
+ k = 1;
+ coef_limit = entropy->coef_limit[blkn];
+ if (coef_limit) {
+ /* Convert DC difference to actual value, update last_dc_val */
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+ ci = cinfo->MCU_membership[blkn];
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient */
+ (*block)[0] = (JCOEF) s;
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (; k < coef_limit; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in jpeg_natural_order[] will save us
+ * if k >= DCTSIZE2, which could happen if the data is corrupted.
+ */
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ goto EndOfBlock;
+ k += 15;
+ }
+ }
+ } else {
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ }
+ }
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
+
+ EndOfBlock: ;
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass_huff_decoder (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, blkn, tbl, i;
+ jpeg_component_info * compptr;
+
+ if (cinfo->progressive_mode) {
+ /* Validate progressive scan parameters */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Se != 0)
+ goto bad;
+ } else {
+ /* need not check Ss/Se < 0 since they came from unsigned bytes */
+ if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
+ goto bad;
+ /* AC scans may have only one component */
+ if (cinfo->comps_in_scan != 1)
+ goto bad;
+ }
+ if (cinfo->Ah != 0) {
+ /* Successive approximation refinement scan: must have Al = Ah-1. */
+ if (cinfo->Ah-1 != cinfo->Al)
+ goto bad;
+ }
+ if (cinfo->Al > 13) { /* need not check for < 0 */
+ /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
+ * but the spec doesn't say so, and we try to be liberal about what we
+ * accept. Note: large Al values could result in out-of-range DC
+ * coefficients during early scans, leading to bizarre displays due to
+ * overflows in the IDCT math. But we won't crash.
+ */
+ bad:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ }
+ /* Update progression status, and verify that scan order is legal.
+ * Note that inter-scan inconsistencies are treated as warnings
+ * not fatal errors ... not clear if this is right way to behave.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+ int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+ if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+ for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+ int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+ if (cinfo->Ah != expected)
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+ coef_bit_ptr[coefi] = cinfo->Al;
+ }
+ }
+
+ /* Select MCU decoding routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_first;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_refine;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_refine;
+ }
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Make sure requested tables are present, and compute derived tables.
+ * We may build same derived table more than once, but it's not expensive.
+ */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Ah == 0) { /* DC refinement needs no table */
+ tbl = compptr->dc_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->derived_tbls[tbl]);
+ }
+ } else {
+ tbl = compptr->ac_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+ & entropy->derived_tbls[tbl]);
+ /* remember the single active table */
+ entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Initialize private state variables */
+ entropy->saved.EOBRUN = 0;
+ } else {
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+ * This ought to be an error condition, but we make it a warning because
+ * there are some baseline files out there with all zeroes in these bytes.
+ */
+ if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+ ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
+ cinfo->Se != cinfo->lim_Se))
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+
+ /* Select MCU decoding routine */
+ /* We retain the hard-coded case for full-size blocks.
+ * This is not necessary, but it appears that this version is slightly
+ * more performant in the given implementation.
+ * With an improved implementation we would prefer a single optimized
+ * function.
+ */
+ if (cinfo->lim_Se != DCTSIZE2-1)
+ entropy->pub.decode_mcu = decode_mcu_sub;
+ else
+ entropy->pub.decode_mcu = decode_mcu;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for a table, but it's not expensive */
+ tbl = compptr->dc_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->dc_derived_tbls[tbl]);
+ if (cinfo->lim_Se) { /* AC needs no table when not present */
+ tbl = compptr->ac_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+ & entropy->ac_derived_tbls[tbl]);
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Precalculate decoding info for each block in an MCU of this scan */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ /* Precalculate which table to use for each block */
+ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+ entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+ /* Decide whether we really care about the coefficient values */
+ if (compptr->component_needed) {
+ ci = compptr->DCT_v_scaled_size;
+ i = compptr->DCT_h_scaled_size;
+ switch (cinfo->lim_Se) {
+ case (1*1-1):
+ entropy->coef_limit[blkn] = 1;
+ break;
+ case (2*2-1):
+ if (ci <= 0 || ci > 2) ci = 2;
+ if (i <= 0 || i > 2) i = 2;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
+ break;
+ case (3*3-1):
+ if (ci <= 0 || ci > 3) ci = 3;
+ if (i <= 0 || i > 3) i = 3;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
+ break;
+ case (4*4-1):
+ if (ci <= 0 || ci > 4) ci = 4;
+ if (i <= 0 || i > 4) i = 4;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
+ break;
+ case (5*5-1):
+ if (ci <= 0 || ci > 5) ci = 5;
+ if (i <= 0 || i > 5) i = 5;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
+ break;
+ case (6*6-1):
+ if (ci <= 0 || ci > 6) ci = 6;
+ if (i <= 0 || i > 6) i = 6;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
+ break;
+ case (7*7-1):
+ if (ci <= 0 || ci > 7) ci = 7;
+ if (i <= 0 || i > 7) i = 7;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
+ break;
+ default:
+ if (ci <= 0 || ci > 8) ci = 8;
+ if (i <= 0 || i > 8) i = 8;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
+ break;
+ }
+ } else {
+ entropy->coef_limit[blkn] = 0;
+ }
+ }
+ }
+
+ /* Initialize bitread state variables */
+ entropy->bitstate.bits_left = 0;
+ entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+ entropy->insufficient_data = FALSE;
+
+ /* Initialize restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Module initialization routine for Huffman entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_huff_decoder (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy;
+ int i;
+
+ entropy = (huff_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(huff_entropy_decoder));
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+ entropy->pub.start_pass = start_pass_huff_decoder;
+
+ if (cinfo->progressive_mode) {
+ /* Create progression status table */
+ int *coef_bit_ptr, ci;
+ cinfo->coef_bits = (int (*)[DCTSIZE2])
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components*DCTSIZE2*SIZEOF(int));
+ coef_bit_ptr = & cinfo->coef_bits[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (i = 0; i < DCTSIZE2; i++)
+ *coef_bit_ptr++ = -1;
+
+ /* Mark derived tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->derived_tbls[i] = NULL;
+ }
+ } else {
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+ }
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdinput.c b/src/3rdparty/libjpeg/jdinput.c
new file mode 100644
index 0000000..2c5c717
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdinput.c
@@ -0,0 +1,661 @@
+/*
+ * jdinput.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2002-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input control logic for the JPEG decompressor.
+ * These routines are concerned with controlling the decompressor's input
+ * processing (marker reading and coefficient decoding). The actual input
+ * reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_input_controller pub; /* public fields */
+
+ int inheaders; /* Nonzero until first SOS is reached */
+} my_input_controller;
+
+typedef my_input_controller * my_inputctl_ptr;
+
+
+/* Forward declarations */
+METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Routines to calculate various quantities related to the size of the image.
+ */
+
+
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ */
+
+GLOBAL(void)
+jpeg_core_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase.
+ * This function is used for transcoding and full decompression.
+ */
+{
+#ifdef IDCT_SCALING_SUPPORTED
+ int ci;
+ jpeg_component_info *compptr;
+
+ /* Compute actual output image dimensions and DCT scaling choices. */
+ if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) {
+ /* Provide 1/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 1;
+ cinfo->min_DCT_v_scaled_size = 1;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) {
+ /* Provide 2/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 2;
+ cinfo->min_DCT_v_scaled_size = 2;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) {
+ /* Provide 3/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 3;
+ cinfo->min_DCT_v_scaled_size = 3;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) {
+ /* Provide 4/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 4;
+ cinfo->min_DCT_v_scaled_size = 4;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) {
+ /* Provide 5/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 5;
+ cinfo->min_DCT_v_scaled_size = 5;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) {
+ /* Provide 6/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 6;
+ cinfo->min_DCT_v_scaled_size = 6;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) {
+ /* Provide 7/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 7;
+ cinfo->min_DCT_v_scaled_size = 7;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) {
+ /* Provide 8/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 8;
+ cinfo->min_DCT_v_scaled_size = 8;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) {
+ /* Provide 9/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 9;
+ cinfo->min_DCT_v_scaled_size = 9;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) {
+ /* Provide 10/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 10;
+ cinfo->min_DCT_v_scaled_size = 10;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) {
+ /* Provide 11/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 11;
+ cinfo->min_DCT_v_scaled_size = 11;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) {
+ /* Provide 12/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 12;
+ cinfo->min_DCT_v_scaled_size = 12;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) {
+ /* Provide 13/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 13;
+ cinfo->min_DCT_v_scaled_size = 13;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) {
+ /* Provide 14/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 14;
+ cinfo->min_DCT_v_scaled_size = 14;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) {
+ /* Provide 15/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 15;
+ cinfo->min_DCT_v_scaled_size = 15;
+ } else {
+ /* Provide 16/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 16;
+ cinfo->min_DCT_v_scaled_size = 16;
+ }
+
+ /* Recompute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size;
+ compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size;
+ }
+
+#else /* !IDCT_SCALING_SUPPORTED */
+
+ /* Hardwire it to "no scaling" */
+ cinfo->output_width = cinfo->image_width;
+ cinfo->output_height = cinfo->image_height;
+ /* jdinput.c has already initialized DCT_scaled_size,
+ * and has computed unscaled downsampled_width and downsampled_height.
+ */
+
+#endif /* IDCT_SCALING_SUPPORTED */
+}
+
+
+LOCAL(void)
+initial_setup (j_decompress_ptr cinfo)
+/* Called once, when first SOS marker is reached */
+{
+ int ci;
+ jpeg_component_info *compptr;
+
+ /* Make sure image isn't bigger than I can handle */
+ if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
+ (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+ /* For now, precision must match compiled-in value... */
+ if (cinfo->data_precision != BITS_IN_JSAMPLE)
+ ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+ /* Check that number of components won't exceed internal array sizes */
+ if (cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+
+ /* Compute maximum sampling factors; check factor validity */
+ cinfo->max_h_samp_factor = 1;
+ cinfo->max_v_samp_factor = 1;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+ compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+ ERREXIT(cinfo, JERR_BAD_SAMPLING);
+ cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+ compptr->h_samp_factor);
+ cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+ compptr->v_samp_factor);
+ }
+
+ /* Derive block_size, natural_order, and lim_Se */
+ if (cinfo->is_baseline || (cinfo->progressive_mode &&
+ cinfo->comps_in_scan)) { /* no pseudo SOS marker */
+ cinfo->block_size = DCTSIZE;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ } else
+ switch (cinfo->Se) {
+ case (1*1-1):
+ cinfo->block_size = 1;
+ cinfo->natural_order = jpeg_natural_order; /* not needed */
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (2*2-1):
+ cinfo->block_size = 2;
+ cinfo->natural_order = jpeg_natural_order2;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (3*3-1):
+ cinfo->block_size = 3;
+ cinfo->natural_order = jpeg_natural_order3;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (4*4-1):
+ cinfo->block_size = 4;
+ cinfo->natural_order = jpeg_natural_order4;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (5*5-1):
+ cinfo->block_size = 5;
+ cinfo->natural_order = jpeg_natural_order5;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (6*6-1):
+ cinfo->block_size = 6;
+ cinfo->natural_order = jpeg_natural_order6;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (7*7-1):
+ cinfo->block_size = 7;
+ cinfo->natural_order = jpeg_natural_order7;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (8*8-1):
+ cinfo->block_size = 8;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (9*9-1):
+ cinfo->block_size = 9;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (10*10-1):
+ cinfo->block_size = 10;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (11*11-1):
+ cinfo->block_size = 11;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (12*12-1):
+ cinfo->block_size = 12;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (13*13-1):
+ cinfo->block_size = 13;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (14*14-1):
+ cinfo->block_size = 14;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (15*15-1):
+ cinfo->block_size = 15;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (16*16-1):
+ cinfo->block_size = 16;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ default:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ break;
+ }
+
+ /* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
+ * In the full decompressor,
+ * this will be overridden by jpeg_calc_output_dimensions in jdmaster.c;
+ * but in the transcoder,
+ * jpeg_calc_output_dimensions is not used, so we must do it here.
+ */
+ cinfo->min_DCT_h_scaled_size = cinfo->block_size;
+ cinfo->min_DCT_v_scaled_size = cinfo->block_size;
+
+ /* Compute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->DCT_h_scaled_size = cinfo->block_size;
+ compptr->DCT_v_scaled_size = cinfo->block_size;
+ /* Size in DCT blocks */
+ compptr->width_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->height_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ /* downsampled_width and downsampled_height will also be overridden by
+ * jdmaster.c if we are doing full decompression. The transcoder library
+ * doesn't use these values, but the calling application might.
+ */
+ /* Size in samples */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+ (long) cinfo->max_h_samp_factor);
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+ (long) cinfo->max_v_samp_factor);
+ /* Mark component needed, until color conversion says otherwise */
+ compptr->component_needed = TRUE;
+ /* Mark no quantization table yet saved for component */
+ compptr->quant_table = NULL;
+ }
+
+ /* Compute number of fully interleaved MCU rows. */
+ cinfo->total_iMCU_rows = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+
+ /* Decide whether file contains multiple scans */
+ if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
+ cinfo->inputctl->has_multiple_scans = TRUE;
+ else
+ cinfo->inputctl->has_multiple_scans = FALSE;
+}
+
+
+LOCAL(void)
+per_scan_setup (j_decompress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
+{
+ int ci, mcublks, tmp;
+ jpeg_component_info *compptr;
+
+ if (cinfo->comps_in_scan == 1) {
+
+ /* Noninterleaved (single-component) scan */
+ compptr = cinfo->cur_comp_info[0];
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = compptr->width_in_blocks;
+ cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+
+ /* For noninterleaved scan, always one block per MCU */
+ compptr->MCU_width = 1;
+ compptr->MCU_height = 1;
+ compptr->MCU_blocks = 1;
+ compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
+ compptr->last_col_width = 1;
+ /* For noninterleaved scans, it is convenient to define last_row_height
+ * as the number of block rows present in the last iMCU row.
+ */
+ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (tmp == 0) tmp = compptr->v_samp_factor;
+ compptr->last_row_height = tmp;
+
+ /* Prepare array describing MCU composition */
+ cinfo->blocks_in_MCU = 1;
+ cinfo->MCU_membership[0] = 0;
+
+ } else {
+
+ /* Interleaved (multi-component) scan */
+ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+ MAX_COMPS_IN_SCAN);
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ cinfo->MCU_rows_in_scan = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+
+ cinfo->blocks_in_MCU = 0;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Sampling factors give # of blocks of component in each MCU */
+ compptr->MCU_width = compptr->h_samp_factor;
+ compptr->MCU_height = compptr->v_samp_factor;
+ compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+ compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
+ /* Figure number of non-dummy blocks in last MCU column & row */
+ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+ if (tmp == 0) tmp = compptr->MCU_width;
+ compptr->last_col_width = tmp;
+ tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+ if (tmp == 0) tmp = compptr->MCU_height;
+ compptr->last_row_height = tmp;
+ /* Prepare array describing MCU composition */
+ mcublks = compptr->MCU_blocks;
+ if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
+ ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+ while (mcublks-- > 0) {
+ cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+ }
+ }
+
+ }
+}
+
+
+/*
+ * Save away a copy of the Q-table referenced by each component present
+ * in the current scan, unless already saved during a prior scan.
+ *
+ * In a multiple-scan JPEG file, the encoder could assign different components
+ * the same Q-table slot number, but change table definitions between scans
+ * so that each component uses a different Q-table. (The IJG encoder is not
+ * currently capable of doing this, but other encoders might.) Since we want
+ * to be able to dequantize all the components at the end of the file, this
+ * means that we have to save away the table actually used for each component.
+ * We do this by copying the table at the start of the first scan containing
+ * the component.
+ * The JPEG spec prohibits the encoder from changing the contents of a Q-table
+ * slot between scans of a component using that slot. If the encoder does so
+ * anyway, this decoder will simply use the Q-table values that were current
+ * at the start of the first scan for the component.
+ *
+ * The decompressor output side looks only at the saved quant tables,
+ * not at the current Q-table slots.
+ */
+
+LOCAL(void)
+latch_quant_tables (j_decompress_ptr cinfo)
+{
+ int ci, qtblno;
+ jpeg_component_info *compptr;
+ JQUANT_TBL * qtbl;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* No work if we already saved Q-table for this component */
+ if (compptr->quant_table != NULL)
+ continue;
+ /* Make sure specified quantization table is present */
+ qtblno = compptr->quant_tbl_no;
+ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+ cinfo->quant_tbl_ptrs[qtblno] == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+ /* OK, save away the quantization table */
+ qtbl = (JQUANT_TBL *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(JQUANT_TBL));
+ MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
+ compptr->quant_table = qtbl;
+ }
+}
+
+
+/*
+ * Initialize the input modules to read a scan of compressed data.
+ * The first call to this is done by jdmaster.c after initializing
+ * the entire decompressor (during jpeg_start_decompress).
+ * Subsequent calls come from consume_markers, below.
+ */
+
+METHODDEF(void)
+start_input_pass (j_decompress_ptr cinfo)
+{
+ per_scan_setup(cinfo);
+ latch_quant_tables(cinfo);
+ (*cinfo->entropy->start_pass) (cinfo);
+ (*cinfo->coef->start_input_pass) (cinfo);
+ cinfo->inputctl->consume_input = cinfo->coef->consume_data;
+}
+
+
+/*
+ * Finish up after inputting a compressed-data scan.
+ * This is called by the coefficient controller after it's read all
+ * the expected data of the scan.
+ */
+
+METHODDEF(void)
+finish_input_pass (j_decompress_ptr cinfo)
+{
+ cinfo->inputctl->consume_input = consume_markers;
+}
+
+
+/*
+ * Read JPEG markers before, between, or after compressed-data scans.
+ * Change state as necessary when a new scan is reached.
+ * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ *
+ * The consume_input method pointer points either here or to the
+ * coefficient controller's consume_data routine, depending on whether
+ * we are reading a compressed data segment or inter-segment markers.
+ *
+ * Note: This function should NOT return a pseudo SOS marker (with zero
+ * component number) to the caller. A pseudo marker received by
+ * read_markers is processed and then skipped for other markers.
+ */
+
+METHODDEF(int)
+consume_markers (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+ int val;
+
+ if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
+ return JPEG_REACHED_EOI;
+
+ for (;;) { /* Loop to pass pseudo SOS marker */
+ val = (*cinfo->marker->read_markers) (cinfo);
+
+ switch (val) {
+ case JPEG_REACHED_SOS: /* Found SOS */
+ if (inputctl->inheaders) { /* 1st SOS */
+ if (inputctl->inheaders == 1)
+ initial_setup(cinfo);
+ if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */
+ inputctl->inheaders = 2;
+ break;
+ }
+ inputctl->inheaders = 0;
+ /* Note: start_input_pass must be called by jdmaster.c
+ * before any more input can be consumed. jdapimin.c is
+ * responsible for enforcing this sequencing.
+ */
+ } else { /* 2nd or later SOS marker */
+ if (! inputctl->pub.has_multiple_scans)
+ ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
+ if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */
+ break;
+ start_input_pass(cinfo);
+ }
+ return val;
+ case JPEG_REACHED_EOI: /* Found EOI */
+ inputctl->pub.eoi_reached = TRUE;
+ if (inputctl->inheaders) { /* Tables-only datastream, apparently */
+ if (cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOF_NO_SOS);
+ } else {
+ /* Prevent infinite loop in coef ctlr's decompress_data routine
+ * if user set output_scan_number larger than number of scans.
+ */
+ if (cinfo->output_scan_number > cinfo->input_scan_number)
+ cinfo->output_scan_number = cinfo->input_scan_number;
+ }
+ return val;
+ case JPEG_SUSPENDED:
+ return val;
+ default:
+ return val;
+ }
+ }
+}
+
+
+/*
+ * Reset state to begin a fresh datastream.
+ */
+
+METHODDEF(void)
+reset_input_controller (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+
+ inputctl->pub.consume_input = consume_markers;
+ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+ inputctl->pub.eoi_reached = FALSE;
+ inputctl->inheaders = 1;
+ /* Reset other modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->marker->reset_marker_reader) (cinfo);
+ /* Reset progression state -- would be cleaner if entropy decoder did this */
+ cinfo->coef_bits = NULL;
+}
+
+
+/*
+ * Initialize the input controller module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL(void)
+jinit_input_controller (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl;
+
+ /* Create subobject in permanent pool */
+ inputctl = (my_inputctl_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_input_controller));
+ cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
+ /* Initialize method pointers */
+ inputctl->pub.consume_input = consume_markers;
+ inputctl->pub.reset_input_controller = reset_input_controller;
+ inputctl->pub.start_input_pass = start_input_pass;
+ inputctl->pub.finish_input_pass = finish_input_pass;
+ /* Initialize state: can't use reset_input_controller since we don't
+ * want to try to reset other modules yet.
+ */
+ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+ inputctl->pub.eoi_reached = FALSE;
+ inputctl->inheaders = 1;
+}
diff --git a/src/3rdparty/libjpeg/jdmainct.c b/src/3rdparty/libjpeg/jdmainct.c
new file mode 100644
index 0000000..02723ca
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdmainct.c
@@ -0,0 +1,512 @@
+/*
+ * jdmainct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for decompression.
+ * The main buffer lies between the JPEG decompressor proper and the
+ * post-processor; it holds downsampled data in the JPEG colorspace.
+ *
+ * Note that this code is bypassed in raw-data mode, since the application
+ * supplies the equivalent of the main buffer in that case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * In the current system design, the main buffer need never be a full-image
+ * buffer; any full-height buffers will be found inside the coefficient or
+ * postprocessing controllers. Nonetheless, the main controller is not
+ * trivial. Its responsibility is to provide context rows for upsampling/
+ * rescaling, and doing this in an efficient fashion is a bit tricky.
+ *
+ * Postprocessor input data is counted in "row groups". A row group
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+ * sample rows of each component. (We require DCT_scaled_size values to be
+ * chosen such that these numbers are integers. In practice DCT_scaled_size
+ * values will likely be powers of two, so we actually have the stronger
+ * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
+ * Upsampling will typically produce max_v_samp_factor pixel rows from each
+ * row group (times any additional scale factor that the upsampler is
+ * applying).
+ *
+ * The coefficient controller will deliver data to us one iMCU row at a time;
+ * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
+ * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
+ * to one row of MCUs when the image is fully interleaved.) Note that the
+ * number of sample rows varies across components, but the number of row
+ * groups does not. Some garbage sample rows may be included in the last iMCU
+ * row at the bottom of the image.
+ *
+ * Depending on the vertical scaling algorithm used, the upsampler may need
+ * access to the sample row(s) above and below its current input row group.
+ * The upsampler is required to set need_context_rows TRUE at global selection
+ * time if so. When need_context_rows is FALSE, this controller can simply
+ * obtain one iMCU row at a time from the coefficient controller and dole it
+ * out as row groups to the postprocessor.
+ *
+ * When need_context_rows is TRUE, this controller guarantees that the buffer
+ * passed to postprocessing contains at least one row group's worth of samples
+ * above and below the row group(s) being processed. Note that the context
+ * rows "above" the first passed row group appear at negative row offsets in
+ * the passed buffer. At the top and bottom of the image, the required
+ * context rows are manufactured by duplicating the first or last real sample
+ * row; this avoids having special cases in the upsampling inner loops.
+ *
+ * The amount of context is fixed at one row group just because that's a
+ * convenient number for this controller to work with. The existing
+ * upsamplers really only need one sample row of context. An upsampler
+ * supporting arbitrary output rescaling might wish for more than one row
+ * group of context when shrinking the image; tough, we don't handle that.
+ * (This is justified by the assumption that downsizing will be handled mostly
+ * by adjusting the DCT_scaled_size values, so that the actual scale factor at
+ * the upsample step needn't be much less than one.)
+ *
+ * To provide the desired context, we have to retain the last two row groups
+ * of one iMCU row while reading in the next iMCU row. (The last row group
+ * can't be processed until we have another row group for its below-context,
+ * and so we have to save the next-to-last group too for its above-context.)
+ * We could do this most simply by copying data around in our buffer, but
+ * that'd be very slow. We can avoid copying any data by creating a rather
+ * strange pointer structure. Here's how it works. We allocate a workspace
+ * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
+ * of row groups per iMCU row). We create two sets of redundant pointers to
+ * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
+ * pointer lists look like this:
+ * M+1 M-1
+ * master pointer --> 0 master pointer --> 0
+ * 1 1
+ * ... ...
+ * M-3 M-3
+ * M-2 M
+ * M-1 M+1
+ * M M-2
+ * M+1 M-1
+ * 0 0
+ * We read alternate iMCU rows using each master pointer; thus the last two
+ * row groups of the previous iMCU row remain un-overwritten in the workspace.
+ * The pointer lists are set up so that the required context rows appear to
+ * be adjacent to the proper places when we pass the pointer lists to the
+ * upsampler.
+ *
+ * The above pictures describe the normal state of the pointer lists.
+ * At top and bottom of the image, we diddle the pointer lists to duplicate
+ * the first or last sample row as necessary (this is cheaper than copying
+ * sample rows around).
+ *
+ * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
+ * situation each iMCU row provides only one row group so the buffering logic
+ * must be different (eg, we must read two iMCU rows before we can emit the
+ * first row group). For now, we simply do not support providing context
+ * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
+ * be worth providing --- if someone wants a 1/8th-size preview, they probably
+ * want it quick and dirty, so a context-free upsampler is sufficient.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_main_controller pub; /* public fields */
+
+ /* Pointer to allocated workspace (M or M+2 row groups). */
+ JSAMPARRAY buffer[MAX_COMPONENTS];
+
+ boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
+ JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
+
+ /* Remaining fields are only used in the context case. */
+
+ /* These are the master pointers to the funny-order pointer lists. */
+ JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
+
+ int whichptr; /* indicates which pointer set is now in use */
+ int context_state; /* process_data state machine status */
+ JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
+ JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+/* context_state values: */
+#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
+#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
+#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
+
+
+/* Forward declarations */
+METHODDEF(void) process_data_simple_main
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+METHODDEF(void) process_data_context_main
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF(void) process_data_crank_post
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#endif
+
+
+LOCAL(void)
+alloc_funny_pointers (j_decompress_ptr cinfo)
+/* Allocate space for the funny pointer lists.
+ * This is done only once, not once per pass.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, rgroup;
+ int M = cinfo->min_DCT_v_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf;
+
+ /* Get top-level space for component array pointers.
+ * We alloc both arrays with one call to save a few cycles.
+ */
+ main->xbuffer[0] = (JSAMPIMAGE)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
+ main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ /* Get space for pointer lists --- M+4 row groups in each list.
+ * We alloc both pointer lists with one call to save a few cycles.
+ */
+ xbuf = (JSAMPARRAY)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
+ xbuf += rgroup; /* want one row group at negative offsets */
+ main->xbuffer[0][ci] = xbuf;
+ xbuf += rgroup * (M + 4);
+ main->xbuffer[1][ci] = xbuf;
+ }
+}
+
+
+LOCAL(void)
+make_funny_pointers (j_decompress_ptr cinfo)
+/* Create the funny pointer lists discussed in the comments above.
+ * The actual workspace is already allocated (in main->buffer),
+ * and the space for the pointer lists is allocated too.
+ * This routine just fills in the curiously ordered lists.
+ * This will be repeated at the beginning of each pass.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup;
+ int M = cinfo->min_DCT_v_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY buf, xbuf0, xbuf1;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ xbuf0 = main->xbuffer[0][ci];
+ xbuf1 = main->xbuffer[1][ci];
+ /* First copy the workspace pointers as-is */
+ buf = main->buffer[ci];
+ for (i = 0; i < rgroup * (M + 2); i++) {
+ xbuf0[i] = xbuf1[i] = buf[i];
+ }
+ /* In the second list, put the last four row groups in swapped order */
+ for (i = 0; i < rgroup * 2; i++) {
+ xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
+ xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
+ }
+ /* The wraparound pointers at top and bottom will be filled later
+ * (see set_wraparound_pointers, below). Initially we want the "above"
+ * pointers to duplicate the first actual data line. This only needs
+ * to happen in xbuffer[0].
+ */
+ for (i = 0; i < rgroup; i++) {
+ xbuf0[i - rgroup] = xbuf0[0];
+ }
+ }
+}
+
+
+LOCAL(void)
+set_wraparound_pointers (j_decompress_ptr cinfo)
+/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
+ * This changes the pointer list state from top-of-image to the normal state.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup;
+ int M = cinfo->min_DCT_v_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf0, xbuf1;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ xbuf0 = main->xbuffer[0][ci];
+ xbuf1 = main->xbuffer[1][ci];
+ for (i = 0; i < rgroup; i++) {
+ xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
+ xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
+ xbuf0[rgroup*(M+2) + i] = xbuf0[i];
+ xbuf1[rgroup*(M+2) + i] = xbuf1[i];
+ }
+ }
+}
+
+
+LOCAL(void)
+set_bottom_pointers (j_decompress_ptr cinfo)
+/* Change the pointer lists to duplicate the last sample row at the bottom
+ * of the image. whichptr indicates which xbuffer holds the final iMCU row.
+ * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup, iMCUheight, rows_left;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Count sample rows in one iMCU row and in one row group */
+ iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
+ rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
+ /* Count nondummy sample rows remaining for this component */
+ rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
+ if (rows_left == 0) rows_left = iMCUheight;
+ /* Count nondummy row groups. Should get same answer for each component,
+ * so we need only do it once.
+ */
+ if (ci == 0) {
+ main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
+ }
+ /* Duplicate the last real sample row rgroup*2 times; this pads out the
+ * last partial rowgroup and ensures at least one full rowgroup of context.
+ */
+ xbuf = main->xbuffer[main->whichptr][ci];
+ for (i = 0; i < rgroup * 2; i++) {
+ xbuf[rows_left + i] = xbuf[rows_left-1];
+ }
+ }
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (cinfo->upsample->need_context_rows) {
+ main->pub.process_data = process_data_context_main;
+ make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
+ main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
+ main->context_state = CTX_PREPARE_FOR_IMCU;
+ main->iMCU_row_ctr = 0;
+ } else {
+ /* Simple case with no context needed */
+ main->pub.process_data = process_data_simple_main;
+ }
+ main->buffer_full = FALSE; /* Mark buffer empty */
+ main->rowgroup_ctr = 0;
+ break;
+#ifdef QUANT_2PASS_SUPPORTED
+ case JBUF_CRANK_DEST:
+ /* For last pass of 2-pass quantization, just crank the postprocessor */
+ main->pub.process_data = process_data_crank_post;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This handles the simple case where no context is required.
+ */
+
+METHODDEF(void)
+process_data_simple_main (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ JDIMENSION rowgroups_avail;
+
+ /* Read input data if we haven't filled the main buffer yet */
+ if (! main->buffer_full) {
+ if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
+ return; /* suspension forced, can do nothing more */
+ main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
+ }
+
+ /* There are always min_DCT_scaled_size row groups in an iMCU row. */
+ rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
+ /* Note: at the bottom of the image, we may pass extra garbage row groups
+ * to the postprocessor. The postprocessor has to check for bottom
+ * of image anyway (at row resolution), so no point in us doing it too.
+ */
+
+ /* Feed the postprocessor */
+ (*cinfo->post->post_process_data) (cinfo, main->buffer,
+ &main->rowgroup_ctr, rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+
+ /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
+ if (main->rowgroup_ctr >= rowgroups_avail) {
+ main->buffer_full = FALSE;
+ main->rowgroup_ctr = 0;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This handles the case where context rows must be provided.
+ */
+
+METHODDEF(void)
+process_data_context_main (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ /* Read input data if we haven't filled the main buffer yet */
+ if (! main->buffer_full) {
+ if (! (*cinfo->coef->decompress_data) (cinfo,
+ main->xbuffer[main->whichptr]))
+ return; /* suspension forced, can do nothing more */
+ main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
+ main->iMCU_row_ctr++; /* count rows received */
+ }
+
+ /* Postprocessor typically will not swallow all the input data it is handed
+ * in one call (due to filling the output buffer first). Must be prepared
+ * to exit and restart. This switch lets us keep track of how far we got.
+ * Note that each case falls through to the next on successful completion.
+ */
+ switch (main->context_state) {
+ case CTX_POSTPONED_ROW:
+ /* Call postprocessor using previously set pointers for postponed row */
+ (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
+ &main->rowgroup_ctr, main->rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+ if (main->rowgroup_ctr < main->rowgroups_avail)
+ return; /* Need to suspend */
+ main->context_state = CTX_PREPARE_FOR_IMCU;
+ if (*out_row_ctr >= out_rows_avail)
+ return; /* Postprocessor exactly filled output buf */
+ /*FALLTHROUGH*/
+ case CTX_PREPARE_FOR_IMCU:
+ /* Prepare to process first M-1 row groups of this iMCU row */
+ main->rowgroup_ctr = 0;
+ main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
+ /* Check for bottom of image: if so, tweak pointers to "duplicate"
+ * the last sample row, and adjust rowgroups_avail to ignore padding rows.
+ */
+ if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
+ set_bottom_pointers(cinfo);
+ main->context_state = CTX_PROCESS_IMCU;
+ /*FALLTHROUGH*/
+ case CTX_PROCESS_IMCU:
+ /* Call postprocessor using previously set pointers */
+ (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
+ &main->rowgroup_ctr, main->rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+ if (main->rowgroup_ctr < main->rowgroups_avail)
+ return; /* Need to suspend */
+ /* After the first iMCU, change wraparound pointers to normal state */
+ if (main->iMCU_row_ctr == 1)
+ set_wraparound_pointers(cinfo);
+ /* Prepare to load new iMCU row using other xbuffer list */
+ main->whichptr ^= 1; /* 0=>1 or 1=>0 */
+ main->buffer_full = FALSE;
+ /* Still need to process last row group of this iMCU row, */
+ /* which is saved at index M+1 of the other xbuffer */
+ main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
+ main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
+ main->context_state = CTX_POSTPONED_ROW;
+ }
+}
+
+
+/*
+ * Process some data.
+ * Final pass of two-pass quantization: just call the postprocessor.
+ * Source data will be the postprocessor controller's internal buffer.
+ */
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+METHODDEF(void)
+process_data_crank_post (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
+ (JDIMENSION *) NULL, (JDIMENSION) 0,
+ output_buf, out_row_ctr, out_rows_avail);
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_main_ptr main;
+ int ci, rgroup, ngroups;
+ jpeg_component_info *compptr;
+
+ main = (my_main_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_main_controller));
+ cinfo->main = (struct jpeg_d_main_controller *) main;
+ main->pub.start_pass = start_pass_main;
+
+ if (need_full_buffer) /* shouldn't happen */
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ /* Allocate the workspace.
+ * ngroups is the number of row groups we need.
+ */
+ if (cinfo->upsample->need_context_rows) {
+ if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
+ ERREXIT(cinfo, JERR_NOTIMPL);
+ alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
+ ngroups = cinfo->min_DCT_v_scaled_size + 2;
+ } else {
+ ngroups = cinfo->min_DCT_v_scaled_size;
+ }
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (JDIMENSION) (rgroup * ngroups));
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdmarker.c b/src/3rdparty/libjpeg/jdmarker.c
new file mode 100644
index 0000000..f2a9cc4
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdmarker.c
@@ -0,0 +1,1406 @@
+/*
+ * jdmarker.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to decode JPEG datastream markers.
+ * Most of the complexity arises from our desire to support input
+ * suspension: if not all of the data for a marker is available,
+ * we must exit back to the application. On resumption, we reprocess
+ * the marker.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+typedef enum { /* JPEG marker codes */
+ M_SOF0 = 0xc0,
+ M_SOF1 = 0xc1,
+ M_SOF2 = 0xc2,
+ M_SOF3 = 0xc3,
+
+ M_SOF5 = 0xc5,
+ M_SOF6 = 0xc6,
+ M_SOF7 = 0xc7,
+
+ M_JPG = 0xc8,
+ M_SOF9 = 0xc9,
+ M_SOF10 = 0xca,
+ M_SOF11 = 0xcb,
+
+ M_SOF13 = 0xcd,
+ M_SOF14 = 0xce,
+ M_SOF15 = 0xcf,
+
+ M_DHT = 0xc4,
+
+ M_DAC = 0xcc,
+
+ M_RST0 = 0xd0,
+ M_RST1 = 0xd1,
+ M_RST2 = 0xd2,
+ M_RST3 = 0xd3,
+ M_RST4 = 0xd4,
+ M_RST5 = 0xd5,
+ M_RST6 = 0xd6,
+ M_RST7 = 0xd7,
+
+ M_SOI = 0xd8,
+ M_EOI = 0xd9,
+ M_SOS = 0xda,
+ M_DQT = 0xdb,
+ M_DNL = 0xdc,
+ M_DRI = 0xdd,
+ M_DHP = 0xde,
+ M_EXP = 0xdf,
+
+ M_APP0 = 0xe0,
+ M_APP1 = 0xe1,
+ M_APP2 = 0xe2,
+ M_APP3 = 0xe3,
+ M_APP4 = 0xe4,
+ M_APP5 = 0xe5,
+ M_APP6 = 0xe6,
+ M_APP7 = 0xe7,
+ M_APP8 = 0xe8,
+ M_APP9 = 0xe9,
+ M_APP10 = 0xea,
+ M_APP11 = 0xeb,
+ M_APP12 = 0xec,
+ M_APP13 = 0xed,
+ M_APP14 = 0xee,
+ M_APP15 = 0xef,
+
+ M_JPG0 = 0xf0,
+ M_JPG13 = 0xfd,
+ M_COM = 0xfe,
+
+ M_TEM = 0x01,
+
+ M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_marker_reader pub; /* public fields */
+
+ /* Application-overridable marker processing methods */
+ jpeg_marker_parser_method process_COM;
+ jpeg_marker_parser_method process_APPn[16];
+
+ /* Limit on marker data length to save for each marker type */
+ unsigned int length_limit_COM;
+ unsigned int length_limit_APPn[16];
+
+ /* Status of COM/APPn marker saving */
+ jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */
+ unsigned int bytes_read; /* data bytes read so far in marker */
+ /* Note: cur_marker is not linked into marker_list until it's all read. */
+} my_marker_reader;
+
+typedef my_marker_reader * my_marker_ptr;
+
+
+/*
+ * Macros for fetching data from the data source module.
+ *
+ * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
+ * the current restart point; we update them only when we have reached a
+ * suitable place to restart if a suspension occurs.
+ */
+
+/* Declare and initialize local copies of input pointer/count */
+#define INPUT_VARS(cinfo) \
+ struct jpeg_source_mgr * datasrc = (cinfo)->src; \
+ const JOCTET * next_input_byte = datasrc->next_input_byte; \
+ size_t bytes_in_buffer = datasrc->bytes_in_buffer
+
+/* Unload the local copies --- do this only at a restart boundary */
+#define INPUT_SYNC(cinfo) \
+ ( datasrc->next_input_byte = next_input_byte, \
+ datasrc->bytes_in_buffer = bytes_in_buffer )
+
+/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */
+#define INPUT_RELOAD(cinfo) \
+ ( next_input_byte = datasrc->next_input_byte, \
+ bytes_in_buffer = datasrc->bytes_in_buffer )
+
+/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
+ * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
+ * but we must reload the local copies after a successful fill.
+ */
+#define MAKE_BYTE_AVAIL(cinfo,action) \
+ if (bytes_in_buffer == 0) { \
+ if (! (*datasrc->fill_input_buffer) (cinfo)) \
+ { action; } \
+ INPUT_RELOAD(cinfo); \
+ }
+
+/* Read a byte into variable V.
+ * If must suspend, take the specified action (typically "return FALSE").
+ */
+#define INPUT_BYTE(cinfo,V,action) \
+ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+ bytes_in_buffer--; \
+ V = GETJOCTET(*next_input_byte++); )
+
+/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
+ * V should be declared unsigned int or perhaps INT32.
+ */
+#define INPUT_2BYTES(cinfo,V,action) \
+ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+ bytes_in_buffer--; \
+ V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
+ MAKE_BYTE_AVAIL(cinfo,action); \
+ bytes_in_buffer--; \
+ V += GETJOCTET(*next_input_byte++); )
+
+
+/*
+ * Routines to process JPEG markers.
+ *
+ * Entry condition: JPEG marker itself has been read and its code saved
+ * in cinfo->unread_marker; input restart point is just after the marker.
+ *
+ * Exit: if return TRUE, have read and processed any parameters, and have
+ * updated the restart point to point after the parameters.
+ * If return FALSE, was forced to suspend before reaching end of
+ * marker parameters; restart point has not been moved. Same routine
+ * will be called again after application supplies more input data.
+ *
+ * This approach to suspension assumes that all of a marker's parameters
+ * can fit into a single input bufferload. This should hold for "normal"
+ * markers. Some COM/APPn markers might have large parameter segments
+ * that might not fit. If we are simply dropping such a marker, we use
+ * skip_input_data to get past it, and thereby put the problem on the
+ * source manager's shoulders. If we are saving the marker's contents
+ * into memory, we use a slightly different convention: when forced to
+ * suspend, the marker processor updates the restart point to the end of
+ * what it's consumed (ie, the end of the buffer) before returning FALSE.
+ * On resumption, cinfo->unread_marker still contains the marker code,
+ * but the data source will point to the next chunk of marker data.
+ * The marker processor must retain internal state to deal with this.
+ *
+ * Note that we don't bother to avoid duplicate trace messages if a
+ * suspension occurs within marker parameters. Other side effects
+ * require more care.
+ */
+
+
+LOCAL(boolean)
+get_soi (j_decompress_ptr cinfo)
+/* Process an SOI marker */
+{
+ int i;
+
+ TRACEMS(cinfo, 1, JTRC_SOI);
+
+ if (cinfo->marker->saw_SOI)
+ ERREXIT(cinfo, JERR_SOI_DUPLICATE);
+
+ /* Reset all parameters that are defined to be reset by SOI */
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ cinfo->arith_dc_L[i] = 0;
+ cinfo->arith_dc_U[i] = 1;
+ cinfo->arith_ac_K[i] = 5;
+ }
+ cinfo->restart_interval = 0;
+
+ /* Set initial assumptions for colorspace etc */
+
+ cinfo->jpeg_color_space = JCS_UNKNOWN;
+ cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
+
+ cinfo->saw_JFIF_marker = FALSE;
+ cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */
+ cinfo->JFIF_minor_version = 1;
+ cinfo->density_unit = 0;
+ cinfo->X_density = 1;
+ cinfo->Y_density = 1;
+ cinfo->saw_Adobe_marker = FALSE;
+ cinfo->Adobe_transform = 0;
+
+ cinfo->marker->saw_SOI = TRUE;
+
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_sof (j_decompress_ptr cinfo, boolean is_baseline, boolean is_prog,
+ boolean is_arith)
+/* Process a SOFn marker */
+{
+ INT32 length;
+ int c, ci;
+ jpeg_component_info * compptr;
+ INPUT_VARS(cinfo);
+
+ cinfo->is_baseline = is_baseline;
+ cinfo->progressive_mode = is_prog;
+ cinfo->arith_code = is_arith;
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
+ INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
+ INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
+ INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
+
+ length -= 8;
+
+ TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
+ (int) cinfo->image_width, (int) cinfo->image_height,
+ cinfo->num_components);
+
+ if (cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOF_DUPLICATE);
+
+ /* We don't support files in which the image height is initially specified */
+ /* as 0 and is later redefined by DNL. As long as we have to check that, */
+ /* might as well have a general sanity check. */
+ if (cinfo->image_height <= 0 || cinfo->image_width <= 0
+ || cinfo->num_components <= 0)
+ ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+ if (length != (cinfo->num_components * 3))
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ if (cinfo->comp_info == NULL) /* do only once, even if suspend */
+ cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components * SIZEOF(jpeg_component_info));
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->component_index = ci;
+ INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
+ INPUT_BYTE(cinfo, c, return FALSE);
+ compptr->h_samp_factor = (c >> 4) & 15;
+ compptr->v_samp_factor = (c ) & 15;
+ INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
+
+ TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
+ compptr->component_id, compptr->h_samp_factor,
+ compptr->v_samp_factor, compptr->quant_tbl_no);
+ }
+
+ cinfo->marker->saw_SOF = TRUE;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_sos (j_decompress_ptr cinfo)
+/* Process a SOS marker */
+{
+ INT32 length;
+ int i, ci, n, c, cc;
+ jpeg_component_info * compptr;
+ INPUT_VARS(cinfo);
+
+ if (! cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOS_NO_SOF);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
+
+ TRACEMS1(cinfo, 1, JTRC_SOS, n);
+
+ if (length != (n * 2 + 6) || n > MAX_COMPS_IN_SCAN ||
+ (n == 0 && !cinfo->progressive_mode))
+ /* pseudo SOS marker only allowed in progressive mode */
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ cinfo->comps_in_scan = n;
+
+ /* Collect the component-spec parameters */
+
+ for (i = 0; i < n; i++) {
+ INPUT_BYTE(cinfo, cc, return FALSE);
+ INPUT_BYTE(cinfo, c, return FALSE);
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (cc == compptr->component_id)
+ goto id_found;
+ }
+
+ ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
+
+ id_found:
+
+ cinfo->cur_comp_info[i] = compptr;
+ compptr->dc_tbl_no = (c >> 4) & 15;
+ compptr->ac_tbl_no = (c ) & 15;
+
+ TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
+ compptr->dc_tbl_no, compptr->ac_tbl_no);
+ }
+
+ /* Collect the additional scan parameters Ss, Se, Ah/Al. */
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Ss = c;
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Se = c;
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Ah = (c >> 4) & 15;
+ cinfo->Al = (c ) & 15;
+
+ TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
+ cinfo->Ah, cinfo->Al);
+
+ /* Prepare to scan data & restart markers */
+ cinfo->marker->next_restart_num = 0;
+
+ /* Count another (non-pseudo) SOS marker */
+ if (n) cinfo->input_scan_number++;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+#ifdef D_ARITH_CODING_SUPPORTED
+
+LOCAL(boolean)
+get_dac (j_decompress_ptr cinfo)
+/* Process a DAC marker */
+{
+ INT32 length;
+ int index, val;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ INPUT_BYTE(cinfo, index, return FALSE);
+ INPUT_BYTE(cinfo, val, return FALSE);
+
+ length -= 2;
+
+ TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
+
+ if (index < 0 || index >= (2*NUM_ARITH_TBLS))
+ ERREXIT1(cinfo, JERR_DAC_INDEX, index);
+
+ if (index >= NUM_ARITH_TBLS) { /* define AC table */
+ cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
+ } else { /* define DC table */
+ cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
+ cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
+ if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
+ ERREXIT1(cinfo, JERR_DAC_VALUE, val);
+ }
+ }
+
+ if (length != 0)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+#else /* ! D_ARITH_CODING_SUPPORTED */
+
+#define get_dac(cinfo) skip_variable(cinfo)
+
+#endif /* D_ARITH_CODING_SUPPORTED */
+
+
+LOCAL(boolean)
+get_dht (j_decompress_ptr cinfo)
+/* Process a DHT marker */
+{
+ INT32 length;
+ UINT8 bits[17];
+ UINT8 huffval[256];
+ int i, index, count;
+ JHUFF_TBL **htblptr;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 16) {
+ INPUT_BYTE(cinfo, index, return FALSE);
+
+ TRACEMS1(cinfo, 1, JTRC_DHT, index);
+
+ bits[0] = 0;
+ count = 0;
+ for (i = 1; i <= 16; i++) {
+ INPUT_BYTE(cinfo, bits[i], return FALSE);
+ count += bits[i];
+ }
+
+ length -= 1 + 16;
+
+ TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+ bits[1], bits[2], bits[3], bits[4],
+ bits[5], bits[6], bits[7], bits[8]);
+ TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+ bits[9], bits[10], bits[11], bits[12],
+ bits[13], bits[14], bits[15], bits[16]);
+
+ /* Here we just do minimal validation of the counts to avoid walking
+ * off the end of our table space. jdhuff.c will check more carefully.
+ */
+ if (count > 256 || ((INT32) count) > length)
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+
+ for (i = 0; i < count; i++)
+ INPUT_BYTE(cinfo, huffval[i], return FALSE);
+
+ length -= count;
+
+ if (index & 0x10) { /* AC table definition */
+ index -= 0x10;
+ htblptr = &cinfo->ac_huff_tbl_ptrs[index];
+ } else { /* DC table definition */
+ htblptr = &cinfo->dc_huff_tbl_ptrs[index];
+ }
+
+ if (index < 0 || index >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_DHT_INDEX, index);
+
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+
+ MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+ MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
+ }
+
+ if (length != 0)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_dqt (j_decompress_ptr cinfo)
+/* Process a DQT marker */
+{
+ INT32 length, count, i;
+ int n, prec;
+ unsigned int tmp;
+ JQUANT_TBL *quant_ptr;
+ const int *natural_order;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ length--;
+ INPUT_BYTE(cinfo, n, return FALSE);
+ prec = n >> 4;
+ n &= 0x0F;
+
+ TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
+
+ if (n >= NUM_QUANT_TBLS)
+ ERREXIT1(cinfo, JERR_DQT_INDEX, n);
+
+ if (cinfo->quant_tbl_ptrs[n] == NULL)
+ cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+ quant_ptr = cinfo->quant_tbl_ptrs[n];
+
+ if (prec) {
+ if (length < DCTSIZE2 * 2) {
+ /* Initialize full table for safety. */
+ for (i = 0; i < DCTSIZE2; i++) {
+ quant_ptr->quantval[i] = 1;
+ }
+ count = length >> 1;
+ } else
+ count = DCTSIZE2;
+ } else {
+ if (length < DCTSIZE2) {
+ /* Initialize full table for safety. */
+ for (i = 0; i < DCTSIZE2; i++) {
+ quant_ptr->quantval[i] = 1;
+ }
+ count = length;
+ } else
+ count = DCTSIZE2;
+ }
+
+ switch (count) {
+ case (2*2): natural_order = jpeg_natural_order2; break;
+ case (3*3): natural_order = jpeg_natural_order3; break;
+ case (4*4): natural_order = jpeg_natural_order4; break;
+ case (5*5): natural_order = jpeg_natural_order5; break;
+ case (6*6): natural_order = jpeg_natural_order6; break;
+ case (7*7): natural_order = jpeg_natural_order7; break;
+ default: natural_order = jpeg_natural_order; break;
+ }
+
+ for (i = 0; i < count; i++) {
+ if (prec)
+ INPUT_2BYTES(cinfo, tmp, return FALSE);
+ else
+ INPUT_BYTE(cinfo, tmp, return FALSE);
+ /* We convert the zigzag-order table to natural array order. */
+ quant_ptr->quantval[natural_order[i]] = (UINT16) tmp;
+ }
+
+ if (cinfo->err->trace_level >= 2) {
+ for (i = 0; i < DCTSIZE2; i += 8) {
+ TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
+ quant_ptr->quantval[i], quant_ptr->quantval[i+1],
+ quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
+ quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
+ quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
+ }
+ }
+
+ length -= count;
+ if (prec) length -= count;
+ }
+
+ if (length != 0)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_dri (j_decompress_ptr cinfo)
+/* Process a DRI marker */
+{
+ INT32 length;
+ unsigned int tmp;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ if (length != 4)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_2BYTES(cinfo, tmp, return FALSE);
+
+ TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
+
+ cinfo->restart_interval = tmp;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Routines for processing APPn and COM markers.
+ * These are either saved in memory or discarded, per application request.
+ * APP0 and APP14 are specially checked to see if they are
+ * JFIF and Adobe markers, respectively.
+ */
+
+#define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */
+#define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */
+#define APPN_DATA_LEN 14 /* Must be the largest of the above!! */
+
+
+LOCAL(void)
+examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
+ unsigned int datalen, INT32 remaining)
+/* Examine first few bytes from an APP0.
+ * Take appropriate action if it is a JFIF marker.
+ * datalen is # of bytes at data[], remaining is length of rest of marker data.
+ */
+{
+ INT32 totallen = (INT32) datalen + remaining;
+
+ if (datalen >= APP0_DATA_LEN &&
+ GETJOCTET(data[0]) == 0x4A &&
+ GETJOCTET(data[1]) == 0x46 &&
+ GETJOCTET(data[2]) == 0x49 &&
+ GETJOCTET(data[3]) == 0x46 &&
+ GETJOCTET(data[4]) == 0) {
+ /* Found JFIF APP0 marker: save info */
+ cinfo->saw_JFIF_marker = TRUE;
+ cinfo->JFIF_major_version = GETJOCTET(data[5]);
+ cinfo->JFIF_minor_version = GETJOCTET(data[6]);
+ cinfo->density_unit = GETJOCTET(data[7]);
+ cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
+ cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
+ /* Check version.
+ * Major version must be 1, anything else signals an incompatible change.
+ * (We used to treat this as an error, but now it's a nonfatal warning,
+ * because some bozo at Hijaak couldn't read the spec.)
+ * Minor version should be 0..2, but process anyway if newer.
+ */
+ if (cinfo->JFIF_major_version != 1)
+ WARNMS2(cinfo, JWRN_JFIF_MAJOR,
+ cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
+ /* Generate trace messages */
+ TRACEMS5(cinfo, 1, JTRC_JFIF,
+ cinfo->JFIF_major_version, cinfo->JFIF_minor_version,
+ cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
+ /* Validate thumbnail dimensions and issue appropriate messages */
+ if (GETJOCTET(data[12]) | GETJOCTET(data[13]))
+ TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL,
+ GETJOCTET(data[12]), GETJOCTET(data[13]));
+ totallen -= APP0_DATA_LEN;
+ if (totallen !=
+ ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3))
+ TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen);
+ } else if (datalen >= 6 &&
+ GETJOCTET(data[0]) == 0x4A &&
+ GETJOCTET(data[1]) == 0x46 &&
+ GETJOCTET(data[2]) == 0x58 &&
+ GETJOCTET(data[3]) == 0x58 &&
+ GETJOCTET(data[4]) == 0) {
+ /* Found JFIF "JFXX" extension APP0 marker */
+ /* The library doesn't actually do anything with these,
+ * but we try to produce a helpful trace message.
+ */
+ switch (GETJOCTET(data[5])) {
+ case 0x10:
+ TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen);
+ break;
+ case 0x11:
+ TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen);
+ break;
+ case 0x13:
+ TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen);
+ break;
+ default:
+ TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION,
+ GETJOCTET(data[5]), (int) totallen);
+ break;
+ }
+ } else {
+ /* Start of APP0 does not match "JFIF" or "JFXX", or too short */
+ TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen);
+ }
+}
+
+
+LOCAL(void)
+examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data,
+ unsigned int datalen, INT32 remaining)
+/* Examine first few bytes from an APP14.
+ * Take appropriate action if it is an Adobe marker.
+ * datalen is # of bytes at data[], remaining is length of rest of marker data.
+ */
+{
+ unsigned int version, flags0, flags1, transform;
+
+ if (datalen >= APP14_DATA_LEN &&
+ GETJOCTET(data[0]) == 0x41 &&
+ GETJOCTET(data[1]) == 0x64 &&
+ GETJOCTET(data[2]) == 0x6F &&
+ GETJOCTET(data[3]) == 0x62 &&
+ GETJOCTET(data[4]) == 0x65) {
+ /* Found Adobe APP14 marker */
+ version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]);
+ flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]);
+ flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]);
+ transform = GETJOCTET(data[11]);
+ TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
+ cinfo->saw_Adobe_marker = TRUE;
+ cinfo->Adobe_transform = (UINT8) transform;
+ } else {
+ /* Start of APP14 does not match "Adobe", or too short */
+ TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining));
+ }
+}
+
+
+METHODDEF(boolean)
+get_interesting_appn (j_decompress_ptr cinfo)
+/* Process an APP0 or APP14 marker without saving it */
+{
+ INT32 length;
+ JOCTET b[APPN_DATA_LEN];
+ unsigned int i, numtoread;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ /* get the interesting part of the marker data */
+ if (length >= APPN_DATA_LEN)
+ numtoread = APPN_DATA_LEN;
+ else if (length > 0)
+ numtoread = (unsigned int) length;
+ else
+ numtoread = 0;
+ for (i = 0; i < numtoread; i++)
+ INPUT_BYTE(cinfo, b[i], return FALSE);
+ length -= numtoread;
+
+ /* process it */
+ switch (cinfo->unread_marker) {
+ case M_APP0:
+ examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length);
+ break;
+ case M_APP14:
+ examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length);
+ break;
+ default:
+ /* can't get here unless jpeg_save_markers chooses wrong processor */
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+ break;
+ }
+
+ /* skip any remaining data -- could be lots */
+ INPUT_SYNC(cinfo);
+ if (length > 0)
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+
+#ifdef SAVE_MARKERS_SUPPORTED
+
+METHODDEF(boolean)
+save_marker (j_decompress_ptr cinfo)
+/* Save an APPn or COM marker into the marker list */
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+ jpeg_saved_marker_ptr cur_marker = marker->cur_marker;
+ unsigned int bytes_read, data_length;
+ JOCTET FAR * data;
+ INT32 length = 0;
+ INPUT_VARS(cinfo);
+
+ if (cur_marker == NULL) {
+ /* begin reading a marker */
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+ if (length >= 0) { /* watch out for bogus length word */
+ /* figure out how much we want to save */
+ unsigned int limit;
+ if (cinfo->unread_marker == (int) M_COM)
+ limit = marker->length_limit_COM;
+ else
+ limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0];
+ if ((unsigned int) length < limit)
+ limit = (unsigned int) length;
+ /* allocate and initialize the marker item */
+ cur_marker = (jpeg_saved_marker_ptr)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(struct jpeg_marker_struct) + limit);
+ cur_marker->next = NULL;
+ cur_marker->marker = (UINT8) cinfo->unread_marker;
+ cur_marker->original_length = (unsigned int) length;
+ cur_marker->data_length = limit;
+ /* data area is just beyond the jpeg_marker_struct */
+ data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1);
+ marker->cur_marker = cur_marker;
+ marker->bytes_read = 0;
+ bytes_read = 0;
+ data_length = limit;
+ } else {
+ /* deal with bogus length word */
+ bytes_read = data_length = 0;
+ data = NULL;
+ }
+ } else {
+ /* resume reading a marker */
+ bytes_read = marker->bytes_read;
+ data_length = cur_marker->data_length;
+ data = cur_marker->data + bytes_read;
+ }
+
+ while (bytes_read < data_length) {
+ INPUT_SYNC(cinfo); /* move the restart point to here */
+ marker->bytes_read = bytes_read;
+ /* If there's not at least one byte in buffer, suspend */
+ MAKE_BYTE_AVAIL(cinfo, return FALSE);
+ /* Copy bytes with reasonable rapidity */
+ while (bytes_read < data_length && bytes_in_buffer > 0) {
+ *data++ = *next_input_byte++;
+ bytes_in_buffer--;
+ bytes_read++;
+ }
+ }
+
+ /* Done reading what we want to read */
+ if (cur_marker != NULL) { /* will be NULL if bogus length word */
+ /* Add new marker to end of list */
+ if (cinfo->marker_list == NULL) {
+ cinfo->marker_list = cur_marker;
+ } else {
+ jpeg_saved_marker_ptr prev = cinfo->marker_list;
+ while (prev->next != NULL)
+ prev = prev->next;
+ prev->next = cur_marker;
+ }
+ /* Reset pointer & calc remaining data length */
+ data = cur_marker->data;
+ length = cur_marker->original_length - data_length;
+ }
+ /* Reset to initial state for next marker */
+ marker->cur_marker = NULL;
+
+ /* Process the marker if interesting; else just make a generic trace msg */
+ switch (cinfo->unread_marker) {
+ case M_APP0:
+ examine_app0(cinfo, data, data_length, length);
+ break;
+ case M_APP14:
+ examine_app14(cinfo, data, data_length, length);
+ break;
+ default:
+ TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker,
+ (int) (data_length + length));
+ break;
+ }
+
+ /* skip any remaining data -- could be lots */
+ INPUT_SYNC(cinfo); /* do before skip_input_data */
+ if (length > 0)
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+#endif /* SAVE_MARKERS_SUPPORTED */
+
+
+METHODDEF(boolean)
+skip_variable (j_decompress_ptr cinfo)
+/* Skip over an unknown or uninteresting variable-length marker */
+{
+ INT32 length;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
+
+ INPUT_SYNC(cinfo); /* do before skip_input_data */
+ if (length > 0)
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+
+/*
+ * Find the next JPEG marker, save it in cinfo->unread_marker.
+ * Returns FALSE if had to suspend before reaching a marker;
+ * in that case cinfo->unread_marker is unchanged.
+ *
+ * Note that the result might not be a valid marker code,
+ * but it will never be 0 or FF.
+ */
+
+LOCAL(boolean)
+next_marker (j_decompress_ptr cinfo)
+{
+ int c;
+ INPUT_VARS(cinfo);
+
+ for (;;) {
+ INPUT_BYTE(cinfo, c, return FALSE);
+ /* Skip any non-FF bytes.
+ * This may look a bit inefficient, but it will not occur in a valid file.
+ * We sync after each discarded byte so that a suspending data source
+ * can discard the byte from its buffer.
+ */
+ while (c != 0xFF) {
+ cinfo->marker->discarded_bytes++;
+ INPUT_SYNC(cinfo);
+ INPUT_BYTE(cinfo, c, return FALSE);
+ }
+ /* This loop swallows any duplicate FF bytes. Extra FFs are legal as
+ * pad bytes, so don't count them in discarded_bytes. We assume there
+ * will not be so many consecutive FF bytes as to overflow a suspending
+ * data source's input buffer.
+ */
+ do {
+ INPUT_BYTE(cinfo, c, return FALSE);
+ } while (c == 0xFF);
+ if (c != 0)
+ break; /* found a valid marker, exit loop */
+ /* Reach here if we found a stuffed-zero data sequence (FF/00).
+ * Discard it and loop back to try again.
+ */
+ cinfo->marker->discarded_bytes += 2;
+ INPUT_SYNC(cinfo);
+ }
+
+ if (cinfo->marker->discarded_bytes != 0) {
+ WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
+ cinfo->marker->discarded_bytes = 0;
+ }
+
+ cinfo->unread_marker = c;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+first_marker (j_decompress_ptr cinfo)
+/* Like next_marker, but used to obtain the initial SOI marker. */
+/* For this marker, we do not allow preceding garbage or fill; otherwise,
+ * we might well scan an entire input file before realizing it ain't JPEG.
+ * If an application wants to process non-JFIF files, it must seek to the
+ * SOI before calling the JPEG library.
+ */
+{
+ int c, c2;
+ INPUT_VARS(cinfo);
+
+ INPUT_BYTE(cinfo, c, return FALSE);
+ INPUT_BYTE(cinfo, c2, return FALSE);
+ if (c != 0xFF || c2 != (int) M_SOI)
+ ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
+
+ cinfo->unread_marker = c2;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Read markers until SOS or EOI.
+ *
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ *
+ * Note: This function may return a pseudo SOS marker (with zero
+ * component number) for treat by input controller's consume_input.
+ * consume_input itself should filter out (skip) the pseudo marker
+ * after processing for the caller.
+ */
+
+METHODDEF(int)
+read_markers (j_decompress_ptr cinfo)
+{
+ /* Outer loop repeats once for each marker. */
+ for (;;) {
+ /* Collect the marker proper, unless we already did. */
+ /* NB: first_marker() enforces the requirement that SOI appear first. */
+ if (cinfo->unread_marker == 0) {
+ if (! cinfo->marker->saw_SOI) {
+ if (! first_marker(cinfo))
+ return JPEG_SUSPENDED;
+ } else {
+ if (! next_marker(cinfo))
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* At this point cinfo->unread_marker contains the marker code and the
+ * input point is just past the marker proper, but before any parameters.
+ * A suspension will cause us to return with this state still true.
+ */
+ switch (cinfo->unread_marker) {
+ case M_SOI:
+ if (! get_soi(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF0: /* Baseline */
+ if (! get_sof(cinfo, TRUE, FALSE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF1: /* Extended sequential, Huffman */
+ if (! get_sof(cinfo, FALSE, FALSE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF2: /* Progressive, Huffman */
+ if (! get_sof(cinfo, FALSE, TRUE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF9: /* Extended sequential, arithmetic */
+ if (! get_sof(cinfo, FALSE, FALSE, TRUE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF10: /* Progressive, arithmetic */
+ if (! get_sof(cinfo, FALSE, TRUE, TRUE))
+ return JPEG_SUSPENDED;
+ break;
+
+ /* Currently unsupported SOFn types */
+ case M_SOF3: /* Lossless, Huffman */
+ case M_SOF5: /* Differential sequential, Huffman */
+ case M_SOF6: /* Differential progressive, Huffman */
+ case M_SOF7: /* Differential lossless, Huffman */
+ case M_JPG: /* Reserved for JPEG extensions */
+ case M_SOF11: /* Lossless, arithmetic */
+ case M_SOF13: /* Differential sequential, arithmetic */
+ case M_SOF14: /* Differential progressive, arithmetic */
+ case M_SOF15: /* Differential lossless, arithmetic */
+ ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
+ break;
+
+ case M_SOS:
+ if (! get_sos(cinfo))
+ return JPEG_SUSPENDED;
+ cinfo->unread_marker = 0; /* processed the marker */
+ return JPEG_REACHED_SOS;
+
+ case M_EOI:
+ TRACEMS(cinfo, 1, JTRC_EOI);
+ cinfo->unread_marker = 0; /* processed the marker */
+ return JPEG_REACHED_EOI;
+
+ case M_DAC:
+ if (! get_dac(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DHT:
+ if (! get_dht(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DQT:
+ if (! get_dqt(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DRI:
+ if (! get_dri(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_APP0:
+ case M_APP1:
+ case M_APP2:
+ case M_APP3:
+ case M_APP4:
+ case M_APP5:
+ case M_APP6:
+ case M_APP7:
+ case M_APP8:
+ case M_APP9:
+ case M_APP10:
+ case M_APP11:
+ case M_APP12:
+ case M_APP13:
+ case M_APP14:
+ case M_APP15:
+ if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[
+ cinfo->unread_marker - (int) M_APP0]) (cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_COM:
+ if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_RST0: /* these are all parameterless */
+ case M_RST1:
+ case M_RST2:
+ case M_RST3:
+ case M_RST4:
+ case M_RST5:
+ case M_RST6:
+ case M_RST7:
+ case M_TEM:
+ TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
+ break;
+
+ case M_DNL: /* Ignore DNL ... perhaps the wrong thing */
+ if (! skip_variable(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ default: /* must be DHP, EXP, JPGn, or RESn */
+ /* For now, we treat the reserved markers as fatal errors since they are
+ * likely to be used to signal incompatible JPEG Part 3 extensions.
+ * Once the JPEG 3 version-number marker is well defined, this code
+ * ought to change!
+ */
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+ break;
+ }
+ /* Successfully processed marker, so reset state variable */
+ cinfo->unread_marker = 0;
+ } /* end loop */
+}
+
+
+/*
+ * Read a restart marker, which is expected to appear next in the datastream;
+ * if the marker is not there, take appropriate recovery action.
+ * Returns FALSE if suspension is required.
+ *
+ * This is called by the entropy decoder after it has read an appropriate
+ * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder
+ * has already read a marker from the data source. Under normal conditions
+ * cinfo->unread_marker will be reset to 0 before returning; if not reset,
+ * it holds a marker which the decoder will be unable to read past.
+ */
+
+METHODDEF(boolean)
+read_restart_marker (j_decompress_ptr cinfo)
+{
+ /* Obtain a marker unless we already did. */
+ /* Note that next_marker will complain if it skips any data. */
+ if (cinfo->unread_marker == 0) {
+ if (! next_marker(cinfo))
+ return FALSE;
+ }
+
+ if (cinfo->unread_marker ==
+ ((int) M_RST0 + cinfo->marker->next_restart_num)) {
+ /* Normal case --- swallow the marker and let entropy decoder continue */
+ TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num);
+ cinfo->unread_marker = 0;
+ } else {
+ /* Uh-oh, the restart markers have been messed up. */
+ /* Let the data source manager determine how to resync. */
+ if (! (*cinfo->src->resync_to_restart) (cinfo,
+ cinfo->marker->next_restart_num))
+ return FALSE;
+ }
+
+ /* Update next-restart state */
+ cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
+
+ return TRUE;
+}
+
+
+/*
+ * This is the default resync_to_restart method for data source managers
+ * to use if they don't have any better approach. Some data source managers
+ * may be able to back up, or may have additional knowledge about the data
+ * which permits a more intelligent recovery strategy; such managers would
+ * presumably supply their own resync method.
+ *
+ * read_restart_marker calls resync_to_restart if it finds a marker other than
+ * the restart marker it was expecting. (This code is *not* used unless
+ * a nonzero restart interval has been declared.) cinfo->unread_marker is
+ * the marker code actually found (might be anything, except 0 or FF).
+ * The desired restart marker number (0..7) is passed as a parameter.
+ * This routine is supposed to apply whatever error recovery strategy seems
+ * appropriate in order to position the input stream to the next data segment.
+ * Note that cinfo->unread_marker is treated as a marker appearing before
+ * the current data-source input point; usually it should be reset to zero
+ * before returning.
+ * Returns FALSE if suspension is required.
+ *
+ * This implementation is substantially constrained by wanting to treat the
+ * input as a data stream; this means we can't back up. Therefore, we have
+ * only the following actions to work with:
+ * 1. Simply discard the marker and let the entropy decoder resume at next
+ * byte of file.
+ * 2. Read forward until we find another marker, discarding intervening
+ * data. (In theory we could look ahead within the current bufferload,
+ * without having to discard data if we don't find the desired marker.
+ * This idea is not implemented here, in part because it makes behavior
+ * dependent on buffer size and chance buffer-boundary positions.)
+ * 3. Leave the marker unread (by failing to zero cinfo->unread_marker).
+ * This will cause the entropy decoder to process an empty data segment,
+ * inserting dummy zeroes, and then we will reprocess the marker.
+ *
+ * #2 is appropriate if we think the desired marker lies ahead, while #3 is
+ * appropriate if the found marker is a future restart marker (indicating
+ * that we have missed the desired restart marker, probably because it got
+ * corrupted).
+ * We apply #2 or #3 if the found marker is a restart marker no more than
+ * two counts behind or ahead of the expected one. We also apply #2 if the
+ * found marker is not a legal JPEG marker code (it's certainly bogus data).
+ * If the found marker is a restart marker more than 2 counts away, we do #1
+ * (too much risk that the marker is erroneous; with luck we will be able to
+ * resync at some future point).
+ * For any valid non-restart JPEG marker, we apply #3. This keeps us from
+ * overrunning the end of a scan. An implementation limited to single-scan
+ * files might find it better to apply #2 for markers other than EOI, since
+ * any other marker would have to be bogus data in that case.
+ */
+
+GLOBAL(boolean)
+jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
+{
+ int marker = cinfo->unread_marker;
+ int action = 1;
+
+ /* Always put up a warning. */
+ WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
+
+ /* Outer loop handles repeated decision after scanning forward. */
+ for (;;) {
+ if (marker < (int) M_SOF0)
+ action = 2; /* invalid marker */
+ else if (marker < (int) M_RST0 || marker > (int) M_RST7)
+ action = 3; /* valid non-restart marker */
+ else {
+ if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
+ marker == ((int) M_RST0 + ((desired+2) & 7)))
+ action = 3; /* one of the next two expected restarts */
+ else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
+ marker == ((int) M_RST0 + ((desired-2) & 7)))
+ action = 2; /* a prior restart, so advance */
+ else
+ action = 1; /* desired restart or too far away */
+ }
+ TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
+ switch (action) {
+ case 1:
+ /* Discard marker and let entropy decoder resume processing. */
+ cinfo->unread_marker = 0;
+ return TRUE;
+ case 2:
+ /* Scan to the next marker, and repeat the decision loop. */
+ if (! next_marker(cinfo))
+ return FALSE;
+ marker = cinfo->unread_marker;
+ break;
+ case 3:
+ /* Return without advancing past this marker. */
+ /* Entropy decoder will be forced to process an empty segment. */
+ return TRUE;
+ }
+ } /* end loop */
+}
+
+
+/*
+ * Reset marker processing state to begin a fresh datastream.
+ */
+
+METHODDEF(void)
+reset_marker_reader (j_decompress_ptr cinfo)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+ cinfo->comp_info = NULL; /* until allocated by get_sof */
+ cinfo->input_scan_number = 0; /* no SOS seen yet */
+ cinfo->unread_marker = 0; /* no pending marker */
+ marker->pub.saw_SOI = FALSE; /* set internal state too */
+ marker->pub.saw_SOF = FALSE;
+ marker->pub.discarded_bytes = 0;
+ marker->cur_marker = NULL;
+}
+
+
+/*
+ * Initialize the marker reader module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL(void)
+jinit_marker_reader (j_decompress_ptr cinfo)
+{
+ my_marker_ptr marker;
+ int i;
+
+ /* Create subobject in permanent pool */
+ marker = (my_marker_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_marker_reader));
+ cinfo->marker = (struct jpeg_marker_reader *) marker;
+ /* Initialize public method pointers */
+ marker->pub.reset_marker_reader = reset_marker_reader;
+ marker->pub.read_markers = read_markers;
+ marker->pub.read_restart_marker = read_restart_marker;
+ /* Initialize COM/APPn processing.
+ * By default, we examine and then discard APP0 and APP14,
+ * but simply discard COM and all other APPn.
+ */
+ marker->process_COM = skip_variable;
+ marker->length_limit_COM = 0;
+ for (i = 0; i < 16; i++) {
+ marker->process_APPn[i] = skip_variable;
+ marker->length_limit_APPn[i] = 0;
+ }
+ marker->process_APPn[0] = get_interesting_appn;
+ marker->process_APPn[14] = get_interesting_appn;
+ /* Reset marker processing state */
+ reset_marker_reader(cinfo);
+}
+
+
+/*
+ * Control saving of COM and APPn markers into marker_list.
+ */
+
+#ifdef SAVE_MARKERS_SUPPORTED
+
+GLOBAL(void)
+jpeg_save_markers (j_decompress_ptr cinfo, int marker_code,
+ unsigned int length_limit)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+ long maxlength;
+ jpeg_marker_parser_method processor;
+
+ /* Length limit mustn't be larger than what we can allocate
+ * (should only be a concern in a 16-bit environment).
+ */
+ maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct);
+ if (((long) length_limit) > maxlength)
+ length_limit = (unsigned int) maxlength;
+
+ /* Choose processor routine to use.
+ * APP0/APP14 have special requirements.
+ */
+ if (length_limit) {
+ processor = save_marker;
+ /* If saving APP0/APP14, save at least enough for our internal use. */
+ if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN)
+ length_limit = APP0_DATA_LEN;
+ else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN)
+ length_limit = APP14_DATA_LEN;
+ } else {
+ processor = skip_variable;
+ /* If discarding APP0/APP14, use our regular on-the-fly processor. */
+ if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14)
+ processor = get_interesting_appn;
+ }
+
+ if (marker_code == (int) M_COM) {
+ marker->process_COM = processor;
+ marker->length_limit_COM = length_limit;
+ } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) {
+ marker->process_APPn[marker_code - (int) M_APP0] = processor;
+ marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit;
+ } else
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}
+
+#endif /* SAVE_MARKERS_SUPPORTED */
+
+
+/*
+ * Install a special processing method for COM or APPn markers.
+ */
+
+GLOBAL(void)
+jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
+ jpeg_marker_parser_method routine)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+ if (marker_code == (int) M_COM)
+ marker->process_COM = routine;
+ else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
+ marker->process_APPn[marker_code - (int) M_APP0] = routine;
+ else
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}
diff --git a/src/3rdparty/libjpeg/jdmaster.c b/src/3rdparty/libjpeg/jdmaster.c
new file mode 100644
index 0000000..8c1146e4
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdmaster.c
@@ -0,0 +1,533 @@
+/*
+ * jdmaster.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2002-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG decompressor.
+ * These routines are concerned with selecting the modules to be executed
+ * and with determining the number of passes and the work to be done in each
+ * pass.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_decomp_master pub; /* public fields */
+
+ int pass_number; /* # of passes completed */
+
+ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
+
+ /* Saved references to initialized quantizer modules,
+ * in case we need to switch modes.
+ */
+ struct jpeg_color_quantizer * quantizer_1pass;
+ struct jpeg_color_quantizer * quantizer_2pass;
+} my_decomp_master;
+
+typedef my_decomp_master * my_master_ptr;
+
+
+/*
+ * Determine whether merged upsample/color conversion should be used.
+ * CRUCIAL: this must match the actual capabilities of jdmerge.c!
+ */
+
+LOCAL(boolean)
+use_merged_upsample (j_decompress_ptr cinfo)
+{
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+ /* Merging is the equivalent of plain box-filter upsampling */
+ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
+ return FALSE;
+ /* jdmerge.c only supports YCC=>RGB color conversion */
+ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
+ cinfo->out_color_space != JCS_RGB ||
+ cinfo->out_color_components != RGB_PIXELSIZE)
+ return FALSE;
+ /* and it only handles 2h1v or 2h2v sampling ratios */
+ if (cinfo->comp_info[0].h_samp_factor != 2 ||
+ cinfo->comp_info[1].h_samp_factor != 1 ||
+ cinfo->comp_info[2].h_samp_factor != 1 ||
+ cinfo->comp_info[0].v_samp_factor > 2 ||
+ cinfo->comp_info[1].v_samp_factor != 1 ||
+ cinfo->comp_info[2].v_samp_factor != 1)
+ return FALSE;
+ /* furthermore, it doesn't work if we've scaled the IDCTs differently */
+ if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
+ cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
+ cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
+ cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
+ cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
+ cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
+ return FALSE;
+ /* ??? also need to test for upsample-time rescaling, when & if supported */
+ return TRUE; /* by golly, it'll work... */
+#else
+ return FALSE;
+#endif
+}
+
+
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ * Also note that it may be called before the master module is initialized!
+ */
+
+GLOBAL(void)
+jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase.
+ * This function is used for full decompression.
+ */
+{
+#ifdef IDCT_SCALING_SUPPORTED
+ int ci;
+ jpeg_component_info *compptr;
+#endif
+
+ /* Prevent application from calling me at wrong times */
+ if (cinfo->global_state != DSTATE_READY)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* Compute core output image dimensions and DCT scaling choices. */
+ jpeg_core_output_dimensions(cinfo);
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+ /* In selecting the actual DCT scaling for each component, we try to
+ * scale up the chroma components via IDCT scaling rather than upsampling.
+ * This saves time if the upsampler gets to use 1:1 scaling.
+ * Note this code adapts subsampling ratios which are powers of 2.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ int ssize = 1;
+ while (cinfo->min_DCT_h_scaled_size * ssize <=
+ (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+ compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
+ ssize = 1;
+ while (cinfo->min_DCT_v_scaled_size * ssize <=
+ (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+ compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
+
+ /* We don't support IDCT ratios larger than 2. */
+ if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
+ compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
+ else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
+ compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
+ }
+
+ /* Recompute downsampled dimensions of components;
+ * application needs to know these if using raw downsampled data.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Size in samples, after IDCT scaling */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width *
+ (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height *
+ (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ }
+
+#endif /* IDCT_SCALING_SUPPORTED */
+
+ /* Report number of components in selected colorspace. */
+ /* Probably this should be in the color conversion module... */
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ cinfo->out_color_components = 1;
+ break;
+ case JCS_RGB:
+#if RGB_PIXELSIZE != 3
+ cinfo->out_color_components = RGB_PIXELSIZE;
+ break;
+#endif /* else share code with YCbCr */
+ case JCS_YCbCr:
+ cinfo->out_color_components = 3;
+ break;
+ case JCS_CMYK:
+ case JCS_YCCK:
+ cinfo->out_color_components = 4;
+ break;
+ default: /* else must be same colorspace as in file */
+ cinfo->out_color_components = cinfo->num_components;
+ break;
+ }
+ cinfo->output_components = (cinfo->quantize_colors ? 1 :
+ cinfo->out_color_components);
+
+ /* See if upsampler will want to emit more than one row at a time */
+ if (use_merged_upsample(cinfo))
+ cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
+ else
+ cinfo->rec_outbuf_height = 1;
+}
+
+
+/*
+ * Several decompression processes need to range-limit values to the range
+ * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
+ * due to noise introduced by quantization, roundoff error, etc. These
+ * processes are inner loops and need to be as fast as possible. On most
+ * machines, particularly CPUs with pipelines or instruction prefetch,
+ * a (subscript-check-less) C table lookup
+ * x = sample_range_limit[x];
+ * is faster than explicit tests
+ * if (x < 0) x = 0;
+ * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
+ * These processes all use a common table prepared by the routine below.
+ *
+ * For most steps we can mathematically guarantee that the initial value
+ * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
+ * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
+ * limiting step (just after the IDCT), a wildly out-of-range value is
+ * possible if the input data is corrupt. To avoid any chance of indexing
+ * off the end of memory and getting a bad-pointer trap, we perform the
+ * post-IDCT limiting thus:
+ * x = range_limit[x & MASK];
+ * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
+ * samples. Under normal circumstances this is more than enough range and
+ * a correct output will be generated; with bogus input data the mask will
+ * cause wraparound, and we will safely generate a bogus-but-in-range output.
+ * For the post-IDCT step, we want to convert the data from signed to unsigned
+ * representation by adding CENTERJSAMPLE at the same time that we limit it.
+ * So the post-IDCT limiting table ends up looking like this:
+ * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
+ * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ * 0,1,...,CENTERJSAMPLE-1
+ * Negative inputs select values from the upper half of the table after
+ * masking.
+ *
+ * We can save some space by overlapping the start of the post-IDCT table
+ * with the simpler range limiting table. The post-IDCT table begins at
+ * sample_range_limit + CENTERJSAMPLE.
+ *
+ * Note that the table is allocated in near data space on PCs; it's small
+ * enough and used often enough to justify this.
+ */
+
+LOCAL(void)
+prepare_range_limit_table (j_decompress_ptr cinfo)
+/* Allocate and fill in the sample_range_limit table */
+{
+ JSAMPLE * table;
+ int i;
+
+ table = (JSAMPLE *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+ table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
+ cinfo->sample_range_limit = table;
+ /* First segment of "simple" table: limit[x] = 0 for x < 0 */
+ MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
+ /* Main part of "simple" table: limit[x] = x */
+ for (i = 0; i <= MAXJSAMPLE; i++)
+ table[i] = (JSAMPLE) i;
+ table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
+ /* End of simple table, rest of first half of post-IDCT table */
+ for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
+ table[i] = MAXJSAMPLE;
+ /* Second half of post-IDCT table */
+ MEMZERO(table + (2 * (MAXJSAMPLE+1)),
+ (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+ MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
+ cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
+}
+
+
+/*
+ * Master selection of decompression modules.
+ * This is done once at jpeg_start_decompress time. We determine
+ * which modules will be used and give them appropriate initialization calls.
+ * We also initialize the decompressor input side to begin consuming data.
+ *
+ * Since jpeg_read_header has finished, we know what is in the SOF
+ * and (first) SOS markers. We also have all the application parameter
+ * settings.
+ */
+
+LOCAL(void)
+master_selection (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+ boolean use_c_buffer;
+ long samplesperrow;
+ JDIMENSION jd_samplesperrow;
+
+ /* Initialize dimensions and other stuff */
+ jpeg_calc_output_dimensions(cinfo);
+ prepare_range_limit_table(cinfo);
+
+ /* Width of an output scanline must be representable as JDIMENSION. */
+ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
+ jd_samplesperrow = (JDIMENSION) samplesperrow;
+ if ((long) jd_samplesperrow != samplesperrow)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+ /* Initialize my private state */
+ master->pass_number = 0;
+ master->using_merged_upsample = use_merged_upsample(cinfo);
+
+ /* Color quantizer selection */
+ master->quantizer_1pass = NULL;
+ master->quantizer_2pass = NULL;
+ /* No mode changes if not using buffered-image mode. */
+ if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
+ cinfo->enable_1pass_quant = FALSE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+ }
+ if (cinfo->quantize_colors) {
+ if (cinfo->raw_data_out)
+ ERREXIT(cinfo, JERR_NOTIMPL);
+ /* 2-pass quantizer only works in 3-component color space. */
+ if (cinfo->out_color_components != 3) {
+ cinfo->enable_1pass_quant = TRUE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+ cinfo->colormap = NULL;
+ } else if (cinfo->colormap != NULL) {
+ cinfo->enable_external_quant = TRUE;
+ } else if (cinfo->two_pass_quantize) {
+ cinfo->enable_2pass_quant = TRUE;
+ } else {
+ cinfo->enable_1pass_quant = TRUE;
+ }
+
+ if (cinfo->enable_1pass_quant) {
+#ifdef QUANT_1PASS_SUPPORTED
+ jinit_1pass_quantizer(cinfo);
+ master->quantizer_1pass = cinfo->cquantize;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+
+ /* We use the 2-pass code to map to external colormaps. */
+ if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
+#ifdef QUANT_2PASS_SUPPORTED
+ jinit_2pass_quantizer(cinfo);
+ master->quantizer_2pass = cinfo->cquantize;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+ /* If both quantizers are initialized, the 2-pass one is left active;
+ * this is necessary for starting with quantization to an external map.
+ */
+ }
+
+ /* Post-processing: in particular, color conversion first */
+ if (! cinfo->raw_data_out) {
+ if (master->using_merged_upsample) {
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+ jinit_merged_upsampler(cinfo); /* does color conversion too */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ jinit_color_deconverter(cinfo);
+ jinit_upsampler(cinfo);
+ }
+ jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
+ }
+ /* Inverse DCT */
+ jinit_inverse_dct(cinfo);
+ /* Entropy decoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_decoder(cinfo);
+ else {
+ jinit_huff_decoder(cinfo);
+ }
+
+ /* Initialize principal buffer controllers. */
+ use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
+ jinit_d_coef_controller(cinfo, use_c_buffer);
+
+ if (! cinfo->raw_data_out)
+ jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Initialize input side of decompressor to consume first scan. */
+ (*cinfo->inputctl->start_input_pass) (cinfo);
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* If jpeg_start_decompress will read the whole file, initialize
+ * progress monitoring appropriately. The input step is counted
+ * as one pass.
+ */
+ if (cinfo->progress != NULL && ! cinfo->buffered_image &&
+ cinfo->inputctl->has_multiple_scans) {
+ int nscans;
+ /* Estimate number of scans to set pass_limit. */
+ if (cinfo->progressive_mode) {
+ /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+ nscans = 2 + 3 * cinfo->num_components;
+ } else {
+ /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+ nscans = cinfo->num_components;
+ }
+ cinfo->progress->pass_counter = 0L;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+ cinfo->progress->completed_passes = 0;
+ cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
+ /* Count the input pass as done */
+ master->pass_number++;
+ }
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each output pass. We determine which
+ * modules will be active during this pass and give them appropriate
+ * start_pass calls. We also set is_dummy_pass to indicate whether this
+ * is a "real" output pass or a dummy pass for color quantization.
+ * (In the latter case, jdapistd.c will crank the pass to completion.)
+ */
+
+METHODDEF(void)
+prepare_for_output_pass (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ if (master->pub.is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+ /* Final pass of 2-pass quantization */
+ master->pub.is_dummy_pass = FALSE;
+ (*cinfo->cquantize->start_pass) (cinfo, FALSE);
+ (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
+ (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+ } else {
+ if (cinfo->quantize_colors && cinfo->colormap == NULL) {
+ /* Select new quantization method */
+ if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
+ cinfo->cquantize = master->quantizer_2pass;
+ master->pub.is_dummy_pass = TRUE;
+ } else if (cinfo->enable_1pass_quant) {
+ cinfo->cquantize = master->quantizer_1pass;
+ } else {
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+ }
+ }
+ (*cinfo->idct->start_pass) (cinfo);
+ (*cinfo->coef->start_output_pass) (cinfo);
+ if (! cinfo->raw_data_out) {
+ if (! master->using_merged_upsample)
+ (*cinfo->cconvert->start_pass) (cinfo);
+ (*cinfo->upsample->start_pass) (cinfo);
+ if (cinfo->quantize_colors)
+ (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
+ (*cinfo->post->start_pass) (cinfo,
+ (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+ (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+ }
+ }
+
+ /* Set up progress monitor's pass info if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->completed_passes = master->pass_number;
+ cinfo->progress->total_passes = master->pass_number +
+ (master->pub.is_dummy_pass ? 2 : 1);
+ /* In buffered-image mode, we assume one more output pass if EOI not
+ * yet reached, but no more passes if EOI has been reached.
+ */
+ if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
+ cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
+ }
+ }
+}
+
+
+/*
+ * Finish up at end of an output pass.
+ */
+
+METHODDEF(void)
+finish_output_pass (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ if (cinfo->quantize_colors)
+ (*cinfo->cquantize->finish_pass) (cinfo);
+ master->pass_number++;
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+GLOBAL(void)
+jpeg_new_colormap (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ /* Prevent application from calling me at wrong times */
+ if (cinfo->global_state != DSTATE_BUFIMAGE)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (cinfo->quantize_colors && cinfo->enable_external_quant &&
+ cinfo->colormap != NULL) {
+ /* Select 2-pass quantizer for external colormap use */
+ cinfo->cquantize = master->quantizer_2pass;
+ /* Notify quantizer of colormap change */
+ (*cinfo->cquantize->new_color_map) (cinfo);
+ master->pub.is_dummy_pass = FALSE; /* just in case */
+ } else
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+/*
+ * Initialize master decompression control and select active modules.
+ * This is performed at the start of jpeg_start_decompress.
+ */
+
+GLOBAL(void)
+jinit_master_decompress (j_decompress_ptr cinfo)
+{
+ my_master_ptr master;
+
+ master = (my_master_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_decomp_master));
+ cinfo->master = (struct jpeg_decomp_master *) master;
+ master->pub.prepare_for_output_pass = prepare_for_output_pass;
+ master->pub.finish_output_pass = finish_output_pass;
+
+ master->pub.is_dummy_pass = FALSE;
+
+ master_selection(cinfo);
+}
diff --git a/src/3rdparty/libjpeg/jdmerge.c b/src/3rdparty/libjpeg/jdmerge.c
new file mode 100644
index 0000000..3744446
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdmerge.c
@@ -0,0 +1,400 @@
+/*
+ * jdmerge.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains code for merged upsampling/color conversion.
+ *
+ * This file combines functions from jdsample.c and jdcolor.c;
+ * read those files first to understand what's going on.
+ *
+ * When the chroma components are to be upsampled by simple replication
+ * (ie, box filtering), we can save some work in color conversion by
+ * calculating all the output pixels corresponding to a pair of chroma
+ * samples at one time. In the conversion equations
+ * R = Y + K1 * Cr
+ * G = Y + K2 * Cb + K3 * Cr
+ * B = Y + K4 * Cb
+ * only the Y term varies among the group of pixels corresponding to a pair
+ * of chroma samples, so the rest of the terms can be calculated just once.
+ * At typical sampling ratios, this eliminates half or three-quarters of the
+ * multiplications needed for color conversion.
+ *
+ * This file currently provides implementations for the following cases:
+ * YCbCr => RGB color conversion only.
+ * Sampling ratios of 2h1v or 2h2v.
+ * No scaling needed at upsample time.
+ * Corner-aligned (non-CCIR601) sampling alignment.
+ * Other special cases could be added, but in most applications these are
+ * the only common cases. (For uncommon cases we fall back on the more
+ * general code in jdsample.c and jdcolor.c.)
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_upsampler pub; /* public fields */
+
+ /* Pointer to routine to do actual upsampling/conversion of one row group */
+ JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+ JSAMPARRAY output_buf));
+
+ /* Private state for YCC->RGB conversion */
+ int * Cr_r_tab; /* => table for Cr to R conversion */
+ int * Cb_b_tab; /* => table for Cb to B conversion */
+ INT32 * Cr_g_tab; /* => table for Cr to G conversion */
+ INT32 * Cb_g_tab; /* => table for Cb to G conversion */
+
+ /* For 2:1 vertical sampling, we produce two output rows at a time.
+ * We need a "spare" row buffer to hold the second output row if the
+ * application provides just a one-row buffer; we also use the spare
+ * to discard the dummy last row if the image height is odd.
+ */
+ JSAMPROW spare_row;
+ boolean spare_full; /* T if spare buffer is occupied */
+
+ JDIMENSION out_row_width; /* samples per output row */
+ JDIMENSION rows_to_go; /* counts rows remaining in image */
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ * This is taken directly from jdcolor.c; see that file for more info.
+ */
+
+LOCAL(void)
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ int i;
+ INT32 x;
+ SHIFT_TEMPS
+
+ upsample->Cr_r_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ upsample->Cb_b_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ upsample->Cr_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+ upsample->Cb_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+
+ for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+ /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+ /* Cr=>R value is nearest int to 1.40200 * x */
+ upsample->Cr_r_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+ /* Cb=>B value is nearest int to 1.77200 * x */
+ upsample->Cb_b_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+ /* Cr=>G value is scaled-up -0.71414 * x */
+ upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+ /* Cb=>G value is scaled-up -0.34414 * x */
+ /* We also add in ONE_HALF so that need not do it in inner loop */
+ upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+ }
+}
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_merged_upsample (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Mark the spare buffer empty */
+ upsample->spare_full = FALSE;
+ /* Initialize total-height counter for detecting bottom of image */
+ upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * The control routine just handles the row buffering considerations.
+ */
+
+METHODDEF(void)
+merged_2v_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+/* 2:1 vertical sampling case: may need a spare row. */
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ JSAMPROW work_ptrs[2];
+ JDIMENSION num_rows; /* number of rows returned to caller */
+
+ if (upsample->spare_full) {
+ /* If we have a spare row saved from a previous cycle, just return it. */
+ jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
+ 1, upsample->out_row_width);
+ num_rows = 1;
+ upsample->spare_full = FALSE;
+ } else {
+ /* Figure number of rows to return to caller. */
+ num_rows = 2;
+ /* Not more than the distance to the end of the image. */
+ if (num_rows > upsample->rows_to_go)
+ num_rows = upsample->rows_to_go;
+ /* And not more than what the client can accept: */
+ out_rows_avail -= *out_row_ctr;
+ if (num_rows > out_rows_avail)
+ num_rows = out_rows_avail;
+ /* Create output pointer array for upsampler. */
+ work_ptrs[0] = output_buf[*out_row_ctr];
+ if (num_rows > 1) {
+ work_ptrs[1] = output_buf[*out_row_ctr + 1];
+ } else {
+ work_ptrs[1] = upsample->spare_row;
+ upsample->spare_full = TRUE;
+ }
+ /* Now do the upsampling. */
+ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
+ }
+
+ /* Adjust counts */
+ *out_row_ctr += num_rows;
+ upsample->rows_to_go -= num_rows;
+ /* When the buffer is emptied, declare this input row group consumed */
+ if (! upsample->spare_full)
+ (*in_row_group_ctr)++;
+}
+
+
+METHODDEF(void)
+merged_1v_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+/* 1:1 vertical sampling case: much easier, never need a spare row. */
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Just do the upsampling. */
+ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
+ output_buf + *out_row_ctr);
+ /* Adjust counts */
+ (*out_row_ctr)++;
+ (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by the control routines to do
+ * the actual upsampling/conversion. One row group is processed per call.
+ *
+ * Note: since we may be writing directly into application-supplied buffers,
+ * we have to be honest about the output width; we can't assume the buffer
+ * has been rounded up to an even width.
+ */
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
+ */
+
+METHODDEF(void)
+h2v1_merged_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+ JSAMPARRAY output_buf)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ register int y, cred, cgreen, cblue;
+ int cb, cr;
+ register JSAMPROW outptr;
+ JSAMPROW inptr0, inptr1, inptr2;
+ JDIMENSION col;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ int * Crrtab = upsample->Cr_r_tab;
+ int * Cbbtab = upsample->Cb_b_tab;
+ INT32 * Crgtab = upsample->Cr_g_tab;
+ INT32 * Cbgtab = upsample->Cb_g_tab;
+ SHIFT_TEMPS
+
+ inptr0 = input_buf[0][in_row_group_ctr];
+ inptr1 = input_buf[1][in_row_group_ctr];
+ inptr2 = input_buf[2][in_row_group_ctr];
+ outptr = output_buf[0];
+ /* Loop for each pair of output pixels */
+ for (col = cinfo->output_width >> 1; col > 0; col--) {
+ /* Do the chroma part of the calculation */
+ cb = GETJSAMPLE(*inptr1++);
+ cr = GETJSAMPLE(*inptr2++);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ /* Fetch 2 Y values and emit 2 pixels */
+ y = GETJSAMPLE(*inptr0++);
+ outptr[RGB_RED] = range_limit[y + cred];
+ outptr[RGB_GREEN] = range_limit[y + cgreen];
+ outptr[RGB_BLUE] = range_limit[y + cblue];
+ outptr += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr0++);
+ outptr[RGB_RED] = range_limit[y + cred];
+ outptr[RGB_GREEN] = range_limit[y + cgreen];
+ outptr[RGB_BLUE] = range_limit[y + cblue];
+ outptr += RGB_PIXELSIZE;
+ }
+ /* If image width is odd, do the last output column separately */
+ if (cinfo->output_width & 1) {
+ cb = GETJSAMPLE(*inptr1);
+ cr = GETJSAMPLE(*inptr2);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ y = GETJSAMPLE(*inptr0);
+ outptr[RGB_RED] = range_limit[y + cred];
+ outptr[RGB_GREEN] = range_limit[y + cgreen];
+ outptr[RGB_BLUE] = range_limit[y + cblue];
+ }
+}
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
+ */
+
+METHODDEF(void)
+h2v2_merged_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+ JSAMPARRAY output_buf)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ register int y, cred, cgreen, cblue;
+ int cb, cr;
+ register JSAMPROW outptr0, outptr1;
+ JSAMPROW inptr00, inptr01, inptr1, inptr2;
+ JDIMENSION col;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ int * Crrtab = upsample->Cr_r_tab;
+ int * Cbbtab = upsample->Cb_b_tab;
+ INT32 * Crgtab = upsample->Cr_g_tab;
+ INT32 * Cbgtab = upsample->Cb_g_tab;
+ SHIFT_TEMPS
+
+ inptr00 = input_buf[0][in_row_group_ctr*2];
+ inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
+ inptr1 = input_buf[1][in_row_group_ctr];
+ inptr2 = input_buf[2][in_row_group_ctr];
+ outptr0 = output_buf[0];
+ outptr1 = output_buf[1];
+ /* Loop for each group of output pixels */
+ for (col = cinfo->output_width >> 1; col > 0; col--) {
+ /* Do the chroma part of the calculation */
+ cb = GETJSAMPLE(*inptr1++);
+ cr = GETJSAMPLE(*inptr2++);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ /* Fetch 4 Y values and emit 4 pixels */
+ y = GETJSAMPLE(*inptr00++);
+ outptr0[RGB_RED] = range_limit[y + cred];
+ outptr0[RGB_GREEN] = range_limit[y + cgreen];
+ outptr0[RGB_BLUE] = range_limit[y + cblue];
+ outptr0 += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr00++);
+ outptr0[RGB_RED] = range_limit[y + cred];
+ outptr0[RGB_GREEN] = range_limit[y + cgreen];
+ outptr0[RGB_BLUE] = range_limit[y + cblue];
+ outptr0 += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr01++);
+ outptr1[RGB_RED] = range_limit[y + cred];
+ outptr1[RGB_GREEN] = range_limit[y + cgreen];
+ outptr1[RGB_BLUE] = range_limit[y + cblue];
+ outptr1 += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr01++);
+ outptr1[RGB_RED] = range_limit[y + cred];
+ outptr1[RGB_GREEN] = range_limit[y + cgreen];
+ outptr1[RGB_BLUE] = range_limit[y + cblue];
+ outptr1 += RGB_PIXELSIZE;
+ }
+ /* If image width is odd, do the last output column separately */
+ if (cinfo->output_width & 1) {
+ cb = GETJSAMPLE(*inptr1);
+ cr = GETJSAMPLE(*inptr2);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ y = GETJSAMPLE(*inptr00);
+ outptr0[RGB_RED] = range_limit[y + cred];
+ outptr0[RGB_GREEN] = range_limit[y + cgreen];
+ outptr0[RGB_BLUE] = range_limit[y + cblue];
+ y = GETJSAMPLE(*inptr01);
+ outptr1[RGB_RED] = range_limit[y + cred];
+ outptr1[RGB_GREEN] = range_limit[y + cgreen];
+ outptr1[RGB_BLUE] = range_limit[y + cblue];
+ }
+}
+
+
+/*
+ * Module initialization routine for merged upsampling/color conversion.
+ *
+ * NB: this is called under the conditions determined by use_merged_upsample()
+ * in jdmaster.c. That routine MUST correspond to the actual capabilities
+ * of this module; no safety checks are made here.
+ */
+
+GLOBAL(void)
+jinit_merged_upsampler (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample;
+
+ upsample = (my_upsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_upsampler));
+ cinfo->upsample = (struct jpeg_upsampler *) upsample;
+ upsample->pub.start_pass = start_pass_merged_upsample;
+ upsample->pub.need_context_rows = FALSE;
+
+ upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
+
+ if (cinfo->max_v_samp_factor == 2) {
+ upsample->pub.upsample = merged_2v_upsample;
+ upsample->upmethod = h2v2_merged_upsample;
+ /* Allocate a spare row buffer */
+ upsample->spare_row = (JSAMPROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
+ } else {
+ upsample->pub.upsample = merged_1v_upsample;
+ upsample->upmethod = h2v1_merged_upsample;
+ /* No spare row needed */
+ upsample->spare_row = NULL;
+ }
+
+ build_ycc_rgb_table(cinfo);
+}
+
+#endif /* UPSAMPLE_MERGING_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jdpostct.c b/src/3rdparty/libjpeg/jdpostct.c
new file mode 100644
index 0000000..571563d
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdpostct.c
@@ -0,0 +1,290 @@
+/*
+ * jdpostct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the decompression postprocessing controller.
+ * This controller manages the upsampling, color conversion, and color
+ * quantization/reduction steps; specifically, it controls the buffering
+ * between upsample/color conversion and color quantization/reduction.
+ *
+ * If no color quantization/reduction is required, then this module has no
+ * work to do, and it just hands off to the upsample/color conversion code.
+ * An integrated upsample/convert/quantize process would replace this module
+ * entirely.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_post_controller pub; /* public fields */
+
+ /* Color quantization source buffer: this holds output data from
+ * the upsample/color conversion step to be passed to the quantizer.
+ * For two-pass color quantization, we need a full-image buffer;
+ * for one-pass operation, a strip buffer is sufficient.
+ */
+ jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
+ JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
+ JDIMENSION strip_height; /* buffer size in rows */
+ /* for two-pass mode only: */
+ JDIMENSION starting_row; /* row # of first row in current strip */
+ JDIMENSION next_row; /* index of next row to fill/empty in strip */
+} my_post_controller;
+
+typedef my_post_controller * my_post_ptr;
+
+
+/* Forward declarations */
+METHODDEF(void) post_process_1pass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF(void) post_process_prepass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+METHODDEF(void) post_process_2pass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (cinfo->quantize_colors) {
+ /* Single-pass processing with color quantization. */
+ post->pub.post_process_data = post_process_1pass;
+ /* We could be doing buffered-image output before starting a 2-pass
+ * color quantization; in that case, jinit_d_post_controller did not
+ * allocate a strip buffer. Use the virtual-array buffer as workspace.
+ */
+ if (post->buffer == NULL) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ (JDIMENSION) 0, post->strip_height, TRUE);
+ }
+ } else {
+ /* For single-pass processing without color quantization,
+ * I have no work to do; just call the upsampler directly.
+ */
+ post->pub.post_process_data = cinfo->upsample->upsample;
+ }
+ break;
+#ifdef QUANT_2PASS_SUPPORTED
+ case JBUF_SAVE_AND_PASS:
+ /* First pass of 2-pass quantization */
+ if (post->whole_image == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ post->pub.post_process_data = post_process_prepass;
+ break;
+ case JBUF_CRANK_DEST:
+ /* Second pass of 2-pass quantization */
+ if (post->whole_image == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ post->pub.post_process_data = post_process_2pass;
+ break;
+#endif /* QUANT_2PASS_SUPPORTED */
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+ post->starting_row = post->next_row = 0;
+}
+
+
+/*
+ * Process some data in the one-pass (strip buffer) case.
+ * This is used for color precision reduction as well as one-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_1pass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION num_rows, max_rows;
+
+ /* Fill the buffer, but not more than what we can dump out in one go. */
+ /* Note we rely on the upsampler to detect bottom of image. */
+ max_rows = out_rows_avail - *out_row_ctr;
+ if (max_rows > post->strip_height)
+ max_rows = post->strip_height;
+ num_rows = 0;
+ (*cinfo->upsample->upsample) (cinfo,
+ input_buf, in_row_group_ctr, in_row_groups_avail,
+ post->buffer, &num_rows, max_rows);
+ /* Quantize and emit data. */
+ (*cinfo->cquantize->color_quantize) (cinfo,
+ post->buffer, output_buf + *out_row_ctr, (int) num_rows);
+ *out_row_ctr += num_rows;
+}
+
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+/*
+ * Process some data in the first pass of 2-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_prepass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION old_next_row, num_rows;
+
+ /* Reposition virtual buffer if at start of strip. */
+ if (post->next_row == 0) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ post->starting_row, post->strip_height, TRUE);
+ }
+
+ /* Upsample some data (up to a strip height's worth). */
+ old_next_row = post->next_row;
+ (*cinfo->upsample->upsample) (cinfo,
+ input_buf, in_row_group_ctr, in_row_groups_avail,
+ post->buffer, &post->next_row, post->strip_height);
+
+ /* Allow quantizer to scan new data. No data is emitted, */
+ /* but we advance out_row_ctr so outer loop can tell when we're done. */
+ if (post->next_row > old_next_row) {
+ num_rows = post->next_row - old_next_row;
+ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
+ (JSAMPARRAY) NULL, (int) num_rows);
+ *out_row_ctr += num_rows;
+ }
+
+ /* Advance if we filled the strip. */
+ if (post->next_row >= post->strip_height) {
+ post->starting_row += post->strip_height;
+ post->next_row = 0;
+ }
+}
+
+
+/*
+ * Process some data in the second pass of 2-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_2pass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION num_rows, max_rows;
+
+ /* Reposition virtual buffer if at start of strip. */
+ if (post->next_row == 0) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ post->starting_row, post->strip_height, FALSE);
+ }
+
+ /* Determine number of rows to emit. */
+ num_rows = post->strip_height - post->next_row; /* available in strip */
+ max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
+ if (num_rows > max_rows)
+ num_rows = max_rows;
+ /* We have to check bottom of image here, can't depend on upsampler. */
+ max_rows = cinfo->output_height - post->starting_row;
+ if (num_rows > max_rows)
+ num_rows = max_rows;
+
+ /* Quantize and emit data. */
+ (*cinfo->cquantize->color_quantize) (cinfo,
+ post->buffer + post->next_row, output_buf + *out_row_ctr,
+ (int) num_rows);
+ *out_row_ctr += num_rows;
+
+ /* Advance if we filled the strip. */
+ post->next_row += num_rows;
+ if (post->next_row >= post->strip_height) {
+ post->starting_row += post->strip_height;
+ post->next_row = 0;
+ }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize postprocessing controller.
+ */
+
+GLOBAL(void)
+jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_post_ptr post;
+
+ post = (my_post_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_post_controller));
+ cinfo->post = (struct jpeg_d_post_controller *) post;
+ post->pub.start_pass = start_pass_dpost;
+ post->whole_image = NULL; /* flag for no virtual arrays */
+ post->buffer = NULL; /* flag for no strip buffer */
+
+ /* Create the quantization buffer, if needed */
+ if (cinfo->quantize_colors) {
+ /* The buffer strip height is max_v_samp_factor, which is typically
+ * an efficient number of rows for upsampling to return.
+ * (In the presence of output rescaling, we might want to be smarter?)
+ */
+ post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
+ if (need_full_buffer) {
+ /* Two-pass color quantization: need full-image storage. */
+ /* We round up the number of rows to a multiple of the strip height. */
+#ifdef QUANT_2PASS_SUPPORTED
+ post->whole_image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ cinfo->output_width * cinfo->out_color_components,
+ (JDIMENSION) jround_up((long) cinfo->output_height,
+ (long) post->strip_height),
+ post->strip_height);
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif /* QUANT_2PASS_SUPPORTED */
+ } else {
+ /* One-pass color quantization: just make a strip buffer. */
+ post->buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->output_width * cinfo->out_color_components,
+ post->strip_height);
+ }
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdsample.c b/src/3rdparty/libjpeg/jdsample.c
new file mode 100644
index 0000000..7bc8885
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdsample.c
@@ -0,0 +1,361 @@
+/*
+ * jdsample.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2002-2008 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains upsampling routines.
+ *
+ * Upsampling input data is counted in "row groups". A row group
+ * is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
+ * sample rows of each component. Upsampling will normally produce
+ * max_v_samp_factor pixel rows from each row group (but this could vary
+ * if the upsampler is applying a scale factor of its own).
+ *
+ * An excellent reference for image resampling is
+ * Digital Image Warping, George Wolberg, 1990.
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Pointer to routine to upsample a single component */
+typedef JMETHOD(void, upsample1_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_upsampler pub; /* public fields */
+
+ /* Color conversion buffer. When using separate upsampling and color
+ * conversion steps, this buffer holds one upsampled row group until it
+ * has been color converted and output.
+ * Note: we do not allocate any storage for component(s) which are full-size,
+ * ie do not need rescaling. The corresponding entry of color_buf[] is
+ * simply set to point to the input data array, thereby avoiding copying.
+ */
+ JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+ /* Per-component upsampling method pointers */
+ upsample1_ptr methods[MAX_COMPONENTS];
+
+ int next_row_out; /* counts rows emitted from color_buf */
+ JDIMENSION rows_to_go; /* counts rows remaining in image */
+
+ /* Height of an input row group for each component. */
+ int rowgroup_height[MAX_COMPONENTS];
+
+ /* These arrays save pixel expansion factors so that int_expand need not
+ * recompute them each time. They are unused for other upsampling methods.
+ */
+ UINT8 h_expand[MAX_COMPONENTS];
+ UINT8 v_expand[MAX_COMPONENTS];
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_upsample (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Mark the conversion buffer empty */
+ upsample->next_row_out = cinfo->max_v_samp_factor;
+ /* Initialize total-height counter for detecting bottom of image */
+ upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * In this version we upsample each component independently.
+ * We upsample one row group into the conversion buffer, then apply
+ * color conversion a row at a time.
+ */
+
+METHODDEF(void)
+sep_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ int ci;
+ jpeg_component_info * compptr;
+ JDIMENSION num_rows;
+
+ /* Fill the conversion buffer, if it's empty */
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Invoke per-component upsample method. Notice we pass a POINTER
+ * to color_buf[ci], so that fullsize_upsample can change it.
+ */
+ (*upsample->methods[ci]) (cinfo, compptr,
+ input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
+ upsample->color_buf + ci);
+ }
+ upsample->next_row_out = 0;
+ }
+
+ /* Color-convert and emit rows */
+
+ /* How many we have in the buffer: */
+ num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
+ /* Not more than the distance to the end of the image. Need this test
+ * in case the image height is not a multiple of max_v_samp_factor:
+ */
+ if (num_rows > upsample->rows_to_go)
+ num_rows = upsample->rows_to_go;
+ /* And not more than what the client can accept: */
+ out_rows_avail -= *out_row_ctr;
+ if (num_rows > out_rows_avail)
+ num_rows = out_rows_avail;
+
+ (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
+ (JDIMENSION) upsample->next_row_out,
+ output_buf + *out_row_ctr,
+ (int) num_rows);
+
+ /* Adjust counts */
+ *out_row_ctr += num_rows;
+ upsample->rows_to_go -= num_rows;
+ upsample->next_row_out += num_rows;
+ /* When the buffer is emptied, declare this input row group consumed */
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor)
+ (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by sep_upsample to upsample pixel values
+ * of a single component. One row group is processed per call.
+ */
+
+
+/*
+ * For full-size components, we just make color_buf[ci] point at the
+ * input buffer, and thus avoid copying any data. Note that this is
+ * safe only because sep_upsample doesn't declare the input row group
+ * "consumed" until we are done color converting and emitting it.
+ */
+
+METHODDEF(void)
+fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ *output_data_ptr = input_data;
+}
+
+
+/*
+ * This is a no-op version used for "uninteresting" components.
+ * These components will not be referenced by color conversion.
+ */
+
+METHODDEF(void)
+noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ *output_data_ptr = NULL; /* safety check */
+}
+
+
+/*
+ * This version handles any integral sampling ratios.
+ * This is not used for typical JPEG files, so it need not be fast.
+ * Nor, for that matter, is it particularly accurate: the algorithm is
+ * simple replication of the input pixel onto the corresponding output
+ * pixels. The hi-falutin sampling literature refers to this as a
+ * "box filter". A box filter tends to introduce visible artifacts,
+ * so if you are actually going to use 3:1 or 4:1 sampling ratios
+ * you would be well advised to improve this code.
+ */
+
+METHODDEF(void)
+int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ register int h;
+ JSAMPROW outend;
+ int h_expand, v_expand;
+ int inrow, outrow;
+
+ h_expand = upsample->h_expand[compptr->component_index];
+ v_expand = upsample->v_expand[compptr->component_index];
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ /* Generate one output row with proper horizontal expansion */
+ inptr = input_data[inrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ for (h = h_expand; h > 0; h--) {
+ *outptr++ = invalue;
+ }
+ }
+ /* Generate any additional output rows by duplicating the first one */
+ if (v_expand > 1) {
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+ v_expand-1, cinfo->output_width);
+ }
+ inrow++;
+ outrow += v_expand;
+ }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF(void)
+h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ JSAMPROW outend;
+ int outrow;
+
+ for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
+ inptr = input_data[outrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ *outptr++ = invalue;
+ *outptr++ = invalue;
+ }
+ }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF(void)
+h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ JSAMPROW outend;
+ int inrow, outrow;
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ inptr = input_data[inrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ *outptr++ = invalue;
+ *outptr++ = invalue;
+ }
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+ 1, cinfo->output_width);
+ inrow++;
+ outrow += 2;
+ }
+}
+
+
+/*
+ * Module initialization routine for upsampling.
+ */
+
+GLOBAL(void)
+jinit_upsampler (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample;
+ int ci;
+ jpeg_component_info * compptr;
+ boolean need_buffer;
+ int h_in_group, v_in_group, h_out_group, v_out_group;
+
+ upsample = (my_upsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_upsampler));
+ cinfo->upsample = (struct jpeg_upsampler *) upsample;
+ upsample->pub.start_pass = start_pass_upsample;
+ upsample->pub.upsample = sep_upsample;
+ upsample->pub.need_context_rows = FALSE; /* until we find out differently */
+
+ if (cinfo->CCIR601_sampling) /* this isn't supported */
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+ /* Verify we can handle the sampling factors, select per-component methods,
+ * and create storage as needed.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Compute size of an "input group" after IDCT scaling. This many samples
+ * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
+ */
+ h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
+ cinfo->min_DCT_h_scaled_size;
+ v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size;
+ h_out_group = cinfo->max_h_samp_factor;
+ v_out_group = cinfo->max_v_samp_factor;
+ upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
+ need_buffer = TRUE;
+ if (! compptr->component_needed) {
+ /* Don't bother to upsample an uninteresting component. */
+ upsample->methods[ci] = noop_upsample;
+ need_buffer = FALSE;
+ } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
+ /* Fullsize components can be processed without any work. */
+ upsample->methods[ci] = fullsize_upsample;
+ need_buffer = FALSE;
+ } else if (h_in_group * 2 == h_out_group &&
+ v_in_group == v_out_group) {
+ /* Special case for 2h1v upsampling */
+ upsample->methods[ci] = h2v1_upsample;
+ } else if (h_in_group * 2 == h_out_group &&
+ v_in_group * 2 == v_out_group) {
+ /* Special case for 2h2v upsampling */
+ upsample->methods[ci] = h2v2_upsample;
+ } else if ((h_out_group % h_in_group) == 0 &&
+ (v_out_group % v_in_group) == 0) {
+ /* Generic integral-factors upsampling method */
+ upsample->methods[ci] = int_upsample;
+ upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
+ upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
+ } else
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+ if (need_buffer) {
+ upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) jround_up((long) cinfo->output_width,
+ (long) cinfo->max_h_samp_factor),
+ (JDIMENSION) cinfo->max_v_samp_factor);
+ }
+ }
+}
diff --git a/src/3rdparty/libjpeg/jdtrans.c b/src/3rdparty/libjpeg/jdtrans.c
new file mode 100644
index 0000000..22dd47f
--- /dev/null
+++ b/src/3rdparty/libjpeg/jdtrans.c
@@ -0,0 +1,140 @@
+/*
+ * jdtrans.c
+ *
+ * Copyright (C) 1995-1997, Thomas G. Lane.
+ * Modified 2000-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding decompression,
+ * that is, reading raw DCT coefficient arrays from an input JPEG file.
+ * The routines in jdapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Read the coefficient arrays from a JPEG file.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * The entire image is read into a set of virtual coefficient-block arrays,
+ * one per component. The return value is a pointer to the array of
+ * virtual-array descriptors. These can be manipulated directly via the
+ * JPEG memory manager, or handed off to jpeg_write_coefficients().
+ * To release the memory occupied by the virtual arrays, call
+ * jpeg_finish_decompress() when done with the data.
+ *
+ * An alternative usage is to simply obtain access to the coefficient arrays
+ * during a buffered-image-mode decompression operation. This is allowed
+ * after any jpeg_finish_output() call. The arrays can be accessed until
+ * jpeg_finish_decompress() is called. (Note that any call to the library
+ * may reposition the arrays, so don't rely on access_virt_barray() results
+ * to stay valid across library calls.)
+ *
+ * Returns NULL if suspended. This case need be checked only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(jvirt_barray_ptr *)
+jpeg_read_coefficients (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state == DSTATE_READY) {
+ /* First call: initialize active modules */
+ transdecode_master_selection(cinfo);
+ cinfo->global_state = DSTATE_RDCOEFS;
+ }
+ if (cinfo->global_state == DSTATE_RDCOEFS) {
+ /* Absorb whole file into the coef buffer */
+ for (;;) {
+ int retcode;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL)
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ /* Absorb some more input */
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_SUSPENDED)
+ return NULL;
+ if (retcode == JPEG_REACHED_EOI)
+ break;
+ /* Advance progress counter if appropriate */
+ if (cinfo->progress != NULL &&
+ (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+ if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+ /* startup underestimated number of scans; ratchet up one scan */
+ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+ }
+ }
+ }
+ /* Set state so that jpeg_finish_decompress does the right thing */
+ cinfo->global_state = DSTATE_STOPPING;
+ }
+ /* At this point we should be in state DSTATE_STOPPING if being used
+ * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
+ * to the coefficients during a full buffered-image-mode decompression.
+ */
+ if ((cinfo->global_state == DSTATE_STOPPING ||
+ cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
+ return cinfo->coef->coef_arrays;
+ }
+ /* Oops, improper usage */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return NULL; /* keep compiler happy */
+}
+
+
+/*
+ * Master selection of decompression modules for transcoding.
+ * This substitutes for jdmaster.c's initialization of the full decompressor.
+ */
+
+LOCAL(void)
+transdecode_master_selection (j_decompress_ptr cinfo)
+{
+ /* This is effectively a buffered-image operation. */
+ cinfo->buffered_image = TRUE;
+
+ /* Compute output image dimensions and related values. */
+ jpeg_core_output_dimensions(cinfo);
+
+ /* Entropy decoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_decoder(cinfo);
+ else {
+ jinit_huff_decoder(cinfo);
+ }
+
+ /* Always get a full-image coefficient buffer. */
+ jinit_d_coef_controller(cinfo, TRUE);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Initialize input side of decompressor to consume first scan. */
+ (*cinfo->inputctl->start_input_pass) (cinfo);
+
+ /* Initialize progress monitoring. */
+ if (cinfo->progress != NULL) {
+ int nscans;
+ /* Estimate number of scans to set pass_limit. */
+ if (cinfo->progressive_mode) {
+ /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+ nscans = 2 + 3 * cinfo->num_components;
+ } else if (cinfo->inputctl->has_multiple_scans) {
+ /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+ nscans = cinfo->num_components;
+ } else {
+ nscans = 1;
+ }
+ cinfo->progress->pass_counter = 0L;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+ cinfo->progress->completed_passes = 0;
+ cinfo->progress->total_passes = 1;
+ }
+}
diff --git a/src/3rdparty/libjpeg/jerror.c b/src/3rdparty/libjpeg/jerror.c
new file mode 100644
index 0000000..3da7be8
--- /dev/null
+++ b/src/3rdparty/libjpeg/jerror.c
@@ -0,0 +1,252 @@
+/*
+ * jerror.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains simple error-reporting and trace-message routines.
+ * These are suitable for Unix-like systems and others where writing to
+ * stderr is the right thing to do. Many applications will want to replace
+ * some or all of these routines.
+ *
+ * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
+ * you get a Windows-specific hack to display error messages in a dialog box.
+ * It ain't much, but it beats dropping error messages into the bit bucket,
+ * which is what happens to output to stderr under most Windows C compilers.
+ *
+ * These routines are used by both the compression and decompression code.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jversion.h"
+#include "jerror.h"
+
+#ifdef USE_WINDOWS_MESSAGEBOX
+#include <windows.h>
+#endif
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+
+
+/*
+ * Create the message string table.
+ * We do this from the master message list in jerror.h by re-reading
+ * jerror.h with a suitable definition for macro JMESSAGE.
+ * The message table is made an external symbol just in case any applications
+ * want to refer to it directly.
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_message_table jMsgTable
+#endif
+
+#define JMESSAGE(code,string) string ,
+
+const char * const jpeg_std_message_table[] = {
+#include "jerror.h"
+ NULL
+};
+
+
+/*
+ * Error exit handler: must not return to caller.
+ *
+ * Applications may override this if they want to get control back after
+ * an error. Typically one would longjmp somewhere instead of exiting.
+ * The setjmp buffer can be made a private field within an expanded error
+ * handler object. Note that the info needed to generate an error message
+ * is stored in the error object, so you can generate the message now or
+ * later, at your convenience.
+ * You should make sure that the JPEG object is cleaned up (with jpeg_abort
+ * or jpeg_destroy) at some point.
+ */
+
+METHODDEF(void)
+error_exit (j_common_ptr cinfo)
+{
+ /* Always display the message */
+ (*cinfo->err->output_message) (cinfo);
+
+ /* Let the memory manager delete any temp files before we die */
+ jpeg_destroy(cinfo);
+
+ exit(EXIT_FAILURE);
+}
+
+
+/*
+ * Actual output of an error or trace message.
+ * Applications may override this method to send JPEG messages somewhere
+ * other than stderr.
+ *
+ * On Windows, printing to stderr is generally completely useless,
+ * so we provide optional code to produce an error-dialog popup.
+ * Most Windows applications will still prefer to override this routine,
+ * but if they don't, it'll do something at least marginally useful.
+ *
+ * NOTE: to use the library in an environment that doesn't support the
+ * C stdio library, you may have to delete the call to fprintf() entirely,
+ * not just not use this routine.
+ */
+
+METHODDEF(void)
+output_message (j_common_ptr cinfo)
+{
+ char buffer[JMSG_LENGTH_MAX];
+
+ /* Create the message */
+ (*cinfo->err->format_message) (cinfo, buffer);
+
+#ifdef USE_WINDOWS_MESSAGEBOX
+ /* Display it in a message dialog box */
+ MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
+ MB_OK | MB_ICONERROR);
+#else
+ /* Send it to stderr, adding a newline */
+ fprintf(stderr, "%s\n", buffer);
+#endif
+}
+
+
+/*
+ * Decide whether to emit a trace or warning message.
+ * msg_level is one of:
+ * -1: recoverable corrupt-data warning, may want to abort.
+ * 0: important advisory messages (always display to user).
+ * 1: first level of tracing detail.
+ * 2,3,...: successively more detailed tracing messages.
+ * An application might override this method if it wanted to abort on warnings
+ * or change the policy about which messages to display.
+ */
+
+METHODDEF(void)
+emit_message (j_common_ptr cinfo, int msg_level)
+{
+ struct jpeg_error_mgr * err = cinfo->err;
+
+ if (msg_level < 0) {
+ /* It's a warning message. Since corrupt files may generate many warnings,
+ * the policy implemented here is to show only the first warning,
+ * unless trace_level >= 3.
+ */
+ if (err->num_warnings == 0 || err->trace_level >= 3)
+ (*err->output_message) (cinfo);
+ /* Always count warnings in num_warnings. */
+ err->num_warnings++;
+ } else {
+ /* It's a trace message. Show it if trace_level >= msg_level. */
+ if (err->trace_level >= msg_level)
+ (*err->output_message) (cinfo);
+ }
+}
+
+
+/*
+ * Format a message string for the most recent JPEG error or message.
+ * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
+ * characters. Note that no '\n' character is added to the string.
+ * Few applications should need to override this method.
+ */
+
+METHODDEF(void)
+format_message (j_common_ptr cinfo, char * buffer)
+{
+ struct jpeg_error_mgr * err = cinfo->err;
+ int msg_code = err->msg_code;
+ const char * msgtext = NULL;
+ const char * msgptr;
+ char ch;
+ boolean isstring;
+
+ /* Look up message string in proper table */
+ if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
+ msgtext = err->jpeg_message_table[msg_code];
+ } else if (err->addon_message_table != NULL &&
+ msg_code >= err->first_addon_message &&
+ msg_code <= err->last_addon_message) {
+ msgtext = err->addon_message_table[msg_code - err->first_addon_message];
+ }
+
+ /* Defend against bogus message number */
+ if (msgtext == NULL) {
+ err->msg_parm.i[0] = msg_code;
+ msgtext = err->jpeg_message_table[0];
+ }
+
+ /* Check for string parameter, as indicated by %s in the message text */
+ isstring = FALSE;
+ msgptr = msgtext;
+ while ((ch = *msgptr++) != '\0') {
+ if (ch == '%') {
+ if (*msgptr == 's') isstring = TRUE;
+ break;
+ }
+ }
+
+ /* Format the message into the passed buffer */
+ if (isstring)
+ sprintf(buffer, msgtext, err->msg_parm.s);
+ else
+ sprintf(buffer, msgtext,
+ err->msg_parm.i[0], err->msg_parm.i[1],
+ err->msg_parm.i[2], err->msg_parm.i[3],
+ err->msg_parm.i[4], err->msg_parm.i[5],
+ err->msg_parm.i[6], err->msg_parm.i[7]);
+}
+
+
+/*
+ * Reset error state variables at start of a new image.
+ * This is called during compression startup to reset trace/error
+ * processing to default state, without losing any application-specific
+ * method pointers. An application might possibly want to override
+ * this method if it has additional error processing state.
+ */
+
+METHODDEF(void)
+reset_error_mgr (j_common_ptr cinfo)
+{
+ cinfo->err->num_warnings = 0;
+ /* trace_level is not reset since it is an application-supplied parameter */
+ cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
+}
+
+
+/*
+ * Fill in the standard error-handling methods in a jpeg_error_mgr object.
+ * Typical call is:
+ * struct jpeg_compress_struct cinfo;
+ * struct jpeg_error_mgr err;
+ *
+ * cinfo.err = jpeg_std_error(&err);
+ * after which the application may override some of the methods.
+ */
+
+GLOBAL(struct jpeg_error_mgr *)
+jpeg_std_error (struct jpeg_error_mgr * err)
+{
+ err->error_exit = error_exit;
+ err->emit_message = emit_message;
+ err->output_message = output_message;
+ err->format_message = format_message;
+ err->reset_error_mgr = reset_error_mgr;
+
+ err->trace_level = 0; /* default = no tracing */
+ err->num_warnings = 0; /* no warnings emitted yet */
+ err->msg_code = 0; /* may be useful as a flag for "no error" */
+
+ /* Initialize message table pointers */
+ err->jpeg_message_table = jpeg_std_message_table;
+ err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
+
+ err->addon_message_table = NULL;
+ err->first_addon_message = 0; /* for safety */
+ err->last_addon_message = 0;
+
+ return err;
+}
diff --git a/src/3rdparty/libjpeg/jerror.h b/src/3rdparty/libjpeg/jerror.h
new file mode 100644
index 0000000..1cfb2b1
--- /dev/null
+++ b/src/3rdparty/libjpeg/jerror.h
@@ -0,0 +1,304 @@
+/*
+ * jerror.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the error and message codes for the JPEG library.
+ * Edit this file to add new codes, or to translate the message strings to
+ * some other language.
+ * A set of error-reporting macros are defined too. Some applications using
+ * the JPEG library may wish to include this file to get the error codes
+ * and/or the macros.
+ */
+
+/*
+ * To define the enum list of message codes, include this file without
+ * defining macro JMESSAGE. To create a message string table, include it
+ * again with a suitable JMESSAGE definition (see jerror.c for an example).
+ */
+#ifndef JMESSAGE
+#ifndef JERROR_H
+/* First time through, define the enum list */
+#define JMAKE_ENUM_LIST
+#else
+/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+#define JMESSAGE(code,string)
+#endif /* JERROR_H */
+#endif /* JMESSAGE */
+
+#ifdef JMAKE_ENUM_LIST
+
+typedef enum {
+
+#define JMESSAGE(code,string) code ,
+
+#endif /* JMAKE_ENUM_LIST */
+
+JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
+
+/* For maintenance convenience, list is alphabetical by message code name */
+JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
+JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
+JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
+JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
+JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
+JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
+JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
+JMESSAGE(JERR_BAD_DROP_SAMPLING,
+ "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
+JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
+JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
+JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
+JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
+JMESSAGE(JERR_BAD_LIB_VERSION,
+ "Wrong JPEG library version: library is %d, caller expects %d")
+JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
+JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
+JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
+JMESSAGE(JERR_BAD_PROGRESSION,
+ "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
+JMESSAGE(JERR_BAD_PROG_SCRIPT,
+ "Invalid progressive parameters at scan script entry %d")
+JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
+JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
+JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
+JMESSAGE(JERR_BAD_STRUCT_SIZE,
+ "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
+JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
+JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
+JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
+JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
+JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
+JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
+JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
+JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
+JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
+JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
+JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
+JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
+JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
+JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
+JMESSAGE(JERR_FILE_READ, "Input file read error")
+JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
+JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
+JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
+JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
+JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
+JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
+JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
+JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
+ "Cannot transcode due to multiple use of quantization table %d")
+JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
+JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
+JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
+JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
+JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
+JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
+JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
+JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
+JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
+JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
+JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
+JMESSAGE(JERR_QUANT_COMPONENTS,
+ "Cannot quantize more than %d color components")
+JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
+JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
+JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
+JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
+JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
+JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
+JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
+JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
+JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
+JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
+JMESSAGE(JERR_TFILE_WRITE,
+ "Write failed on temporary file --- out of disk space?")
+JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
+JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
+JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
+JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
+JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
+JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
+JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
+JMESSAGE(JMSG_VERSION, JVERSION)
+JMESSAGE(JTRC_16BIT_TABLES,
+ "Caution: quantization tables are too coarse for baseline JPEG")
+JMESSAGE(JTRC_ADOBE,
+ "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
+JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
+JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
+JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
+JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
+JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
+JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
+JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
+JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
+JMESSAGE(JTRC_EOI, "End Of Image")
+JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
+JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
+JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
+ "Warning: thumbnail image size does not match data length %u")
+JMESSAGE(JTRC_JFIF_EXTENSION,
+ "JFIF extension marker: type 0x%02x, length %u")
+JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
+JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
+JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
+JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
+JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
+JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
+JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
+JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
+JMESSAGE(JTRC_RST, "RST%d")
+JMESSAGE(JTRC_SMOOTH_NOTIMPL,
+ "Smoothing not supported with nonstandard sampling ratios")
+JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
+JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
+JMESSAGE(JTRC_SOI, "Start of Image")
+JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
+JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
+JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
+JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
+JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
+JMESSAGE(JTRC_THUMB_JPEG,
+ "JFIF extension marker: JPEG-compressed thumbnail image, length %u")
+JMESSAGE(JTRC_THUMB_PALETTE,
+ "JFIF extension marker: palette thumbnail image, length %u")
+JMESSAGE(JTRC_THUMB_RGB,
+ "JFIF extension marker: RGB thumbnail image, length %u")
+JMESSAGE(JTRC_UNKNOWN_IDS,
+ "Unrecognized component IDs %d %d %d, assuming YCbCr")
+JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
+JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
+JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
+JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
+JMESSAGE(JWRN_BOGUS_PROGRESSION,
+ "Inconsistent progression sequence for component %d coefficient %d")
+JMESSAGE(JWRN_EXTRANEOUS_DATA,
+ "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
+JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
+JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
+JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
+JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
+JMESSAGE(JWRN_MUST_RESYNC,
+ "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
+JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
+JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
+
+#ifdef JMAKE_ENUM_LIST
+
+ JMSG_LASTMSGCODE
+} J_MESSAGE_CODE;
+
+#undef JMAKE_ENUM_LIST
+#endif /* JMAKE_ENUM_LIST */
+
+/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+#undef JMESSAGE
+
+
+#ifndef JERROR_H
+#define JERROR_H
+
+/* Macros to simplify using the error and trace message stuff */
+/* The first parameter is either type of cinfo pointer */
+
+/* Fatal errors (print message and exit) */
+#define ERREXIT(cinfo,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT1(cinfo,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT2(cinfo,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT3(cinfo,code,p1,p2,p3) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (cinfo)->err->msg_parm.i[3] = (p4), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (cinfo)->err->msg_parm.i[3] = (p4), \
+ (cinfo)->err->msg_parm.i[4] = (p5), \
+ (cinfo)->err->msg_parm.i[5] = (p6), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXITS(cinfo,code,str) \
+ ((cinfo)->err->msg_code = (code), \
+ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+
+#define MAKESTMT(stuff) do { stuff } while (0)
+
+/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
+#define WARNMS(cinfo,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS1(cinfo,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS2(cinfo,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+
+/* Informational/debugging messages */
+#define TRACEMS(cinfo,lvl,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS1(cinfo,lvl,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS2(cinfo,lvl,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ _mp[4] = (p5); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMSS(cinfo,lvl,code,str) \
+ ((cinfo)->err->msg_code = (code), \
+ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+
+#endif /* JERROR_H */
diff --git a/src/3rdparty/libjpeg/jfdctflt.c b/src/3rdparty/libjpeg/jfdctflt.c
new file mode 100644
index 0000000..74d0d86
--- /dev/null
+++ b/src/3rdparty/libjpeg/jfdctflt.c
@@ -0,0 +1,174 @@
+/*
+ * jfdctflt.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * This implementation should be more accurate than either of the integer
+ * DCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+ FAST_FLOAT *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+
+ /* Pass 1: process rows. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Load data into workspace */
+ tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
+ tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
+ tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
+ tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
+ tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
+ tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
+ tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
+ tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
+ dataptr[4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[2] = tmp13 + z1; /* phase 5 */
+ dataptr[6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[5] = z13 + z2; /* phase 6 */
+ dataptr[3] = z13 - z2;
+ dataptr[1] = z11 + z4;
+ dataptr[7] = z11 - z4;
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+ dataptr[DCTSIZE*6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+ dataptr[DCTSIZE*3] = z13 - z2;
+ dataptr[DCTSIZE*1] = z11 + z4;
+ dataptr[DCTSIZE*7] = z11 - z4;
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jfdctfst.c b/src/3rdparty/libjpeg/jfdctfst.c
new file mode 100644
index 0000000..8cad5f2
--- /dev/null
+++ b/src/3rdparty/libjpeg/jfdctfst.c
@@ -0,0 +1,230 @@
+/*
+ * jfdctfst.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a fast, not so accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with fixed-point math,
+ * accuracy is lost due to imprecise representation of the scaled
+ * quantization values. The smaller the quantization table entry, the less
+ * precise the scaled value, so this implementation does worse with high-
+ * quality-setting files than with low-quality ones.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_IFAST_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling decisions are generally the same as in the LL&M algorithm;
+ * see jfdctint.c for more details. However, we choose to descale
+ * (right shift) multiplication products as soon as they are formed,
+ * rather than carrying additional fractional bits into subsequent additions.
+ * This compromises accuracy slightly, but it lets us save a few shifts.
+ * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ * everywhere except in the multiplications proper; this saves a good deal
+ * of work on 16-bit-int machines.
+ *
+ * Again to save a few shifts, the intermediate results between pass 1 and
+ * pass 2 are not upscaled, but are represented only to integral precision.
+ *
+ * A final compromise is to represent the multiplicative constants to only
+ * 8 fractional bits, rather than 13. This saves some shifting work on some
+ * machines, and may also reduce the cost of multiplication (since there
+ * are fewer one-bits in the constants).
+ */
+
+#define CONST_BITS 8
+
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 8
+#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
+#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
+#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
+#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
+#else
+#define FIX_0_382683433 FIX(0.382683433)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_707106781 FIX(0.707106781)
+#define FIX_1_306562965 FIX(1.306562965)
+#endif
+
+
+/* We can gain a little more speed, with a further compromise in accuracy,
+ * by omitting the addition in a descaling shift. This yields an incorrectly
+ * rounded result half the time...
+ */
+
+#ifndef USE_ACCURATE_ROUNDING
+#undef DESCALE
+#define DESCALE(x,n) RIGHT_SHIFT(x, n)
+#endif
+
+
+/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+ * descale to yield a DCTELEM result.
+ */
+
+#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ DCTELEM tmp10, tmp11, tmp12, tmp13;
+ DCTELEM z1, z2, z3, z4, z5, z11, z13;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Load data into workspace */
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+ tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
+ dataptr[4] = tmp10 - tmp11;
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+ dataptr[2] = tmp13 + z1; /* phase 5 */
+ dataptr[6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[5] = z13 + z2; /* phase 6 */
+ dataptr[3] = z13 - z2;
+ dataptr[1] = z11 + z4;
+ dataptr[7] = z11 - z4;
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+ dataptr[DCTSIZE*6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+ dataptr[DCTSIZE*3] = z13 - z2;
+ dataptr[DCTSIZE*1] = z11 + z4;
+ dataptr[DCTSIZE*7] = z11 - z4;
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#endif /* DCT_IFAST_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jfdctint.c b/src/3rdparty/libjpeg/jfdctint.c
new file mode 100644
index 0000000..1dde58c
--- /dev/null
+++ b/src/3rdparty/libjpeg/jfdctint.c
@@ -0,0 +1,4348 @@
+/*
+ * jfdctint.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modification developed 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ *
+ * We also provide FDCT routines with various input sample block sizes for
+ * direct resolution reduction or enlargement and for direct resolving the
+ * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
+ * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
+ *
+ * For N<8 we fill the remaining block coefficients with zero.
+ * For N>8 we apply a partial N-point FDCT on the input samples, computing
+ * just the lower 8 frequency coefficients and discarding the rest.
+ *
+ * We must scale the output coefficients of the N-point FDCT appropriately
+ * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling
+ * is folded into the constant multipliers (pass 2) and/or final/initial
+ * shifting.
+ *
+ * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
+ * since there would be too many additional constants to pre-calculate.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true DCT outputs. The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm. The advantage of
+ * this arrangement is that we save two multiplications per 1-D DCT,
+ * because the y0 and y4 outputs need not be divided by sqrt(N).
+ * In the IJG code, this factor of 8 is removed by the quantization step
+ * (in jcdctmgr.c), NOT in this module.
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic. We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants). After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output. This division can be done
+ * cheaply as a right shift of CONST_BITS bits. We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision. These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling. (For 12-bit sample data, the intermediate
+ * array is INT32 anyway.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
+#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
+#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
+#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
+#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
+#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
+#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
+#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
+#else
+#define FIX_0_298631336 FIX(0.298631336)
+#define FIX_0_390180644 FIX(0.390180644)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_175875602 FIX(1.175875602)
+#define FIX_1_501321110 FIX(1.501321110)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_1_961570560 FIX(1.961570560)
+#define FIX_2_053119869 FIX(2.053119869)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_072711026 FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const) ((var) * (const))
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#ifdef DCT_SCALING_SUPPORTED
+
+
+/*
+ * Perform the forward DCT on a 7x7 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* cK represents sqrt(2) * cos(K*pi/14). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 7; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
+ tmp3 = GETJSAMPLE(elemptr[3]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
+
+ z1 = tmp0 + tmp2;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
+ dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
+ dataptr[4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/7)**2 = 64/49, which we fold
+ * into the constant multipliers:
+ * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 7; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
+ tmp3 = dataptr[DCTSIZE*3];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
+ tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
+
+ z1 = tmp0 + tmp2;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
+ CONST_BITS+PASS1_BITS);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 6x6 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11, tmp12;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* cK represents sqrt(2) * cos(K*pi/12). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
+ tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
+ CONST_BITS-PASS1_BITS);
+
+ dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
+ dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
+ dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)**2 = 16/9, which we fold
+ * into the constant multipliers:
+ * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
+ tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 5x5 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/10). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 5; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
+ tmp2 = GETJSAMPLE(elemptr[2]);
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
+ dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);
+ dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/5)**2 = 64/25, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 5; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
+ tmp2 = dataptr[DCTSIZE*2];
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 4x4 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */
+ /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));
+ dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS-2);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS-2);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 3x3 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2**2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/6). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
+ CONST_BITS-PASS1_BITS-2);
+
+ /* Odd part */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
+ CONST_BITS-PASS1_BITS-2);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/3)**2 = 64/9, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
+ tmp1 = dataptr[DCTSIZE*1];
+
+ tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 2x2 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ JSAMPROW elemptr;
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+
+ /* Row 0 */
+ elemptr = sample_data[0] + start_col;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
+ tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
+
+ /* Row 1 */
+ elemptr = sample_data[1] + start_col;
+
+ tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
+ tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/2)**2 = 2**4.
+ */
+
+ /* Column 0 */
+ /* Apply unsigned->signed conversion */
+ data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4);
+ data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4);
+
+ /* Column 1 */
+ data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4);
+ data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4);
+}
+
+
+/*
+ * Perform the forward DCT on a 1x1 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* We leave the result scaled up by an overall factor of 8. */
+ /* We must also scale the output by (8/1)**2 = 2**6. */
+ /* Apply unsigned->signed conversion */
+ data[0] = (DCTELEM)
+ ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6);
+}
+
+
+/*
+ * Perform the forward DCT on a 9x9 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2;
+ DCTELEM workspace[8];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* we scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/18). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);
+ tmp4 = GETJSAMPLE(elemptr[4]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);
+
+ z1 = tmp0 + tmp2 + tmp3;
+ z2 = tmp1 + tmp4;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);
+ dataptr[6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */
+ CONST_BITS-1);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */
+ z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */
+ + z1 + z2, CONST_BITS-1);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */
+ + z1 - z2, CONST_BITS-1);
+
+ /* Odd part */
+
+ dataptr[3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */
+ CONST_BITS-1);
+
+ tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */
+ tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);
+
+ tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */
+
+ dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);
+ dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 9)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/9)**2 = 64/81, which we partially
+ * fold into the constant multipliers and final/initial shifting:
+ * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];
+ tmp4 = dataptr[DCTSIZE*4];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];
+ tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];
+ tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];
+
+ z1 = tmp0 + tmp2 + tmp3;
+ z2 = tmp1 + tmp4;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */
+ CONST_BITS+2);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */
+ z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */
+ + z1 + z2, CONST_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */
+ + z1 - z2, CONST_BITS+2);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */
+ CONST_BITS+2);
+
+ tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */
+ tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);
+
+ tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */
+
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 10x10 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ DCTELEM workspace[8*2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* we scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/20). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
+ tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);
+ tmp12 += tmp12;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
+ CONST_BITS-1);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
+ CONST_BITS-1);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
+ CONST_BITS-1);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);
+ tmp2 <<= CONST_BITS;
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
+ CONST_BITS-1);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
+ (tmp11 << (CONST_BITS - 1)) - tmp2;
+ dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);
+ dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 10)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/10)**2 = 16/25, which we partially
+ * fold into the constant multipliers and final/initial shifting:
+ * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
+ tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
+ CONST_BITS+2);
+ tmp12 += tmp12;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
+ CONST_BITS+2);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
+ CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+2);
+ tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
+ CONST_BITS+2);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
+ MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on an 11x11 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 z1, z2, z3;
+ DCTELEM workspace[8*3];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* we scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/22). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);
+ tmp5 = GETJSAMPLE(elemptr[5]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);
+ tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);
+ tmp5 += tmp5;
+ tmp0 -= tmp5;
+ tmp1 -= tmp5;
+ tmp2 -= tmp5;
+ tmp3 -= tmp5;
+ tmp4 -= tmp5;
+ z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */
+ MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */
+ z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */
+ z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */
+ - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */
+ CONST_BITS-1);
+ dataptr[4] = (DCTELEM)
+ DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */
+ - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */
+ + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */
+ CONST_BITS-1);
+ dataptr[6] = (DCTELEM)
+ DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */
+ - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */
+ CONST_BITS-1);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */
+ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */
+ + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */
+ tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */
+ tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */
+ - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */
+ tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */
+ tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */
+ + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */
+ tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */
+ - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 11)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/11)**2 = 64/121, which we partially
+ * fold into the constant multipliers and final/initial shifting:
+ * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];
+ tmp5 = dataptr[DCTSIZE*5];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];
+ tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];
+ tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];
+ tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];
+ tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,
+ FIX(1.057851240)), /* 128/121 */
+ CONST_BITS+2);
+ tmp5 += tmp5;
+ tmp0 -= tmp5;
+ tmp1 -= tmp5;
+ tmp2 -= tmp5;
+ tmp3 -= tmp5;
+ tmp4 -= tmp5;
+ z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */
+ MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */
+ z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */
+ z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */
+ - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */
+ - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */
+ + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */
+ - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */
+ CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */
+ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */
+ + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */
+ tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */
+ tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */
+ - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */
+ tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */
+ tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */
+ + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */
+ tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */
+ - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 12x12 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ DCTELEM workspace[8*4];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/24). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);
+ dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
+ CONST_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
+ CONST_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 12)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/12)**2 = 4/9, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
+ MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
+ CONST_BITS+1);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 13x13 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 z1, z2;
+ DCTELEM workspace[8*5];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/26). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);
+ tmp6 = GETJSAMPLE(elemptr[6]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);
+ tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);
+ tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);
+ tmp6 += tmp6;
+ tmp0 -= tmp6;
+ tmp1 -= tmp6;
+ tmp2 -= tmp6;
+ tmp3 -= tmp6;
+ tmp4 -= tmp6;
+ tmp5 -= tmp6;
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */
+ MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */
+ MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */
+ MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */
+ MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */
+ MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */
+ CONST_BITS);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */
+ MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */
+ MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */
+ z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */
+ MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */
+ MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */
+
+ dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */
+ MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */
+ MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */
+ tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */
+ MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */
+ tmp1 += tmp4 + tmp5 +
+ MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */
+ MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */
+ tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */
+ tmp2 += tmp4 + tmp6 -
+ MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */
+ MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */
+ tmp3 += tmp5 + tmp6 +
+ MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */
+ MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 13)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/13)**2 = 64/169, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];
+ tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];
+ tmp6 = dataptr[DCTSIZE*6];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];
+ tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];
+ tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];
+ tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];
+ tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];
+ tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,
+ FIX(0.757396450)), /* 128/169 */
+ CONST_BITS+1);
+ tmp6 += tmp6;
+ tmp0 -= tmp6;
+ tmp1 -= tmp6;
+ tmp2 -= tmp6;
+ tmp3 -= tmp6;
+ tmp4 -= tmp6;
+ tmp5 -= tmp6;
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */
+ MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */
+ MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */
+ MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */
+ MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */
+ MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */
+ CONST_BITS+1);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */
+ MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */
+ MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */
+ z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */
+ MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */
+ MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */
+
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */
+ MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */
+ MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */
+ tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */
+ MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */
+ tmp1 += tmp4 + tmp5 +
+ MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */
+ MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */
+ tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */
+ tmp2 += tmp4 + tmp6 -
+ MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */
+ MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */
+ tmp3 += tmp5 + tmp6 +
+ MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */
+ MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 14x14 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ DCTELEM workspace[8*6];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/28). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
+ tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);
+ tmp13 += tmp13;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
+ CONST_BITS);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
+ CONST_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
+ CONST_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);
+ tmp3 <<= CONST_BITS;
+ tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
+ dataptr[5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
+ CONST_BITS);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
+ CONST_BITS);
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
+ MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
+ CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 14)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/14)**2 = 16/49, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
+ tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+1);
+ tmp13 += tmp13;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
+ CONST_BITS+1);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
+ CONST_BITS+1);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+1);
+ tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
+ tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
+ CONST_BITS+1);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3
+ - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
+ - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
+ CONST_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 15x15 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 z1, z2, z3;
+ DCTELEM workspace[8*7];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/30). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);
+ tmp7 = GETJSAMPLE(elemptr[7]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);
+ tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);
+ tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);
+ tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);
+
+ z1 = tmp0 + tmp4 + tmp5;
+ z2 = tmp1 + tmp3 + tmp6;
+ z3 = tmp2 + tmp7;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);
+ z3 += z3;
+ dataptr[6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */
+ MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */
+ CONST_BITS);
+ tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
+ z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */
+ MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */
+ z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */
+ MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */
+ z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */
+ MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */
+ MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */
+
+ dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);
+ dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);
+
+ /* Odd part */
+
+ tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
+ FIX(1.224744871)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */
+ MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */
+ tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */
+ tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */
+ MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */
+ MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */
+ tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */
+ MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */
+ MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */
+ tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */
+ MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */
+ MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 15)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/15)**2 = 64/225, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];
+ tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];
+ tmp7 = dataptr[DCTSIZE*7];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];
+ tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];
+ tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];
+ tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];
+ tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];
+ tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];
+ tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];
+
+ z1 = tmp0 + tmp4 + tmp5;
+ z2 = tmp1 + tmp3 + tmp6;
+ z3 = tmp2 + tmp7;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */
+ CONST_BITS+2);
+ z3 += z3;
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */
+ MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */
+ CONST_BITS+2);
+ tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
+ z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */
+ MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */
+ z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */
+ MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */
+ z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */
+ MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */
+
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
+ FIX(1.393487498)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */
+ MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */
+ tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */
+ tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */
+ MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */
+ MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */
+ tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */
+ MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */
+ MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */
+ tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */
+ MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */
+ MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 16x16 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
+ DCTELEM workspace[DCTSIZE2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* cK represents sqrt(2) * cos(K*pi/32). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS-PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == DCTSIZE * 2)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/16)**2 = 1/2**2.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS+PASS1_BITS+2);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */
+ CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS+PASS1_BITS+2);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 16x8 sample block.
+ *
+ * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */
+
+ dataptr = data;
+ ctr = 0;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS-PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by 8/16 = 1/2.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12,
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13,
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12,
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13,
+ CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 14x7 sample block.
+ *
+ * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 z1, z2, z3;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero bottom row of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 7; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
+ tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp13 += tmp13;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
+ CONST_BITS-PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);
+ tmp3 <<= CONST_BITS;
+ tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
+ dataptr[5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
+ CONST_BITS-PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
+ MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
+ CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/14)*(8/7) = 32/49, which we
+ * partially fold into the constant multipliers and final shifting:
+ * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
+ tmp3 = dataptr[DCTSIZE*3];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
+ tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
+
+ z1 = tmp0 + tmp2;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
+ CONST_BITS+PASS1_BITS+1);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 12x6 sample block.
+ *
+ * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero 2 bottom rows of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/12)*(8/6) = 8/9, which we
+ * partially fold into the constant multipliers and final shifting:
+ * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
+ tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
+ CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 10x5 sample block.
+ *
+ * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero 3 bottom rows of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 5; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
+ tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp12 += tmp12;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
+ CONST_BITS-PASS1_BITS);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);
+ tmp2 <<= CONST_BITS;
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
+ CONST_BITS-PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
+ (tmp11 << (CONST_BITS - 1)) - tmp2;
+ dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/10)*(8/5) = 32/25, which we
+ * fold into the constant multipliers:
+ * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
+ tmp2 = dataptr[DCTSIZE*2];
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on an 8x4 sample block.
+ *
+ * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero 4 bottom rows of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by 8/4 = 2, which we add here. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-2);
+ dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-2);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1);
+ dataptr[5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1);
+ dataptr[7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 6x3 sample block.
+ *
+ * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11, tmp12;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
+ tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
+ CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part */
+
+ tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));
+ dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));
+ dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
+ tmp1 = dataptr[DCTSIZE*1];
+
+ tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 4x2 sample block.
+ *
+ * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */
+ /* 4-point FDCT kernel, */
+ /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 2; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3));
+ dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3));
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-4);
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS-3);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS-3);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1));
+ tmp1 = dataptr[DCTSIZE*1];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 2x1 sample block.
+ *
+ * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ JSAMPROW elemptr;
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ elemptr = sample_data[0] + start_col;
+
+ tmp0 = GETJSAMPLE(elemptr[0]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ /* We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/2)*(8/1) = 2**5.
+ */
+
+ /* Even part */
+ /* Apply unsigned->signed conversion */
+ data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
+
+ /* Odd part */
+ data[1] = (DCTELEM) ((tmp0 - tmp1) << 5);
+}
+
+
+/*
+ * Perform the forward DCT on an 8x16 sample block.
+ *
+ * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
+ INT32 z1;
+ DCTELEM workspace[DCTSIZE2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == DCTSIZE * 2)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by 8/16 = 1/2.
+ * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS+PASS1_BITS+1);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 7x14 sample block.
+ *
+ * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 z1, z2, z3;
+ DCTELEM workspace[8*6];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
+ tmp3 = GETJSAMPLE(elemptr[3]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
+
+ z1 = tmp0 + tmp2;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
+ dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
+ dataptr[4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 14)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/7)*(8/14) = 32/49, which we
+ * fold into the constant multipliers:
+ * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
+ tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+PASS1_BITS);
+ tmp13 += tmp13;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
+ CONST_BITS+PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+PASS1_BITS);
+ tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
+ tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
+ CONST_BITS+PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3
+ - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
+ - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 6x12 sample block.
+ *
+ * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ DCTELEM workspace[8*4];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
+ tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
+ CONST_BITS-PASS1_BITS);
+
+ dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
+ dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
+ dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 12)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)*(8/12) = 8/9, which we
+ * fold into the constant multipliers:
+ * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
+ MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 5x10 sample block.
+ *
+ * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ DCTELEM workspace[8*2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
+ tmp2 = GETJSAMPLE(elemptr[2]);
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
+ dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
+ CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 10)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/5)*(8/10) = 32/25, which we
+ * fold into the constant multipliers:
+ * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
+ tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp12 += tmp12;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
+ CONST_BITS+PASS1_BITS);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
+ CONST_BITS+PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
+ MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 4x8 sample block.
+ *
+ * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by 8/4 = 2, which we add here. */
+ /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 3x6 sample block.
+ *
+ * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11, tmp12;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
+ CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
+ tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 2x4 sample block.
+ *
+ * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3);
+
+ /* Odd part */
+
+ dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * 4-point FDCT kernel,
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 2; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1);
+ dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-1);
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 1x2 sample block.
+ *
+ * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ tmp0 = GETJSAMPLE(sample_data[0][start_col]);
+ tmp1 = GETJSAMPLE(sample_data[1][start_col]);
+
+ /* We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/1)*(8/2) = 2**5.
+ */
+
+ /* Even part */
+ /* Apply unsigned->signed conversion */
+ data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
+
+ /* Odd part */
+ data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5);
+}
+
+#endif /* DCT_SCALING_SUPPORTED */
+#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jidctflt.c b/src/3rdparty/libjpeg/jidctflt.c
new file mode 100644
index 0000000..0188ce3
--- /dev/null
+++ b/src/3rdparty/libjpeg/jidctflt.c
@@ -0,0 +1,242 @@
+/*
+ * jidctflt.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * This implementation should be more accurate than either of the integer
+ * IDCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a float result.
+ */
+
+#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z5, z10, z11, z12, z13;
+ JCOEFPTR inptr;
+ FLOAT_MULT_TYPE * quantptr;
+ FAST_FLOAT * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = tmp0 + tmp2; /* phase 3 */
+ tmp11 = tmp0 - tmp2;
+
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */
+ tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+
+ tmp0 = tmp10 + tmp13; /* phase 2 */
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z13 = tmp6 + tmp5; /* phase 6 */
+ z10 = tmp6 - tmp5;
+ z11 = tmp4 + tmp7;
+ z12 = tmp4 - tmp7;
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+
+ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+ tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+ tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ wsptr[DCTSIZE*0] = tmp0 + tmp7;
+ wsptr[DCTSIZE*7] = tmp0 - tmp7;
+ wsptr[DCTSIZE*1] = tmp1 + tmp6;
+ wsptr[DCTSIZE*6] = tmp1 - tmp6;
+ wsptr[DCTSIZE*2] = tmp2 + tmp5;
+ wsptr[DCTSIZE*5] = tmp2 - tmp5;
+ wsptr[DCTSIZE*4] = tmp3 + tmp4;
+ wsptr[DCTSIZE*3] = tmp3 - tmp4;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * And testing floats for zero is relatively expensive, so we don't bother.
+ */
+
+ /* Even part */
+
+ tmp10 = wsptr[0] + wsptr[4];
+ tmp11 = wsptr[0] - wsptr[4];
+
+ tmp13 = wsptr[2] + wsptr[6];
+ tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
+
+ tmp0 = tmp10 + tmp13;
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z13 = wsptr[5] + wsptr[3];
+ z10 = wsptr[5] - wsptr[3];
+ z11 = wsptr[1] + wsptr[7];
+ z12 = wsptr[1] - wsptr[7];
+
+ tmp7 = z11 + z13;
+ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
+
+ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+ tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+ tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7;
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ /* Final output stage: scale down by a factor of 8 and range-limit */
+
+ outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jidctfst.c b/src/3rdparty/libjpeg/jidctfst.c
new file mode 100644
index 0000000..dba4216
--- /dev/null
+++ b/src/3rdparty/libjpeg/jidctfst.c
@@ -0,0 +1,368 @@
+/*
+ * jidctfst.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a fast, not so accurate integer implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with fixed-point math,
+ * accuracy is lost due to imprecise representation of the scaled
+ * quantization values. The smaller the quantization table entry, the less
+ * precise the scaled value, so this implementation does worse with high-
+ * quality-setting files than with low-quality ones.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_IFAST_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling decisions are generally the same as in the LL&M algorithm;
+ * see jidctint.c for more details. However, we choose to descale
+ * (right shift) multiplication products as soon as they are formed,
+ * rather than carrying additional fractional bits into subsequent additions.
+ * This compromises accuracy slightly, but it lets us save a few shifts.
+ * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ * everywhere except in the multiplications proper; this saves a good deal
+ * of work on 16-bit-int machines.
+ *
+ * The dequantized coefficients are not integers because the AA&N scaling
+ * factors have been incorporated. We represent them scaled up by PASS1_BITS,
+ * so that the first and second IDCT rounds have the same input scaling.
+ * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
+ * avoid a descaling shift; this compromises accuracy rather drastically
+ * for small quantization table entries, but it saves a lot of shifts.
+ * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
+ * so we use a much larger scaling factor to preserve accuracy.
+ *
+ * A final compromise is to represent the multiplicative constants to only
+ * 8 fractional bits, rather than 13. This saves some shifting work on some
+ * machines, and may also reduce the cost of multiplication (since there
+ * are fewer one-bits in the constants).
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 8
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 8
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 8
+#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
+#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
+#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
+#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
+#else
+#define FIX_1_082392200 FIX(1.082392200)
+#define FIX_1_414213562 FIX(1.414213562)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_2_613125930 FIX(2.613125930)
+#endif
+
+
+/* We can gain a little more speed, with a further compromise in accuracy,
+ * by omitting the addition in a descaling shift. This yields an incorrectly
+ * rounded result half the time...
+ */
+
+#ifndef USE_ACCURATE_ROUNDING
+#undef DESCALE
+#define DESCALE(x,n) RIGHT_SHIFT(x, n)
+#endif
+
+
+/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+ * descale to yield a DCTELEM result.
+ */
+
+#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
+ * multiplication will do. For 12-bit data, the multiplier table is
+ * declared INT32, so a 32-bit multiply will be used.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
+#else
+#define DEQUANTIZE(coef,quantval) \
+ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
+#endif
+
+
+/* Like DESCALE, but applies to a DCTELEM and produces an int.
+ * We assume that int right shift is unsigned if INT32 right shift is.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS DCTELEM ishift_temp;
+#if BITS_IN_JSAMPLE == 8
+#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
+#else
+#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
+#endif
+#define IRIGHT_SHIFT(x,shft) \
+ ((ishift_temp = (x)) < 0 ? \
+ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
+ (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+#ifdef USE_ACCURATE_ROUNDING
+#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
+#else
+#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
+#endif
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ DCTELEM tmp10, tmp11, tmp12, tmp13;
+ DCTELEM z5, z10, z11, z12, z13;
+ JCOEFPTR inptr;
+ IFAST_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS /* for DESCALE */
+ ISHIFT_TEMPS /* for IDESCALE */
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = tmp0 + tmp2; /* phase 3 */
+ tmp11 = tmp0 - tmp2;
+
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */
+ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
+
+ tmp0 = tmp10 + tmp13; /* phase 2 */
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z13 = tmp6 + tmp5; /* phase 6 */
+ z10 = tmp6 - tmp5;
+ z11 = tmp4 + tmp7;
+ z12 = tmp4 - tmp7;
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+
+ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
+ wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
+ wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
+ wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
+ wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
+ wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
+ wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
+ wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * On machines with very fast multiplication, it's possible that the
+ * test takes more time than it's worth. In that case this section
+ * may be commented out.
+ */
+
+#ifndef NO_ZERO_ROW_TEST
+ if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
+ & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+ outptr[2] = dcval;
+ outptr[3] = dcval;
+ outptr[4] = dcval;
+ outptr[5] = dcval;
+ outptr[6] = dcval;
+ outptr[7] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part */
+
+ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
+ tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
+
+ tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
+ tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
+ - tmp13;
+
+ tmp0 = tmp10 + tmp13;
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
+ z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
+ z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
+ z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+
+ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ /* Final output stage: scale down by a factor of 8 and range-limit */
+
+ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#endif /* DCT_IFAST_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jidctint.c b/src/3rdparty/libjpeg/jidctint.c
new file mode 100644
index 0000000..dcdf7ce
--- /dev/null
+++ b/src/3rdparty/libjpeg/jidctint.c
@@ -0,0 +1,5137 @@
+/*
+ * jidctint.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modification developed 2002-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ *
+ * We also provide IDCT routines with various output sample block sizes for
+ * direct resolution reduction or enlargement and for direct resolving the
+ * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
+ * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block.
+ *
+ * For N<8 we simply take the corresponding low-frequency coefficients of
+ * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
+ * to yield the downscaled outputs.
+ * This can be seen as direct low-pass downsampling from the DCT domain
+ * point of view rather than the usual spatial domain point of view,
+ * yielding significant computational savings and results at least
+ * as good as common bilinear (averaging) spatial downsampling.
+ *
+ * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
+ * lower frequencies and higher frequencies assumed to be zero.
+ * It turns out that the computational effort is similar to the 8x8 IDCT
+ * regarding the output size.
+ * Furthermore, the scaling and descaling is the same for all IDCT sizes.
+ *
+ * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
+ * since there would be too many additional constants to pre-calculate.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true IDCT outputs. The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm. The advantage of
+ * this arrangement is that we save two multiplications per 1-D IDCT,
+ * because the y0 and y4 inputs need not be divided by sqrt(N).
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic. We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants). After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output. This division can be done
+ * cheaply as a right shift of CONST_BITS bits. We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision. These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling. (To scale up 12-bit sample data further, an
+ * intermediate INT32 array would be needed.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
+#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
+#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
+#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
+#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
+#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
+#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
+#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
+#else
+#define FIX_0_298631336 FIX(0.298631336)
+#define FIX_0_390180644 FIX(0.390180644)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_175875602 FIX(1.175875602)
+#define FIX_1_501321110 FIX(1.501321110)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_1_961570560 FIX(1.961570560)
+#define FIX_2_053119869 FIX(2.053119869)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_072711026 FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const) ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result. In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 <<= CONST_BITS;
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z2 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = z2 + z3;
+ tmp1 = z2 - z3;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * On machines with very fast multiplication, it's possible that the
+ * test takes more time than it's worth. In that case this section
+ * may be commented out.
+ */
+
+#ifndef NO_ZERO_ROW_TEST
+ if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+ & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+ outptr[2] = dcval;
+ outptr[3] = dcval;
+ outptr[4] = dcval;
+ outptr[5] = dcval;
+ outptr[6] = dcval;
+ outptr[7] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ /* Add fudge factor here for final descale. */
+ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 = (INT32) wsptr[4];
+
+ tmp0 = (z2 + z3) << CONST_BITS;
+ tmp1 = (z2 - z3) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = (INT32) wsptr[7];
+ tmp1 = (INT32) wsptr[5];
+ tmp2 = (INT32) wsptr[3];
+ tmp3 = (INT32) wsptr[1];
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 7x7 output block.
+ *
+ * Optimized algorithm with 12 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/14).
+ */
+
+GLOBAL(void)
+jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[7*7]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp13 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp0 = z1 + z3;
+ z2 -= tmp0;
+ tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
+ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp0 += z2;
+ tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 7 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp13 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp0 = z1 + z3;
+ z2 -= tmp0;
+ tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
+ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp0 += z2;
+ tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 7; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 6x6 output block.
+ *
+ * Optimized algorithm with 3 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/12).
+ */
+
+GLOBAL(void)
+jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[6*6]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*1] = (int) (tmp11 + tmp1);
+ wsptr[6*4] = (int) (tmp11 - tmp1);
+ wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 6 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[4];
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = tmp0 - tmp10 - tmp10;
+ tmp10 = (INT32) wsptr[2];
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << CONST_BITS;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 6; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 5x5 output block.
+ *
+ * Optimized algorithm with 5 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/10).
+ */
+
+GLOBAL(void)
+jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[5*5]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp12 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 5 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp12 <<= CONST_BITS;
+ tmp0 = (INT32) wsptr[2];
+ tmp1 = (INT32) wsptr[4];
+ z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 5; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 4x4 output block.
+ *
+ * Optimized algorithm with 3 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
+ */
+
+GLOBAL(void)
+jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[4*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+
+ tmp10 = (tmp0 + tmp2) << PASS1_BITS;
+ tmp12 = (tmp0 - tmp2) << PASS1_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS);
+ tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Final output stage */
+
+ wsptr[4*0] = (int) (tmp10 + tmp0);
+ wsptr[4*3] = (int) (tmp10 - tmp0);
+ wsptr[4*1] = (int) (tmp12 + tmp2);
+ wsptr[4*2] = (int) (tmp12 - tmp2);
+ }
+
+ /* Pass 2: process 4 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp2 = (INT32) wsptr[2];
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 4; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 3x3 output block.
+ *
+ * Optimized algorithm with 2 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/6).
+ */
+
+GLOBAL(void)
+jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[3*3]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 3 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[2];
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = (INT32) wsptr[1];
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 3; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 2x2 output block.
+ *
+ * Multiplication-less algorithm.
+ */
+
+GLOBAL(void)
+jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input. */
+
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+
+ /* Column 0 */
+ tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ /* Add fudge factor here for final descale. */
+ tmp4 += ONE << 2;
+
+ tmp0 = tmp4 + tmp5;
+ tmp2 = tmp4 - tmp5;
+
+ /* Column 1 */
+ tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]);
+ tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]);
+
+ tmp1 = tmp4 + tmp5;
+ tmp3 = tmp4 - tmp5;
+
+ /* Pass 2: process 2 rows, store into output array. */
+
+ /* Row 0 */
+ outptr = output_buf[0] + output_col;
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
+
+ /* Row 1 */
+ outptr = output_buf[1] + output_col;
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK];
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 1x1 output block.
+ *
+ * We hardly need an inverse DCT routine for this: just take the
+ * average pixel value, which is one-eighth of the DC coefficient.
+ */
+
+GLOBAL(void)
+jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ int dcval;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* 1x1 is trivial: just take the DC coefficient divided by 8. */
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+ dcval = (int) DESCALE((INT32) dcval, 3);
+
+ output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 9x9 output block.
+ *
+ * Optimized algorithm with 10 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/18).
+ */
+
+GLOBAL(void)
+jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*9]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
+ tmp1 = tmp0 + tmp3;
+ tmp2 = tmp0 - tmp3 - tmp3;
+
+ tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
+ tmp11 = tmp2 + tmp0;
+ tmp14 = tmp2 - tmp0 - tmp0;
+
+ tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
+ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
+ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
+
+ tmp10 = tmp1 + tmp0 - tmp3;
+ tmp12 = tmp1 - tmp0 + tmp2;
+ tmp13 = tmp1 - tmp2 + tmp3;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
+
+ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
+ tmp0 = tmp2 + tmp3 - z2;
+ tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
+ tmp2 += z2 - tmp1;
+ tmp3 += z2 + tmp1;
+ tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 9 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 9; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
+ tmp1 = tmp0 + tmp3;
+ tmp2 = tmp0 - tmp3 - tmp3;
+
+ tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
+ tmp11 = tmp2 + tmp0;
+ tmp14 = tmp2 - tmp0 - tmp0;
+
+ tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
+ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
+ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
+
+ tmp10 = tmp1 + tmp0 - tmp3;
+ tmp12 = tmp1 - tmp0 + tmp2;
+ tmp13 = tmp1 - tmp2 + tmp3;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
+
+ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
+ tmp0 = tmp2 + tmp3 - z2;
+ tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
+ tmp2 += z2 - tmp1;
+ tmp3 += z2 + tmp1;
+ tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 10x10 output block.
+ *
+ * Optimized algorithm with 12 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/20).
+ */
+
+GLOBAL(void)
+jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
+ INT32 z1, z2, z3, z4, z5;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*10]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+ z5 = z3 << CONST_BITS;
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z5 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) (tmp22 + tmp12);
+ wsptr[8*7] = (int) (tmp22 - tmp12);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 10 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 10; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z3 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 11x11 output block.
+ *
+ * Optimized algorithm with 24 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/22).
+ */
+
+GLOBAL(void)
+jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*11]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp10 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
+ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
+ z4 = z1 + z3;
+ tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
+ z4 -= z2;
+ tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
+ tmp21 = tmp20 + tmp23 + tmp25 -
+ MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
+ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
+ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
+ tmp24 += tmp25;
+ tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
+ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
+ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
+ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z1 + z2;
+ tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
+ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
+ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
+ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
+ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
+ z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
+ tmp11 += z1;
+ tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
+ tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
+ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
+ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 11 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 11; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp10 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
+ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
+ z4 = z1 + z3;
+ tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
+ z4 -= z2;
+ tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
+ tmp21 = tmp20 + tmp23 + tmp25 -
+ MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
+ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
+ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
+ tmp24 += tmp25;
+ tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
+ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
+ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
+ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z1 + z2;
+ tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
+ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
+ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
+ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
+ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
+ z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
+ tmp11 += z1;
+ tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
+ tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
+ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
+ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 12x12 output block.
+ *
+ * Optimized algorithm with 15 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/24).
+ */
+
+GLOBAL(void)
+jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*12]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 12 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 12; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+
+ z4 = (INT32) wsptr[4];
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = (INT32) wsptr[2];
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = (INT32) wsptr[6];
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 13x13 output block.
+ *
+ * Optimized algorithm with 29 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/26).
+ */
+
+GLOBAL(void)
+jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*13]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
+
+ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
+ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
+
+ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
+ tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
+
+ tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
+ tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
+
+ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
+ tmp15 = z1 + z4;
+ tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
+ tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
+ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
+ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
+ tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
+ tmp11 += tmp14;
+ tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
+ tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
+ tmp12 += tmp14;
+ tmp13 += tmp14;
+ tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
+ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
+ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
+ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
+ tmp14 += z1;
+ tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
+ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 13 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 13; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[4];
+ z4 = (INT32) wsptr[6];
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
+
+ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
+ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
+
+ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
+ tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
+
+ tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
+ tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
+
+ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
+ tmp15 = z1 + z4;
+ tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
+ tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
+ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
+ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
+ tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
+ tmp11 += tmp14;
+ tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
+ tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
+ tmp12 += tmp14;
+ tmp13 += tmp14;
+ tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
+ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
+ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
+ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
+ tmp14 += z1;
+ tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
+ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 14x14 output block.
+ *
+ * Optimized algorithm with 20 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/28).
+ */
+
+GLOBAL(void)
+jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*14]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp13 = z4 << CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
+ tmp16 += tmp15;
+ z1 += z4;
+ z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
+ tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = (z1 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) (tmp23 + tmp13);
+ wsptr[8*10] = (int) (tmp23 - tmp13);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 14 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 14; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+ z4 <<= CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
+ tmp16 += tmp15;
+ tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
+ tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = ((z1 - z3) << CONST_BITS) + z4;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 15x15 output block.
+ *
+ * Optimized algorithm with 22 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/30).
+ */
+
+GLOBAL(void)
+jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*15]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
+ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
+
+ tmp12 = z1 - tmp10;
+ tmp13 = z1 + tmp11;
+ z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
+
+ z4 = z2 - z3;
+ z3 += z2;
+ tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
+ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
+
+ tmp20 = tmp13 + tmp10 + tmp11;
+ tmp23 = tmp12 - tmp10 + tmp11 + z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
+
+ tmp25 = tmp13 - tmp10 - tmp11;
+ tmp26 = tmp12 + tmp10 - tmp11 - z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
+
+ tmp21 = tmp12 + tmp10 + tmp11;
+ tmp24 = tmp13 - tmp10 + tmp11;
+ tmp11 += tmp11;
+ tmp22 = z1 + tmp11; /* c10 = c6-c12 */
+ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp13 = z2 - z4;
+ tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
+ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
+ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
+
+ tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
+ tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
+ z2 = z1 - z4;
+ tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
+
+ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
+ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
+ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
+ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
+ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
+ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 15 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 15; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[4];
+ z4 = (INT32) wsptr[6];
+
+ tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
+ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
+
+ tmp12 = z1 - tmp10;
+ tmp13 = z1 + tmp11;
+ z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
+
+ z4 = z2 - z3;
+ z3 += z2;
+ tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
+ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
+
+ tmp20 = tmp13 + tmp10 + tmp11;
+ tmp23 = tmp12 - tmp10 + tmp11 + z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
+
+ tmp25 = tmp13 - tmp10 - tmp11;
+ tmp26 = tmp12 + tmp10 - tmp11 - z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
+
+ tmp21 = tmp12 + tmp10 + tmp11;
+ tmp24 = tmp13 - tmp10 + tmp11;
+ tmp11 += tmp11;
+ tmp22 = z1 + tmp11; /* c10 = c6-c12 */
+ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z4 = (INT32) wsptr[5];
+ z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
+ z4 = (INT32) wsptr[7];
+
+ tmp13 = z2 - z4;
+ tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
+ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
+ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
+
+ tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
+ tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
+ z2 = z1 - z4;
+ tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
+
+ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
+ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
+ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
+ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
+ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
+ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 16x16 output block.
+ *
+ * Optimized algorithm with 28 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/32).
+ */
+
+GLOBAL(void)
+jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*16]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 16 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 16; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[4];
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 16x8 output block.
+ *
+ * 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*8]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 <<= CONST_BITS;
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z2 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = z2 + z3;
+ tmp1 = z2 - z3;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process 8 rows from work array, store into output array.
+ * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[4];
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 14x7 output block.
+ *
+ * 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*7]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp23 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp23 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp10 = z1 + z3;
+ z2 -= tmp10;
+ tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
+ tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp10 = tmp11 - tmp12;
+ tmp11 += tmp12;
+ tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp11 += tmp12;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp10 += z2;
+ tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 7 rows from work array, store into output array.
+ * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+ z4 <<= CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
+ tmp16 += tmp15;
+ tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
+ tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = ((z1 - z3) << CONST_BITS) + z4;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 12x6 output block.
+ *
+ * 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*6]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp10 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
+ tmp11 = tmp10 + tmp20;
+ tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS);
+ tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
+ tmp20 = tmp11 + tmp10;
+ tmp22 = tmp11 - tmp10;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
+ tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
+ tmp11 = (z1 - z2 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) (tmp21 + tmp11);
+ wsptr[8*4] = (int) (tmp21 - tmp11);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 6 rows from work array, store into output array.
+ * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+
+ z4 = (INT32) wsptr[4];
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = (INT32) wsptr[2];
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = (INT32) wsptr[6];
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 10x5 output block.
+ *
+ * 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*5]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp12 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 5 rows from work array, store into output array.
+ * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z3 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 8x4 output block.
+ *
+ * 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+
+ tmp10 = (tmp0 + tmp2) << PASS1_BITS;
+ tmp12 = (tmp0 - tmp2) << PASS1_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS);
+ tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) (tmp10 + tmp0);
+ wsptr[8*3] = (int) (tmp10 - tmp0);
+ wsptr[8*1] = (int) (tmp12 + tmp2);
+ wsptr[8*2] = (int) (tmp12 - tmp2);
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ /* Add fudge factor here for final descale. */
+ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 = (INT32) wsptr[4];
+
+ tmp0 = (z2 + z3) << CONST_BITS;
+ tmp1 = (z2 - z3) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = (INT32) wsptr[7];
+ tmp1 = (INT32) wsptr[5];
+ tmp2 = (INT32) wsptr[3];
+ tmp3 = (INT32) wsptr[1];
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 6x3 output block.
+ *
+ * 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[6*3]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 3 rows from work array, store into output array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[4];
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = tmp0 - tmp10 - tmp10;
+ tmp10 = (INT32) wsptr[2];
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << CONST_BITS;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 6; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 4x2 output block.
+ *
+ * 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ INT32 * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ INT32 workspace[4*2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ /* Odd part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ /* Final output stage */
+
+ wsptr[4*0] = tmp10 + tmp0;
+ wsptr[4*1] = tmp10 - tmp0;
+ }
+
+ /* Pass 2: process 2 rows from work array, store into output array.
+ * 4-point IDCT kernel,
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 2; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = wsptr[0] + (ONE << 2);
+ tmp2 = wsptr[2];
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = wsptr[1];
+ z3 = wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 4; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 2x1 output block.
+ *
+ * 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp10;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* Pass 1: empty. */
+
+ /* Pass 2: process 1 row from input, store into output array. */
+
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ outptr = output_buf[0] + output_col;
+
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]);
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << 2;
+
+ /* Odd part */
+
+ tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]);
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK];
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 8x16 output block.
+ *
+ * 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*16]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 16; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ /* Add fudge factor here for final descale. */
+ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 = (INT32) wsptr[4];
+
+ tmp0 = (z2 + z3) << CONST_BITS;
+ tmp1 = (z2 - z3) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = (INT32) wsptr[7];
+ tmp1 = (INT32) wsptr[5];
+ tmp2 = (INT32) wsptr[3];
+ tmp3 = (INT32) wsptr[1];
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 7x14 output block.
+ *
+ * 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[7*14]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp13 = z4 << CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
+ tmp16 += tmp15;
+ z1 += z4;
+ z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
+ tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = (z1 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[7*3] = (int) (tmp23 + tmp13);
+ wsptr[7*10] = (int) (tmp23 - tmp13);
+ wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 14 rows from work array, store into output array.
+ * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 14; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp23 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp23 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp10 = z1 + z3;
+ z2 -= tmp10;
+ tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
+ tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp10 = tmp11 - tmp12;
+ tmp11 += tmp12;
+ tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp11 += tmp12;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp10 += z2;
+ tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 7; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 6x12 output block.
+ *
+ * 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[6*12]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 12 rows from work array, store into output array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 12; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp10 <<= CONST_BITS;
+ tmp12 = (INT32) wsptr[4];
+ tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
+ tmp11 = tmp10 + tmp20;
+ tmp21 = tmp10 - tmp20 - tmp20;
+ tmp20 = (INT32) wsptr[2];
+ tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
+ tmp20 = tmp11 + tmp10;
+ tmp22 = tmp11 - tmp10;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
+ tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
+ tmp11 = (z1 - z2 - z3) << CONST_BITS;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 6; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 5x10 output block.
+ *
+ * 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
+ INT32 z1, z2, z3, z4, z5;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[5*10]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+ z5 = z3 << CONST_BITS;
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z5 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[5*2] = (int) (tmp22 + tmp12);
+ wsptr[5*7] = (int) (tmp22 - tmp12);
+ wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 10 rows from work array, store into output array.
+ * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 10; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp12 <<= CONST_BITS;
+ tmp13 = (INT32) wsptr[2];
+ tmp14 = (INT32) wsptr[4];
+ z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 5; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 4x8 output block.
+ *
+ * 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[4*8]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 4; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[4*0] = dcval;
+ wsptr[4*1] = dcval;
+ wsptr[4*2] = dcval;
+ wsptr[4*3] = dcval;
+ wsptr[4*4] = dcval;
+ wsptr[4*5] = dcval;
+ wsptr[4*6] = dcval;
+ wsptr[4*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 <<= CONST_BITS;
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z2 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = z2 + z3;
+ tmp1 = z2 - z3;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process 8 rows from work array, store into output array.
+ * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp2 = (INT32) wsptr[2];
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 4; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 3x6 output block.
+ *
+ * 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[3*6]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*1] = (int) (tmp11 + tmp1);
+ wsptr[3*4] = (int) (tmp11 - tmp1);
+ wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 6 rows from work array, store into output array.
+ * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[2];
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = (INT32) wsptr[1];
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 3; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 2x4 output block.
+ *
+ * 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ INT32 * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ INT32 workspace[2*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 4-point IDCT kernel,
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ wsptr[2*0] = tmp10 + tmp0;
+ wsptr[2*3] = tmp10 - tmp0;
+ wsptr[2*1] = tmp12 + tmp2;
+ wsptr[2*2] = tmp12 - tmp2;
+ }
+
+ /* Pass 2: process 4 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = wsptr[0] + (ONE << (CONST_BITS+2));
+
+ /* Odd part */
+
+ tmp0 = wsptr[1];
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 2; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 1x2 output block.
+ *
+ * 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp10;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* Process 1 column from input, store into output array. */
+
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << 2;
+
+ /* Odd part */
+
+ tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ /* Final output stage */
+
+ output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3)
+ & RANGE_MASK];
+ output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3)
+ & RANGE_MASK];
+}
+
+#endif /* IDCT_SCALING_SUPPORTED */
+#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jinclude.h b/src/3rdparty/libjpeg/jinclude.h
new file mode 100644
index 0000000..0a4f151
--- /dev/null
+++ b/src/3rdparty/libjpeg/jinclude.h
@@ -0,0 +1,91 @@
+/*
+ * jinclude.h
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file exists to provide a single place to fix any problems with
+ * including the wrong system include files. (Common problems are taken
+ * care of by the standard jconfig symbols, but on really weird systems
+ * you may have to edit this file.)
+ *
+ * NOTE: this file is NOT intended to be included by applications using the
+ * JPEG library. Most applications need only include jpeglib.h.
+ */
+
+
+/* Include auto-config file to find out which system include files we need. */
+
+#include "jconfig.h" /* auto configuration options */
+#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
+
+/*
+ * We need the NULL macro and size_t typedef.
+ * On an ANSI-conforming system it is sufficient to include <stddef.h>.
+ * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
+ * pull in <sys/types.h> as well.
+ * Note that the core JPEG library does not require <stdio.h>;
+ * only the default error handler and data source/destination modules do.
+ * But we must pull it in because of the references to FILE in jpeglib.h.
+ * You can remove those references if you want to compile without <stdio.h>.
+ */
+
+#ifdef HAVE_STDDEF_H
+#include <stddef.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#include <stdio.h>
+
+/*
+ * We need memory copying and zeroing functions, plus strncpy().
+ * ANSI and System V implementations declare these in <string.h>.
+ * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
+ * Some systems may declare memset and memcpy in <memory.h>.
+ *
+ * NOTE: we assume the size parameters to these functions are of type size_t.
+ * Change the casts in these macros if not!
+ */
+
+#ifdef NEED_BSD_STRINGS
+
+#include <strings.h>
+#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
+#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
+
+#else /* not BSD, assume ANSI/SysV string lib */
+
+#include <string.h>
+#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
+#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
+
+#endif
+
+/*
+ * In ANSI C, and indeed any rational implementation, size_t is also the
+ * type returned by sizeof(). However, it seems there are some irrational
+ * implementations out there, in which sizeof() returns an int even though
+ * size_t is defined as long or unsigned long. To ensure consistent results
+ * we always use this SIZEOF() macro in place of using sizeof() directly.
+ */
+
+#define SIZEOF(object) ((size_t) sizeof(object))
+
+/*
+ * The modules that use fread() and fwrite() always invoke them through
+ * these macros. On some systems you may need to twiddle the argument casts.
+ * CAUTION: argument order is different from underlying functions!
+ */
+
+#define JFREAD(file,buf,sizeofbuf) \
+ ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+#define JFWRITE(file,buf,sizeofbuf) \
+ ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
diff --git a/src/3rdparty/libjpeg/jmemansi.c b/src/3rdparty/libjpeg/jmemansi.c
new file mode 100644
index 0000000..2d93e49
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemansi.c
@@ -0,0 +1,167 @@
+/*
+ * jmemansi.c
+ *
+ * Copyright (C) 1992-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a simple generic implementation of the system-
+ * dependent portion of the JPEG memory manager. This implementation
+ * assumes that you have the ANSI-standard library routine tmpfile().
+ * Also, the problem of determining the amount of memory available
+ * is shoved onto the user.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
+#define SEEK_SET 0 /* if not, assume 0 is correct */
+#endif
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * It's impossible to do this in a portable way; our current solution is
+ * to make the user tell us (with a default value set at compile time).
+ * If you can actually get the available space, it's a good idea to subtract
+ * a slop factor of 5% or so.
+ */
+
+#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
+#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
+#endif
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return cinfo->mem->max_memory_to_use - already_allocated;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+
+METHODDEF(void)
+read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFREAD(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFWRITE(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ fclose(info->temp_file);
+ /* Since this implementation uses tmpfile() to create the file,
+ * no explicit file deletion is needed.
+ */
+}
+
+
+/*
+ * Initial opening of a backing-store object.
+ *
+ * This version uses tmpfile(), which constructs a suitable file name
+ * behind the scenes. We don't have to use info->temp_name[] at all;
+ * indeed, we can't even find out the actual name of the temp file.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ if ((info->temp_file = tmpfile()) == NULL)
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "");
+ info->read_backing_store = read_backing_store;
+ info->write_backing_store = write_backing_store;
+ info->close_backing_store = close_backing_store;
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/src/3rdparty/libjpeg/jmemdos.c b/src/3rdparty/libjpeg/jmemdos.c
new file mode 100644
index 0000000..60b45c6
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemdos.c
@@ -0,0 +1,638 @@
+/*
+ * jmemdos.c
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides an MS-DOS-compatible implementation of the system-
+ * dependent portion of the JPEG memory manager. Temporary data can be
+ * stored in extended or expanded memory as well as in regular DOS files.
+ *
+ * If you use this file, you must be sure that NEED_FAR_POINTERS is defined
+ * if you compile in a small-data memory model; it should NOT be defined if
+ * you use a large-data memory model. This file is not recommended if you
+ * are using a flat-memory-space 386 environment such as DJGCC or Watcom C.
+ * Also, this code will NOT work if struct fields are aligned on greater than
+ * 2-byte boundaries.
+ *
+ * Based on code contributed by Ge' Weijers.
+ */
+
+/*
+ * If you have both extended and expanded memory, you may want to change the
+ * order in which they are tried in jopen_backing_store. On a 286 machine
+ * expanded memory is usually faster, since extended memory access involves
+ * an expensive protected-mode-and-back switch. On 386 and better, extended
+ * memory is usually faster. As distributed, the code tries extended memory
+ * first (what? not everyone has a 386? :-).
+ *
+ * You can disable use of extended/expanded memory entirely by altering these
+ * definitions or overriding them from the Makefile (eg, -DEMS_SUPPORTED=0).
+ */
+
+#ifndef XMS_SUPPORTED
+#define XMS_SUPPORTED 1
+#endif
+#ifndef EMS_SUPPORTED
+#define EMS_SUPPORTED 1
+#endif
+
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare these */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+extern char * getenv JPP((const char * name));
+#endif
+
+#ifdef NEED_FAR_POINTERS
+
+#ifdef __TURBOC__
+/* These definitions work for Borland C (Turbo C) */
+#include <alloc.h> /* need farmalloc(), farfree() */
+#define far_malloc(x) farmalloc(x)
+#define far_free(x) farfree(x)
+#else
+/* These definitions work for Microsoft C and compatible compilers */
+#include <malloc.h> /* need _fmalloc(), _ffree() */
+#define far_malloc(x) _fmalloc(x)
+#define far_free(x) _ffree(x)
+#endif
+
+#else /* not NEED_FAR_POINTERS */
+
+#define far_malloc(x) malloc(x)
+#define far_free(x) free(x)
+
+#endif /* NEED_FAR_POINTERS */
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#else
+#define READ_BINARY "rb"
+#endif
+
+#ifndef USE_MSDOS_MEMMGR /* make sure user got configuration right */
+ You forgot to define USE_MSDOS_MEMMGR in jconfig.h. /* deliberate syntax error */
+#endif
+
+#if MAX_ALLOC_CHUNK >= 65535L /* make sure jconfig.h got this right */
+ MAX_ALLOC_CHUNK should be less than 64K. /* deliberate syntax error */
+#endif
+
+
+/*
+ * Declarations for assembly-language support routines (see jmemdosa.asm).
+ *
+ * The functions are declared "far" as are all their pointer arguments;
+ * this ensures the assembly source code will work regardless of the
+ * compiler memory model. We assume "short" is 16 bits, "long" is 32.
+ */
+
+typedef void far * XMSDRIVER; /* actually a pointer to code */
+typedef struct { /* registers for calling XMS driver */
+ unsigned short ax, dx, bx;
+ void far * ds_si;
+ } XMScontext;
+typedef struct { /* registers for calling EMS driver */
+ unsigned short ax, dx, bx;
+ void far * ds_si;
+ } EMScontext;
+
+extern short far jdos_open JPP((short far * handle, char far * filename));
+extern short far jdos_close JPP((short handle));
+extern short far jdos_seek JPP((short handle, long offset));
+extern short far jdos_read JPP((short handle, void far * buffer,
+ unsigned short count));
+extern short far jdos_write JPP((short handle, void far * buffer,
+ unsigned short count));
+extern void far jxms_getdriver JPP((XMSDRIVER far *));
+extern void far jxms_calldriver JPP((XMSDRIVER, XMScontext far *));
+extern short far jems_available JPP((void));
+extern void far jems_calldriver JPP((EMScontext far *));
+
+
+/*
+ * Selection of a file name for a temporary file.
+ * This is highly system-dependent, and you may want to customize it.
+ */
+
+static int next_file_num; /* to distinguish among several temp files */
+
+LOCAL(void)
+select_file_name (char * fname)
+{
+ const char * env;
+ char * ptr;
+ FILE * tfile;
+
+ /* Keep generating file names till we find one that's not in use */
+ for (;;) {
+ /* Get temp directory name from environment TMP or TEMP variable;
+ * if none, use "."
+ */
+ if ((env = (const char *) getenv("TMP")) == NULL)
+ if ((env = (const char *) getenv("TEMP")) == NULL)
+ env = ".";
+ if (*env == '\0') /* null string means "." */
+ env = ".";
+ ptr = fname; /* copy name to fname */
+ while (*env != '\0')
+ *ptr++ = *env++;
+ if (ptr[-1] != '\\' && ptr[-1] != '/')
+ *ptr++ = '\\'; /* append backslash if not in env variable */
+ /* Append a suitable file name */
+ next_file_num++; /* advance counter */
+ sprintf(ptr, "JPG%03d.TMP", next_file_num);
+ /* Probe to see if file name is already in use */
+ if ((tfile = fopen(fname, READ_BINARY)) == NULL)
+ break;
+ fclose(tfile); /* oops, it's there; close tfile & try again */
+ }
+}
+
+
+/*
+ * Near-memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are allocated in far memory, if possible
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) far_malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ far_free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * It's impossible to do this in a portable way; our current solution is
+ * to make the user tell us (with a default value set at compile time).
+ * If you can actually get the available space, it's a good idea to subtract
+ * a slop factor of 5% or so.
+ */
+
+#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
+#define DEFAULT_MAX_MEM 300000L /* for total usage about 450K */
+#endif
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return cinfo->mem->max_memory_to_use - already_allocated;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+/*
+ * For MS-DOS we support three types of backing storage:
+ * 1. Conventional DOS files. We access these by direct DOS calls rather
+ * than via the stdio package. This provides a bit better performance,
+ * but the real reason is that the buffers to be read or written are FAR.
+ * The stdio library for small-data memory models can't cope with that.
+ * 2. Extended memory, accessed per the XMS V2.0 specification.
+ * 3. Expanded memory, accessed per the LIM/EMS 4.0 specification.
+ * You'll need copies of those specs to make sense of the related code.
+ * The specs are available by Internet FTP from the SIMTEL archives
+ * (oak.oakland.edu and its various mirror sites). See files
+ * pub/msdos/microsoft/xms20.arc and pub/msdos/info/limems41.zip.
+ */
+
+
+/*
+ * Access methods for a DOS file.
+ */
+
+
+METHODDEF(void)
+read_file_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (jdos_seek(info->handle.file_handle, file_offset))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
+ if (byte_count > 65535L) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+ if (jdos_read(info->handle.file_handle, buffer_address,
+ (unsigned short) byte_count))
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_file_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (jdos_seek(info->handle.file_handle, file_offset))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
+ if (byte_count > 65535L) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+ if (jdos_write(info->handle.file_handle, buffer_address,
+ (unsigned short) byte_count))
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_file_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ jdos_close(info->handle.file_handle); /* close the file */
+ remove(info->temp_name); /* delete the file */
+/* If your system doesn't have remove(), try unlink() instead.
+ * remove() is the ANSI-standard name for this function, but
+ * unlink() was more common in pre-ANSI systems.
+ */
+ TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
+}
+
+
+LOCAL(boolean)
+open_file_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ short handle;
+
+ select_file_name(info->temp_name);
+ if (jdos_open((short far *) & handle, (char far *) info->temp_name)) {
+ /* might as well exit since jpeg_open_backing_store will fail anyway */
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+ return FALSE;
+ }
+ info->handle.file_handle = handle;
+ info->read_backing_store = read_file_store;
+ info->write_backing_store = write_file_store;
+ info->close_backing_store = close_file_store;
+ TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
+ return TRUE; /* succeeded */
+}
+
+
+/*
+ * Access methods for extended memory.
+ */
+
+#if XMS_SUPPORTED
+
+static XMSDRIVER xms_driver; /* saved address of XMS driver */
+
+typedef union { /* either long offset or real-mode pointer */
+ long offset;
+ void far * ptr;
+ } XMSPTR;
+
+typedef struct { /* XMS move specification structure */
+ long length;
+ XMSH src_handle;
+ XMSPTR src;
+ XMSH dst_handle;
+ XMSPTR dst;
+ } XMSspec;
+
+#define ODD(X) (((X) & 1L) != 0)
+
+
+METHODDEF(void)
+read_xms_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ XMScontext ctx;
+ XMSspec spec;
+ char endbuffer[2];
+
+ /* The XMS driver can't cope with an odd length, so handle the last byte
+ * specially if byte_count is odd. We don't expect this to be common.
+ */
+
+ spec.length = byte_count & (~ 1L);
+ spec.src_handle = info->handle.xms_handle;
+ spec.src.offset = file_offset;
+ spec.dst_handle = 0;
+ spec.dst.ptr = buffer_address;
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x0b00; /* EMB move */
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax != 1)
+ ERREXIT(cinfo, JERR_XMS_READ);
+
+ if (ODD(byte_count)) {
+ read_xms_store(cinfo, info, (void FAR *) endbuffer,
+ file_offset + byte_count - 1L, 2L);
+ ((char FAR *) buffer_address)[byte_count - 1L] = endbuffer[0];
+ }
+}
+
+
+METHODDEF(void)
+write_xms_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ XMScontext ctx;
+ XMSspec spec;
+ char endbuffer[2];
+
+ /* The XMS driver can't cope with an odd length, so handle the last byte
+ * specially if byte_count is odd. We don't expect this to be common.
+ */
+
+ spec.length = byte_count & (~ 1L);
+ spec.src_handle = 0;
+ spec.src.ptr = buffer_address;
+ spec.dst_handle = info->handle.xms_handle;
+ spec.dst.offset = file_offset;
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x0b00; /* EMB move */
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax != 1)
+ ERREXIT(cinfo, JERR_XMS_WRITE);
+
+ if (ODD(byte_count)) {
+ read_xms_store(cinfo, info, (void FAR *) endbuffer,
+ file_offset + byte_count - 1L, 2L);
+ endbuffer[0] = ((char FAR *) buffer_address)[byte_count - 1L];
+ write_xms_store(cinfo, info, (void FAR *) endbuffer,
+ file_offset + byte_count - 1L, 2L);
+ }
+}
+
+
+METHODDEF(void)
+close_xms_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ XMScontext ctx;
+
+ ctx.dx = info->handle.xms_handle;
+ ctx.ax = 0x0a00;
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ TRACEMS1(cinfo, 1, JTRC_XMS_CLOSE, info->handle.xms_handle);
+ /* we ignore any error return from the driver */
+}
+
+
+LOCAL(boolean)
+open_xms_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ XMScontext ctx;
+
+ /* Get address of XMS driver */
+ jxms_getdriver((XMSDRIVER far *) & xms_driver);
+ if (xms_driver == NULL)
+ return FALSE; /* no driver to be had */
+
+ /* Get version number, must be >= 2.00 */
+ ctx.ax = 0x0000;
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax < (unsigned short) 0x0200)
+ return FALSE;
+
+ /* Try to get space (expressed in kilobytes) */
+ ctx.dx = (unsigned short) ((total_bytes_needed + 1023L) >> 10);
+ ctx.ax = 0x0900;
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax != 1)
+ return FALSE;
+
+ /* Succeeded, save the handle and away we go */
+ info->handle.xms_handle = ctx.dx;
+ info->read_backing_store = read_xms_store;
+ info->write_backing_store = write_xms_store;
+ info->close_backing_store = close_xms_store;
+ TRACEMS1(cinfo, 1, JTRC_XMS_OPEN, ctx.dx);
+ return TRUE; /* succeeded */
+}
+
+#endif /* XMS_SUPPORTED */
+
+
+/*
+ * Access methods for expanded memory.
+ */
+
+#if EMS_SUPPORTED
+
+/* The EMS move specification structure requires word and long fields aligned
+ * at odd byte boundaries. Some compilers will align struct fields at even
+ * byte boundaries. While it's usually possible to force byte alignment,
+ * that causes an overall performance penalty and may pose problems in merging
+ * JPEG into a larger application. Instead we accept some rather dirty code
+ * here. Note this code would fail if the hardware did not allow odd-byte
+ * word & long accesses, but all 80x86 CPUs do.
+ */
+
+typedef void far * EMSPTR;
+
+typedef union { /* EMS move specification structure */
+ long length; /* It's easy to access first 4 bytes */
+ char bytes[18]; /* Misaligned fields in here! */
+ } EMSspec;
+
+/* Macros for accessing misaligned fields */
+#define FIELD_AT(spec,offset,type) (*((type *) &(spec.bytes[offset])))
+#define SRC_TYPE(spec) FIELD_AT(spec,4,char)
+#define SRC_HANDLE(spec) FIELD_AT(spec,5,EMSH)
+#define SRC_OFFSET(spec) FIELD_AT(spec,7,unsigned short)
+#define SRC_PAGE(spec) FIELD_AT(spec,9,unsigned short)
+#define SRC_PTR(spec) FIELD_AT(spec,7,EMSPTR)
+#define DST_TYPE(spec) FIELD_AT(spec,11,char)
+#define DST_HANDLE(spec) FIELD_AT(spec,12,EMSH)
+#define DST_OFFSET(spec) FIELD_AT(spec,14,unsigned short)
+#define DST_PAGE(spec) FIELD_AT(spec,16,unsigned short)
+#define DST_PTR(spec) FIELD_AT(spec,14,EMSPTR)
+
+#define EMSPAGESIZE 16384L /* gospel, see the EMS specs */
+
+#define HIBYTE(W) (((W) >> 8) & 0xFF)
+#define LOBYTE(W) ((W) & 0xFF)
+
+
+METHODDEF(void)
+read_ems_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ EMScontext ctx;
+ EMSspec spec;
+
+ spec.length = byte_count;
+ SRC_TYPE(spec) = 1;
+ SRC_HANDLE(spec) = info->handle.ems_handle;
+ SRC_PAGE(spec) = (unsigned short) (file_offset / EMSPAGESIZE);
+ SRC_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
+ DST_TYPE(spec) = 0;
+ DST_HANDLE(spec) = 0;
+ DST_PTR(spec) = buffer_address;
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x5700; /* move memory region */
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ ERREXIT(cinfo, JERR_EMS_READ);
+}
+
+
+METHODDEF(void)
+write_ems_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ EMScontext ctx;
+ EMSspec spec;
+
+ spec.length = byte_count;
+ SRC_TYPE(spec) = 0;
+ SRC_HANDLE(spec) = 0;
+ SRC_PTR(spec) = buffer_address;
+ DST_TYPE(spec) = 1;
+ DST_HANDLE(spec) = info->handle.ems_handle;
+ DST_PAGE(spec) = (unsigned short) (file_offset / EMSPAGESIZE);
+ DST_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x5700; /* move memory region */
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ ERREXIT(cinfo, JERR_EMS_WRITE);
+}
+
+
+METHODDEF(void)
+close_ems_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ EMScontext ctx;
+
+ ctx.ax = 0x4500;
+ ctx.dx = info->handle.ems_handle;
+ jems_calldriver((EMScontext far *) & ctx);
+ TRACEMS1(cinfo, 1, JTRC_EMS_CLOSE, info->handle.ems_handle);
+ /* we ignore any error return from the driver */
+}
+
+
+LOCAL(boolean)
+open_ems_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ EMScontext ctx;
+
+ /* Is EMS driver there? */
+ if (! jems_available())
+ return FALSE;
+
+ /* Get status, make sure EMS is OK */
+ ctx.ax = 0x4000;
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ return FALSE;
+
+ /* Get version, must be >= 4.0 */
+ ctx.ax = 0x4600;
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0 || LOBYTE(ctx.ax) < 0x40)
+ return FALSE;
+
+ /* Try to allocate requested space */
+ ctx.ax = 0x4300;
+ ctx.bx = (unsigned short) ((total_bytes_needed + EMSPAGESIZE-1L) / EMSPAGESIZE);
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ return FALSE;
+
+ /* Succeeded, save the handle and away we go */
+ info->handle.ems_handle = ctx.dx;
+ info->read_backing_store = read_ems_store;
+ info->write_backing_store = write_ems_store;
+ info->close_backing_store = close_ems_store;
+ TRACEMS1(cinfo, 1, JTRC_EMS_OPEN, ctx.dx);
+ return TRUE; /* succeeded */
+}
+
+#endif /* EMS_SUPPORTED */
+
+
+/*
+ * Initial opening of a backing-store object.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ /* Try extended memory, then expanded memory, then regular file. */
+#if XMS_SUPPORTED
+ if (open_xms_store(cinfo, info, total_bytes_needed))
+ return;
+#endif
+#if EMS_SUPPORTED
+ if (open_ems_store(cinfo, info, total_bytes_needed))
+ return;
+#endif
+ if (open_file_store(cinfo, info, total_bytes_needed))
+ return;
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "");
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ next_file_num = 0; /* initialize temp file name generator */
+ return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* Microsoft C, at least in v6.00A, will not successfully reclaim freed
+ * blocks of size > 32Kbytes unless we give it a kick in the rear, like so:
+ */
+#ifdef NEED_FHEAPMIN
+ _fheapmin();
+#endif
+}
diff --git a/src/3rdparty/libjpeg/jmemdosa.asm b/src/3rdparty/libjpeg/jmemdosa.asm
new file mode 100644
index 0000000..ecd4372
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemdosa.asm
@@ -0,0 +1,379 @@
+;
+; jmemdosa.asm
+;
+; Copyright (C) 1992, Thomas G. Lane.
+; This file is part of the Independent JPEG Group's software.
+; For conditions of distribution and use, see the accompanying README file.
+;
+; This file contains low-level interface routines to support the MS-DOS
+; backing store manager (jmemdos.c). Routines are provided to access disk
+; files through direct DOS calls, and to access XMS and EMS drivers.
+;
+; This file should assemble with Microsoft's MASM or any compatible
+; assembler (including Borland's Turbo Assembler). If you haven't got
+; a compatible assembler, better fall back to jmemansi.c or jmemname.c.
+;
+; To minimize dependence on the C compiler's register usage conventions,
+; we save and restore all 8086 registers, even though most compilers only
+; require SI,DI,DS to be preserved. Also, we use only 16-bit-wide return
+; values, which everybody returns in AX.
+;
+; Based on code contributed by Ge' Weijers.
+;
+
+JMEMDOSA_TXT segment byte public 'CODE'
+
+ assume cs:JMEMDOSA_TXT
+
+ public _jdos_open
+ public _jdos_close
+ public _jdos_seek
+ public _jdos_read
+ public _jdos_write
+ public _jxms_getdriver
+ public _jxms_calldriver
+ public _jems_available
+ public _jems_calldriver
+
+;
+; short far jdos_open (short far * handle, char far * filename)
+;
+; Create and open a temporary file
+;
+_jdos_open proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov cx,0 ; normal file attributes
+ lds dx,dword ptr [bp+10] ; get filename pointer
+ mov ah,3ch ; create file
+ int 21h
+ jc open_err ; if failed, return error code
+ lds bx,dword ptr [bp+6] ; get handle pointer
+ mov word ptr [bx],ax ; save the handle
+ xor ax,ax ; return zero for OK
+open_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_open endp
+
+
+;
+; short far jdos_close (short handle)
+;
+; Close the file handle
+;
+_jdos_close proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ mov ah,3eh ; close file
+ int 21h
+ jc close_err ; if failed, return error code
+ xor ax,ax ; return zero for OK
+close_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_close endp
+
+
+;
+; short far jdos_seek (short handle, long offset)
+;
+; Set file position
+;
+_jdos_seek proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ mov dx,word ptr [bp+8] ; LS offset
+ mov cx,word ptr [bp+10] ; MS offset
+ mov ax,4200h ; absolute seek
+ int 21h
+ jc seek_err ; if failed, return error code
+ xor ax,ax ; return zero for OK
+seek_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_seek endp
+
+
+;
+; short far jdos_read (short handle, void far * buffer, unsigned short count)
+;
+; Read from file
+;
+_jdos_read proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ lds dx,dword ptr [bp+8] ; buffer address
+ mov cx,word ptr [bp+12] ; number of bytes
+ mov ah,3fh ; read file
+ int 21h
+ jc read_err ; if failed, return error code
+ cmp ax,word ptr [bp+12] ; make sure all bytes were read
+ je read_ok
+ mov ax,1 ; else return 1 for not OK
+ jmp short read_err
+read_ok: xor ax,ax ; return zero for OK
+read_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_read endp
+
+
+;
+; short far jdos_write (short handle, void far * buffer, unsigned short count)
+;
+; Write to file
+;
+_jdos_write proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ lds dx,dword ptr [bp+8] ; buffer address
+ mov cx,word ptr [bp+12] ; number of bytes
+ mov ah,40h ; write file
+ int 21h
+ jc write_err ; if failed, return error code
+ cmp ax,word ptr [bp+12] ; make sure all bytes written
+ je write_ok
+ mov ax,1 ; else return 1 for not OK
+ jmp short write_err
+write_ok: xor ax,ax ; return zero for OK
+write_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_write endp
+
+
+;
+; void far jxms_getdriver (XMSDRIVER far *)
+;
+; Get the address of the XMS driver, or NULL if not available
+;
+_jxms_getdriver proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov ax,4300h ; call multiplex interrupt with
+ int 2fh ; a magic cookie, hex 4300
+ cmp al,80h ; AL should contain hex 80
+ je xmsavail
+ xor dx,dx ; no XMS driver available
+ xor ax,ax ; return a nil pointer
+ jmp short xmsavail_done
+xmsavail: mov ax,4310h ; fetch driver address with
+ int 2fh ; another magic cookie
+ mov dx,es ; copy address to dx:ax
+ mov ax,bx
+xmsavail_done: les bx,dword ptr [bp+6] ; get pointer to return value
+ mov word ptr es:[bx],ax
+ mov word ptr es:[bx+2],dx
+ pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jxms_getdriver endp
+
+
+;
+; void far jxms_calldriver (XMSDRIVER, XMScontext far *)
+;
+; The XMScontext structure contains values for the AX,DX,BX,SI,DS registers.
+; These are loaded, the XMS call is performed, and the new values of the
+; AX,DX,BX registers are written back to the context structure.
+;
+_jxms_calldriver proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ les bx,dword ptr [bp+10] ; get XMScontext pointer
+ mov ax,word ptr es:[bx] ; load registers
+ mov dx,word ptr es:[bx+2]
+ mov si,word ptr es:[bx+6]
+ mov ds,word ptr es:[bx+8]
+ mov bx,word ptr es:[bx+4]
+ call dword ptr [bp+6] ; call the driver
+ mov cx,bx ; save returned BX for a sec
+ les bx,dword ptr [bp+10] ; get XMScontext pointer
+ mov word ptr es:[bx],ax ; put back ax,dx,bx
+ mov word ptr es:[bx+2],dx
+ mov word ptr es:[bx+4],cx
+ pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jxms_calldriver endp
+
+
+;
+; short far jems_available (void)
+;
+; Have we got an EMS driver? (this comes straight from the EMS 4.0 specs)
+;
+_jems_available proc far
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov ax,3567h ; get interrupt vector 67h
+ int 21h
+ push cs
+ pop ds
+ mov di,000ah ; check offs 10 in returned seg
+ lea si,ASCII_device_name ; against literal string
+ mov cx,8
+ cld
+ repe cmpsb
+ jne no_ems
+ mov ax,1 ; match, it's there
+ jmp short avail_done
+no_ems: xor ax,ax ; it's not there
+avail_done: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ ret
+
+ASCII_device_name db "EMMXXXX0"
+
+_jems_available endp
+
+
+;
+; void far jems_calldriver (EMScontext far *)
+;
+; The EMScontext structure contains values for the AX,DX,BX,SI,DS registers.
+; These are loaded, the EMS trap is performed, and the new values of the
+; AX,DX,BX registers are written back to the context structure.
+;
+_jems_calldriver proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ les bx,dword ptr [bp+6] ; get EMScontext pointer
+ mov ax,word ptr es:[bx] ; load registers
+ mov dx,word ptr es:[bx+2]
+ mov si,word ptr es:[bx+6]
+ mov ds,word ptr es:[bx+8]
+ mov bx,word ptr es:[bx+4]
+ int 67h ; call the EMS driver
+ mov cx,bx ; save returned BX for a sec
+ les bx,dword ptr [bp+6] ; get EMScontext pointer
+ mov word ptr es:[bx],ax ; put back ax,dx,bx
+ mov word ptr es:[bx+2],dx
+ mov word ptr es:[bx+4],cx
+ pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jems_calldriver endp
+
+JMEMDOSA_TXT ends
+
+ end
diff --git a/src/3rdparty/libjpeg/jmemmac.c b/src/3rdparty/libjpeg/jmemmac.c
new file mode 100644
index 0000000..106f9be
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemmac.c
@@ -0,0 +1,289 @@
+/*
+ * jmemmac.c
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * jmemmac.c provides an Apple Macintosh implementation of the system-
+ * dependent portion of the JPEG memory manager.
+ *
+ * If you use jmemmac.c, then you must define USE_MAC_MEMMGR in the
+ * JPEG_INTERNALS part of jconfig.h.
+ *
+ * jmemmac.c uses the Macintosh toolbox routines NewPtr and DisposePtr
+ * instead of malloc and free. It accurately determines the amount of
+ * memory available by using CompactMem. Notice that if left to its
+ * own devices, this code can chew up all available space in the
+ * application's zone, with the exception of the rather small "slop"
+ * factor computed in jpeg_mem_available(). The application can ensure
+ * that more space is left over by reducing max_memory_to_use.
+ *
+ * Large images are swapped to disk using temporary files and System 7.0+'s
+ * temporary folder functionality.
+ *
+ * Note that jmemmac.c depends on two features of MacOS that were first
+ * introduced in System 7: FindFolder and the FSSpec-based calls.
+ * If your application uses jmemmac.c and is run under System 6 or earlier,
+ * and the jpeg library decides it needs a temporary file, it will abort,
+ * printing error messages about requiring System 7. (If no temporary files
+ * are created, it will run fine.)
+ *
+ * If you want to use jmemmac.c in an application that might be used with
+ * System 6 or earlier, then you should remove dependencies on FindFolder
+ * and the FSSpec calls. You will need to replace FindFolder with some
+ * other mechanism for finding a place to put temporary files, and you
+ * should replace the FSSpec calls with their HFS equivalents:
+ *
+ * FSpDelete -> HDelete
+ * FSpGetFInfo -> HGetFInfo
+ * FSpCreate -> HCreate
+ * FSpOpenDF -> HOpen *** Note: not HOpenDF ***
+ * FSMakeFSSpec -> (fill in spec by hand.)
+ *
+ * (Use HOpen instead of HOpenDF. HOpen is just a glue-interface to PBHOpen,
+ * which is on all HFS macs. HOpenDF is a System 7 addition which avoids the
+ * ages-old problem of names starting with a period.)
+ *
+ * Contributed by Sam Bushell (jsam@iagu.on.net) and
+ * Dan Gildor (gyld@in-touch.com).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef USE_MAC_MEMMGR /* make sure user got configuration right */
+ You forgot to define USE_MAC_MEMMGR in jconfig.h. /* deliberate syntax error */
+#endif
+
+#include <Memory.h> /* we use the MacOS memory manager */
+#include <Files.h> /* we use the MacOS File stuff */
+#include <Folders.h> /* we use the MacOS HFS stuff */
+#include <Script.h> /* for smSystemScript */
+#include <Gestalt.h> /* we use Gestalt to test for specific functionality */
+
+#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
+#define TEMP_FILE_NAME "JPG%03d.TMP"
+#endif
+
+static int next_file_num; /* to distinguish among several temp files */
+
+
+/*
+ * Memory allocation and freeing are controlled by the MacOS library
+ * routines NewPtr() and DisposePtr(), which allocate fixed-address
+ * storage. Unfortunately, the IJG library isn't smart enough to cope
+ * with relocatable storage.
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) NewPtr(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ DisposePtr((Ptr) object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: we include FAR keywords in the routine declarations simply for
+ * consistency with the rest of the IJG code; FAR should expand to empty
+ * on rational architectures like the Mac.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) NewPtr(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ DisposePtr((Ptr) object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ */
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ long limit = cinfo->mem->max_memory_to_use - already_allocated;
+ long slop, mem;
+
+ /* Don't ask for more than what application has told us we may use */
+ if (max_bytes_needed > limit && limit > 0)
+ max_bytes_needed = limit;
+ /* Find whether there's a big enough free block in the heap.
+ * CompactMem tries to create a contiguous block of the requested size,
+ * and then returns the size of the largest free block (which could be
+ * much more or much less than we asked for).
+ * We add some slop to ensure we don't use up all available memory.
+ */
+ slop = max_bytes_needed / 16 + 32768L;
+ mem = CompactMem(max_bytes_needed + slop) - slop;
+ if (mem < 0)
+ mem = 0; /* sigh, couldn't even get the slop */
+ /* Don't take more than the application says we can have */
+ if (mem > limit && limit > 0)
+ mem = limit;
+ return mem;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+
+METHODDEF(void)
+read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ long bytes = byte_count;
+ long retVal;
+
+ if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+
+ retVal = FSRead ( info->temp_file, &bytes,
+ (unsigned char *) buffer_address );
+ if ( retVal != noErr || bytes != byte_count )
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ long bytes = byte_count;
+ long retVal;
+
+ if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+
+ retVal = FSWrite ( info->temp_file, &bytes,
+ (unsigned char *) buffer_address );
+ if ( retVal != noErr || bytes != byte_count )
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ FSClose ( info->temp_file );
+ FSpDelete ( &(info->tempSpec) );
+}
+
+
+/*
+ * Initial opening of a backing-store object.
+ *
+ * This version uses FindFolder to find the Temporary Items folder,
+ * and puts the temporary file in there.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ short tmpRef, vRefNum;
+ long dirID;
+ FInfo finderInfo;
+ FSSpec theSpec;
+ Str255 fName;
+ OSErr osErr;
+ long gestaltResponse = 0;
+
+ /* Check that FSSpec calls are available. */
+ osErr = Gestalt( gestaltFSAttr, &gestaltResponse );
+ if ( ( osErr != noErr )
+ || !( gestaltResponse & (1<<gestaltHasFSSpecCalls) ) )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required");
+ /* TO DO: add a proper error message to jerror.h. */
+
+ /* Check that FindFolder is available. */
+ osErr = Gestalt( gestaltFindFolderAttr, &gestaltResponse );
+ if ( ( osErr != noErr )
+ || !( gestaltResponse & (1<<gestaltFindFolderPresent) ) )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required.");
+ /* TO DO: add a proper error message to jerror.h. */
+
+ osErr = FindFolder ( kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
+ &vRefNum, &dirID );
+ if ( osErr != noErr )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "- temporary items folder unavailable");
+ /* TO DO: Try putting the temp files somewhere else. */
+
+ /* Keep generating file names till we find one that's not in use */
+ for (;;) {
+ next_file_num++; /* advance counter */
+
+ sprintf(info->temp_name, TEMP_FILE_NAME, next_file_num);
+ strcpy ( (Ptr)fName+1, info->temp_name );
+ *fName = strlen (info->temp_name);
+ osErr = FSMakeFSSpec ( vRefNum, dirID, fName, &theSpec );
+
+ if ( (osErr = FSpGetFInfo ( &theSpec, &finderInfo ) ) != noErr )
+ break;
+ }
+
+ osErr = FSpCreate ( &theSpec, '????', '????', smSystemScript );
+ if ( osErr != noErr )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+
+ osErr = FSpOpenDF ( &theSpec, fsRdWrPerm, &(info->temp_file) );
+ if ( osErr != noErr )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+
+ info->tempSpec = theSpec;
+
+ info->read_backing_store = read_backing_store;
+ info->write_backing_store = write_backing_store;
+ info->close_backing_store = close_backing_store;
+ TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ next_file_num = 0;
+
+ /* max_memory_to_use will be initialized to FreeMem()'s result;
+ * the calling application might later reduce it, for example
+ * to leave room to invoke multiple JPEG objects.
+ * Note that FreeMem returns the total number of free bytes;
+ * it may not be possible to allocate a single block of this size.
+ */
+ return FreeMem();
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/src/3rdparty/libjpeg/jmemmgr.c b/src/3rdparty/libjpeg/jmemmgr.c
new file mode 100644
index 0000000..d801b32
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemmgr.c
@@ -0,0 +1,1118 @@
+/*
+ * jmemmgr.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the JPEG system-independent memory management
+ * routines. This code is usable across a wide variety of machines; most
+ * of the system dependencies have been isolated in a separate file.
+ * The major functions provided here are:
+ * * pool-based allocation and freeing of memory;
+ * * policy decisions about how to divide available memory among the
+ * virtual arrays;
+ * * control logic for swapping virtual arrays between main memory and
+ * backing storage.
+ * The separate system-dependent file provides the actual backing-storage
+ * access code, and it contains the policy decision about how much total
+ * main memory to use.
+ * This file is system-dependent in the sense that some of its functions
+ * are unnecessary in some systems. For example, if there is enough virtual
+ * memory so that backing storage will never be used, much of the virtual
+ * array control logic could be removed. (Of course, if you have that much
+ * memory then you shouldn't care about a little bit of unused code...)
+ */
+
+#define JPEG_INTERNALS
+#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef NO_GETENV
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
+extern char * getenv JPP((const char * name));
+#endif
+#endif
+
+
+/*
+ * Some important notes:
+ * The allocation routines provided here must never return NULL.
+ * They should exit to error_exit if unsuccessful.
+ *
+ * It's not a good idea to try to merge the sarray and barray routines,
+ * even though they are textually almost the same, because samples are
+ * usually stored as bytes while coefficients are shorts or ints. Thus,
+ * in machines where byte pointers have a different representation from
+ * word pointers, the resulting machine code could not be the same.
+ */
+
+
+/*
+ * Many machines require storage alignment: longs must start on 4-byte
+ * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
+ * always returns pointers that are multiples of the worst-case alignment
+ * requirement, and we had better do so too.
+ * There isn't any really portable way to determine the worst-case alignment
+ * requirement. This module assumes that the alignment requirement is
+ * multiples of sizeof(ALIGN_TYPE).
+ * By default, we define ALIGN_TYPE as double. This is necessary on some
+ * workstations (where doubles really do need 8-byte alignment) and will work
+ * fine on nearly everything. If your machine has lesser alignment needs,
+ * you can save a few bytes by making ALIGN_TYPE smaller.
+ * The only place I know of where this will NOT work is certain Macintosh
+ * 680x0 compilers that define double as a 10-byte IEEE extended float.
+ * Doing 10-byte alignment is counterproductive because longwords won't be
+ * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
+ * such a compiler.
+ */
+
+#ifndef ALIGN_TYPE /* so can override from jconfig.h */
+#define ALIGN_TYPE double
+#endif
+
+
+/*
+ * We allocate objects from "pools", where each pool is gotten with a single
+ * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
+ * overhead within a pool, except for alignment padding. Each pool has a
+ * header with a link to the next pool of the same class.
+ * Small and large pool headers are identical except that the latter's
+ * link pointer must be FAR on 80x86 machines.
+ * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
+ * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
+ * of the alignment requirement of ALIGN_TYPE.
+ */
+
+typedef union small_pool_struct * small_pool_ptr;
+
+typedef union small_pool_struct {
+ struct {
+ small_pool_ptr next; /* next in list of pools */
+ size_t bytes_used; /* how many bytes already used within pool */
+ size_t bytes_left; /* bytes still available in this pool */
+ } hdr;
+ ALIGN_TYPE dummy; /* included in union to ensure alignment */
+} small_pool_hdr;
+
+typedef union large_pool_struct FAR * large_pool_ptr;
+
+typedef union large_pool_struct {
+ struct {
+ large_pool_ptr next; /* next in list of pools */
+ size_t bytes_used; /* how many bytes already used within pool */
+ size_t bytes_left; /* bytes still available in this pool */
+ } hdr;
+ ALIGN_TYPE dummy; /* included in union to ensure alignment */
+} large_pool_hdr;
+
+
+/*
+ * Here is the full definition of a memory manager object.
+ */
+
+typedef struct {
+ struct jpeg_memory_mgr pub; /* public fields */
+
+ /* Each pool identifier (lifetime class) names a linked list of pools. */
+ small_pool_ptr small_list[JPOOL_NUMPOOLS];
+ large_pool_ptr large_list[JPOOL_NUMPOOLS];
+
+ /* Since we only have one lifetime class of virtual arrays, only one
+ * linked list is necessary (for each datatype). Note that the virtual
+ * array control blocks being linked together are actually stored somewhere
+ * in the small-pool list.
+ */
+ jvirt_sarray_ptr virt_sarray_list;
+ jvirt_barray_ptr virt_barray_list;
+
+ /* This counts total space obtained from jpeg_get_small/large */
+ long total_space_allocated;
+
+ /* alloc_sarray and alloc_barray set this value for use by virtual
+ * array routines.
+ */
+ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
+} my_memory_mgr;
+
+typedef my_memory_mgr * my_mem_ptr;
+
+
+/*
+ * The control blocks for virtual arrays.
+ * Note that these blocks are allocated in the "small" pool area.
+ * System-dependent info for the associated backing store (if any) is hidden
+ * inside the backing_store_info struct.
+ */
+
+struct jvirt_sarray_control {
+ JSAMPARRAY mem_buffer; /* => the in-memory buffer */
+ JDIMENSION rows_in_array; /* total virtual array height */
+ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
+ JDIMENSION rows_in_mem; /* height of memory buffer */
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */
+ boolean pre_zero; /* pre-zero mode requested? */
+ boolean dirty; /* do current buffer contents need written? */
+ boolean b_s_open; /* is backing-store data valid? */
+ jvirt_sarray_ptr next; /* link to next virtual sarray control block */
+ backing_store_info b_s_info; /* System-dependent control info */
+};
+
+struct jvirt_barray_control {
+ JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
+ JDIMENSION rows_in_array; /* total virtual array height */
+ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
+ JDIMENSION rows_in_mem; /* height of memory buffer */
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */
+ boolean pre_zero; /* pre-zero mode requested? */
+ boolean dirty; /* do current buffer contents need written? */
+ boolean b_s_open; /* is backing-store data valid? */
+ jvirt_barray_ptr next; /* link to next virtual barray control block */
+ backing_store_info b_s_info; /* System-dependent control info */
+};
+
+
+#ifdef MEM_STATS /* optional extra stuff for statistics */
+
+LOCAL(void)
+print_mem_stats (j_common_ptr cinfo, int pool_id)
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr shdr_ptr;
+ large_pool_ptr lhdr_ptr;
+
+ /* Since this is only a debugging stub, we can cheat a little by using
+ * fprintf directly rather than going through the trace message code.
+ * This is helpful because message parm array can't handle longs.
+ */
+ fprintf(stderr, "Freeing pool %d, total space = %ld\n",
+ pool_id, mem->total_space_allocated);
+
+ for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
+ lhdr_ptr = lhdr_ptr->hdr.next) {
+ fprintf(stderr, " Large chunk used %ld\n",
+ (long) lhdr_ptr->hdr.bytes_used);
+ }
+
+ for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
+ shdr_ptr = shdr_ptr->hdr.next) {
+ fprintf(stderr, " Small chunk used %ld free %ld\n",
+ (long) shdr_ptr->hdr.bytes_used,
+ (long) shdr_ptr->hdr.bytes_left);
+ }
+}
+
+#endif /* MEM_STATS */
+
+
+LOCAL(void)
+out_of_memory (j_common_ptr cinfo, int which)
+/* Report an out-of-memory error and stop execution */
+/* If we compiled MEM_STATS support, report alloc requests before dying */
+{
+#ifdef MEM_STATS
+ cinfo->err->trace_level = 2; /* force self_destruct to report stats */
+#endif
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
+}
+
+
+/*
+ * Allocation of "small" objects.
+ *
+ * For these, we use pooled storage. When a new pool must be created,
+ * we try to get enough space for the current request plus a "slop" factor,
+ * where the slop will be the amount of leftover space in the new pool.
+ * The speed vs. space tradeoff is largely determined by the slop values.
+ * A different slop value is provided for each pool class (lifetime),
+ * and we also distinguish the first pool of a class from later ones.
+ * NOTE: the values given work fairly well on both 16- and 32-bit-int
+ * machines, but may be too small if longs are 64 bits or more.
+ */
+
+static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
+{
+ 1600, /* first PERMANENT pool */
+ 16000 /* first IMAGE pool */
+};
+
+static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
+{
+ 0, /* additional PERMANENT pools */
+ 5000 /* additional IMAGE pools */
+};
+
+#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
+
+
+METHODDEF(void *)
+alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "small" object */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr hdr_ptr, prev_hdr_ptr;
+ char * data_ptr;
+ size_t odd_bytes, min_request, slop;
+
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */
+ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
+ out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
+
+ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+ if (odd_bytes > 0)
+ sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+ /* See if space is available in any existing pool */
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+ prev_hdr_ptr = NULL;
+ hdr_ptr = mem->small_list[pool_id];
+ while (hdr_ptr != NULL) {
+ if (hdr_ptr->hdr.bytes_left >= sizeofobject)
+ break; /* found pool with enough space */
+ prev_hdr_ptr = hdr_ptr;
+ hdr_ptr = hdr_ptr->hdr.next;
+ }
+
+ /* Time to make a new pool? */
+ if (hdr_ptr == NULL) {
+ /* min_request is what we need now, slop is what will be leftover */
+ min_request = sizeofobject + SIZEOF(small_pool_hdr);
+ if (prev_hdr_ptr == NULL) /* first pool in class? */
+ slop = first_pool_slop[pool_id];
+ else
+ slop = extra_pool_slop[pool_id];
+ /* Don't ask for more than MAX_ALLOC_CHUNK */
+ if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
+ slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
+ /* Try to get space, if fail reduce slop and try again */
+ for (;;) {
+ hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
+ if (hdr_ptr != NULL)
+ break;
+ slop /= 2;
+ if (slop < MIN_SLOP) /* give up when it gets real small */
+ out_of_memory(cinfo, 2); /* jpeg_get_small failed */
+ }
+ mem->total_space_allocated += min_request + slop;
+ /* Success, initialize the new pool header and add to end of list */
+ hdr_ptr->hdr.next = NULL;
+ hdr_ptr->hdr.bytes_used = 0;
+ hdr_ptr->hdr.bytes_left = sizeofobject + slop;
+ if (prev_hdr_ptr == NULL) /* first pool in class? */
+ mem->small_list[pool_id] = hdr_ptr;
+ else
+ prev_hdr_ptr->hdr.next = hdr_ptr;
+ }
+
+ /* OK, allocate the object from the current pool */
+ data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
+ data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
+ hdr_ptr->hdr.bytes_used += sizeofobject;
+ hdr_ptr->hdr.bytes_left -= sizeofobject;
+
+ return (void *) data_ptr;
+}
+
+
+/*
+ * Allocation of "large" objects.
+ *
+ * The external semantics of these are the same as "small" objects,
+ * except that FAR pointers are used on 80x86. However the pool
+ * management heuristics are quite different. We assume that each
+ * request is large enough that it may as well be passed directly to
+ * jpeg_get_large; the pool management just links everything together
+ * so that we can free it all on demand.
+ * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
+ * structures. The routines that create these structures (see below)
+ * deliberately bunch rows together to ensure a large request size.
+ */
+
+METHODDEF(void FAR *)
+alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "large" object */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ large_pool_ptr hdr_ptr;
+ size_t odd_bytes;
+
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */
+ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
+ out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
+
+ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+ if (odd_bytes > 0)
+ sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+ /* Always make a new pool */
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
+ SIZEOF(large_pool_hdr));
+ if (hdr_ptr == NULL)
+ out_of_memory(cinfo, 4); /* jpeg_get_large failed */
+ mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
+
+ /* Success, initialize the new pool header and add to list */
+ hdr_ptr->hdr.next = mem->large_list[pool_id];
+ /* We maintain space counts in each pool header for statistical purposes,
+ * even though they are not needed for allocation.
+ */
+ hdr_ptr->hdr.bytes_used = sizeofobject;
+ hdr_ptr->hdr.bytes_left = 0;
+ mem->large_list[pool_id] = hdr_ptr;
+
+ return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
+}
+
+
+/*
+ * Creation of 2-D sample arrays.
+ * The pointers are in near heap, the samples themselves in FAR heap.
+ *
+ * To minimize allocation overhead and to allow I/O of large contiguous
+ * blocks, we allocate the sample rows in groups of as many rows as possible
+ * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
+ * NB: the virtual array control routines, later in this file, know about
+ * this chunking of rows. The rowsperchunk value is left in the mem manager
+ * object so that it can be saved away if this sarray is the workspace for
+ * a virtual array.
+ */
+
+METHODDEF(JSAMPARRAY)
+alloc_sarray (j_common_ptr cinfo, int pool_id,
+ JDIMENSION samplesperrow, JDIMENSION numrows)
+/* Allocate a 2-D sample array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ JSAMPARRAY result;
+ JSAMPROW workspace;
+ JDIMENSION rowsperchunk, currow, i;
+ long ltemp;
+
+ /* Calculate max # of rows allowed in one allocation chunk */
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+ ((long) samplesperrow * SIZEOF(JSAMPLE));
+ if (ltemp <= 0)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+ if (ltemp < (long) numrows)
+ rowsperchunk = (JDIMENSION) ltemp;
+ else
+ rowsperchunk = numrows;
+ mem->last_rowsperchunk = rowsperchunk;
+
+ /* Get space for row pointers (small object) */
+ result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
+ (size_t) (numrows * SIZEOF(JSAMPROW)));
+
+ /* Get the rows themselves (large objects) */
+ currow = 0;
+ while (currow < numrows) {
+ rowsperchunk = MIN(rowsperchunk, numrows - currow);
+ workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
+ (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
+ * SIZEOF(JSAMPLE)));
+ for (i = rowsperchunk; i > 0; i--) {
+ result[currow++] = workspace;
+ workspace += samplesperrow;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * Creation of 2-D coefficient-block arrays.
+ * This is essentially the same as the code for sample arrays, above.
+ */
+
+METHODDEF(JBLOCKARRAY)
+alloc_barray (j_common_ptr cinfo, int pool_id,
+ JDIMENSION blocksperrow, JDIMENSION numrows)
+/* Allocate a 2-D coefficient-block array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ JBLOCKARRAY result;
+ JBLOCKROW workspace;
+ JDIMENSION rowsperchunk, currow, i;
+ long ltemp;
+
+ /* Calculate max # of rows allowed in one allocation chunk */
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+ ((long) blocksperrow * SIZEOF(JBLOCK));
+ if (ltemp <= 0)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+ if (ltemp < (long) numrows)
+ rowsperchunk = (JDIMENSION) ltemp;
+ else
+ rowsperchunk = numrows;
+ mem->last_rowsperchunk = rowsperchunk;
+
+ /* Get space for row pointers (small object) */
+ result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
+ (size_t) (numrows * SIZEOF(JBLOCKROW)));
+
+ /* Get the rows themselves (large objects) */
+ currow = 0;
+ while (currow < numrows) {
+ rowsperchunk = MIN(rowsperchunk, numrows - currow);
+ workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
+ (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
+ * SIZEOF(JBLOCK)));
+ for (i = rowsperchunk; i > 0; i--) {
+ result[currow++] = workspace;
+ workspace += blocksperrow;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * About virtual array management:
+ *
+ * The above "normal" array routines are only used to allocate strip buffers
+ * (as wide as the image, but just a few rows high). Full-image-sized buffers
+ * are handled as "virtual" arrays. The array is still accessed a strip at a
+ * time, but the memory manager must save the whole array for repeated
+ * accesses. The intended implementation is that there is a strip buffer in
+ * memory (as high as is possible given the desired memory limit), plus a
+ * backing file that holds the rest of the array.
+ *
+ * The request_virt_array routines are told the total size of the image and
+ * the maximum number of rows that will be accessed at once. The in-memory
+ * buffer must be at least as large as the maxaccess value.
+ *
+ * The request routines create control blocks but not the in-memory buffers.
+ * That is postponed until realize_virt_arrays is called. At that time the
+ * total amount of space needed is known (approximately, anyway), so free
+ * memory can be divided up fairly.
+ *
+ * The access_virt_array routines are responsible for making a specific strip
+ * area accessible (after reading or writing the backing file, if necessary).
+ * Note that the access routines are told whether the caller intends to modify
+ * the accessed strip; during a read-only pass this saves having to rewrite
+ * data to disk. The access routines are also responsible for pre-zeroing
+ * any newly accessed rows, if pre-zeroing was requested.
+ *
+ * In current usage, the access requests are usually for nonoverlapping
+ * strips; that is, successive access start_row numbers differ by exactly
+ * num_rows = maxaccess. This means we can get good performance with simple
+ * buffer dump/reload logic, by making the in-memory buffer be a multiple
+ * of the access height; then there will never be accesses across bufferload
+ * boundaries. The code will still work with overlapping access requests,
+ * but it doesn't handle bufferload overlaps very efficiently.
+ */
+
+
+METHODDEF(jvirt_sarray_ptr)
+request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+ JDIMENSION samplesperrow, JDIMENSION numrows,
+ JDIMENSION maxaccess)
+/* Request a virtual 2-D sample array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ jvirt_sarray_ptr result;
+
+ /* Only IMAGE-lifetime virtual arrays are currently supported */
+ if (pool_id != JPOOL_IMAGE)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ /* get control block */
+ result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
+ SIZEOF(struct jvirt_sarray_control));
+
+ result->mem_buffer = NULL; /* marks array not yet realized */
+ result->rows_in_array = numrows;
+ result->samplesperrow = samplesperrow;
+ result->maxaccess = maxaccess;
+ result->pre_zero = pre_zero;
+ result->b_s_open = FALSE; /* no associated backing-store object */
+ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
+ mem->virt_sarray_list = result;
+
+ return result;
+}
+
+
+METHODDEF(jvirt_barray_ptr)
+request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+ JDIMENSION blocksperrow, JDIMENSION numrows,
+ JDIMENSION maxaccess)
+/* Request a virtual 2-D coefficient-block array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ jvirt_barray_ptr result;
+
+ /* Only IMAGE-lifetime virtual arrays are currently supported */
+ if (pool_id != JPOOL_IMAGE)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ /* get control block */
+ result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
+ SIZEOF(struct jvirt_barray_control));
+
+ result->mem_buffer = NULL; /* marks array not yet realized */
+ result->rows_in_array = numrows;
+ result->blocksperrow = blocksperrow;
+ result->maxaccess = maxaccess;
+ result->pre_zero = pre_zero;
+ result->b_s_open = FALSE; /* no associated backing-store object */
+ result->next = mem->virt_barray_list; /* add to list of virtual arrays */
+ mem->virt_barray_list = result;
+
+ return result;
+}
+
+
+METHODDEF(void)
+realize_virt_arrays (j_common_ptr cinfo)
+/* Allocate the in-memory buffers for any unrealized virtual arrays */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ long space_per_minheight, maximum_space, avail_mem;
+ long minheights, max_minheights;
+ jvirt_sarray_ptr sptr;
+ jvirt_barray_ptr bptr;
+
+ /* Compute the minimum space needed (maxaccess rows in each buffer)
+ * and the maximum space needed (full image height in each buffer).
+ * These may be of use to the system-dependent jpeg_mem_available routine.
+ */
+ space_per_minheight = 0;
+ maximum_space = 0;
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */
+ space_per_minheight += (long) sptr->maxaccess *
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+ maximum_space += (long) sptr->rows_in_array *
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+ }
+ }
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */
+ space_per_minheight += (long) bptr->maxaccess *
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+ maximum_space += (long) bptr->rows_in_array *
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+ }
+ }
+
+ if (space_per_minheight <= 0)
+ return; /* no unrealized arrays, no work */
+
+ /* Determine amount of memory to actually use; this is system-dependent. */
+ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
+ mem->total_space_allocated);
+
+ /* If the maximum space needed is available, make all the buffers full
+ * height; otherwise parcel it out with the same number of minheights
+ * in each buffer.
+ */
+ if (avail_mem >= maximum_space)
+ max_minheights = 1000000000L;
+ else {
+ max_minheights = avail_mem / space_per_minheight;
+ /* If there doesn't seem to be enough space, try to get the minimum
+ * anyway. This allows a "stub" implementation of jpeg_mem_available().
+ */
+ if (max_minheights <= 0)
+ max_minheights = 1;
+ }
+
+ /* Allocate the in-memory buffers and initialize backing store as needed. */
+
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */
+ minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
+ if (minheights <= max_minheights) {
+ /* This buffer fits in memory */
+ sptr->rows_in_mem = sptr->rows_in_array;
+ } else {
+ /* It doesn't fit in memory, create backing store. */
+ sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
+ jpeg_open_backing_store(cinfo, & sptr->b_s_info,
+ (long) sptr->rows_in_array *
+ (long) sptr->samplesperrow *
+ (long) SIZEOF(JSAMPLE));
+ sptr->b_s_open = TRUE;
+ }
+ sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
+ sptr->samplesperrow, sptr->rows_in_mem);
+ sptr->rowsperchunk = mem->last_rowsperchunk;
+ sptr->cur_start_row = 0;
+ sptr->first_undef_row = 0;
+ sptr->dirty = FALSE;
+ }
+ }
+
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */
+ minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
+ if (minheights <= max_minheights) {
+ /* This buffer fits in memory */
+ bptr->rows_in_mem = bptr->rows_in_array;
+ } else {
+ /* It doesn't fit in memory, create backing store. */
+ bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
+ jpeg_open_backing_store(cinfo, & bptr->b_s_info,
+ (long) bptr->rows_in_array *
+ (long) bptr->blocksperrow *
+ (long) SIZEOF(JBLOCK));
+ bptr->b_s_open = TRUE;
+ }
+ bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
+ bptr->blocksperrow, bptr->rows_in_mem);
+ bptr->rowsperchunk = mem->last_rowsperchunk;
+ bptr->cur_start_row = 0;
+ bptr->first_undef_row = 0;
+ bptr->dirty = FALSE;
+ }
+ }
+}
+
+
+LOCAL(void)
+do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual sample array */
+{
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+ bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
+ file_offset = ptr->cur_start_row * bytesperrow;
+ /* Loop to read or write each allocation chunk in mem_buffer */
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+ /* One chunk, but check for short chunk at end of buffer */
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+ /* Transfer no more than is currently defined */
+ thisrow = (long) ptr->cur_start_row + i;
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+ /* Transfer no more than fits in file */
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+ if (rows <= 0) /* this chunk might be past end of file! */
+ break;
+ byte_count = rows * bytesperrow;
+ if (writing)
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ else
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ file_offset += byte_count;
+ }
+}
+
+
+LOCAL(void)
+do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual coefficient-block array */
+{
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+ bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
+ file_offset = ptr->cur_start_row * bytesperrow;
+ /* Loop to read or write each allocation chunk in mem_buffer */
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+ /* One chunk, but check for short chunk at end of buffer */
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+ /* Transfer no more than is currently defined */
+ thisrow = (long) ptr->cur_start_row + i;
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+ /* Transfer no more than fits in file */
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+ if (rows <= 0) /* this chunk might be past end of file! */
+ break;
+ byte_count = rows * bytesperrow;
+ if (writing)
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ else
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ file_offset += byte_count;
+ }
+}
+
+
+METHODDEF(JSAMPARRAY)
+access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
+ JDIMENSION start_row, JDIMENSION num_rows,
+ boolean writable)
+/* Access the part of a virtual sample array starting at start_row */
+/* and extending for num_rows rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ JDIMENSION end_row = start_row + num_rows;
+ JDIMENSION undef_row;
+
+ /* debugging check */
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+ /* Make the desired part of the virtual array accessible */
+ if (start_row < ptr->cur_start_row ||
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+ if (! ptr->b_s_open)
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+ /* Flush old buffer contents if necessary */
+ if (ptr->dirty) {
+ do_sarray_io(cinfo, ptr, TRUE);
+ ptr->dirty = FALSE;
+ }
+ /* Decide what part of virtual array to access.
+ * Algorithm: if target address > current window, assume forward scan,
+ * load starting at target address. If target address < current window,
+ * assume backward scan, load so that target area is top of window.
+ * Note that when switching from forward write to forward read, will have
+ * start_row = 0, so the limiting case applies and we load from 0 anyway.
+ */
+ if (start_row > ptr->cur_start_row) {
+ ptr->cur_start_row = start_row;
+ } else {
+ /* use long arithmetic here to avoid overflow & unsigned problems */
+ long ltemp;
+
+ ltemp = (long) end_row - (long) ptr->rows_in_mem;
+ if (ltemp < 0)
+ ltemp = 0; /* don't fall off front end of file */
+ ptr->cur_start_row = (JDIMENSION) ltemp;
+ }
+ /* Read in the selected part of the array.
+ * During the initial write pass, we will do no actual read
+ * because the selected part is all undefined.
+ */
+ do_sarray_io(cinfo, ptr, FALSE);
+ }
+ /* Ensure the accessed part of the array is defined; prezero if needed.
+ * To improve locality of access, we only prezero the part of the array
+ * that the caller is about to access, not the entire in-memory array.
+ */
+ if (ptr->first_undef_row < end_row) {
+ if (ptr->first_undef_row < start_row) {
+ if (writable) /* writer skipped over a section of array */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ undef_row = start_row; /* but reader is allowed to read ahead */
+ } else {
+ undef_row = ptr->first_undef_row;
+ }
+ if (writable)
+ ptr->first_undef_row = end_row;
+ if (ptr->pre_zero) {
+ size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+ end_row -= ptr->cur_start_row;
+ while (undef_row < end_row) {
+ jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+ undef_row++;
+ }
+ } else {
+ if (! writable) /* reader looking at undefined data */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ }
+ }
+ /* Flag the buffer dirty if caller will write in it */
+ if (writable)
+ ptr->dirty = TRUE;
+ /* Return address of proper part of the buffer */
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+METHODDEF(JBLOCKARRAY)
+access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
+ JDIMENSION start_row, JDIMENSION num_rows,
+ boolean writable)
+/* Access the part of a virtual block array starting at start_row */
+/* and extending for num_rows rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ JDIMENSION end_row = start_row + num_rows;
+ JDIMENSION undef_row;
+
+ /* debugging check */
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+ /* Make the desired part of the virtual array accessible */
+ if (start_row < ptr->cur_start_row ||
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+ if (! ptr->b_s_open)
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+ /* Flush old buffer contents if necessary */
+ if (ptr->dirty) {
+ do_barray_io(cinfo, ptr, TRUE);
+ ptr->dirty = FALSE;
+ }
+ /* Decide what part of virtual array to access.
+ * Algorithm: if target address > current window, assume forward scan,
+ * load starting at target address. If target address < current window,
+ * assume backward scan, load so that target area is top of window.
+ * Note that when switching from forward write to forward read, will have
+ * start_row = 0, so the limiting case applies and we load from 0 anyway.
+ */
+ if (start_row > ptr->cur_start_row) {
+ ptr->cur_start_row = start_row;
+ } else {
+ /* use long arithmetic here to avoid overflow & unsigned problems */
+ long ltemp;
+
+ ltemp = (long) end_row - (long) ptr->rows_in_mem;
+ if (ltemp < 0)
+ ltemp = 0; /* don't fall off front end of file */
+ ptr->cur_start_row = (JDIMENSION) ltemp;
+ }
+ /* Read in the selected part of the array.
+ * During the initial write pass, we will do no actual read
+ * because the selected part is all undefined.
+ */
+ do_barray_io(cinfo, ptr, FALSE);
+ }
+ /* Ensure the accessed part of the array is defined; prezero if needed.
+ * To improve locality of access, we only prezero the part of the array
+ * that the caller is about to access, not the entire in-memory array.
+ */
+ if (ptr->first_undef_row < end_row) {
+ if (ptr->first_undef_row < start_row) {
+ if (writable) /* writer skipped over a section of array */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ undef_row = start_row; /* but reader is allowed to read ahead */
+ } else {
+ undef_row = ptr->first_undef_row;
+ }
+ if (writable)
+ ptr->first_undef_row = end_row;
+ if (ptr->pre_zero) {
+ size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+ end_row -= ptr->cur_start_row;
+ while (undef_row < end_row) {
+ jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+ undef_row++;
+ }
+ } else {
+ if (! writable) /* reader looking at undefined data */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ }
+ }
+ /* Flag the buffer dirty if caller will write in it */
+ if (writable)
+ ptr->dirty = TRUE;
+ /* Return address of proper part of the buffer */
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+/*
+ * Release all objects belonging to a specified pool.
+ */
+
+METHODDEF(void)
+free_pool (j_common_ptr cinfo, int pool_id)
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr shdr_ptr;
+ large_pool_ptr lhdr_ptr;
+ size_t space_freed;
+
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+#ifdef MEM_STATS
+ if (cinfo->err->trace_level > 1)
+ print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
+#endif
+
+ /* If freeing IMAGE pool, close any virtual arrays first */
+ if (pool_id == JPOOL_IMAGE) {
+ jvirt_sarray_ptr sptr;
+ jvirt_barray_ptr bptr;
+
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->b_s_open) { /* there may be no backing store */
+ sptr->b_s_open = FALSE; /* prevent recursive close if error */
+ (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
+ }
+ }
+ mem->virt_sarray_list = NULL;
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->b_s_open) { /* there may be no backing store */
+ bptr->b_s_open = FALSE; /* prevent recursive close if error */
+ (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
+ }
+ }
+ mem->virt_barray_list = NULL;
+ }
+
+ /* Release large objects */
+ lhdr_ptr = mem->large_list[pool_id];
+ mem->large_list[pool_id] = NULL;
+
+ while (lhdr_ptr != NULL) {
+ large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
+ space_freed = lhdr_ptr->hdr.bytes_used +
+ lhdr_ptr->hdr.bytes_left +
+ SIZEOF(large_pool_hdr);
+ jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
+ mem->total_space_allocated -= space_freed;
+ lhdr_ptr = next_lhdr_ptr;
+ }
+
+ /* Release small objects */
+ shdr_ptr = mem->small_list[pool_id];
+ mem->small_list[pool_id] = NULL;
+
+ while (shdr_ptr != NULL) {
+ small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
+ space_freed = shdr_ptr->hdr.bytes_used +
+ shdr_ptr->hdr.bytes_left +
+ SIZEOF(small_pool_hdr);
+ jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
+ mem->total_space_allocated -= space_freed;
+ shdr_ptr = next_shdr_ptr;
+ }
+}
+
+
+/*
+ * Close up shop entirely.
+ * Note that this cannot be called unless cinfo->mem is non-NULL.
+ */
+
+METHODDEF(void)
+self_destruct (j_common_ptr cinfo)
+{
+ int pool;
+
+ /* Close all backing store, release all memory.
+ * Releasing pools in reverse order might help avoid fragmentation
+ * with some (brain-damaged) malloc libraries.
+ */
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+ free_pool(cinfo, pool);
+ }
+
+ /* Release the memory manager control block too. */
+ jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
+ cinfo->mem = NULL; /* ensures I will be called only once */
+
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */
+}
+
+
+/*
+ * Memory manager initialization.
+ * When this is called, only the error manager pointer is valid in cinfo!
+ */
+
+GLOBAL(void)
+jinit_memory_mgr (j_common_ptr cinfo)
+{
+ my_mem_ptr mem;
+ long max_to_use;
+ int pool;
+ size_t test_mac;
+
+ cinfo->mem = NULL; /* for safety if init fails */
+
+ /* Check for configuration errors.
+ * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
+ * doesn't reflect any real hardware alignment requirement.
+ * The test is a little tricky: for X>0, X and X-1 have no one-bits
+ * in common if and only if X is a power of 2, ie has only one one-bit.
+ * Some compilers may give an "unreachable code" warning here; ignore it.
+ */
+ if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
+ ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
+ /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
+ * a multiple of SIZEOF(ALIGN_TYPE).
+ * Again, an "unreachable code" warning may be ignored here.
+ * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
+ */
+ test_mac = (size_t) MAX_ALLOC_CHUNK;
+ if ((long) test_mac != MAX_ALLOC_CHUNK ||
+ (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+
+ max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
+
+ /* Attempt to allocate memory manager's control block */
+ mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
+
+ if (mem == NULL) {
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
+ }
+
+ /* OK, fill in the method pointers */
+ mem->pub.alloc_small = alloc_small;
+ mem->pub.alloc_large = alloc_large;
+ mem->pub.alloc_sarray = alloc_sarray;
+ mem->pub.alloc_barray = alloc_barray;
+ mem->pub.request_virt_sarray = request_virt_sarray;
+ mem->pub.request_virt_barray = request_virt_barray;
+ mem->pub.realize_virt_arrays = realize_virt_arrays;
+ mem->pub.access_virt_sarray = access_virt_sarray;
+ mem->pub.access_virt_barray = access_virt_barray;
+ mem->pub.free_pool = free_pool;
+ mem->pub.self_destruct = self_destruct;
+
+ /* Make MAX_ALLOC_CHUNK accessible to other modules */
+ mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
+
+ /* Initialize working state */
+ mem->pub.max_memory_to_use = max_to_use;
+
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+ mem->small_list[pool] = NULL;
+ mem->large_list[pool] = NULL;
+ }
+ mem->virt_sarray_list = NULL;
+ mem->virt_barray_list = NULL;
+
+ mem->total_space_allocated = SIZEOF(my_memory_mgr);
+
+ /* Declare ourselves open for business */
+ cinfo->mem = & mem->pub;
+
+ /* Check for an environment variable JPEGMEM; if found, override the
+ * default max_memory setting from jpeg_mem_init. Note that the
+ * surrounding application may again override this value.
+ * If your system doesn't support getenv(), define NO_GETENV to disable
+ * this feature.
+ */
+#ifndef NO_GETENV
+ { char * memenv;
+
+ if ((memenv = getenv("JPEGMEM")) != NULL) {
+ char ch = 'x';
+
+ if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
+ if (ch == 'm' || ch == 'M')
+ max_to_use *= 1000L;
+ mem->pub.max_memory_to_use = max_to_use * 1000L;
+ }
+ }
+ }
+#endif
+
+}
diff --git a/src/3rdparty/libjpeg/jmemname.c b/src/3rdparty/libjpeg/jmemname.c
new file mode 100644
index 0000000..ed96dee
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemname.c
@@ -0,0 +1,276 @@
+/*
+ * jmemname.c
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a generic implementation of the system-dependent
+ * portion of the JPEG memory manager. This implementation assumes that
+ * you must explicitly construct a name for each temp file.
+ * Also, the problem of determining the amount of memory available
+ * is shoved onto the user.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
+#define SEEK_SET 0 /* if not, assume 0 is correct */
+#endif
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#define RW_BINARY "w+"
+#else
+#ifdef VMS /* VMS is very nonstandard */
+#define READ_BINARY "rb", "ctx=stm"
+#define RW_BINARY "w+b", "ctx=stm"
+#else /* standard ANSI-compliant case */
+#define READ_BINARY "rb"
+#define RW_BINARY "w+b"
+#endif
+#endif
+
+
+/*
+ * Selection of a file name for a temporary file.
+ * This is system-dependent!
+ *
+ * The code as given is suitable for most Unix systems, and it is easily
+ * modified for most non-Unix systems. Some notes:
+ * 1. The temp file is created in the directory named by TEMP_DIRECTORY.
+ * The default value is /usr/tmp, which is the conventional place for
+ * creating large temp files on Unix. On other systems you'll probably
+ * want to change the file location. You can do this by editing the
+ * #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h.
+ *
+ * 2. If you need to change the file name as well as its location,
+ * you can override the TEMP_FILE_NAME macro. (Note that this is
+ * actually a printf format string; it must contain %s and %d.)
+ * Few people should need to do this.
+ *
+ * 3. mktemp() is used to ensure that multiple processes running
+ * simultaneously won't select the same file names. If your system
+ * doesn't have mktemp(), define NO_MKTEMP to do it the hard way.
+ * (If you don't have <errno.h>, also define NO_ERRNO_H.)
+ *
+ * 4. You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c
+ * will cause the temp files to be removed if you stop the program early.
+ */
+
+#ifndef TEMP_DIRECTORY /* can override from jconfig.h or Makefile */
+#define TEMP_DIRECTORY "/usr/tmp/" /* recommended setting for Unix */
+#endif
+
+static int next_file_num; /* to distinguish among several temp files */
+
+#ifdef NO_MKTEMP
+
+#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
+#define TEMP_FILE_NAME "%sJPG%03d.TMP"
+#endif
+
+#ifndef NO_ERRNO_H
+#include <errno.h> /* to define ENOENT */
+#endif
+
+/* ANSI C specifies that errno is a macro, but on older systems it's more
+ * likely to be a plain int variable. And not all versions of errno.h
+ * bother to declare it, so we have to in order to be most portable. Thus:
+ */
+#ifndef errno
+extern int errno;
+#endif
+
+
+LOCAL(void)
+select_file_name (char * fname)
+{
+ FILE * tfile;
+
+ /* Keep generating file names till we find one that's not in use */
+ for (;;) {
+ next_file_num++; /* advance counter */
+ sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
+ if ((tfile = fopen(fname, READ_BINARY)) == NULL) {
+ /* fopen could have failed for a reason other than the file not
+ * being there; for example, file there but unreadable.
+ * If <errno.h> isn't available, then we cannot test the cause.
+ */
+#ifdef ENOENT
+ if (errno != ENOENT)
+ continue;
+#endif
+ break;
+ }
+ fclose(tfile); /* oops, it's there; close tfile & try again */
+ }
+}
+
+#else /* ! NO_MKTEMP */
+
+/* Note that mktemp() requires the initial filename to end in six X's */
+#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
+#define TEMP_FILE_NAME "%sJPG%dXXXXXX"
+#endif
+
+LOCAL(void)
+select_file_name (char * fname)
+{
+ next_file_num++; /* advance counter */
+ sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
+ mktemp(fname); /* make sure file name is unique */
+ /* mktemp replaces the trailing XXXXXX with a unique string of characters */
+}
+
+#endif /* NO_MKTEMP */
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * It's impossible to do this in a portable way; our current solution is
+ * to make the user tell us (with a default value set at compile time).
+ * If you can actually get the available space, it's a good idea to subtract
+ * a slop factor of 5% or so.
+ */
+
+#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
+#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
+#endif
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return cinfo->mem->max_memory_to_use - already_allocated;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+
+METHODDEF(void)
+read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFREAD(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFWRITE(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ fclose(info->temp_file); /* close the file */
+ unlink(info->temp_name); /* delete the file */
+/* If your system doesn't have unlink(), use remove() instead.
+ * remove() is the ANSI-standard name for this function, but if
+ * your system was ANSI you'd be using jmemansi.c, right?
+ */
+ TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
+}
+
+
+/*
+ * Initial opening of a backing-store object.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ select_file_name(info->temp_name);
+ if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL)
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+ info->read_backing_store = read_backing_store;
+ info->write_backing_store = write_backing_store;
+ info->close_backing_store = close_backing_store;
+ TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ next_file_num = 0; /* initialize temp file name generator */
+ return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/src/3rdparty/libjpeg/jmemnobs.c b/src/3rdparty/libjpeg/jmemnobs.c
new file mode 100644
index 0000000..eb8c337
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemnobs.c
@@ -0,0 +1,109 @@
+/*
+ * jmemnobs.c
+ *
+ * Copyright (C) 1992-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a really simple implementation of the system-
+ * dependent portion of the JPEG memory manager. This implementation
+ * assumes that no backing-store files are needed: all required space
+ * can be obtained from malloc().
+ * This is very portable in the sense that it'll compile on almost anything,
+ * but you'd better have lots of main memory (or virtual memory) if you want
+ * to process big images.
+ * Note that the max_memory_to_use option is ignored by this implementation.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * Here we always say, "we got all you want bud!"
+ */
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return max_bytes_needed;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Since jpeg_mem_available always promised the moon,
+ * this should never be called and we can just error out.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ ERREXIT(cinfo, JERR_NO_BACKING_STORE);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required. Here, there isn't any.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ return 0; /* just set max_memory_to_use to 0 */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/src/3rdparty/libjpeg/jmemsys.h b/src/3rdparty/libjpeg/jmemsys.h
new file mode 100644
index 0000000..6c3c6d3
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmemsys.h
@@ -0,0 +1,198 @@
+/*
+ * jmemsys.h
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file defines the interface between the system-independent
+ * and system-dependent portions of the JPEG memory manager. No other
+ * modules need include it. (The system-independent portion is jmemmgr.c;
+ * there are several different versions of the system-dependent portion.)
+ *
+ * This file works as-is for the system-dependent memory managers supplied
+ * in the IJG distribution. You may need to modify it if you write a
+ * custom memory manager. If system-dependent changes are needed in
+ * this file, the best method is to #ifdef them based on a configuration
+ * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
+ * and USE_MAC_MEMMGR.
+ */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_get_small jGetSmall
+#define jpeg_free_small jFreeSmall
+#define jpeg_get_large jGetLarge
+#define jpeg_free_large jFreeLarge
+#define jpeg_mem_available jMemAvail
+#define jpeg_open_backing_store jOpenBackStore
+#define jpeg_mem_init jMemInit
+#define jpeg_mem_term jMemTerm
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * These two functions are used to allocate and release small chunks of
+ * memory. (Typically the total amount requested through jpeg_get_small is
+ * no more than 20K or so; this will be requested in chunks of a few K each.)
+ * Behavior should be the same as for the standard library functions malloc
+ * and free; in particular, jpeg_get_small must return NULL on failure.
+ * On most systems, these ARE malloc and free. jpeg_free_small is passed the
+ * size of the object being freed, just in case it's needed.
+ * On an 80x86 machine using small-data memory model, these manage near heap.
+ */
+
+EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
+EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
+ size_t sizeofobject));
+
+/*
+ * These two functions are used to allocate and release large chunks of
+ * memory (up to the total free space designated by jpeg_mem_available).
+ * The interface is the same as above, except that on an 80x86 machine,
+ * far pointers are used. On most other machines these are identical to
+ * the jpeg_get/free_small routines; but we keep them separate anyway,
+ * in case a different allocation strategy is desirable for large chunks.
+ */
+
+EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
+ size_t sizeofobject));
+EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
+ size_t sizeofobject));
+
+/*
+ * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
+ * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
+ * matter, but that case should never come into play). This macro is needed
+ * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
+ * On those machines, we expect that jconfig.h will provide a proper value.
+ * On machines with 32-bit flat address spaces, any large constant may be used.
+ *
+ * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
+ * size_t and will be a multiple of sizeof(align_type).
+ */
+
+#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
+#define MAX_ALLOC_CHUNK 1000000000L
+#endif
+
+/*
+ * This routine computes the total space still available for allocation by
+ * jpeg_get_large. If more space than this is needed, backing store will be
+ * used. NOTE: any memory already allocated must not be counted.
+ *
+ * There is a minimum space requirement, corresponding to the minimum
+ * feasible buffer sizes; jmemmgr.c will request that much space even if
+ * jpeg_mem_available returns zero. The maximum space needed, enough to hold
+ * all working storage in memory, is also passed in case it is useful.
+ * Finally, the total space already allocated is passed. If no better
+ * method is available, cinfo->mem->max_memory_to_use - already_allocated
+ * is often a suitable calculation.
+ *
+ * It is OK for jpeg_mem_available to underestimate the space available
+ * (that'll just lead to more backing-store access than is really necessary).
+ * However, an overestimate will lead to failure. Hence it's wise to subtract
+ * a slop factor from the true available space. 5% should be enough.
+ *
+ * On machines with lots of virtual memory, any large constant may be returned.
+ * Conversely, zero may be returned to always use the minimum amount of memory.
+ */
+
+EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
+ long min_bytes_needed,
+ long max_bytes_needed,
+ long already_allocated));
+
+
+/*
+ * This structure holds whatever state is needed to access a single
+ * backing-store object. The read/write/close method pointers are called
+ * by jmemmgr.c to manipulate the backing-store object; all other fields
+ * are private to the system-dependent backing store routines.
+ */
+
+#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
+
+
+#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
+
+typedef unsigned short XMSH; /* type of extended-memory handles */
+typedef unsigned short EMSH; /* type of expanded-memory handles */
+
+typedef union {
+ short file_handle; /* DOS file handle if it's a temp file */
+ XMSH xms_handle; /* handle if it's a chunk of XMS */
+ EMSH ems_handle; /* handle if it's a chunk of EMS */
+} handle_union;
+
+#endif /* USE_MSDOS_MEMMGR */
+
+#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
+#include <Files.h>
+#endif /* USE_MAC_MEMMGR */
+
+
+typedef struct backing_store_struct * backing_store_ptr;
+
+typedef struct backing_store_struct {
+ /* Methods for reading/writing/closing this backing-store object */
+ JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count));
+ JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count));
+ JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info));
+
+ /* Private fields for system-dependent backing-store management */
+#ifdef USE_MSDOS_MEMMGR
+ /* For the MS-DOS manager (jmemdos.c), we need: */
+ handle_union handle; /* reference to backing-store storage object */
+ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+#ifdef USE_MAC_MEMMGR
+ /* For the Mac manager (jmemmac.c), we need: */
+ short temp_file; /* file reference number to temp file */
+ FSSpec tempSpec; /* the FSSpec for the temp file */
+ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+ /* For a typical implementation with temp files, we need: */
+ FILE * temp_file; /* stdio reference to temp file */
+ char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
+#endif
+#endif
+} backing_store_info;
+
+
+/*
+ * Initial opening of a backing-store object. This must fill in the
+ * read/write/close pointers in the object. The read/write routines
+ * may take an error exit if the specified maximum file size is exceeded.
+ * (If jpeg_mem_available always returns a large value, this routine can
+ * just take an error exit.)
+ */
+
+EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
+ backing_store_ptr info,
+ long total_bytes_needed));
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required. jpeg_mem_init will be called before anything is
+ * allocated (and, therefore, nothing in cinfo is of use except the error
+ * manager pointer). It should return a suitable default value for
+ * max_memory_to_use; this may subsequently be overridden by the surrounding
+ * application. (Note that max_memory_to_use is only important if
+ * jpeg_mem_available chooses to consult it ... no one else will.)
+ * jpeg_mem_term may assume that all requested memory has been freed and that
+ * all opened backing-store objects have been closed.
+ */
+
+EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
diff --git a/src/3rdparty/libjpeg/jmorecfg.h b/src/3rdparty/libjpeg/jmorecfg.h
new file mode 100644
index 0000000..928d052
--- /dev/null
+++ b/src/3rdparty/libjpeg/jmorecfg.h
@@ -0,0 +1,371 @@
+/*
+ * jmorecfg.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains additional configuration options that customize the
+ * JPEG software for special applications or support machine-dependent
+ * optimizations. Most users will not need to touch this file.
+ */
+
+
+/*
+ * Define BITS_IN_JSAMPLE as either
+ * 8 for 8-bit sample values (the usual setting)
+ * 12 for 12-bit sample values
+ * Only 8 and 12 are legal data precisions for lossy JPEG according to the
+ * JPEG standard, and the IJG code does not support anything else!
+ * We do not support run-time selection of data precision, sorry.
+ */
+
+#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
+
+
+/*
+ * Maximum number of components (color channels) allowed in JPEG image.
+ * To meet the letter of the JPEG spec, set this to 255. However, darn
+ * few applications need more than 4 channels (maybe 5 for CMYK + alpha
+ * mask). We recommend 10 as a reasonable compromise; use 4 if you are
+ * really short on memory. (Each allowed component costs a hundred or so
+ * bytes of storage, whether actually used in an image or not.)
+ */
+
+#define MAX_COMPONENTS 10 /* maximum number of image components */
+
+
+/*
+ * Basic data types.
+ * You may need to change these if you have a machine with unusual data
+ * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
+ * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
+ * but it had better be at least 16.
+ */
+
+/* Representation of a single sample (pixel element value).
+ * We frequently allocate large arrays of these, so it's important to keep
+ * them small. But if you have memory to burn and access to char or short
+ * arrays is very slow on your hardware, you might want to change these.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+/* JSAMPLE should be the smallest type that will hold the values 0..255.
+ * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JSAMPLE;
+#define GETJSAMPLE(value) ((int) (value))
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JSAMPLE;
+#ifdef CHAR_IS_UNSIGNED
+#define GETJSAMPLE(value) ((int) (value))
+#else
+#define GETJSAMPLE(value) ((int) (value) & 0xFF)
+#endif /* CHAR_IS_UNSIGNED */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+#define MAXJSAMPLE 255
+#define CENTERJSAMPLE 128
+
+#endif /* BITS_IN_JSAMPLE == 8 */
+
+
+#if BITS_IN_JSAMPLE == 12
+/* JSAMPLE should be the smallest type that will hold the values 0..4095.
+ * On nearly all machines "short" will do nicely.
+ */
+
+typedef short JSAMPLE;
+#define GETJSAMPLE(value) ((int) (value))
+
+#define MAXJSAMPLE 4095
+#define CENTERJSAMPLE 2048
+
+#endif /* BITS_IN_JSAMPLE == 12 */
+
+
+/* Representation of a DCT frequency coefficient.
+ * This should be a signed value of at least 16 bits; "short" is usually OK.
+ * Again, we allocate large arrays of these, but you can change to int
+ * if you have memory to burn and "short" is really slow.
+ */
+
+typedef short JCOEF;
+
+
+/* Compressed datastreams are represented as arrays of JOCTET.
+ * These must be EXACTLY 8 bits wide, at least once they are written to
+ * external storage. Note that when using the stdio data source/destination
+ * managers, this is also the data type passed to fread/fwrite.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JOCTET;
+#define GETJOCTET(value) (value)
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JOCTET;
+#ifdef CHAR_IS_UNSIGNED
+#define GETJOCTET(value) (value)
+#else
+#define GETJOCTET(value) ((value) & 0xFF)
+#endif /* CHAR_IS_UNSIGNED */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+/* These typedefs are used for various table entries and so forth.
+ * They must be at least as wide as specified; but making them too big
+ * won't cost a huge amount of memory, so we don't provide special
+ * extraction code like we did for JSAMPLE. (In other words, these
+ * typedefs live at a different point on the speed/space tradeoff curve.)
+ */
+
+/* UINT8 must hold at least the values 0..255. */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char UINT8;
+#else /* not HAVE_UNSIGNED_CHAR */
+#ifdef CHAR_IS_UNSIGNED
+typedef char UINT8;
+#else /* not CHAR_IS_UNSIGNED */
+typedef short UINT8;
+#endif /* CHAR_IS_UNSIGNED */
+#endif /* HAVE_UNSIGNED_CHAR */
+
+/* UINT16 must hold at least the values 0..65535. */
+
+#ifdef HAVE_UNSIGNED_SHORT
+typedef unsigned short UINT16;
+#else /* not HAVE_UNSIGNED_SHORT */
+typedef unsigned int UINT16;
+#endif /* HAVE_UNSIGNED_SHORT */
+
+/* INT16 must hold at least the values -32768..32767. */
+
+#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
+typedef short INT16;
+#endif
+
+/* INT32 must hold at least signed 32-bit values. */
+
+#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
+#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
+#ifndef _BASETSD_H /* MinGW is slightly different */
+#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
+typedef long INT32;
+#endif
+#endif
+#endif
+#endif
+
+/* Datatype used for image dimensions. The JPEG standard only supports
+ * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
+ * "unsigned int" is sufficient on all machines. However, if you need to
+ * handle larger images and you don't mind deviating from the spec, you
+ * can change this datatype.
+ */
+
+typedef unsigned int JDIMENSION;
+
+#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
+
+
+/* These macros are used in all function definitions and extern declarations.
+ * You could modify them if you need to change function linkage conventions;
+ * in particular, you'll need to do that to make the library a Windows DLL.
+ * Another application is to make all functions global for use with debuggers
+ * or code profilers that require it.
+ */
+
+/* a function called through method pointers: */
+#define METHODDEF(type) static type
+/* a function used only in its module: */
+#define LOCAL(type) static type
+/* a function referenced thru EXTERNs: */
+#define GLOBAL(type) type
+/* a reference to a GLOBAL function: */
+#define EXTERN(type) extern type
+
+
+/* This macro is used to declare a "method", that is, a function pointer.
+ * We want to supply prototype parameters if the compiler can cope.
+ * Note that the arglist parameter must be parenthesized!
+ * Again, you can customize this if you need special linkage keywords.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
+#else
+#define JMETHOD(type,methodname,arglist) type (*methodname) ()
+#endif
+
+
+/* Here is the pseudo-keyword for declaring pointers that must be "far"
+ * on 80x86 machines. Most of the specialized coding for 80x86 is handled
+ * by just saying "FAR *" where such a pointer is needed. In a few places
+ * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
+ */
+
+#ifndef FAR
+#ifdef NEED_FAR_POINTERS
+#define FAR far
+#else
+#define FAR
+#endif
+#endif
+
+
+/*
+ * On a few systems, type boolean and/or its values FALSE, TRUE may appear
+ * in standard header files. Or you may have conflicts with application-
+ * specific header files that you want to include together with these files.
+ * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
+ */
+
+#ifndef HAVE_BOOLEAN
+typedef int boolean;
+#endif
+#ifndef FALSE /* in case these macros already exist */
+#define FALSE 0 /* values of boolean */
+#endif
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+
+/*
+ * The remaining options affect code selection within the JPEG library,
+ * but they don't need to be visible to most applications using the library.
+ * To minimize application namespace pollution, the symbols won't be
+ * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
+ */
+
+#ifdef JPEG_INTERNALS
+#define JPEG_INTERNAL_OPTIONS
+#endif
+
+#ifdef JPEG_INTERNAL_OPTIONS
+
+
+/*
+ * These defines indicate whether to include various optional functions.
+ * Undefining some of these symbols will produce a smaller but less capable
+ * library. Note that you can leave certain source files out of the
+ * compilation/linking process if you've #undef'd the corresponding symbols.
+ * (You may HAVE to do that if your compiler doesn't like null source files.)
+ */
+
+/* Capability options common to encoder and decoder: */
+
+#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
+#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
+#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
+
+/* Encoder capability options: */
+
+#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
+#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/
+#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
+/* Note: if you selected 12-bit data precision, it is dangerous to turn off
+ * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
+ * precision, so jchuff.c normally uses entropy optimization to compute
+ * usable tables for higher precision. If you don't want to do optimization,
+ * you'll have to supply different default Huffman tables.
+ * The exact same statements apply for progressive JPEG: the default tables
+ * don't work for progressive mode. (This may get fixed, however.)
+ */
+#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
+
+/* Decoder capability options: */
+
+#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
+#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
+#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
+#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
+#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
+#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
+#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
+#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
+
+/* more capability options later, no doubt */
+
+
+/*
+ * Ordering of RGB data in scanlines passed to or from the application.
+ * If your application wants to deal with data in the order B,G,R, just
+ * change these macros. You can also deal with formats such as R,G,B,X
+ * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
+ * the offsets will also change the order in which colormap data is organized.
+ * RESTRICTIONS:
+ * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
+ * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
+ * useful if you are using JPEG color spaces other than YCbCr or grayscale.
+ * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
+ * is not 3 (they don't understand about dummy color components!). So you
+ * can't use color quantization if you change that value.
+ */
+
+#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
+#define RGB_GREEN 1 /* Offset of Green */
+#define RGB_BLUE 2 /* Offset of Blue */
+#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
+
+
+/* Definitions for speed-related optimizations. */
+
+
+/* If your compiler supports inline functions, define INLINE
+ * as the inline keyword; otherwise define it as empty.
+ */
+
+#ifndef INLINE
+#ifdef __GNUC__ /* for instance, GNU C knows about inline */
+#define INLINE __inline__
+#endif
+#ifndef INLINE
+#define INLINE /* default is to define it as empty */
+#endif
+#endif
+
+
+/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
+ * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
+ * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
+ */
+
+#ifndef MULTIPLIER
+#define MULTIPLIER int /* type for fastest integer multiply */
+#endif
+
+
+/* FAST_FLOAT should be either float or double, whichever is done faster
+ * by your compiler. (Note that this type is only used in the floating point
+ * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
+ * Typically, float is faster in ANSI C compilers, while double is faster in
+ * pre-ANSI compilers (because they insist on converting to double anyway).
+ * The code below therefore chooses float if we have ANSI-style prototypes.
+ */
+
+#ifndef FAST_FLOAT
+#ifdef HAVE_PROTOTYPES
+#define FAST_FLOAT float
+#else
+#define FAST_FLOAT double
+#endif
+#endif
+
+#endif /* JPEG_INTERNAL_OPTIONS */
diff --git a/src/3rdparty/libjpeg/jpegint.h b/src/3rdparty/libjpeg/jpegint.h
new file mode 100644
index 0000000..0c27a4e
--- /dev/null
+++ b/src/3rdparty/libjpeg/jpegint.h
@@ -0,0 +1,407 @@
+/*
+ * jpegint.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides common declarations for the various JPEG modules.
+ * These declarations are considered internal to the JPEG library; most
+ * applications using the library shouldn't need to include this file.
+ */
+
+
+/* Declarations for both compression & decompression */
+
+typedef enum { /* Operating modes for buffer controllers */
+ JBUF_PASS_THRU, /* Plain stripwise operation */
+ /* Remaining modes require a full-image buffer to have been created */
+ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
+ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
+ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
+} J_BUF_MODE;
+
+/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
+#define CSTATE_START 100 /* after create_compress */
+#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
+#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
+#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
+#define DSTATE_START 200 /* after create_decompress */
+#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
+#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
+#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
+#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
+#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
+#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
+#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
+#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
+#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
+#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
+
+
+/* Declarations for compression modules */
+
+/* Master control module */
+struct jpeg_comp_master {
+ JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean call_pass_startup; /* True if pass_startup must be called */
+ boolean is_last_pass; /* True during last pass */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_c_main_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail));
+};
+
+/* Compression preprocessing (downsampling input buffer control) */
+struct jpeg_c_prep_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf,
+ JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_c_coef_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf));
+};
+
+/* Colorspace conversion */
+struct jpeg_color_converter {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows));
+};
+
+/* Downsampling */
+struct jpeg_downsampler {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, downsample, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+ JSAMPIMAGE output_buf,
+ JDIMENSION out_row_group_index));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Forward DCT (also controls coefficient quantization) */
+typedef JMETHOD(void, forward_DCT_ptr,
+ (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks));
+
+struct jpeg_forward_dct {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ /* It is useful to allow each component to have a separate FDCT method. */
+ forward_DCT_ptr forward_DCT[MAX_COMPONENTS];
+};
+
+/* Entropy encoding */
+struct jpeg_entropy_encoder {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
+ JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+};
+
+/* Marker writing */
+struct jpeg_marker_writer {
+ JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
+ JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
+ /* These routines are exported to allow insertion of extra markers */
+ /* Probably only COM and APPn markers should be written this way */
+ JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
+ unsigned int datalen));
+ JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
+};
+
+
+/* Declarations for decompression modules */
+
+/* Master control module */
+struct jpeg_decomp_master {
+ JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
+};
+
+/* Input control module */
+struct jpeg_input_controller {
+ JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
+ JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean has_multiple_scans; /* True if file has multiple scans */
+ boolean eoi_reached; /* True when EOI has been consumed */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_d_main_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_d_coef_controller {
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf));
+ /* Pointer to array of coefficient virtual arrays, or NULL if none */
+ jvirt_barray_ptr *coef_arrays;
+};
+
+/* Decompression postprocessing (color quantization buffer control) */
+struct jpeg_d_post_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Marker reading & parsing */
+struct jpeg_marker_reader {
+ JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
+ /* Read markers until SOS or EOI.
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ */
+ JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
+ /* Read a restart marker --- exported for use by entropy decoder only */
+ jpeg_marker_parser_method read_restart_marker;
+
+ /* State of marker reader --- nominally internal, but applications
+ * supplying COM or APPn handlers might like to know the state.
+ */
+ boolean saw_SOI; /* found SOI? */
+ boolean saw_SOF; /* found SOF? */
+ int next_restart_num; /* next restart number expected (0-7) */
+ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
+};
+
+/* Entropy decoding */
+struct jpeg_entropy_decoder {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
+ JBLOCKROW *MCU_data));
+};
+
+/* Inverse DCT (also performs dequantization) */
+typedef JMETHOD(void, inverse_DCT_method_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col));
+
+struct jpeg_inverse_dct {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ /* It is useful to allow each component to have a separate IDCT method. */
+ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
+};
+
+/* Upsampling (note that upsampler must also call color converter) */
+struct jpeg_upsampler {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, upsample, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Colorspace conversion */
+struct jpeg_color_deconverter {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows));
+};
+
+/* Color quantization or color precision reduction */
+struct jpeg_color_quantizer {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
+ JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf,
+ int num_rows));
+ JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
+};
+
+
+/* Miscellaneous useful macros */
+
+#undef MAX
+#define MAX(a,b) ((a) > (b) ? (a) : (b))
+#undef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+
+
+/* We assume that right shift corresponds to signed division by 2 with
+ * rounding towards minus infinity. This is correct for typical "arithmetic
+ * shift" instructions that shift in copies of the sign bit. But some
+ * C compilers implement >> with an unsigned shift. For these machines you
+ * must define RIGHT_SHIFT_IS_UNSIGNED.
+ * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
+ * It is only applied with constant shift counts. SHIFT_TEMPS must be
+ * included in the variables of any routine using RIGHT_SHIFT.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define SHIFT_TEMPS INT32 shift_temp;
+#define RIGHT_SHIFT(x,shft) \
+ ((shift_temp = (x)) < 0 ? \
+ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
+ (shift_temp >> (shft)))
+#else
+#define SHIFT_TEMPS
+#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_compress_master jICompress
+#define jinit_c_master_control jICMaster
+#define jinit_c_main_controller jICMainC
+#define jinit_c_prep_controller jICPrepC
+#define jinit_c_coef_controller jICCoefC
+#define jinit_color_converter jICColor
+#define jinit_downsampler jIDownsampler
+#define jinit_forward_dct jIFDCT
+#define jinit_huff_encoder jIHEncoder
+#define jinit_arith_encoder jIAEncoder
+#define jinit_marker_writer jIMWriter
+#define jinit_master_decompress jIDMaster
+#define jinit_d_main_controller jIDMainC
+#define jinit_d_coef_controller jIDCoefC
+#define jinit_d_post_controller jIDPostC
+#define jinit_input_controller jIInCtlr
+#define jinit_marker_reader jIMReader
+#define jinit_huff_decoder jIHDecoder
+#define jinit_arith_decoder jIADecoder
+#define jinit_inverse_dct jIIDCT
+#define jinit_upsampler jIUpsampler
+#define jinit_color_deconverter jIDColor
+#define jinit_1pass_quantizer jI1Quant
+#define jinit_2pass_quantizer jI2Quant
+#define jinit_merged_upsampler jIMUpsampler
+#define jinit_memory_mgr jIMemMgr
+#define jdiv_round_up jDivRound
+#define jround_up jRound
+#define jcopy_sample_rows jCopySamples
+#define jcopy_block_row jCopyBlocks
+#define jzero_far jZeroFar
+#define jpeg_zigzag_order jZIGTable
+#define jpeg_natural_order jZAGTable
+#define jpeg_natural_order7 jZAGTable7
+#define jpeg_natural_order6 jZAGTable6
+#define jpeg_natural_order5 jZAGTable5
+#define jpeg_natural_order4 jZAGTable4
+#define jpeg_natural_order3 jZAGTable3
+#define jpeg_natural_order2 jZAGTable2
+#define jpeg_aritab jAriTab
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Compression module initialization routines */
+EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
+ boolean transcode_only));
+EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
+/* Decompression module initialization routines */
+EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
+/* Memory manager initialization */
+EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
+
+/* Utility routines in jutils.c */
+EXTERN(long) jdiv_round_up JPP((long a, long b));
+EXTERN(long) jround_up JPP((long a, long b));
+EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols));
+EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks));
+EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
+/* Constant tables in jutils.c */
+#if 0 /* This table is not actually needed in v6a */
+extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
+#endif
+extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
+extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */
+extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */
+extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */
+extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */
+extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */
+extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */
+
+/* Arithmetic coding probability estimation tables in jaricom.c */
+extern const INT32 jpeg_aritab[];
+
+/* Suppress undefined-structure complaints if necessary. */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+#endif
+#endif /* INCOMPLETE_TYPES_BROKEN */
diff --git a/src/3rdparty/libjpeg/jpeglib.h b/src/3rdparty/libjpeg/jpeglib.h
new file mode 100644
index 0000000..5039d4b
--- /dev/null
+++ b/src/3rdparty/libjpeg/jpeglib.h
@@ -0,0 +1,1158 @@
+/*
+ * jpeglib.h
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2002-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the application interface for the JPEG library.
+ * Most applications using the library need only include this file,
+ * and perhaps jerror.h if they want to know the exact error codes.
+ */
+
+#ifndef JPEGLIB_H
+#define JPEGLIB_H
+
+/*
+ * First we include the configuration files that record how this
+ * installation of the JPEG library is set up. jconfig.h can be
+ * generated automatically for many systems. jmorecfg.h contains
+ * manual configuration options that most people need not worry about.
+ */
+
+#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
+#include "jconfig.h" /* widely used configuration options */
+#endif
+#include "jmorecfg.h" /* seldom changed options */
+
+
+#ifdef __cplusplus
+#ifndef DONT_USE_EXTERN_C
+extern "C" {
+#endif
+#endif
+
+/* Version ID for the JPEG library.
+ * Might be useful for tests like "#if JPEG_LIB_VERSION >= 80".
+ */
+
+#define JPEG_LIB_VERSION 80 /* Version 8.0 */
+
+
+/* Various constants determining the sizes of things.
+ * All of these are specified by the JPEG standard, so don't change them
+ * if you want to be compatible.
+ */
+
+#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
+#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
+#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
+#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
+#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
+#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
+#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
+/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
+ * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
+ * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
+ * to handle it. We even let you do this from the jconfig.h file. However,
+ * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
+ * sometimes emits noncompliant files doesn't mean you should too.
+ */
+#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
+#ifndef D_MAX_BLOCKS_IN_MCU
+#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
+#endif
+
+
+/* Data structures for images (arrays of samples and of DCT coefficients).
+ * On 80x86 machines, the image arrays are too big for near pointers,
+ * but the pointer arrays can fit in near memory.
+ */
+
+typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
+typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
+typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
+
+typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
+typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
+typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
+typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
+
+typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
+
+
+/* Types for JPEG compression parameters and working tables. */
+
+
+/* DCT coefficient quantization tables. */
+
+typedef struct {
+ /* This array gives the coefficient quantizers in natural array order
+ * (not the zigzag order in which they are stored in a JPEG DQT marker).
+ * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
+ */
+ UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
+ /* This field is used only during compression. It's initialized FALSE when
+ * the table is created, and set TRUE when it's been output to the file.
+ * You could suppress output of a table by setting this to TRUE.
+ * (See jpeg_suppress_tables for an example.)
+ */
+ boolean sent_table; /* TRUE when table has been output */
+} JQUANT_TBL;
+
+
+/* Huffman coding tables. */
+
+typedef struct {
+ /* These two fields directly represent the contents of a JPEG DHT marker */
+ UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
+ /* length k bits; bits[0] is unused */
+ UINT8 huffval[256]; /* The symbols, in order of incr code length */
+ /* This field is used only during compression. It's initialized FALSE when
+ * the table is created, and set TRUE when it's been output to the file.
+ * You could suppress output of a table by setting this to TRUE.
+ * (See jpeg_suppress_tables for an example.)
+ */
+ boolean sent_table; /* TRUE when table has been output */
+} JHUFF_TBL;
+
+
+/* Basic info about one component (color channel). */
+
+typedef struct {
+ /* These values are fixed over the whole image. */
+ /* For compression, they must be supplied by parameter setup; */
+ /* for decompression, they are read from the SOF marker. */
+ int component_id; /* identifier for this component (0..255) */
+ int component_index; /* its index in SOF or cinfo->comp_info[] */
+ int h_samp_factor; /* horizontal sampling factor (1..4) */
+ int v_samp_factor; /* vertical sampling factor (1..4) */
+ int quant_tbl_no; /* quantization table selector (0..3) */
+ /* These values may vary between scans. */
+ /* For compression, they must be supplied by parameter setup; */
+ /* for decompression, they are read from the SOS marker. */
+ /* The decompressor output side may not use these variables. */
+ int dc_tbl_no; /* DC entropy table selector (0..3) */
+ int ac_tbl_no; /* AC entropy table selector (0..3) */
+
+ /* Remaining fields should be treated as private by applications. */
+
+ /* These values are computed during compression or decompression startup: */
+ /* Component's size in DCT blocks.
+ * Any dummy blocks added to complete an MCU are not counted; therefore
+ * these values do not depend on whether a scan is interleaved or not.
+ */
+ JDIMENSION width_in_blocks;
+ JDIMENSION height_in_blocks;
+ /* Size of a DCT block in samples,
+ * reflecting any scaling we choose to apply during the DCT step.
+ * Values from 1 to 16 are supported.
+ * Note that different components may receive different DCT scalings.
+ */
+ int DCT_h_scaled_size;
+ int DCT_v_scaled_size;
+ /* The downsampled dimensions are the component's actual, unpadded number
+ * of samples at the main buffer (preprocessing/compression interface);
+ * DCT scaling is included, so
+ * downsampled_width = ceil(image_width * Hi/Hmax * DCT_h_scaled_size/DCTSIZE)
+ * and similarly for height.
+ */
+ JDIMENSION downsampled_width; /* actual width in samples */
+ JDIMENSION downsampled_height; /* actual height in samples */
+ /* This flag is used only for decompression. In cases where some of the
+ * components will be ignored (eg grayscale output from YCbCr image),
+ * we can skip most computations for the unused components.
+ */
+ boolean component_needed; /* do we need the value of this component? */
+
+ /* These values are computed before starting a scan of the component. */
+ /* The decompressor output side may not use these variables. */
+ int MCU_width; /* number of blocks per MCU, horizontally */
+ int MCU_height; /* number of blocks per MCU, vertically */
+ int MCU_blocks; /* MCU_width * MCU_height */
+ int MCU_sample_width; /* MCU width in samples: MCU_width * DCT_h_scaled_size */
+ int last_col_width; /* # of non-dummy blocks across in last MCU */
+ int last_row_height; /* # of non-dummy blocks down in last MCU */
+
+ /* Saved quantization table for component; NULL if none yet saved.
+ * See jdinput.c comments about the need for this information.
+ * This field is currently used only for decompression.
+ */
+ JQUANT_TBL * quant_table;
+
+ /* Private per-component storage for DCT or IDCT subsystem. */
+ void * dct_table;
+} jpeg_component_info;
+
+
+/* The script for encoding a multiple-scan file is an array of these: */
+
+typedef struct {
+ int comps_in_scan; /* number of components encoded in this scan */
+ int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
+ int Ss, Se; /* progressive JPEG spectral selection parms */
+ int Ah, Al; /* progressive JPEG successive approx. parms */
+} jpeg_scan_info;
+
+/* The decompressor can save APPn and COM markers in a list of these: */
+
+typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
+
+struct jpeg_marker_struct {
+ jpeg_saved_marker_ptr next; /* next in list, or NULL */
+ UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
+ unsigned int original_length; /* # bytes of data in the file */
+ unsigned int data_length; /* # bytes of data saved at data[] */
+ JOCTET FAR * data; /* the data contained in the marker */
+ /* the marker length word is not counted in data_length or original_length */
+};
+
+/* Known color spaces. */
+
+typedef enum {
+ JCS_UNKNOWN, /* error/unspecified */
+ JCS_GRAYSCALE, /* monochrome */
+ JCS_RGB, /* red/green/blue */
+ JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
+ JCS_CMYK, /* C/M/Y/K */
+ JCS_YCCK /* Y/Cb/Cr/K */
+} J_COLOR_SPACE;
+
+/* DCT/IDCT algorithm options. */
+
+typedef enum {
+ JDCT_ISLOW, /* slow but accurate integer algorithm */
+ JDCT_IFAST, /* faster, less accurate integer method */
+ JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
+} J_DCT_METHOD;
+
+#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
+#define JDCT_DEFAULT JDCT_ISLOW
+#endif
+#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
+#define JDCT_FASTEST JDCT_IFAST
+#endif
+
+/* Dithering options for decompression. */
+
+typedef enum {
+ JDITHER_NONE, /* no dithering */
+ JDITHER_ORDERED, /* simple ordered dither */
+ JDITHER_FS /* Floyd-Steinberg error diffusion dither */
+} J_DITHER_MODE;
+
+
+/* Common fields between JPEG compression and decompression master structs. */
+
+#define jpeg_common_fields \
+ struct jpeg_error_mgr * err; /* Error handler module */\
+ struct jpeg_memory_mgr * mem; /* Memory manager module */\
+ struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
+ void * client_data; /* Available for use by application */\
+ boolean is_decompressor; /* So common code can tell which is which */\
+ int global_state /* For checking call sequence validity */
+
+/* Routines that are to be used by both halves of the library are declared
+ * to receive a pointer to this structure. There are no actual instances of
+ * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
+ */
+struct jpeg_common_struct {
+ jpeg_common_fields; /* Fields common to both master struct types */
+ /* Additional fields follow in an actual jpeg_compress_struct or
+ * jpeg_decompress_struct. All three structs must agree on these
+ * initial fields! (This would be a lot cleaner in C++.)
+ */
+};
+
+typedef struct jpeg_common_struct * j_common_ptr;
+typedef struct jpeg_compress_struct * j_compress_ptr;
+typedef struct jpeg_decompress_struct * j_decompress_ptr;
+
+
+/* Master record for a compression instance */
+
+struct jpeg_compress_struct {
+ jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
+
+ /* Destination for compressed data */
+ struct jpeg_destination_mgr * dest;
+
+ /* Description of source image --- these fields must be filled in by
+ * outer application before starting compression. in_color_space must
+ * be correct before you can even call jpeg_set_defaults().
+ */
+
+ JDIMENSION image_width; /* input image width */
+ JDIMENSION image_height; /* input image height */
+ int input_components; /* # of color components in input image */
+ J_COLOR_SPACE in_color_space; /* colorspace of input image */
+
+ double input_gamma; /* image gamma of input image */
+
+ /* Compression parameters --- these fields must be set before calling
+ * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
+ * initialize everything to reasonable defaults, then changing anything
+ * the application specifically wants to change. That way you won't get
+ * burnt when new parameters are added. Also note that there are several
+ * helper routines to simplify changing parameters.
+ */
+
+ unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+ JDIMENSION jpeg_width; /* scaled JPEG image width */
+ JDIMENSION jpeg_height; /* scaled JPEG image height */
+ /* Dimensions of actual JPEG image that will be written to file,
+ * derived from input dimensions by scaling factors above.
+ * These fields are computed by jpeg_start_compress().
+ * You can also use jpeg_calc_jpeg_dimensions() to determine these values
+ * in advance of calling jpeg_start_compress().
+ */
+
+ int data_precision; /* bits of precision in image data */
+
+ int num_components; /* # of color components in JPEG image */
+ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+ jpeg_component_info * comp_info;
+ /* comp_info[i] describes component that appears i'th in SOF */
+
+ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+ int q_scale_factor[NUM_QUANT_TBLS];
+ /* ptrs to coefficient quantization tables, or NULL if not defined,
+ * and corresponding scale factors (percentage, initialized 100).
+ */
+
+ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ /* ptrs to Huffman coding tables, or NULL if not defined */
+
+ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+ int num_scans; /* # of entries in scan_info array */
+ const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
+ /* The default value of scan_info is NULL, which causes a single-scan
+ * sequential JPEG file to be emitted. To create a multi-scan file,
+ * set num_scans and scan_info to point to an array of scan definitions.
+ */
+
+ boolean raw_data_in; /* TRUE=caller supplies downsampled data */
+ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
+ boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
+ boolean CCIR601_sampling; /* TRUE=first samples are cosited */
+ boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */
+ int smoothing_factor; /* 1..100, or 0 for no input smoothing */
+ J_DCT_METHOD dct_method; /* DCT algorithm selector */
+
+ /* The restart interval can be specified in absolute MCUs by setting
+ * restart_interval, or in MCU rows by setting restart_in_rows
+ * (in which case the correct restart_interval will be figured
+ * for each scan).
+ */
+ unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
+ int restart_in_rows; /* if > 0, MCU rows per restart interval */
+
+ /* Parameters controlling emission of special markers. */
+
+ boolean write_JFIF_header; /* should a JFIF marker be written? */
+ UINT8 JFIF_major_version; /* What to write for the JFIF version number */
+ UINT8 JFIF_minor_version;
+ /* These three values are not used by the JPEG code, merely copied */
+ /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
+ /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
+ /* ratio is defined by X_density/Y_density even when density_unit=0. */
+ UINT8 density_unit; /* JFIF code for pixel size units */
+ UINT16 X_density; /* Horizontal pixel density */
+ UINT16 Y_density; /* Vertical pixel density */
+ boolean write_Adobe_marker; /* should an Adobe marker be written? */
+
+ /* State variable: index of next scanline to be written to
+ * jpeg_write_scanlines(). Application may use this to control its
+ * processing loop, e.g., "while (next_scanline < image_height)".
+ */
+
+ JDIMENSION next_scanline; /* 0 .. image_height-1 */
+
+ /* Remaining fields are known throughout compressor, but generally
+ * should not be touched by a surrounding application.
+ */
+
+ /*
+ * These fields are computed during compression startup
+ */
+ boolean progressive_mode; /* TRUE if scan script uses progressive mode */
+ int max_h_samp_factor; /* largest h_samp_factor */
+ int max_v_samp_factor; /* largest v_samp_factor */
+
+ int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */
+ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */
+
+ JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
+ /* The coefficient controller receives data in units of MCU rows as defined
+ * for fully interleaved scans (whether the JPEG file is interleaved or not).
+ * There are v_samp_factor * DCTSIZE sample rows of each component in an
+ * "iMCU" (interleaved MCU) row.
+ */
+
+ /*
+ * These fields are valid during any one scan.
+ * They describe the components and MCUs actually appearing in the scan.
+ */
+ int comps_in_scan; /* # of JPEG components in this scan */
+ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+ /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+ JDIMENSION MCUs_per_row; /* # of MCUs across the image */
+ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
+
+ int blocks_in_MCU; /* # of DCT blocks per MCU */
+ int MCU_membership[C_MAX_BLOCKS_IN_MCU];
+ /* MCU_membership[i] is index in cur_comp_info of component owning */
+ /* i'th block in an MCU */
+
+ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
+
+ int block_size; /* the basic DCT block size: 1..16 */
+ const int * natural_order; /* natural-order position array */
+ int lim_Se; /* min( Se, DCTSIZE2-1 ) */
+
+ /*
+ * Links to compression subobjects (methods and private variables of modules)
+ */
+ struct jpeg_comp_master * master;
+ struct jpeg_c_main_controller * main;
+ struct jpeg_c_prep_controller * prep;
+ struct jpeg_c_coef_controller * coef;
+ struct jpeg_marker_writer * marker;
+ struct jpeg_color_converter * cconvert;
+ struct jpeg_downsampler * downsample;
+ struct jpeg_forward_dct * fdct;
+ struct jpeg_entropy_encoder * entropy;
+ jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
+ int script_space_size;
+};
+
+
+/* Master record for a decompression instance */
+
+struct jpeg_decompress_struct {
+ jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
+
+ /* Source of compressed data */
+ struct jpeg_source_mgr * src;
+
+ /* Basic description of image --- filled in by jpeg_read_header(). */
+ /* Application may inspect these values to decide how to process image. */
+
+ JDIMENSION image_width; /* nominal image width (from SOF marker) */
+ JDIMENSION image_height; /* nominal image height */
+ int num_components; /* # of color components in JPEG image */
+ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+ /* Decompression processing parameters --- these fields must be set before
+ * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
+ * them to default values.
+ */
+
+ J_COLOR_SPACE out_color_space; /* colorspace for output */
+
+ unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+ double output_gamma; /* image gamma wanted in output */
+
+ boolean buffered_image; /* TRUE=multiple output passes */
+ boolean raw_data_out; /* TRUE=downsampled data wanted */
+
+ J_DCT_METHOD dct_method; /* IDCT algorithm selector */
+ boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
+ boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
+
+ boolean quantize_colors; /* TRUE=colormapped output wanted */
+ /* the following are ignored if not quantize_colors: */
+ J_DITHER_MODE dither_mode; /* type of color dithering to use */
+ boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
+ int desired_number_of_colors; /* max # colors to use in created colormap */
+ /* these are significant only in buffered-image mode: */
+ boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */
+ boolean enable_external_quant;/* enable future use of external colormap */
+ boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */
+
+ /* Description of actual output image that will be returned to application.
+ * These fields are computed by jpeg_start_decompress().
+ * You can also use jpeg_calc_output_dimensions() to determine these values
+ * in advance of calling jpeg_start_decompress().
+ */
+
+ JDIMENSION output_width; /* scaled image width */
+ JDIMENSION output_height; /* scaled image height */
+ int out_color_components; /* # of color components in out_color_space */
+ int output_components; /* # of color components returned */
+ /* output_components is 1 (a colormap index) when quantizing colors;
+ * otherwise it equals out_color_components.
+ */
+ int rec_outbuf_height; /* min recommended height of scanline buffer */
+ /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
+ * high, space and time will be wasted due to unnecessary data copying.
+ * Usually rec_outbuf_height will be 1 or 2, at most 4.
+ */
+
+ /* When quantizing colors, the output colormap is described by these fields.
+ * The application can supply a colormap by setting colormap non-NULL before
+ * calling jpeg_start_decompress; otherwise a colormap is created during
+ * jpeg_start_decompress or jpeg_start_output.
+ * The map has out_color_components rows and actual_number_of_colors columns.
+ */
+ int actual_number_of_colors; /* number of entries in use */
+ JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
+
+ /* State variables: these variables indicate the progress of decompression.
+ * The application may examine these but must not modify them.
+ */
+
+ /* Row index of next scanline to be read from jpeg_read_scanlines().
+ * Application may use this to control its processing loop, e.g.,
+ * "while (output_scanline < output_height)".
+ */
+ JDIMENSION output_scanline; /* 0 .. output_height-1 */
+
+ /* Current input scan number and number of iMCU rows completed in scan.
+ * These indicate the progress of the decompressor input side.
+ */
+ int input_scan_number; /* Number of SOS markers seen so far */
+ JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
+
+ /* The "output scan number" is the notional scan being displayed by the
+ * output side. The decompressor will not allow output scan/row number
+ * to get ahead of input scan/row, but it can fall arbitrarily far behind.
+ */
+ int output_scan_number; /* Nominal scan number being displayed */
+ JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
+
+ /* Current progression status. coef_bits[c][i] indicates the precision
+ * with which component c's DCT coefficient i (in zigzag order) is known.
+ * It is -1 when no data has yet been received, otherwise it is the point
+ * transform (shift) value for the most recent scan of the coefficient
+ * (thus, 0 at completion of the progression).
+ * This pointer is NULL when reading a non-progressive file.
+ */
+ int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
+
+ /* Internal JPEG parameters --- the application usually need not look at
+ * these fields. Note that the decompressor output side may not use
+ * any parameters that can change between scans.
+ */
+
+ /* Quantization and Huffman tables are carried forward across input
+ * datastreams when processing abbreviated JPEG datastreams.
+ */
+
+ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+ /* ptrs to coefficient quantization tables, or NULL if not defined */
+
+ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ /* ptrs to Huffman coding tables, or NULL if not defined */
+
+ /* These parameters are never carried across datastreams, since they
+ * are given in SOF/SOS markers or defined to be reset by SOI.
+ */
+
+ int data_precision; /* bits of precision in image data */
+
+ jpeg_component_info * comp_info;
+ /* comp_info[i] describes component that appears i'th in SOF */
+
+ boolean is_baseline; /* TRUE if Baseline SOF0 encountered */
+ boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
+ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
+
+ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+ unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
+
+ /* These fields record data obtained from optional markers recognized by
+ * the JPEG library.
+ */
+ boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
+ /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
+ UINT8 JFIF_major_version; /* JFIF version number */
+ UINT8 JFIF_minor_version;
+ UINT8 density_unit; /* JFIF code for pixel size units */
+ UINT16 X_density; /* Horizontal pixel density */
+ UINT16 Y_density; /* Vertical pixel density */
+ boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
+ UINT8 Adobe_transform; /* Color transform code from Adobe marker */
+
+ boolean CCIR601_sampling; /* TRUE=first samples are cosited */
+
+ /* Aside from the specific data retained from APPn markers known to the
+ * library, the uninterpreted contents of any or all APPn and COM markers
+ * can be saved in a list for examination by the application.
+ */
+ jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
+
+ /* Remaining fields are known throughout decompressor, but generally
+ * should not be touched by a surrounding application.
+ */
+
+ /*
+ * These fields are computed during decompression startup
+ */
+ int max_h_samp_factor; /* largest h_samp_factor */
+ int max_v_samp_factor; /* largest v_samp_factor */
+
+ int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */
+ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */
+
+ JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
+ /* The coefficient controller's input and output progress is measured in
+ * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
+ * in fully interleaved JPEG scans, but are used whether the scan is
+ * interleaved or not. We define an iMCU row as v_samp_factor DCT block
+ * rows of each component. Therefore, the IDCT output contains
+ * v_samp_factor*DCT_v_scaled_size sample rows of a component per iMCU row.
+ */
+
+ JSAMPLE * sample_range_limit; /* table for fast range-limiting */
+
+ /*
+ * These fields are valid during any one scan.
+ * They describe the components and MCUs actually appearing in the scan.
+ * Note that the decompressor output side must not use these fields.
+ */
+ int comps_in_scan; /* # of JPEG components in this scan */
+ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+ /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+ JDIMENSION MCUs_per_row; /* # of MCUs across the image */
+ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
+
+ int blocks_in_MCU; /* # of DCT blocks per MCU */
+ int MCU_membership[D_MAX_BLOCKS_IN_MCU];
+ /* MCU_membership[i] is index in cur_comp_info of component owning */
+ /* i'th block in an MCU */
+
+ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
+
+ /* These fields are derived from Se of first SOS marker.
+ */
+ int block_size; /* the basic DCT block size: 1..16 */
+ const int * natural_order; /* natural-order position array for entropy decode */
+ int lim_Se; /* min( Se, DCTSIZE2-1 ) for entropy decode */
+
+ /* This field is shared between entropy decoder and marker parser.
+ * It is either zero or the code of a JPEG marker that has been
+ * read from the data source, but has not yet been processed.
+ */
+ int unread_marker;
+
+ /*
+ * Links to decompression subobjects (methods, private variables of modules)
+ */
+ struct jpeg_decomp_master * master;
+ struct jpeg_d_main_controller * main;
+ struct jpeg_d_coef_controller * coef;
+ struct jpeg_d_post_controller * post;
+ struct jpeg_input_controller * inputctl;
+ struct jpeg_marker_reader * marker;
+ struct jpeg_entropy_decoder * entropy;
+ struct jpeg_inverse_dct * idct;
+ struct jpeg_upsampler * upsample;
+ struct jpeg_color_deconverter * cconvert;
+ struct jpeg_color_quantizer * cquantize;
+};
+
+
+/* "Object" declarations for JPEG modules that may be supplied or called
+ * directly by the surrounding application.
+ * As with all objects in the JPEG library, these structs only define the
+ * publicly visible methods and state variables of a module. Additional
+ * private fields may exist after the public ones.
+ */
+
+
+/* Error handler object */
+
+struct jpeg_error_mgr {
+ /* Error exit handler: does not return to caller */
+ JMETHOD(void, error_exit, (j_common_ptr cinfo));
+ /* Conditionally emit a trace or warning message */
+ JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
+ /* Routine that actually outputs a trace or error message */
+ JMETHOD(void, output_message, (j_common_ptr cinfo));
+ /* Format a message string for the most recent JPEG error or message */
+ JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
+#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
+ /* Reset error state variables at start of a new image */
+ JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
+
+ /* The message ID code and any parameters are saved here.
+ * A message can have one string parameter or up to 8 int parameters.
+ */
+ int msg_code;
+#define JMSG_STR_PARM_MAX 80
+ union {
+ int i[8];
+ char s[JMSG_STR_PARM_MAX];
+ } msg_parm;
+
+ /* Standard state variables for error facility */
+
+ int trace_level; /* max msg_level that will be displayed */
+
+ /* For recoverable corrupt-data errors, we emit a warning message,
+ * but keep going unless emit_message chooses to abort. emit_message
+ * should count warnings in num_warnings. The surrounding application
+ * can check for bad data by seeing if num_warnings is nonzero at the
+ * end of processing.
+ */
+ long num_warnings; /* number of corrupt-data warnings */
+
+ /* These fields point to the table(s) of error message strings.
+ * An application can change the table pointer to switch to a different
+ * message list (typically, to change the language in which errors are
+ * reported). Some applications may wish to add additional error codes
+ * that will be handled by the JPEG library error mechanism; the second
+ * table pointer is used for this purpose.
+ *
+ * First table includes all errors generated by JPEG library itself.
+ * Error code 0 is reserved for a "no such error string" message.
+ */
+ const char * const * jpeg_message_table; /* Library errors */
+ int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
+ /* Second table can be added by application (see cjpeg/djpeg for example).
+ * It contains strings numbered first_addon_message..last_addon_message.
+ */
+ const char * const * addon_message_table; /* Non-library errors */
+ int first_addon_message; /* code for first string in addon table */
+ int last_addon_message; /* code for last string in addon table */
+};
+
+
+/* Progress monitor object */
+
+struct jpeg_progress_mgr {
+ JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
+
+ long pass_counter; /* work units completed in this pass */
+ long pass_limit; /* total number of work units in this pass */
+ int completed_passes; /* passes completed so far */
+ int total_passes; /* total number of passes expected */
+};
+
+
+/* Data destination object for compression */
+
+struct jpeg_destination_mgr {
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+
+ JMETHOD(void, init_destination, (j_compress_ptr cinfo));
+ JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
+ JMETHOD(void, term_destination, (j_compress_ptr cinfo));
+};
+
+
+/* Data source object for decompression */
+
+struct jpeg_source_mgr {
+ const JOCTET * next_input_byte; /* => next byte to read from buffer */
+ size_t bytes_in_buffer; /* # of bytes remaining in buffer */
+
+ JMETHOD(void, init_source, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
+ JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
+ JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
+ JMETHOD(void, term_source, (j_decompress_ptr cinfo));
+};
+
+
+/* Memory manager object.
+ * Allocates "small" objects (a few K total), "large" objects (tens of K),
+ * and "really big" objects (virtual arrays with backing store if needed).
+ * The memory manager does not allow individual objects to be freed; rather,
+ * each created object is assigned to a pool, and whole pools can be freed
+ * at once. This is faster and more convenient than remembering exactly what
+ * to free, especially where malloc()/free() are not too speedy.
+ * NB: alloc routines never return NULL. They exit to error_exit if not
+ * successful.
+ */
+
+#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
+#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
+#define JPOOL_NUMPOOLS 2
+
+typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
+typedef struct jvirt_barray_control * jvirt_barray_ptr;
+
+
+struct jpeg_memory_mgr {
+ /* Method pointers */
+ JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
+ size_t sizeofobject));
+ JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
+ size_t sizeofobject));
+ JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
+ JDIMENSION samplesperrow,
+ JDIMENSION numrows));
+ JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
+ JDIMENSION blocksperrow,
+ JDIMENSION numrows));
+ JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
+ int pool_id,
+ boolean pre_zero,
+ JDIMENSION samplesperrow,
+ JDIMENSION numrows,
+ JDIMENSION maxaccess));
+ JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
+ int pool_id,
+ boolean pre_zero,
+ JDIMENSION blocksperrow,
+ JDIMENSION numrows,
+ JDIMENSION maxaccess));
+ JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
+ JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
+ jvirt_sarray_ptr ptr,
+ JDIMENSION start_row,
+ JDIMENSION num_rows,
+ boolean writable));
+ JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
+ jvirt_barray_ptr ptr,
+ JDIMENSION start_row,
+ JDIMENSION num_rows,
+ boolean writable));
+ JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
+ JMETHOD(void, self_destruct, (j_common_ptr cinfo));
+
+ /* Limit on memory allocation for this JPEG object. (Note that this is
+ * merely advisory, not a guaranteed maximum; it only affects the space
+ * used for virtual-array buffers.) May be changed by outer application
+ * after creating the JPEG object.
+ */
+ long max_memory_to_use;
+
+ /* Maximum allocation request accepted by alloc_large. */
+ long max_alloc_chunk;
+};
+
+
+/* Routine signature for application-supplied marker processing methods.
+ * Need not pass marker code since it is stored in cinfo->unread_marker.
+ */
+typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
+
+
+/* Declarations for routines called by application.
+ * The JPP macro hides prototype parameters from compilers that can't cope.
+ * Note JPP requires double parentheses.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JPP(arglist) arglist
+#else
+#define JPP(arglist) ()
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers.
+ * We shorten external names to be unique in the first six letters, which
+ * is good enough for all known systems.
+ * (If your compiler itself needs names to be unique in less than 15
+ * characters, you are out of luck. Get a better compiler.)
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_error jStdError
+#define jpeg_CreateCompress jCreaCompress
+#define jpeg_CreateDecompress jCreaDecompress
+#define jpeg_destroy_compress jDestCompress
+#define jpeg_destroy_decompress jDestDecompress
+#define jpeg_stdio_dest jStdDest
+#define jpeg_stdio_src jStdSrc
+#define jpeg_mem_dest jMemDest
+#define jpeg_mem_src jMemSrc
+#define jpeg_set_defaults jSetDefaults
+#define jpeg_set_colorspace jSetColorspace
+#define jpeg_default_colorspace jDefColorspace
+#define jpeg_set_quality jSetQuality
+#define jpeg_set_linear_quality jSetLQuality
+#define jpeg_default_qtables jDefQTables
+#define jpeg_add_quant_table jAddQuantTable
+#define jpeg_quality_scaling jQualityScaling
+#define jpeg_simple_progression jSimProgress
+#define jpeg_suppress_tables jSuppressTables
+#define jpeg_alloc_quant_table jAlcQTable
+#define jpeg_alloc_huff_table jAlcHTable
+#define jpeg_start_compress jStrtCompress
+#define jpeg_write_scanlines jWrtScanlines
+#define jpeg_finish_compress jFinCompress
+#define jpeg_calc_jpeg_dimensions jCjpegDimensions
+#define jpeg_write_raw_data jWrtRawData
+#define jpeg_write_marker jWrtMarker
+#define jpeg_write_m_header jWrtMHeader
+#define jpeg_write_m_byte jWrtMByte
+#define jpeg_write_tables jWrtTables
+#define jpeg_read_header jReadHeader
+#define jpeg_start_decompress jStrtDecompress
+#define jpeg_read_scanlines jReadScanlines
+#define jpeg_finish_decompress jFinDecompress
+#define jpeg_read_raw_data jReadRawData
+#define jpeg_has_multiple_scans jHasMultScn
+#define jpeg_start_output jStrtOutput
+#define jpeg_finish_output jFinOutput
+#define jpeg_input_complete jInComplete
+#define jpeg_new_colormap jNewCMap
+#define jpeg_consume_input jConsumeInput
+#define jpeg_core_output_dimensions jCoreDimensions
+#define jpeg_calc_output_dimensions jCalcDimensions
+#define jpeg_save_markers jSaveMarkers
+#define jpeg_set_marker_processor jSetMarker
+#define jpeg_read_coefficients jReadCoefs
+#define jpeg_write_coefficients jWrtCoefs
+#define jpeg_copy_critical_parameters jCopyCrit
+#define jpeg_abort_compress jAbrtCompress
+#define jpeg_abort_decompress jAbrtDecompress
+#define jpeg_abort jAbort
+#define jpeg_destroy jDestroy
+#define jpeg_resync_to_restart jResyncRestart
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Default error-management setup */
+EXTERN(struct jpeg_error_mgr *) jpeg_std_error
+ JPP((struct jpeg_error_mgr * err));
+
+/* Initialization of JPEG compression objects.
+ * jpeg_create_compress() and jpeg_create_decompress() are the exported
+ * names that applications should call. These expand to calls on
+ * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
+ * passed for version mismatch checking.
+ * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
+ */
+#define jpeg_create_compress(cinfo) \
+ jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
+ (size_t) sizeof(struct jpeg_compress_struct))
+#define jpeg_create_decompress(cinfo) \
+ jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
+ (size_t) sizeof(struct jpeg_decompress_struct))
+EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
+ int version, size_t structsize));
+EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
+ int version, size_t structsize));
+/* Destruction of JPEG compression objects */
+EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
+
+/* Standard data source and destination managers: stdio streams. */
+/* Caller is responsible for opening the file before and closing after. */
+EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
+EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
+
+/* Data source and destination managers: memory buffers. */
+EXTERN(void) jpeg_mem_dest JPP((j_compress_ptr cinfo,
+ unsigned char ** outbuffer,
+ unsigned long * outsize));
+EXTERN(void) jpeg_mem_src JPP((j_decompress_ptr cinfo,
+ unsigned char * inbuffer,
+ unsigned long insize));
+
+/* Default parameter setup for compression */
+EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
+/* Compression parameter setup aids */
+EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
+ J_COLOR_SPACE colorspace));
+EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
+ boolean force_baseline));
+EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
+ int scale_factor,
+ boolean force_baseline));
+EXTERN(void) jpeg_default_qtables JPP((j_compress_ptr cinfo,
+ boolean force_baseline));
+EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
+ const unsigned int *basic_table,
+ int scale_factor,
+ boolean force_baseline));
+EXTERN(int) jpeg_quality_scaling JPP((int quality));
+EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
+ boolean suppress));
+EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
+EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
+
+/* Main entry points for compression */
+EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
+ boolean write_all_tables));
+EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
+ JSAMPARRAY scanlines,
+ JDIMENSION num_lines));
+EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
+
+/* Precalculate JPEG dimensions for current compression parameters. */
+EXTERN(void) jpeg_calc_jpeg_dimensions JPP((j_compress_ptr cinfo));
+
+/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
+ JSAMPIMAGE data,
+ JDIMENSION num_lines));
+
+/* Write a special marker. See libjpeg.txt concerning safe usage. */
+EXTERN(void) jpeg_write_marker
+ JPP((j_compress_ptr cinfo, int marker,
+ const JOCTET * dataptr, unsigned int datalen));
+/* Same, but piecemeal. */
+EXTERN(void) jpeg_write_m_header
+ JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
+EXTERN(void) jpeg_write_m_byte
+ JPP((j_compress_ptr cinfo, int val));
+
+/* Alternate compression function: just write an abbreviated table file */
+EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
+
+/* Decompression startup: read start of JPEG datastream to see what's there */
+EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
+ boolean require_image));
+/* Return value is one of: */
+#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
+#define JPEG_HEADER_OK 1 /* Found valid image datastream */
+#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
+/* If you pass require_image = TRUE (normal case), you need not check for
+ * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
+ * JPEG_SUSPENDED is only possible if you use a data source module that can
+ * give a suspension return (the stdio source module doesn't).
+ */
+
+/* Main entry points for decompression */
+EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
+ JSAMPARRAY scanlines,
+ JDIMENSION max_lines));
+EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
+
+/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE data,
+ JDIMENSION max_lines));
+
+/* Additional entry points for buffered-image mode. */
+EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
+ int scan_number));
+EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
+EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
+/* Return value is one of: */
+/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
+#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
+#define JPEG_REACHED_EOI 2 /* Reached end of image */
+#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
+#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
+
+/* Precalculate output dimensions for current decompression parameters. */
+EXTERN(void) jpeg_core_output_dimensions JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
+
+/* Control saving of COM and APPn markers into marker_list. */
+EXTERN(void) jpeg_save_markers
+ JPP((j_decompress_ptr cinfo, int marker_code,
+ unsigned int length_limit));
+
+/* Install a special processing method for COM or APPn markers. */
+EXTERN(void) jpeg_set_marker_processor
+ JPP((j_decompress_ptr cinfo, int marker_code,
+ jpeg_marker_parser_method routine));
+
+/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
+EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays));
+EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo));
+
+/* If you choose to abort compression or decompression before completing
+ * jpeg_finish_(de)compress, then you need to clean up to release memory,
+ * temporary files, etc. You can just call jpeg_destroy_(de)compress
+ * if you're done with the JPEG object, but if you want to clean it up and
+ * reuse it, call this:
+ */
+EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
+
+/* Generic versions of jpeg_abort and jpeg_destroy that work on either
+ * flavor of JPEG object. These may be more convenient in some places.
+ */
+EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
+
+/* Default restart-marker-resync procedure for use by data source modules */
+EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
+ int desired));
+
+
+/* These marker codes are exported since applications and data source modules
+ * are likely to want to use them.
+ */
+
+#define JPEG_RST0 0xD0 /* RST0 marker code */
+#define JPEG_EOI 0xD9 /* EOI marker code */
+#define JPEG_APP0 0xE0 /* APP0 marker code */
+#define JPEG_COM 0xFE /* COM marker code */
+
+
+/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
+ * for structure definitions that are never filled in, keep it quiet by
+ * supplying dummy definitions for the various substructures.
+ */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+struct jpeg_comp_master { long dummy; };
+struct jpeg_c_main_controller { long dummy; };
+struct jpeg_c_prep_controller { long dummy; };
+struct jpeg_c_coef_controller { long dummy; };
+struct jpeg_marker_writer { long dummy; };
+struct jpeg_color_converter { long dummy; };
+struct jpeg_downsampler { long dummy; };
+struct jpeg_forward_dct { long dummy; };
+struct jpeg_entropy_encoder { long dummy; };
+struct jpeg_decomp_master { long dummy; };
+struct jpeg_d_main_controller { long dummy; };
+struct jpeg_d_coef_controller { long dummy; };
+struct jpeg_d_post_controller { long dummy; };
+struct jpeg_input_controller { long dummy; };
+struct jpeg_marker_reader { long dummy; };
+struct jpeg_entropy_decoder { long dummy; };
+struct jpeg_inverse_dct { long dummy; };
+struct jpeg_upsampler { long dummy; };
+struct jpeg_color_deconverter { long dummy; };
+struct jpeg_color_quantizer { long dummy; };
+#endif /* JPEG_INTERNALS */
+#endif /* INCOMPLETE_TYPES_BROKEN */
+
+
+/*
+ * The JPEG library modules define JPEG_INTERNALS before including this file.
+ * The internal structure declarations are read only when that is true.
+ * Applications using the library should not include jpegint.h, but may wish
+ * to include jerror.h.
+ */
+
+#ifdef JPEG_INTERNALS
+#include "jpegint.h" /* fetch private declarations */
+#include "jerror.h" /* fetch error codes too */
+#endif
+
+#ifdef __cplusplus
+#ifndef DONT_USE_EXTERN_C
+}
+#endif
+#endif
+
+#endif /* JPEGLIB_H */
diff --git a/src/3rdparty/libjpeg/jpegtran.1 b/src/3rdparty/libjpeg/jpegtran.1
new file mode 100644
index 0000000..0ad1bbc
--- /dev/null
+++ b/src/3rdparty/libjpeg/jpegtran.1
@@ -0,0 +1,285 @@
+.TH JPEGTRAN 1 "28 December 2009"
+.SH NAME
+jpegtran \- lossless transformation of JPEG files
+.SH SYNOPSIS
+.B jpegtran
+[
+.I options
+]
+[
+.I filename
+]
+.LP
+.SH DESCRIPTION
+.LP
+.B jpegtran
+performs various useful transformations of JPEG files.
+It can translate the coded representation from one variant of JPEG to another,
+for example from baseline JPEG to progressive JPEG or vice versa. It can also
+perform some rearrangements of the image data, for example turning an image
+from landscape to portrait format by rotation.
+.PP
+.B jpegtran
+works by rearranging the compressed data (DCT coefficients), without
+ever fully decoding the image. Therefore, its transformations are lossless:
+there is no image degradation at all, which would not be true if you used
+.B djpeg
+followed by
+.B cjpeg
+to accomplish the same conversion. But by the same token,
+.B jpegtran
+cannot perform lossy operations such as changing the image quality.
+.PP
+.B jpegtran
+reads the named JPEG/JFIF file, or the standard input if no file is
+named, and produces a JPEG/JFIF file on the standard output.
+.SH OPTIONS
+All switch names may be abbreviated; for example,
+.B \-optimize
+may be written
+.B \-opt
+or
+.BR \-o .
+Upper and lower case are equivalent.
+British spellings are also accepted (e.g.,
+.BR \-optimise ),
+though for brevity these are not mentioned below.
+.PP
+To specify the coded JPEG representation used in the output file,
+.B jpegtran
+accepts a subset of the switches recognized by
+.BR cjpeg :
+.TP
+.B \-optimize
+Perform optimization of entropy encoding parameters.
+.TP
+.B \-progressive
+Create progressive JPEG file.
+.TP
+.BI \-restart " N"
+Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is
+attached to the number.
+.TP
+.B \-arithmetic
+Use arithmetic coding.
+.TP
+.BI \-scans " file"
+Use the scan script given in the specified text file.
+.PP
+See
+.BR cjpeg (1)
+for more details about these switches.
+If you specify none of these switches, you get a plain baseline-JPEG output
+file. The quality setting and so forth are determined by the input file.
+.PP
+The image can be losslessly transformed by giving one of these switches:
+.TP
+.B \-flip horizontal
+Mirror image horizontally (left-right).
+.TP
+.B \-flip vertical
+Mirror image vertically (top-bottom).
+.TP
+.B \-rotate 90
+Rotate image 90 degrees clockwise.
+.TP
+.B \-rotate 180
+Rotate image 180 degrees.
+.TP
+.B \-rotate 270
+Rotate image 270 degrees clockwise (or 90 ccw).
+.TP
+.B \-transpose
+Transpose image (across UL-to-LR axis).
+.TP
+.B \-transverse
+Transverse transpose (across UR-to-LL axis).
+.IP
+The transpose transformation has no restrictions regarding image dimensions.
+The other transformations operate rather oddly if the image dimensions are not
+a multiple of the iMCU size (usually 8 or 16 pixels), because they can only
+transform complete blocks of DCT coefficient data in the desired way.
+.IP
+.BR jpegtran 's
+default behavior when transforming an odd-size image is designed
+to preserve exact reversibility and mathematical consistency of the
+transformation set. As stated, transpose is able to flip the entire image
+area. Horizontal mirroring leaves any partial iMCU column at the right edge
+untouched, but is able to flip all rows of the image. Similarly, vertical
+mirroring leaves any partial iMCU row at the bottom edge untouched, but is
+able to flip all columns. The other transforms can be built up as sequences
+of transpose and flip operations; for consistency, their actions on edge
+pixels are defined to be the same as the end result of the corresponding
+transpose-and-flip sequence.
+.IP
+For practical use, you may prefer to discard any untransformable edge pixels
+rather than having a strange-looking strip along the right and/or bottom edges
+of a transformed image. To do this, add the
+.B \-trim
+switch:
+.TP
+.B \-trim
+Drop non-transformable edge blocks.
+.IP
+Obviously, a transformation with
+.B \-trim
+is not reversible, so strictly speaking
+.B jpegtran
+with this switch is not lossless. Also, the expected mathematical
+equivalences between the transformations no longer hold. For example,
+.B \-rot 270 -trim
+trims only the bottom edge, but
+.B \-rot 90 -trim
+followed by
+.B \-rot 180 -trim
+trims both edges.
+.IP
+If you are only interested in perfect transformation, add the
+.B \-perfect
+switch:
+.TP
+.B \-perfect
+Fails with an error if the transformation is not perfect.
+.IP
+For example you may want to do
+.IP
+.B (jpegtran \-rot 90 -perfect
+.I foo.jpg
+.B || djpeg
+.I foo.jpg
+.B | pnmflip \-r90 | cjpeg)
+.IP
+to do a perfect rotation if available or an approximated one if not.
+.PP
+We also offer a lossless-crop option, which discards data outside a given
+image region but losslessly preserves what is inside. Like the rotate and
+flip transforms, lossless crop is restricted by the current JPEG format: the
+upper left corner of the selected region must fall on an iMCU boundary. If
+this does not hold for the given crop parameters, we silently move the upper
+left corner up and/or left to make it so, simultaneously increasing the region
+dimensions to keep the lower right crop corner unchanged. (Thus, the output
+image covers at least the requested region, but may cover more.)
+
+The image can be losslessly cropped by giving the switch:
+.TP
+.B \-crop WxH+X+Y
+Crop to a rectangular subarea of width W, height H starting at point X,Y.
+.PP
+Other not-strictly-lossless transformation switches are:
+.TP
+.B \-grayscale
+Force grayscale output.
+.IP
+This option discards the chrominance channels if the input image is YCbCr
+(ie, a standard color JPEG), resulting in a grayscale JPEG file. The
+luminance channel is preserved exactly, so this is a better method of reducing
+to grayscale than decompression, conversion, and recompression. This switch
+is particularly handy for fixing a monochrome picture that was mistakenly
+encoded as a color JPEG. (In such a case, the space savings from getting rid
+of the near-empty chroma channels won't be large; but the decoding time for
+a grayscale JPEG is substantially less than that for a color JPEG.)
+.TP
+.BI \-scale " M/N"
+Scale the output image by a factor M/N.
+.IP
+Currently supported scale factors are M/N with all M from 1 to 16, where N is
+the source DCT size, which is 8 for baseline JPEG. If the /N part is omitted,
+then M specifies the DCT scaled size to be applied on the given input. For
+baseline JPEG this is equivalent to M/8 scaling, since the source DCT size
+for baseline JPEG is 8.
+.B Caution:
+An implementation of the JPEG SmartScale extension is required for this
+feature. SmartScale enabled JPEG is not yet widely implemented, so many
+decoders will be unable to view a SmartScale extended JPEG file at all.
+.PP
+.B jpegtran
+also recognizes these switches that control what to do with "extra" markers,
+such as comment blocks:
+.TP
+.B \-copy none
+Copy no extra markers from source file. This setting suppresses all
+comments and other excess baggage present in the source file.
+.TP
+.B \-copy comments
+Copy only comment markers. This setting copies comments from the source file,
+but discards any other inessential (for image display) data.
+.TP
+.B \-copy all
+Copy all extra markers. This setting preserves miscellaneous markers
+found in the source file, such as JFIF thumbnails, Exif data, and Photoshop
+settings. In some files these extra markers can be sizable.
+.IP
+The default behavior is
+.BR "\-copy comments" .
+(Note: in IJG releases v6 and v6a,
+.B jpegtran
+always did the equivalent of
+.BR "\-copy none" .)
+.PP
+Additional switches recognized by jpegtran are:
+.TP
+.BI \-maxmemory " N"
+Set limit for amount of memory to use in processing large images. Value is
+in thousands of bytes, or millions of bytes if "M" is attached to the
+number. For example,
+.B \-max 4m
+selects 4000000 bytes. If more space is needed, temporary files will be used.
+.TP
+.BI \-outfile " name"
+Send output image to the named file, not to standard output.
+.TP
+.B \-verbose
+Enable debug printout. More
+.BR \-v 's
+give more output. Also, version information is printed at startup.
+.TP
+.B \-debug
+Same as
+.BR \-verbose .
+.SH EXAMPLES
+.LP
+This example converts a baseline JPEG file to progressive form:
+.IP
+.B jpegtran \-progressive
+.I foo.jpg
+.B >
+.I fooprog.jpg
+.PP
+This example rotates an image 90 degrees clockwise, discarding any
+unrotatable edge pixels:
+.IP
+.B jpegtran \-rot 90 -trim
+.I foo.jpg
+.B >
+.I foo90.jpg
+.SH ENVIRONMENT
+.TP
+.B JPEGMEM
+If this environment variable is set, its value is the default memory limit.
+The value is specified as described for the
+.B \-maxmemory
+switch.
+.B JPEGMEM
+overrides the default value specified when the program was compiled, and
+itself is overridden by an explicit
+.BR \-maxmemory .
+.SH SEE ALSO
+.BR cjpeg (1),
+.BR djpeg (1),
+.BR rdjpgcom (1),
+.BR wrjpgcom (1)
+.br
+Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
+Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
+.SH AUTHOR
+Independent JPEG Group
+.SH BUGS
+The transform options can't transform odd-size images perfectly. Use
+.B \-trim
+or
+.B \-perfect
+if you don't like the results.
+.PP
+The entire image is read into memory and then written out again, even in
+cases where this isn't really necessary. Expect swapping on large images,
+especially when using the more complex transform options.
diff --git a/src/3rdparty/libjpeg/jquant1.c b/src/3rdparty/libjpeg/jquant1.c
new file mode 100644
index 0000000..b2f96aa
--- /dev/null
+++ b/src/3rdparty/libjpeg/jquant1.c
@@ -0,0 +1,856 @@
+/*
+ * jquant1.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains 1-pass color quantization (color mapping) routines.
+ * These routines provide mapping to a fixed color map using equally spaced
+ * color values. Optional Floyd-Steinberg or ordered dithering is available.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef QUANT_1PASS_SUPPORTED
+
+
+/*
+ * The main purpose of 1-pass quantization is to provide a fast, if not very
+ * high quality, colormapped output capability. A 2-pass quantizer usually
+ * gives better visual quality; however, for quantized grayscale output this
+ * quantizer is perfectly adequate. Dithering is highly recommended with this
+ * quantizer, though you can turn it off if you really want to.
+ *
+ * In 1-pass quantization the colormap must be chosen in advance of seeing the
+ * image. We use a map consisting of all combinations of Ncolors[i] color
+ * values for the i'th component. The Ncolors[] values are chosen so that
+ * their product, the total number of colors, is no more than that requested.
+ * (In most cases, the product will be somewhat less.)
+ *
+ * Since the colormap is orthogonal, the representative value for each color
+ * component can be determined without considering the other components;
+ * then these indexes can be combined into a colormap index by a standard
+ * N-dimensional-array-subscript calculation. Most of the arithmetic involved
+ * can be precalculated and stored in the lookup table colorindex[].
+ * colorindex[i][j] maps pixel value j in component i to the nearest
+ * representative value (grid plane) for that component; this index is
+ * multiplied by the array stride for component i, so that the
+ * index of the colormap entry closest to a given pixel value is just
+ * sum( colorindex[component-number][pixel-component-value] )
+ * Aside from being fast, this scheme allows for variable spacing between
+ * representative values with no additional lookup cost.
+ *
+ * If gamma correction has been applied in color conversion, it might be wise
+ * to adjust the color grid spacing so that the representative colors are
+ * equidistant in linear space. At this writing, gamma correction is not
+ * implemented by jdcolor, so nothing is done here.
+ */
+
+
+/* Declarations for ordered dithering.
+ *
+ * We use a standard 16x16 ordered dither array. The basic concept of ordered
+ * dithering is described in many references, for instance Dale Schumacher's
+ * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
+ * In place of Schumacher's comparisons against a "threshold" value, we add a
+ * "dither" value to the input pixel and then round the result to the nearest
+ * output value. The dither value is equivalent to (0.5 - threshold) times
+ * the distance between output values. For ordered dithering, we assume that
+ * the output colors are equally spaced; if not, results will probably be
+ * worse, since the dither may be too much or too little at a given point.
+ *
+ * The normal calculation would be to form pixel value + dither, range-limit
+ * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
+ * We can skip the separate range-limiting step by extending the colorindex
+ * table in both directions.
+ */
+
+#define ODITHER_SIZE 16 /* dimension of dither matrix */
+/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
+#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
+#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
+
+typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
+typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
+
+static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
+ /* Bayer's order-4 dither array. Generated by the code given in
+ * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
+ * The values in this array must range from 0 to ODITHER_CELLS-1.
+ */
+ { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
+ { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
+ { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
+ { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
+ { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
+ { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
+ { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
+ { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
+ { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
+ { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
+ { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
+ { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
+ { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
+ { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
+ { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
+ { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
+};
+
+
+/* Declarations for Floyd-Steinberg dithering.
+ *
+ * Errors are accumulated into the array fserrors[], at a resolution of
+ * 1/16th of a pixel count. The error at a given pixel is propagated
+ * to its not-yet-processed neighbors using the standard F-S fractions,
+ * ... (here) 7/16
+ * 3/16 5/16 1/16
+ * We work left-to-right on even rows, right-to-left on odd rows.
+ *
+ * We can get away with a single array (holding one row's worth of errors)
+ * by using it to store the current row's errors at pixel columns not yet
+ * processed, but the next row's errors at columns already processed. We
+ * need only a few extra variables to hold the errors immediately around the
+ * current column. (If we are lucky, those variables are in registers, but
+ * even if not, they're probably cheaper to access than array elements are.)
+ *
+ * The fserrors[] array is indexed [component#][position].
+ * We provide (#columns + 2) entries per component; the extra entry at each
+ * end saves us from special-casing the first and last pixels.
+ *
+ * Note: on a wide image, we might not have enough room in a PC's near data
+ * segment to hold the error array; so it is allocated with alloc_large.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef INT16 FSERROR; /* 16 bits should be enough */
+typedef int LOCFSERROR; /* use 'int' for calculation temps */
+#else
+typedef INT32 FSERROR; /* may need more than 16 bits */
+typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
+#endif
+
+typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
+
+
+/* Private subobject */
+
+#define MAX_Q_COMPS 4 /* max components I can handle */
+
+typedef struct {
+ struct jpeg_color_quantizer pub; /* public fields */
+
+ /* Initially allocated colormap is saved here */
+ JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
+ int sv_actual; /* number of entries in use */
+
+ JSAMPARRAY colorindex; /* Precomputed mapping for speed */
+ /* colorindex[i][j] = index of color closest to pixel value j in component i,
+ * premultiplied as described above. Since colormap indexes must fit into
+ * JSAMPLEs, the entries of this array will too.
+ */
+ boolean is_padded; /* is the colorindex padded for odither? */
+
+ int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
+
+ /* Variables for ordered dithering */
+ int row_index; /* cur row's vertical index in dither matrix */
+ ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
+
+ /* Variables for Floyd-Steinberg dithering */
+ FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
+ boolean on_odd_row; /* flag to remember which row we are on */
+} my_cquantizer;
+
+typedef my_cquantizer * my_cquantize_ptr;
+
+
+/*
+ * Policy-making subroutines for create_colormap and create_colorindex.
+ * These routines determine the colormap to be used. The rest of the module
+ * only assumes that the colormap is orthogonal.
+ *
+ * * select_ncolors decides how to divvy up the available colors
+ * among the components.
+ * * output_value defines the set of representative values for a component.
+ * * largest_input_value defines the mapping from input values to
+ * representative values for a component.
+ * Note that the latter two routines may impose different policies for
+ * different components, though this is not currently done.
+ */
+
+
+LOCAL(int)
+select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
+/* Determine allocation of desired colors to components, */
+/* and fill in Ncolors[] array to indicate choice. */
+/* Return value is total number of colors (product of Ncolors[] values). */
+{
+ int nc = cinfo->out_color_components; /* number of color components */
+ int max_colors = cinfo->desired_number_of_colors;
+ int total_colors, iroot, i, j;
+ boolean changed;
+ long temp;
+ static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
+
+ /* We can allocate at least the nc'th root of max_colors per component. */
+ /* Compute floor(nc'th root of max_colors). */
+ iroot = 1;
+ do {
+ iroot++;
+ temp = iroot; /* set temp = iroot ** nc */
+ for (i = 1; i < nc; i++)
+ temp *= iroot;
+ } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
+ iroot--; /* now iroot = floor(root) */
+
+ /* Must have at least 2 color values per component */
+ if (iroot < 2)
+ ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
+
+ /* Initialize to iroot color values for each component */
+ total_colors = 1;
+ for (i = 0; i < nc; i++) {
+ Ncolors[i] = iroot;
+ total_colors *= iroot;
+ }
+ /* We may be able to increment the count for one or more components without
+ * exceeding max_colors, though we know not all can be incremented.
+ * Sometimes, the first component can be incremented more than once!
+ * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
+ * In RGB colorspace, try to increment G first, then R, then B.
+ */
+ do {
+ changed = FALSE;
+ for (i = 0; i < nc; i++) {
+ j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
+ /* calculate new total_colors if Ncolors[j] is incremented */
+ temp = total_colors / Ncolors[j];
+ temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
+ if (temp > (long) max_colors)
+ break; /* won't fit, done with this pass */
+ Ncolors[j]++; /* OK, apply the increment */
+ total_colors = (int) temp;
+ changed = TRUE;
+ }
+ } while (changed);
+
+ return total_colors;
+}
+
+
+LOCAL(int)
+output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+/* Return j'th output value, where j will range from 0 to maxj */
+/* The output values must fall in 0..MAXJSAMPLE in increasing order */
+{
+ /* We always provide values 0 and MAXJSAMPLE for each component;
+ * any additional values are equally spaced between these limits.
+ * (Forcing the upper and lower values to the limits ensures that
+ * dithering can't produce a color outside the selected gamut.)
+ */
+ return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
+}
+
+
+LOCAL(int)
+largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+/* Return largest input value that should map to j'th output value */
+/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
+{
+ /* Breakpoints are halfway between values returned by output_value */
+ return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
+}
+
+
+/*
+ * Create the colormap.
+ */
+
+LOCAL(void)
+create_colormap (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ JSAMPARRAY colormap; /* Created colormap */
+ int total_colors; /* Number of distinct output colors */
+ int i,j,k, nci, blksize, blkdist, ptr, val;
+
+ /* Select number of colors for each component */
+ total_colors = select_ncolors(cinfo, cquantize->Ncolors);
+
+ /* Report selected color counts */
+ if (cinfo->out_color_components == 3)
+ TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
+ total_colors, cquantize->Ncolors[0],
+ cquantize->Ncolors[1], cquantize->Ncolors[2]);
+ else
+ TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
+
+ /* Allocate and fill in the colormap. */
+ /* The colors are ordered in the map in standard row-major order, */
+ /* i.e. rightmost (highest-indexed) color changes most rapidly. */
+
+ colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
+
+ /* blksize is number of adjacent repeated entries for a component */
+ /* blkdist is distance between groups of identical entries for a component */
+ blkdist = total_colors;
+
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ /* fill in colormap entries for i'th color component */
+ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+ blksize = blkdist / nci;
+ for (j = 0; j < nci; j++) {
+ /* Compute j'th output value (out of nci) for component */
+ val = output_value(cinfo, i, j, nci-1);
+ /* Fill in all colormap entries that have this value of this component */
+ for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
+ /* fill in blksize entries beginning at ptr */
+ for (k = 0; k < blksize; k++)
+ colormap[i][ptr+k] = (JSAMPLE) val;
+ }
+ }
+ blkdist = blksize; /* blksize of this color is blkdist of next */
+ }
+
+ /* Save the colormap in private storage,
+ * where it will survive color quantization mode changes.
+ */
+ cquantize->sv_colormap = colormap;
+ cquantize->sv_actual = total_colors;
+}
+
+
+/*
+ * Create the color index table.
+ */
+
+LOCAL(void)
+create_colorindex (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ JSAMPROW indexptr;
+ int i,j,k, nci, blksize, val, pad;
+
+ /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
+ * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
+ * This is not necessary in the other dithering modes. However, we
+ * flag whether it was done in case user changes dithering mode.
+ */
+ if (cinfo->dither_mode == JDITHER_ORDERED) {
+ pad = MAXJSAMPLE*2;
+ cquantize->is_padded = TRUE;
+ } else {
+ pad = 0;
+ cquantize->is_padded = FALSE;
+ }
+
+ cquantize->colorindex = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (MAXJSAMPLE+1 + pad),
+ (JDIMENSION) cinfo->out_color_components);
+
+ /* blksize is number of adjacent repeated entries for a component */
+ blksize = cquantize->sv_actual;
+
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ /* fill in colorindex entries for i'th color component */
+ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+ blksize = blksize / nci;
+
+ /* adjust colorindex pointers to provide padding at negative indexes. */
+ if (pad)
+ cquantize->colorindex[i] += MAXJSAMPLE;
+
+ /* in loop, val = index of current output value, */
+ /* and k = largest j that maps to current val */
+ indexptr = cquantize->colorindex[i];
+ val = 0;
+ k = largest_input_value(cinfo, i, 0, nci-1);
+ for (j = 0; j <= MAXJSAMPLE; j++) {
+ while (j > k) /* advance val if past boundary */
+ k = largest_input_value(cinfo, i, ++val, nci-1);
+ /* premultiply so that no multiplication needed in main processing */
+ indexptr[j] = (JSAMPLE) (val * blksize);
+ }
+ /* Pad at both ends if necessary */
+ if (pad)
+ for (j = 1; j <= MAXJSAMPLE; j++) {
+ indexptr[-j] = indexptr[0];
+ indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
+ }
+ }
+}
+
+
+/*
+ * Create an ordered-dither array for a component having ncolors
+ * distinct output values.
+ */
+
+LOCAL(ODITHER_MATRIX_PTR)
+make_odither_array (j_decompress_ptr cinfo, int ncolors)
+{
+ ODITHER_MATRIX_PTR odither;
+ int j,k;
+ INT32 num,den;
+
+ odither = (ODITHER_MATRIX_PTR)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(ODITHER_MATRIX));
+ /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
+ * Hence the dither value for the matrix cell with fill order f
+ * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
+ * On 16-bit-int machine, be careful to avoid overflow.
+ */
+ den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
+ for (j = 0; j < ODITHER_SIZE; j++) {
+ for (k = 0; k < ODITHER_SIZE; k++) {
+ num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
+ * MAXJSAMPLE;
+ /* Ensure round towards zero despite C's lack of consistency
+ * about rounding negative values in integer division...
+ */
+ odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
+ }
+ }
+ return odither;
+}
+
+
+/*
+ * Create the ordered-dither tables.
+ * Components having the same number of representative colors may
+ * share a dither table.
+ */
+
+LOCAL(void)
+create_odither_tables (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ ODITHER_MATRIX_PTR odither;
+ int i, j, nci;
+
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+ odither = NULL; /* search for matching prior component */
+ for (j = 0; j < i; j++) {
+ if (nci == cquantize->Ncolors[j]) {
+ odither = cquantize->odither[j];
+ break;
+ }
+ }
+ if (odither == NULL) /* need a new table? */
+ odither = make_odither_array(cinfo, nci);
+ cquantize->odither[i] = odither;
+ }
+}
+
+
+/*
+ * Map some rows of pixels to the output colormapped representation.
+ */
+
+METHODDEF(void)
+color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* General case, no dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ JSAMPARRAY colorindex = cquantize->colorindex;
+ register int pixcode, ci;
+ register JSAMPROW ptrin, ptrout;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+ register int nc = cinfo->out_color_components;
+
+ for (row = 0; row < num_rows; row++) {
+ ptrin = input_buf[row];
+ ptrout = output_buf[row];
+ for (col = width; col > 0; col--) {
+ pixcode = 0;
+ for (ci = 0; ci < nc; ci++) {
+ pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
+ }
+ *ptrout++ = (JSAMPLE) pixcode;
+ }
+ }
+}
+
+
+METHODDEF(void)
+color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* Fast path for out_color_components==3, no dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register int pixcode;
+ register JSAMPROW ptrin, ptrout;
+ JSAMPROW colorindex0 = cquantize->colorindex[0];
+ JSAMPROW colorindex1 = cquantize->colorindex[1];
+ JSAMPROW colorindex2 = cquantize->colorindex[2];
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ ptrin = input_buf[row];
+ ptrout = output_buf[row];
+ for (col = width; col > 0; col--) {
+ pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
+ pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
+ pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
+ *ptrout++ = (JSAMPLE) pixcode;
+ }
+ }
+}
+
+
+METHODDEF(void)
+quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* General case, with ordered dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register JSAMPROW input_ptr;
+ register JSAMPROW output_ptr;
+ JSAMPROW colorindex_ci;
+ int * dither; /* points to active row of dither matrix */
+ int row_index, col_index; /* current indexes into dither matrix */
+ int nc = cinfo->out_color_components;
+ int ci;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ /* Initialize output values to 0 so can process components separately */
+ jzero_far((void FAR *) output_buf[row],
+ (size_t) (width * SIZEOF(JSAMPLE)));
+ row_index = cquantize->row_index;
+ for (ci = 0; ci < nc; ci++) {
+ input_ptr = input_buf[row] + ci;
+ output_ptr = output_buf[row];
+ colorindex_ci = cquantize->colorindex[ci];
+ dither = cquantize->odither[ci][row_index];
+ col_index = 0;
+
+ for (col = width; col > 0; col--) {
+ /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
+ * select output value, accumulate into output code for this pixel.
+ * Range-limiting need not be done explicitly, as we have extended
+ * the colorindex table to produce the right answers for out-of-range
+ * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
+ * required amount of padding.
+ */
+ *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
+ input_ptr += nc;
+ output_ptr++;
+ col_index = (col_index + 1) & ODITHER_MASK;
+ }
+ }
+ /* Advance row index for next row */
+ row_index = (row_index + 1) & ODITHER_MASK;
+ cquantize->row_index = row_index;
+ }
+}
+
+
+METHODDEF(void)
+quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* Fast path for out_color_components==3, with ordered dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register int pixcode;
+ register JSAMPROW input_ptr;
+ register JSAMPROW output_ptr;
+ JSAMPROW colorindex0 = cquantize->colorindex[0];
+ JSAMPROW colorindex1 = cquantize->colorindex[1];
+ JSAMPROW colorindex2 = cquantize->colorindex[2];
+ int * dither0; /* points to active row of dither matrix */
+ int * dither1;
+ int * dither2;
+ int row_index, col_index; /* current indexes into dither matrix */
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ row_index = cquantize->row_index;
+ input_ptr = input_buf[row];
+ output_ptr = output_buf[row];
+ dither0 = cquantize->odither[0][row_index];
+ dither1 = cquantize->odither[1][row_index];
+ dither2 = cquantize->odither[2][row_index];
+ col_index = 0;
+
+ for (col = width; col > 0; col--) {
+ pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
+ dither0[col_index]]);
+ pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
+ dither1[col_index]]);
+ pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
+ dither2[col_index]]);
+ *output_ptr++ = (JSAMPLE) pixcode;
+ col_index = (col_index + 1) & ODITHER_MASK;
+ }
+ row_index = (row_index + 1) & ODITHER_MASK;
+ cquantize->row_index = row_index;
+ }
+}
+
+
+METHODDEF(void)
+quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* General case, with Floyd-Steinberg dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register LOCFSERROR cur; /* current error or pixel value */
+ LOCFSERROR belowerr; /* error for pixel below cur */
+ LOCFSERROR bpreverr; /* error for below/prev col */
+ LOCFSERROR bnexterr; /* error for below/next col */
+ LOCFSERROR delta;
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */
+ register JSAMPROW input_ptr;
+ register JSAMPROW output_ptr;
+ JSAMPROW colorindex_ci;
+ JSAMPROW colormap_ci;
+ int pixcode;
+ int nc = cinfo->out_color_components;
+ int dir; /* 1 for left-to-right, -1 for right-to-left */
+ int dirnc; /* dir * nc */
+ int ci;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+ JSAMPLE *range_limit = cinfo->sample_range_limit;
+ SHIFT_TEMPS
+
+ for (row = 0; row < num_rows; row++) {
+ /* Initialize output values to 0 so can process components separately */
+ jzero_far((void FAR *) output_buf[row],
+ (size_t) (width * SIZEOF(JSAMPLE)));
+ for (ci = 0; ci < nc; ci++) {
+ input_ptr = input_buf[row] + ci;
+ output_ptr = output_buf[row];
+ if (cquantize->on_odd_row) {
+ /* work right to left in this row */
+ input_ptr += (width-1) * nc; /* so point to rightmost pixel */
+ output_ptr += width-1;
+ dir = -1;
+ dirnc = -nc;
+ errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
+ } else {
+ /* work left to right in this row */
+ dir = 1;
+ dirnc = nc;
+ errorptr = cquantize->fserrors[ci]; /* => entry before first column */
+ }
+ colorindex_ci = cquantize->colorindex[ci];
+ colormap_ci = cquantize->sv_colormap[ci];
+ /* Preset error values: no error propagated to first pixel from left */
+ cur = 0;
+ /* and no error propagated to row below yet */
+ belowerr = bpreverr = 0;
+
+ for (col = width; col > 0; col--) {
+ /* cur holds the error propagated from the previous pixel on the
+ * current line. Add the error propagated from the previous line
+ * to form the complete error correction term for this pixel, and
+ * round the error term (which is expressed * 16) to an integer.
+ * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+ * for either sign of the error value.
+ * Note: errorptr points to *previous* column's array entry.
+ */
+ cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
+ /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+ * The maximum error is +- MAXJSAMPLE; this sets the required size
+ * of the range_limit array.
+ */
+ cur += GETJSAMPLE(*input_ptr);
+ cur = GETJSAMPLE(range_limit[cur]);
+ /* Select output value, accumulate into output code for this pixel */
+ pixcode = GETJSAMPLE(colorindex_ci[cur]);
+ *output_ptr += (JSAMPLE) pixcode;
+ /* Compute actual representation error at this pixel */
+ /* Note: we can do this even though we don't have the final */
+ /* pixel code, because the colormap is orthogonal. */
+ cur -= GETJSAMPLE(colormap_ci[pixcode]);
+ /* Compute error fractions to be propagated to adjacent pixels.
+ * Add these into the running sums, and simultaneously shift the
+ * next-line error sums left by 1 column.
+ */
+ bnexterr = cur;
+ delta = cur * 2;
+ cur += delta; /* form error * 3 */
+ errorptr[0] = (FSERROR) (bpreverr + cur);
+ cur += delta; /* form error * 5 */
+ bpreverr = belowerr + cur;
+ belowerr = bnexterr;
+ cur += delta; /* form error * 7 */
+ /* At this point cur contains the 7/16 error value to be propagated
+ * to the next pixel on the current line, and all the errors for the
+ * next line have been shifted over. We are therefore ready to move on.
+ */
+ input_ptr += dirnc; /* advance input ptr to next column */
+ output_ptr += dir; /* advance output ptr to next column */
+ errorptr += dir; /* advance errorptr to current column */
+ }
+ /* Post-loop cleanup: we must unload the final error value into the
+ * final fserrors[] entry. Note we need not unload belowerr because
+ * it is for the dummy column before or after the actual array.
+ */
+ errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
+ }
+ cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
+ }
+}
+
+
+/*
+ * Allocate workspace for Floyd-Steinberg errors.
+ */
+
+LOCAL(void)
+alloc_fs_workspace (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ size_t arraysize;
+ int i;
+
+ arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ cquantize->fserrors[i] = (FSERRPTR)
+ (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+ }
+}
+
+
+/*
+ * Initialize for one-pass color quantization.
+ */
+
+METHODDEF(void)
+start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ size_t arraysize;
+ int i;
+
+ /* Install my colormap. */
+ cinfo->colormap = cquantize->sv_colormap;
+ cinfo->actual_number_of_colors = cquantize->sv_actual;
+
+ /* Initialize for desired dithering mode. */
+ switch (cinfo->dither_mode) {
+ case JDITHER_NONE:
+ if (cinfo->out_color_components == 3)
+ cquantize->pub.color_quantize = color_quantize3;
+ else
+ cquantize->pub.color_quantize = color_quantize;
+ break;
+ case JDITHER_ORDERED:
+ if (cinfo->out_color_components == 3)
+ cquantize->pub.color_quantize = quantize3_ord_dither;
+ else
+ cquantize->pub.color_quantize = quantize_ord_dither;
+ cquantize->row_index = 0; /* initialize state for ordered dither */
+ /* If user changed to ordered dither from another mode,
+ * we must recreate the color index table with padding.
+ * This will cost extra space, but probably isn't very likely.
+ */
+ if (! cquantize->is_padded)
+ create_colorindex(cinfo);
+ /* Create ordered-dither tables if we didn't already. */
+ if (cquantize->odither[0] == NULL)
+ create_odither_tables(cinfo);
+ break;
+ case JDITHER_FS:
+ cquantize->pub.color_quantize = quantize_fs_dither;
+ cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
+ /* Allocate Floyd-Steinberg workspace if didn't already. */
+ if (cquantize->fserrors[0] == NULL)
+ alloc_fs_workspace(cinfo);
+ /* Initialize the propagated errors to zero. */
+ arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+ for (i = 0; i < cinfo->out_color_components; i++)
+ jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+}
+
+
+/*
+ * Finish up at the end of the pass.
+ */
+
+METHODDEF(void)
+finish_pass_1_quant (j_decompress_ptr cinfo)
+{
+ /* no work in 1-pass case */
+}
+
+
+/*
+ * Switch to a new external colormap between output passes.
+ * Shouldn't get to this module!
+ */
+
+METHODDEF(void)
+new_color_map_1_quant (j_decompress_ptr cinfo)
+{
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+
+/*
+ * Module initialization routine for 1-pass color quantization.
+ */
+
+GLOBAL(void)
+jinit_1pass_quantizer (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize;
+
+ cquantize = (my_cquantize_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_cquantizer));
+ cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+ cquantize->pub.start_pass = start_pass_1_quant;
+ cquantize->pub.finish_pass = finish_pass_1_quant;
+ cquantize->pub.new_color_map = new_color_map_1_quant;
+ cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
+ cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
+
+ /* Make sure my internal arrays won't overflow */
+ if (cinfo->out_color_components > MAX_Q_COMPS)
+ ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
+ /* Make sure colormap indexes can be represented by JSAMPLEs */
+ if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
+
+ /* Create the colormap and color index table. */
+ create_colormap(cinfo);
+ create_colorindex(cinfo);
+
+ /* Allocate Floyd-Steinberg workspace now if requested.
+ * We do this now since it is FAR storage and may affect the memory
+ * manager's space calculations. If the user changes to FS dither
+ * mode in a later pass, we will allocate the space then, and will
+ * possibly overrun the max_memory_to_use setting.
+ */
+ if (cinfo->dither_mode == JDITHER_FS)
+ alloc_fs_workspace(cinfo);
+}
+
+#endif /* QUANT_1PASS_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jquant2.c b/src/3rdparty/libjpeg/jquant2.c
new file mode 100644
index 0000000..af601e3
--- /dev/null
+++ b/src/3rdparty/libjpeg/jquant2.c
@@ -0,0 +1,1310 @@
+/*
+ * jquant2.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains 2-pass color quantization (color mapping) routines.
+ * These routines provide selection of a custom color map for an image,
+ * followed by mapping of the image to that color map, with optional
+ * Floyd-Steinberg dithering.
+ * It is also possible to use just the second pass to map to an arbitrary
+ * externally-given color map.
+ *
+ * Note: ordered dithering is not supported, since there isn't any fast
+ * way to compute intercolor distances; it's unclear that ordered dither's
+ * fundamental assumptions even hold with an irregularly spaced color map.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+
+/*
+ * This module implements the well-known Heckbert paradigm for color
+ * quantization. Most of the ideas used here can be traced back to
+ * Heckbert's seminal paper
+ * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
+ * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
+ *
+ * In the first pass over the image, we accumulate a histogram showing the
+ * usage count of each possible color. To keep the histogram to a reasonable
+ * size, we reduce the precision of the input; typical practice is to retain
+ * 5 or 6 bits per color, so that 8 or 4 different input values are counted
+ * in the same histogram cell.
+ *
+ * Next, the color-selection step begins with a box representing the whole
+ * color space, and repeatedly splits the "largest" remaining box until we
+ * have as many boxes as desired colors. Then the mean color in each
+ * remaining box becomes one of the possible output colors.
+ *
+ * The second pass over the image maps each input pixel to the closest output
+ * color (optionally after applying a Floyd-Steinberg dithering correction).
+ * This mapping is logically trivial, but making it go fast enough requires
+ * considerable care.
+ *
+ * Heckbert-style quantizers vary a good deal in their policies for choosing
+ * the "largest" box and deciding where to cut it. The particular policies
+ * used here have proved out well in experimental comparisons, but better ones
+ * may yet be found.
+ *
+ * In earlier versions of the IJG code, this module quantized in YCbCr color
+ * space, processing the raw upsampled data without a color conversion step.
+ * This allowed the color conversion math to be done only once per colormap
+ * entry, not once per pixel. However, that optimization precluded other
+ * useful optimizations (such as merging color conversion with upsampling)
+ * and it also interfered with desired capabilities such as quantizing to an
+ * externally-supplied colormap. We have therefore abandoned that approach.
+ * The present code works in the post-conversion color space, typically RGB.
+ *
+ * To improve the visual quality of the results, we actually work in scaled
+ * RGB space, giving G distances more weight than R, and R in turn more than
+ * B. To do everything in integer math, we must use integer scale factors.
+ * The 2/3/1 scale factors used here correspond loosely to the relative
+ * weights of the colors in the NTSC grayscale equation.
+ * If you want to use this code to quantize a non-RGB color space, you'll
+ * probably need to change these scale factors.
+ */
+
+#define R_SCALE 2 /* scale R distances by this much */
+#define G_SCALE 3 /* scale G distances by this much */
+#define B_SCALE 1 /* and B by this much */
+
+/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
+ * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
+ * and B,G,R orders. If you define some other weird order in jmorecfg.h,
+ * you'll get compile errors until you extend this logic. In that case
+ * you'll probably want to tweak the histogram sizes too.
+ */
+
+#if RGB_RED == 0
+#define C0_SCALE R_SCALE
+#endif
+#if RGB_BLUE == 0
+#define C0_SCALE B_SCALE
+#endif
+#if RGB_GREEN == 1
+#define C1_SCALE G_SCALE
+#endif
+#if RGB_RED == 2
+#define C2_SCALE R_SCALE
+#endif
+#if RGB_BLUE == 2
+#define C2_SCALE B_SCALE
+#endif
+
+
+/*
+ * First we have the histogram data structure and routines for creating it.
+ *
+ * The number of bits of precision can be adjusted by changing these symbols.
+ * We recommend keeping 6 bits for G and 5 each for R and B.
+ * If you have plenty of memory and cycles, 6 bits all around gives marginally
+ * better results; if you are short of memory, 5 bits all around will save
+ * some space but degrade the results.
+ * To maintain a fully accurate histogram, we'd need to allocate a "long"
+ * (preferably unsigned long) for each cell. In practice this is overkill;
+ * we can get by with 16 bits per cell. Few of the cell counts will overflow,
+ * and clamping those that do overflow to the maximum value will give close-
+ * enough results. This reduces the recommended histogram size from 256Kb
+ * to 128Kb, which is a useful savings on PC-class machines.
+ * (In the second pass the histogram space is re-used for pixel mapping data;
+ * in that capacity, each cell must be able to store zero to the number of
+ * desired colors. 16 bits/cell is plenty for that too.)
+ * Since the JPEG code is intended to run in small memory model on 80x86
+ * machines, we can't just allocate the histogram in one chunk. Instead
+ * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
+ * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
+ * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
+ * on 80x86 machines, the pointer row is in near memory but the actual
+ * arrays are in far memory (same arrangement as we use for image arrays).
+ */
+
+#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
+
+/* These will do the right thing for either R,G,B or B,G,R color order,
+ * but you may not like the results for other color orders.
+ */
+#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
+#define HIST_C1_BITS 6 /* bits of precision in G histogram */
+#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
+
+/* Number of elements along histogram axes. */
+#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
+#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
+#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
+
+/* These are the amounts to shift an input value to get a histogram index. */
+#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
+#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
+#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
+
+
+typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
+
+typedef histcell FAR * histptr; /* for pointers to histogram cells */
+
+typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
+typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
+typedef hist2d * hist3d; /* type for top-level pointer */
+
+
+/* Declarations for Floyd-Steinberg dithering.
+ *
+ * Errors are accumulated into the array fserrors[], at a resolution of
+ * 1/16th of a pixel count. The error at a given pixel is propagated
+ * to its not-yet-processed neighbors using the standard F-S fractions,
+ * ... (here) 7/16
+ * 3/16 5/16 1/16
+ * We work left-to-right on even rows, right-to-left on odd rows.
+ *
+ * We can get away with a single array (holding one row's worth of errors)
+ * by using it to store the current row's errors at pixel columns not yet
+ * processed, but the next row's errors at columns already processed. We
+ * need only a few extra variables to hold the errors immediately around the
+ * current column. (If we are lucky, those variables are in registers, but
+ * even if not, they're probably cheaper to access than array elements are.)
+ *
+ * The fserrors[] array has (#columns + 2) entries; the extra entry at
+ * each end saves us from special-casing the first and last pixels.
+ * Each entry is three values long, one value for each color component.
+ *
+ * Note: on a wide image, we might not have enough room in a PC's near data
+ * segment to hold the error array; so it is allocated with alloc_large.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef INT16 FSERROR; /* 16 bits should be enough */
+typedef int LOCFSERROR; /* use 'int' for calculation temps */
+#else
+typedef INT32 FSERROR; /* may need more than 16 bits */
+typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
+#endif
+
+typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_quantizer pub; /* public fields */
+
+ /* Space for the eventually created colormap is stashed here */
+ JSAMPARRAY sv_colormap; /* colormap allocated at init time */
+ int desired; /* desired # of colors = size of colormap */
+
+ /* Variables for accumulating image statistics */
+ hist3d histogram; /* pointer to the histogram */
+
+ boolean needs_zeroed; /* TRUE if next pass must zero histogram */
+
+ /* Variables for Floyd-Steinberg dithering */
+ FSERRPTR fserrors; /* accumulated errors */
+ boolean on_odd_row; /* flag to remember which row we are on */
+ int * error_limiter; /* table for clamping the applied error */
+} my_cquantizer;
+
+typedef my_cquantizer * my_cquantize_ptr;
+
+
+/*
+ * Prescan some rows of pixels.
+ * In this module the prescan simply updates the histogram, which has been
+ * initialized to zeroes by start_pass.
+ * An output_buf parameter is required by the method signature, but no data
+ * is actually output (in fact the buffer controller is probably passing a
+ * NULL pointer).
+ */
+
+METHODDEF(void)
+prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register JSAMPROW ptr;
+ register histptr histp;
+ register hist3d histogram = cquantize->histogram;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ ptr = input_buf[row];
+ for (col = width; col > 0; col--) {
+ /* get pixel value and index into the histogram */
+ histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
+ [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
+ [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
+ /* increment, check for overflow and undo increment if so. */
+ if (++(*histp) <= 0)
+ (*histp)--;
+ ptr += 3;
+ }
+ }
+}
+
+
+/*
+ * Next we have the really interesting routines: selection of a colormap
+ * given the completed histogram.
+ * These routines work with a list of "boxes", each representing a rectangular
+ * subset of the input color space (to histogram precision).
+ */
+
+typedef struct {
+ /* The bounds of the box (inclusive); expressed as histogram indexes */
+ int c0min, c0max;
+ int c1min, c1max;
+ int c2min, c2max;
+ /* The volume (actually 2-norm) of the box */
+ INT32 volume;
+ /* The number of nonzero histogram cells within this box */
+ long colorcount;
+} box;
+
+typedef box * boxptr;
+
+
+LOCAL(boxptr)
+find_biggest_color_pop (boxptr boxlist, int numboxes)
+/* Find the splittable box with the largest color population */
+/* Returns NULL if no splittable boxes remain */
+{
+ register boxptr boxp;
+ register int i;
+ register long maxc = 0;
+ boxptr which = NULL;
+
+ for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+ if (boxp->colorcount > maxc && boxp->volume > 0) {
+ which = boxp;
+ maxc = boxp->colorcount;
+ }
+ }
+ return which;
+}
+
+
+LOCAL(boxptr)
+find_biggest_volume (boxptr boxlist, int numboxes)
+/* Find the splittable box with the largest (scaled) volume */
+/* Returns NULL if no splittable boxes remain */
+{
+ register boxptr boxp;
+ register int i;
+ register INT32 maxv = 0;
+ boxptr which = NULL;
+
+ for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+ if (boxp->volume > maxv) {
+ which = boxp;
+ maxv = boxp->volume;
+ }
+ }
+ return which;
+}
+
+
+LOCAL(void)
+update_box (j_decompress_ptr cinfo, boxptr boxp)
+/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
+/* and recompute its volume and population */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ histptr histp;
+ int c0,c1,c2;
+ int c0min,c0max,c1min,c1max,c2min,c2max;
+ INT32 dist0,dist1,dist2;
+ long ccount;
+
+ c0min = boxp->c0min; c0max = boxp->c0max;
+ c1min = boxp->c1min; c1max = boxp->c1max;
+ c2min = boxp->c2min; c2max = boxp->c2max;
+
+ if (c0max > c0min)
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0min = c0min = c0;
+ goto have_c0min;
+ }
+ }
+ have_c0min:
+ if (c0max > c0min)
+ for (c0 = c0max; c0 >= c0min; c0--)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0max = c0max = c0;
+ goto have_c0max;
+ }
+ }
+ have_c0max:
+ if (c1max > c1min)
+ for (c1 = c1min; c1 <= c1max; c1++)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1min = c1min = c1;
+ goto have_c1min;
+ }
+ }
+ have_c1min:
+ if (c1max > c1min)
+ for (c1 = c1max; c1 >= c1min; c1--)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1max = c1max = c1;
+ goto have_c1max;
+ }
+ }
+ have_c1max:
+ if (c2max > c2min)
+ for (c2 = c2min; c2 <= c2max; c2++)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2min = c2min = c2;
+ goto have_c2min;
+ }
+ }
+ have_c2min:
+ if (c2max > c2min)
+ for (c2 = c2max; c2 >= c2min; c2--)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2max = c2max = c2;
+ goto have_c2max;
+ }
+ }
+ have_c2max:
+
+ /* Update box volume.
+ * We use 2-norm rather than real volume here; this biases the method
+ * against making long narrow boxes, and it has the side benefit that
+ * a box is splittable iff norm > 0.
+ * Since the differences are expressed in histogram-cell units,
+ * we have to shift back to JSAMPLE units to get consistent distances;
+ * after which, we scale according to the selected distance scale factors.
+ */
+ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
+ dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
+ dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
+ boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
+
+ /* Now scan remaining volume of box and compute population */
+ ccount = 0;
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++, histp++)
+ if (*histp != 0) {
+ ccount++;
+ }
+ }
+ boxp->colorcount = ccount;
+}
+
+
+LOCAL(int)
+median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
+ int desired_colors)
+/* Repeatedly select and split the largest box until we have enough boxes */
+{
+ int n,lb;
+ int c0,c1,c2,cmax;
+ register boxptr b1,b2;
+
+ while (numboxes < desired_colors) {
+ /* Select box to split.
+ * Current algorithm: by population for first half, then by volume.
+ */
+ if (numboxes*2 <= desired_colors) {
+ b1 = find_biggest_color_pop(boxlist, numboxes);
+ } else {
+ b1 = find_biggest_volume(boxlist, numboxes);
+ }
+ if (b1 == NULL) /* no splittable boxes left! */
+ break;
+ b2 = &boxlist[numboxes]; /* where new box will go */
+ /* Copy the color bounds to the new box. */
+ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
+ b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
+ /* Choose which axis to split the box on.
+ * Current algorithm: longest scaled axis.
+ * See notes in update_box about scaling distances.
+ */
+ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
+ c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
+ c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
+ /* We want to break any ties in favor of green, then red, blue last.
+ * This code does the right thing for R,G,B or B,G,R color orders only.
+ */
+#if RGB_RED == 0
+ cmax = c1; n = 1;
+ if (c0 > cmax) { cmax = c0; n = 0; }
+ if (c2 > cmax) { n = 2; }
+#else
+ cmax = c1; n = 1;
+ if (c2 > cmax) { cmax = c2; n = 2; }
+ if (c0 > cmax) { n = 0; }
+#endif
+ /* Choose split point along selected axis, and update box bounds.
+ * Current algorithm: split at halfway point.
+ * (Since the box has been shrunk to minimum volume,
+ * any split will produce two nonempty subboxes.)
+ * Note that lb value is max for lower box, so must be < old max.
+ */
+ switch (n) {
+ case 0:
+ lb = (b1->c0max + b1->c0min) / 2;
+ b1->c0max = lb;
+ b2->c0min = lb+1;
+ break;
+ case 1:
+ lb = (b1->c1max + b1->c1min) / 2;
+ b1->c1max = lb;
+ b2->c1min = lb+1;
+ break;
+ case 2:
+ lb = (b1->c2max + b1->c2min) / 2;
+ b1->c2max = lb;
+ b2->c2min = lb+1;
+ break;
+ }
+ /* Update stats for boxes */
+ update_box(cinfo, b1);
+ update_box(cinfo, b2);
+ numboxes++;
+ }
+ return numboxes;
+}
+
+
+LOCAL(void)
+compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
+/* Compute representative color for a box, put it in colormap[icolor] */
+{
+ /* Current algorithm: mean weighted by pixels (not colors) */
+ /* Note it is important to get the rounding correct! */
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ histptr histp;
+ int c0,c1,c2;
+ int c0min,c0max,c1min,c1max,c2min,c2max;
+ long count;
+ long total = 0;
+ long c0total = 0;
+ long c1total = 0;
+ long c2total = 0;
+
+ c0min = boxp->c0min; c0max = boxp->c0max;
+ c1min = boxp->c1min; c1max = boxp->c1max;
+ c2min = boxp->c2min; c2max = boxp->c2max;
+
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++) {
+ if ((count = *histp++) != 0) {
+ total += count;
+ c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
+ c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
+ c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
+ }
+ }
+ }
+
+ cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
+ cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
+ cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
+}
+
+
+LOCAL(void)
+select_colors (j_decompress_ptr cinfo, int desired_colors)
+/* Master routine for color selection */
+{
+ boxptr boxlist;
+ int numboxes;
+ int i;
+
+ /* Allocate workspace for box list */
+ boxlist = (boxptr) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
+ /* Initialize one box containing whole space */
+ numboxes = 1;
+ boxlist[0].c0min = 0;
+ boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
+ boxlist[0].c1min = 0;
+ boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
+ boxlist[0].c2min = 0;
+ boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
+ /* Shrink it to actually-used volume and set its statistics */
+ update_box(cinfo, & boxlist[0]);
+ /* Perform median-cut to produce final box list */
+ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
+ /* Compute the representative color for each box, fill colormap */
+ for (i = 0; i < numboxes; i++)
+ compute_color(cinfo, & boxlist[i], i);
+ cinfo->actual_number_of_colors = numboxes;
+ TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
+}
+
+
+/*
+ * These routines are concerned with the time-critical task of mapping input
+ * colors to the nearest color in the selected colormap.
+ *
+ * We re-use the histogram space as an "inverse color map", essentially a
+ * cache for the results of nearest-color searches. All colors within a
+ * histogram cell will be mapped to the same colormap entry, namely the one
+ * closest to the cell's center. This may not be quite the closest entry to
+ * the actual input color, but it's almost as good. A zero in the cache
+ * indicates we haven't found the nearest color for that cell yet; the array
+ * is cleared to zeroes before starting the mapping pass. When we find the
+ * nearest color for a cell, its colormap index plus one is recorded in the
+ * cache for future use. The pass2 scanning routines call fill_inverse_cmap
+ * when they need to use an unfilled entry in the cache.
+ *
+ * Our method of efficiently finding nearest colors is based on the "locally
+ * sorted search" idea described by Heckbert and on the incremental distance
+ * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
+ * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
+ * the distances from a given colormap entry to each cell of the histogram can
+ * be computed quickly using an incremental method: the differences between
+ * distances to adjacent cells themselves differ by a constant. This allows a
+ * fairly fast implementation of the "brute force" approach of computing the
+ * distance from every colormap entry to every histogram cell. Unfortunately,
+ * it needs a work array to hold the best-distance-so-far for each histogram
+ * cell (because the inner loop has to be over cells, not colormap entries).
+ * The work array elements have to be INT32s, so the work array would need
+ * 256Kb at our recommended precision. This is not feasible in DOS machines.
+ *
+ * To get around these problems, we apply Thomas' method to compute the
+ * nearest colors for only the cells within a small subbox of the histogram.
+ * The work array need be only as big as the subbox, so the memory usage
+ * problem is solved. Furthermore, we need not fill subboxes that are never
+ * referenced in pass2; many images use only part of the color gamut, so a
+ * fair amount of work is saved. An additional advantage of this
+ * approach is that we can apply Heckbert's locality criterion to quickly
+ * eliminate colormap entries that are far away from the subbox; typically
+ * three-fourths of the colormap entries are rejected by Heckbert's criterion,
+ * and we need not compute their distances to individual cells in the subbox.
+ * The speed of this approach is heavily influenced by the subbox size: too
+ * small means too much overhead, too big loses because Heckbert's criterion
+ * can't eliminate as many colormap entries. Empirically the best subbox
+ * size seems to be about 1/512th of the histogram (1/8th in each direction).
+ *
+ * Thomas' article also describes a refined method which is asymptotically
+ * faster than the brute-force method, but it is also far more complex and
+ * cannot efficiently be applied to small subboxes. It is therefore not
+ * useful for programs intended to be portable to DOS machines. On machines
+ * with plenty of memory, filling the whole histogram in one shot with Thomas'
+ * refined method might be faster than the present code --- but then again,
+ * it might not be any faster, and it's certainly more complicated.
+ */
+
+
+/* log2(histogram cells in update box) for each axis; this can be adjusted */
+#define BOX_C0_LOG (HIST_C0_BITS-3)
+#define BOX_C1_LOG (HIST_C1_BITS-3)
+#define BOX_C2_LOG (HIST_C2_BITS-3)
+
+#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
+#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
+#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
+
+#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
+#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
+#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
+
+
+/*
+ * The next three routines implement inverse colormap filling. They could
+ * all be folded into one big routine, but splitting them up this way saves
+ * some stack space (the mindist[] and bestdist[] arrays need not coexist)
+ * and may allow some compilers to produce better code by registerizing more
+ * inner-loop variables.
+ */
+
+LOCAL(int)
+find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+ JSAMPLE colorlist[])
+/* Locate the colormap entries close enough to an update box to be candidates
+ * for the nearest entry to some cell(s) in the update box. The update box
+ * is specified by the center coordinates of its first cell. The number of
+ * candidate colormap entries is returned, and their colormap indexes are
+ * placed in colorlist[].
+ * This routine uses Heckbert's "locally sorted search" criterion to select
+ * the colors that need further consideration.
+ */
+{
+ int numcolors = cinfo->actual_number_of_colors;
+ int maxc0, maxc1, maxc2;
+ int centerc0, centerc1, centerc2;
+ int i, x, ncolors;
+ INT32 minmaxdist, min_dist, max_dist, tdist;
+ INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
+
+ /* Compute true coordinates of update box's upper corner and center.
+ * Actually we compute the coordinates of the center of the upper-corner
+ * histogram cell, which are the upper bounds of the volume we care about.
+ * Note that since ">>" rounds down, the "center" values may be closer to
+ * min than to max; hence comparisons to them must be "<=", not "<".
+ */
+ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
+ centerc0 = (minc0 + maxc0) >> 1;
+ maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
+ centerc1 = (minc1 + maxc1) >> 1;
+ maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
+ centerc2 = (minc2 + maxc2) >> 1;
+
+ /* For each color in colormap, find:
+ * 1. its minimum squared-distance to any point in the update box
+ * (zero if color is within update box);
+ * 2. its maximum squared-distance to any point in the update box.
+ * Both of these can be found by considering only the corners of the box.
+ * We save the minimum distance for each color in mindist[];
+ * only the smallest maximum distance is of interest.
+ */
+ minmaxdist = 0x7FFFFFFFL;
+
+ for (i = 0; i < numcolors; i++) {
+ /* We compute the squared-c0-distance term, then add in the other two. */
+ x = GETJSAMPLE(cinfo->colormap[0][i]);
+ if (x < minc0) {
+ tdist = (x - minc0) * C0_SCALE;
+ min_dist = tdist*tdist;
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ } else if (x > maxc0) {
+ tdist = (x - maxc0) * C0_SCALE;
+ min_dist = tdist*tdist;
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ min_dist = 0;
+ if (x <= centerc0) {
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ } else {
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ }
+ }
+
+ x = GETJSAMPLE(cinfo->colormap[1][i]);
+ if (x < minc1) {
+ tdist = (x - minc1) * C1_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ } else if (x > maxc1) {
+ tdist = (x - maxc1) * C1_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ if (x <= centerc1) {
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ }
+ }
+
+ x = GETJSAMPLE(cinfo->colormap[2][i]);
+ if (x < minc2) {
+ tdist = (x - minc2) * C2_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ } else if (x > maxc2) {
+ tdist = (x - maxc2) * C2_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ if (x <= centerc2) {
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ }
+ }
+
+ mindist[i] = min_dist; /* save away the results */
+ if (max_dist < minmaxdist)
+ minmaxdist = max_dist;
+ }
+
+ /* Now we know that no cell in the update box is more than minmaxdist
+ * away from some colormap entry. Therefore, only colors that are
+ * within minmaxdist of some part of the box need be considered.
+ */
+ ncolors = 0;
+ for (i = 0; i < numcolors; i++) {
+ if (mindist[i] <= minmaxdist)
+ colorlist[ncolors++] = (JSAMPLE) i;
+ }
+ return ncolors;
+}
+
+
+LOCAL(void)
+find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+ int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
+/* Find the closest colormap entry for each cell in the update box,
+ * given the list of candidate colors prepared by find_nearby_colors.
+ * Return the indexes of the closest entries in the bestcolor[] array.
+ * This routine uses Thomas' incremental distance calculation method to
+ * find the distance from a colormap entry to successive cells in the box.
+ */
+{
+ int ic0, ic1, ic2;
+ int i, icolor;
+ register INT32 * bptr; /* pointer into bestdist[] array */
+ JSAMPLE * cptr; /* pointer into bestcolor[] array */
+ INT32 dist0, dist1; /* initial distance values */
+ register INT32 dist2; /* current distance in inner loop */
+ INT32 xx0, xx1; /* distance increments */
+ register INT32 xx2;
+ INT32 inc0, inc1, inc2; /* initial values for increments */
+ /* This array holds the distance to the nearest-so-far color for each cell */
+ INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+ /* Initialize best-distance for each cell of the update box */
+ bptr = bestdist;
+ for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
+ *bptr++ = 0x7FFFFFFFL;
+
+ /* For each color selected by find_nearby_colors,
+ * compute its distance to the center of each cell in the box.
+ * If that's less than best-so-far, update best distance and color number.
+ */
+
+ /* Nominal steps between cell centers ("x" in Thomas article) */
+#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
+#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
+#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
+
+ for (i = 0; i < numcolors; i++) {
+ icolor = GETJSAMPLE(colorlist[i]);
+ /* Compute (square of) distance from minc0/c1/c2 to this color */
+ inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
+ dist0 = inc0*inc0;
+ inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
+ dist0 += inc1*inc1;
+ inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
+ dist0 += inc2*inc2;
+ /* Form the initial difference increments */
+ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
+ inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
+ inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
+ /* Now loop over all cells in box, updating distance per Thomas method */
+ bptr = bestdist;
+ cptr = bestcolor;
+ xx0 = inc0;
+ for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
+ dist1 = dist0;
+ xx1 = inc1;
+ for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
+ dist2 = dist1;
+ xx2 = inc2;
+ for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
+ if (dist2 < *bptr) {
+ *bptr = dist2;
+ *cptr = (JSAMPLE) icolor;
+ }
+ dist2 += xx2;
+ xx2 += 2 * STEP_C2 * STEP_C2;
+ bptr++;
+ cptr++;
+ }
+ dist1 += xx1;
+ xx1 += 2 * STEP_C1 * STEP_C1;
+ }
+ dist0 += xx0;
+ xx0 += 2 * STEP_C0 * STEP_C0;
+ }
+ }
+}
+
+
+LOCAL(void)
+fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
+/* Fill the inverse-colormap entries in the update box that contains */
+/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
+/* we can fill as many others as we wish.) */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ int minc0, minc1, minc2; /* lower left corner of update box */
+ int ic0, ic1, ic2;
+ register JSAMPLE * cptr; /* pointer into bestcolor[] array */
+ register histptr cachep; /* pointer into main cache array */
+ /* This array lists the candidate colormap indexes. */
+ JSAMPLE colorlist[MAXNUMCOLORS];
+ int numcolors; /* number of candidate colors */
+ /* This array holds the actually closest colormap index for each cell. */
+ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+ /* Convert cell coordinates to update box ID */
+ c0 >>= BOX_C0_LOG;
+ c1 >>= BOX_C1_LOG;
+ c2 >>= BOX_C2_LOG;
+
+ /* Compute true coordinates of update box's origin corner.
+ * Actually we compute the coordinates of the center of the corner
+ * histogram cell, which are the lower bounds of the volume we care about.
+ */
+ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
+ minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
+ minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
+
+ /* Determine which colormap entries are close enough to be candidates
+ * for the nearest entry to some cell in the update box.
+ */
+ numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
+
+ /* Determine the actually nearest colors. */
+ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
+ bestcolor);
+
+ /* Save the best color numbers (plus 1) in the main cache array */
+ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
+ c1 <<= BOX_C1_LOG;
+ c2 <<= BOX_C2_LOG;
+ cptr = bestcolor;
+ for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
+ for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
+ cachep = & histogram[c0+ic0][c1+ic1][c2];
+ for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
+ *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
+ }
+ }
+ }
+}
+
+
+/*
+ * Map some rows of pixels to the output colormapped representation.
+ */
+
+METHODDEF(void)
+pass2_no_dither (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+/* This version performs no dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ register JSAMPROW inptr, outptr;
+ register histptr cachep;
+ register int c0, c1, c2;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ inptr = input_buf[row];
+ outptr = output_buf[row];
+ for (col = width; col > 0; col--) {
+ /* get pixel value and index into the cache */
+ c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
+ c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
+ c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
+ cachep = & histogram[c0][c1][c2];
+ /* If we have not seen this color before, find nearest colormap entry */
+ /* and update the cache */
+ if (*cachep == 0)
+ fill_inverse_cmap(cinfo, c0,c1,c2);
+ /* Now emit the colormap index for this cell */
+ *outptr++ = (JSAMPLE) (*cachep - 1);
+ }
+ }
+}
+
+
+METHODDEF(void)
+pass2_fs_dither (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+/* This version performs Floyd-Steinberg dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
+ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
+ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */
+ JSAMPROW inptr; /* => current input pixel */
+ JSAMPROW outptr; /* => current output pixel */
+ histptr cachep;
+ int dir; /* +1 or -1 depending on direction */
+ int dir3; /* 3*dir, for advancing inptr & errorptr */
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+ JSAMPLE *range_limit = cinfo->sample_range_limit;
+ int *error_limit = cquantize->error_limiter;
+ JSAMPROW colormap0 = cinfo->colormap[0];
+ JSAMPROW colormap1 = cinfo->colormap[1];
+ JSAMPROW colormap2 = cinfo->colormap[2];
+ SHIFT_TEMPS
+
+ for (row = 0; row < num_rows; row++) {
+ inptr = input_buf[row];
+ outptr = output_buf[row];
+ if (cquantize->on_odd_row) {
+ /* work right to left in this row */
+ inptr += (width-1) * 3; /* so point to rightmost pixel */
+ outptr += width-1;
+ dir = -1;
+ dir3 = -3;
+ errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
+ cquantize->on_odd_row = FALSE; /* flip for next time */
+ } else {
+ /* work left to right in this row */
+ dir = 1;
+ dir3 = 3;
+ errorptr = cquantize->fserrors; /* => entry before first real column */
+ cquantize->on_odd_row = TRUE; /* flip for next time */
+ }
+ /* Preset error values: no error propagated to first pixel from left */
+ cur0 = cur1 = cur2 = 0;
+ /* and no error propagated to row below yet */
+ belowerr0 = belowerr1 = belowerr2 = 0;
+ bpreverr0 = bpreverr1 = bpreverr2 = 0;
+
+ for (col = width; col > 0; col--) {
+ /* curN holds the error propagated from the previous pixel on the
+ * current line. Add the error propagated from the previous line
+ * to form the complete error correction term for this pixel, and
+ * round the error term (which is expressed * 16) to an integer.
+ * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+ * for either sign of the error value.
+ * Note: errorptr points to *previous* column's array entry.
+ */
+ cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
+ cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
+ cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
+ /* Limit the error using transfer function set by init_error_limit.
+ * See comments with init_error_limit for rationale.
+ */
+ cur0 = error_limit[cur0];
+ cur1 = error_limit[cur1];
+ cur2 = error_limit[cur2];
+ /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+ * The maximum error is +- MAXJSAMPLE (or less with error limiting);
+ * this sets the required size of the range_limit array.
+ */
+ cur0 += GETJSAMPLE(inptr[0]);
+ cur1 += GETJSAMPLE(inptr[1]);
+ cur2 += GETJSAMPLE(inptr[2]);
+ cur0 = GETJSAMPLE(range_limit[cur0]);
+ cur1 = GETJSAMPLE(range_limit[cur1]);
+ cur2 = GETJSAMPLE(range_limit[cur2]);
+ /* Index into the cache with adjusted pixel value */
+ cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
+ /* If we have not seen this color before, find nearest colormap */
+ /* entry and update the cache */
+ if (*cachep == 0)
+ fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
+ /* Now emit the colormap index for this cell */
+ { register int pixcode = *cachep - 1;
+ *outptr = (JSAMPLE) pixcode;
+ /* Compute representation error for this pixel */
+ cur0 -= GETJSAMPLE(colormap0[pixcode]);
+ cur1 -= GETJSAMPLE(colormap1[pixcode]);
+ cur2 -= GETJSAMPLE(colormap2[pixcode]);
+ }
+ /* Compute error fractions to be propagated to adjacent pixels.
+ * Add these into the running sums, and simultaneously shift the
+ * next-line error sums left by 1 column.
+ */
+ { register LOCFSERROR bnexterr, delta;
+
+ bnexterr = cur0; /* Process component 0 */
+ delta = cur0 * 2;
+ cur0 += delta; /* form error * 3 */
+ errorptr[0] = (FSERROR) (bpreverr0 + cur0);
+ cur0 += delta; /* form error * 5 */
+ bpreverr0 = belowerr0 + cur0;
+ belowerr0 = bnexterr;
+ cur0 += delta; /* form error * 7 */
+ bnexterr = cur1; /* Process component 1 */
+ delta = cur1 * 2;
+ cur1 += delta; /* form error * 3 */
+ errorptr[1] = (FSERROR) (bpreverr1 + cur1);
+ cur1 += delta; /* form error * 5 */
+ bpreverr1 = belowerr1 + cur1;
+ belowerr1 = bnexterr;
+ cur1 += delta; /* form error * 7 */
+ bnexterr = cur2; /* Process component 2 */
+ delta = cur2 * 2;
+ cur2 += delta; /* form error * 3 */
+ errorptr[2] = (FSERROR) (bpreverr2 + cur2);
+ cur2 += delta; /* form error * 5 */
+ bpreverr2 = belowerr2 + cur2;
+ belowerr2 = bnexterr;
+ cur2 += delta; /* form error * 7 */
+ }
+ /* At this point curN contains the 7/16 error value to be propagated
+ * to the next pixel on the current line, and all the errors for the
+ * next line have been shifted over. We are therefore ready to move on.
+ */
+ inptr += dir3; /* Advance pixel pointers to next column */
+ outptr += dir;
+ errorptr += dir3; /* advance errorptr to current column */
+ }
+ /* Post-loop cleanup: we must unload the final error values into the
+ * final fserrors[] entry. Note we need not unload belowerrN because
+ * it is for the dummy column before or after the actual array.
+ */
+ errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
+ errorptr[1] = (FSERROR) bpreverr1;
+ errorptr[2] = (FSERROR) bpreverr2;
+ }
+}
+
+
+/*
+ * Initialize the error-limiting transfer function (lookup table).
+ * The raw F-S error computation can potentially compute error values of up to
+ * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
+ * much less, otherwise obviously wrong pixels will be created. (Typical
+ * effects include weird fringes at color-area boundaries, isolated bright
+ * pixels in a dark area, etc.) The standard advice for avoiding this problem
+ * is to ensure that the "corners" of the color cube are allocated as output
+ * colors; then repeated errors in the same direction cannot cause cascading
+ * error buildup. However, that only prevents the error from getting
+ * completely out of hand; Aaron Giles reports that error limiting improves
+ * the results even with corner colors allocated.
+ * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
+ * well, but the smoother transfer function used below is even better. Thanks
+ * to Aaron Giles for this idea.
+ */
+
+LOCAL(void)
+init_error_limit (j_decompress_ptr cinfo)
+/* Allocate and fill in the error_limiter table */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ int * table;
+ int in, out;
+
+ table = (int *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
+ table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
+ cquantize->error_limiter = table;
+
+#define STEPSIZE ((MAXJSAMPLE+1)/16)
+ /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
+ out = 0;
+ for (in = 0; in < STEPSIZE; in++, out++) {
+ table[in] = out; table[-in] = -out;
+ }
+ /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
+ for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
+ table[in] = out; table[-in] = -out;
+ }
+ /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
+ for (; in <= MAXJSAMPLE; in++) {
+ table[in] = out; table[-in] = -out;
+ }
+#undef STEPSIZE
+}
+
+
+/*
+ * Finish up at the end of each pass.
+ */
+
+METHODDEF(void)
+finish_pass1 (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+
+ /* Select the representative colors and fill in cinfo->colormap */
+ cinfo->colormap = cquantize->sv_colormap;
+ select_colors(cinfo, cquantize->desired);
+ /* Force next pass to zero the color index table */
+ cquantize->needs_zeroed = TRUE;
+}
+
+
+METHODDEF(void)
+finish_pass2 (j_decompress_ptr cinfo)
+{
+ /* no work */
+}
+
+
+/*
+ * Initialize for each processing pass.
+ */
+
+METHODDEF(void)
+start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ int i;
+
+ /* Only F-S dithering or no dithering is supported. */
+ /* If user asks for ordered dither, give him F-S. */
+ if (cinfo->dither_mode != JDITHER_NONE)
+ cinfo->dither_mode = JDITHER_FS;
+
+ if (is_pre_scan) {
+ /* Set up method pointers */
+ cquantize->pub.color_quantize = prescan_quantize;
+ cquantize->pub.finish_pass = finish_pass1;
+ cquantize->needs_zeroed = TRUE; /* Always zero histogram */
+ } else {
+ /* Set up method pointers */
+ if (cinfo->dither_mode == JDITHER_FS)
+ cquantize->pub.color_quantize = pass2_fs_dither;
+ else
+ cquantize->pub.color_quantize = pass2_no_dither;
+ cquantize->pub.finish_pass = finish_pass2;
+
+ /* Make sure color count is acceptable */
+ i = cinfo->actual_number_of_colors;
+ if (i < 1)
+ ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
+ if (i > MAXNUMCOLORS)
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+
+ if (cinfo->dither_mode == JDITHER_FS) {
+ size_t arraysize = (size_t) ((cinfo->output_width + 2) *
+ (3 * SIZEOF(FSERROR)));
+ /* Allocate Floyd-Steinberg workspace if we didn't already. */
+ if (cquantize->fserrors == NULL)
+ cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+ /* Initialize the propagated errors to zero. */
+ jzero_far((void FAR *) cquantize->fserrors, arraysize);
+ /* Make the error-limit table if we didn't already. */
+ if (cquantize->error_limiter == NULL)
+ init_error_limit(cinfo);
+ cquantize->on_odd_row = FALSE;
+ }
+
+ }
+ /* Zero the histogram or inverse color map, if necessary */
+ if (cquantize->needs_zeroed) {
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ jzero_far((void FAR *) histogram[i],
+ HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+ }
+ cquantize->needs_zeroed = FALSE;
+ }
+}
+
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+METHODDEF(void)
+new_color_map_2_quant (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+
+ /* Reset the inverse color map */
+ cquantize->needs_zeroed = TRUE;
+}
+
+
+/*
+ * Module initialization routine for 2-pass color quantization.
+ */
+
+GLOBAL(void)
+jinit_2pass_quantizer (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize;
+ int i;
+
+ cquantize = (my_cquantize_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_cquantizer));
+ cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+ cquantize->pub.start_pass = start_pass_2_quant;
+ cquantize->pub.new_color_map = new_color_map_2_quant;
+ cquantize->fserrors = NULL; /* flag optional arrays not allocated */
+ cquantize->error_limiter = NULL;
+
+ /* Make sure jdmaster didn't give me a case I can't handle */
+ if (cinfo->out_color_components != 3)
+ ERREXIT(cinfo, JERR_NOTIMPL);
+
+ /* Allocate the histogram/inverse colormap storage */
+ cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+ }
+ cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
+
+ /* Allocate storage for the completed colormap, if required.
+ * We do this now since it is FAR storage and may affect
+ * the memory manager's space calculations.
+ */
+ if (cinfo->enable_2pass_quant) {
+ /* Make sure color count is acceptable */
+ int desired = cinfo->desired_number_of_colors;
+ /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
+ if (desired < 8)
+ ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
+ /* Make sure colormap indexes can be represented by JSAMPLEs */
+ if (desired > MAXNUMCOLORS)
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+ cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
+ cquantize->desired = desired;
+ } else
+ cquantize->sv_colormap = NULL;
+
+ /* Only F-S dithering or no dithering is supported. */
+ /* If user asks for ordered dither, give him F-S. */
+ if (cinfo->dither_mode != JDITHER_NONE)
+ cinfo->dither_mode = JDITHER_FS;
+
+ /* Allocate Floyd-Steinberg workspace if necessary.
+ * This isn't really needed until pass 2, but again it is FAR storage.
+ * Although we will cope with a later change in dither_mode,
+ * we do not promise to honor max_memory_to_use if dither_mode changes.
+ */
+ if (cinfo->dither_mode == JDITHER_FS) {
+ cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
+ /* Might as well create the error-limiting table too. */
+ init_error_limit(cinfo);
+ }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
diff --git a/src/3rdparty/libjpeg/jutils.c b/src/3rdparty/libjpeg/jutils.c
new file mode 100644
index 0000000..0435179
--- /dev/null
+++ b/src/3rdparty/libjpeg/jutils.c
@@ -0,0 +1,231 @@
+/*
+ * jutils.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains tables and miscellaneous utility routines needed
+ * for both compression and decompression.
+ * Note we prefix all global names with "j" to minimize conflicts with
+ * a surrounding application.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
+ * of a DCT block read in natural order (left to right, top to bottom).
+ */
+
+#if 0 /* This table is not actually needed in v6a */
+
+const int jpeg_zigzag_order[DCTSIZE2] = {
+ 0, 1, 5, 6, 14, 15, 27, 28,
+ 2, 4, 7, 13, 16, 26, 29, 42,
+ 3, 8, 12, 17, 25, 30, 41, 43,
+ 9, 11, 18, 24, 31, 40, 44, 53,
+ 10, 19, 23, 32, 39, 45, 52, 54,
+ 20, 22, 33, 38, 46, 51, 55, 60,
+ 21, 34, 37, 47, 50, 56, 59, 61,
+ 35, 36, 48, 49, 57, 58, 62, 63
+};
+
+#endif
+
+/*
+ * jpeg_natural_order[i] is the natural-order position of the i'th element
+ * of zigzag order.
+ *
+ * When reading corrupted data, the Huffman decoders could attempt
+ * to reference an entry beyond the end of this array (if the decoded
+ * zero run length reaches past the end of the block). To prevent
+ * wild stores without adding an inner-loop test, we put some extra
+ * "63"s after the real entries. This will cause the extra coefficient
+ * to be stored in location 63 of the block, not somewhere random.
+ * The worst case would be a run-length of 15, which means we need 16
+ * fake entries.
+ */
+
+const int jpeg_natural_order[DCTSIZE2+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order7[7*7+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 14, 21, 28, 35,
+ 42, 49, 50, 43, 36, 29, 22, 30,
+ 37, 44, 51, 52, 45, 38, 46, 53,
+ 54,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order6[6*6+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 41, 34, 27,
+ 20, 13, 21, 28, 35, 42, 43, 36,
+ 29, 37, 44, 45,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order5[5*5+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 12,
+ 19, 26, 33, 34, 27, 20, 28, 35,
+ 36,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order4[4*4+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 25, 18, 11, 19, 26, 27,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order3[3*3+16] = {
+ 0, 1, 8, 16, 9, 2, 10, 17,
+ 18,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order2[2*2+16] = {
+ 0, 1, 8, 9,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+
+/*
+ * Arithmetic utilities
+ */
+
+GLOBAL(long)
+jdiv_round_up (long a, long b)
+/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
+/* Assumes a >= 0, b > 0 */
+{
+ return (a + b - 1L) / b;
+}
+
+
+GLOBAL(long)
+jround_up (long a, long b)
+/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
+/* Assumes a >= 0, b > 0 */
+{
+ a += b - 1L;
+ return a - (a % b);
+}
+
+
+/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
+ * and coefficient-block arrays. This won't work on 80x86 because the arrays
+ * are FAR and we're assuming a small-pointer memory model. However, some
+ * DOS compilers provide far-pointer versions of memcpy() and memset() even
+ * in the small-model libraries. These will be used if USE_FMEM is defined.
+ * Otherwise, the routines below do it the hard way. (The performance cost
+ * is not all that great, because these routines aren't very heavily used.)
+ */
+
+#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
+#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
+#define FMEMZERO(target,size) MEMZERO(target,size)
+#else /* 80x86 case, define if we can */
+#ifdef USE_FMEM
+#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
+#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
+#endif
+#endif
+
+
+GLOBAL(void)
+jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols)
+/* Copy some rows of samples from one place to another.
+ * num_rows rows are copied from input_array[source_row++]
+ * to output_array[dest_row++]; these areas may overlap for duplication.
+ * The source and destination arrays must be at least as wide as num_cols.
+ */
+{
+ register JSAMPROW inptr, outptr;
+#ifdef FMEMCOPY
+ register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
+#else
+ register JDIMENSION count;
+#endif
+ register int row;
+
+ input_array += source_row;
+ output_array += dest_row;
+
+ for (row = num_rows; row > 0; row--) {
+ inptr = *input_array++;
+ outptr = *output_array++;
+#ifdef FMEMCOPY
+ FMEMCOPY(outptr, inptr, count);
+#else
+ for (count = num_cols; count > 0; count--)
+ *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
+#endif
+ }
+}
+
+
+GLOBAL(void)
+jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks)
+/* Copy a row of coefficient blocks from one place to another. */
+{
+#ifdef FMEMCOPY
+ FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
+#else
+ register JCOEFPTR inptr, outptr;
+ register long count;
+
+ inptr = (JCOEFPTR) input_row;
+ outptr = (JCOEFPTR) output_row;
+ for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
+ *outptr++ = *inptr++;
+ }
+#endif
+}
+
+
+GLOBAL(void)
+jzero_far (void FAR * target, size_t bytestozero)
+/* Zero out a chunk of FAR memory. */
+/* This might be sample-array data, block-array data, or alloc_large data. */
+{
+#ifdef FMEMZERO
+ FMEMZERO(target, bytestozero);
+#else
+ register char FAR * ptr = (char FAR *) target;
+ register size_t count;
+
+ for (count = bytestozero; count > 0; count--) {
+ *ptr++ = 0;
+ }
+#endif
+}
diff --git a/src/3rdparty/libjpeg/jversion.h b/src/3rdparty/libjpeg/jversion.h
new file mode 100644
index 0000000..0c4e6ea
--- /dev/null
+++ b/src/3rdparty/libjpeg/jversion.h
@@ -0,0 +1,14 @@
+/*
+ * jversion.h
+ *
+ * Copyright (C) 1991-2010, Thomas G. Lane, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains software version identification.
+ */
+
+
+#define JVERSION "8 10-Jan-2010"
+
+#define JCOPYRIGHT "Copyright (C) 2010, Thomas G. Lane, Guido Vollbeding"
diff --git a/src/3rdparty/libjpeg/libjpeg.map b/src/3rdparty/libjpeg/libjpeg.map
new file mode 100644
index 0000000..ac77dca
--- /dev/null
+++ b/src/3rdparty/libjpeg/libjpeg.map
@@ -0,0 +1,4 @@
+LIBJPEG_8.0 {
+ global:
+ *;
+};
diff --git a/src/3rdparty/libjpeg/libjpeg.txt b/src/3rdparty/libjpeg/libjpeg.txt
new file mode 100644
index 0000000..e5a85c0
--- /dev/null
+++ b/src/3rdparty/libjpeg/libjpeg.txt
@@ -0,0 +1,3070 @@
+USING THE IJG JPEG LIBRARY
+
+Copyright (C) 1994-2009, Thomas G. Lane, Guido Vollbeding.
+This file is part of the Independent JPEG Group's software.
+For conditions of distribution and use, see the accompanying README file.
+
+
+This file describes how to use the IJG JPEG library within an application
+program. Read it if you want to write a program that uses the library.
+
+The file example.c provides heavily commented skeleton code for calling the
+JPEG library. Also see jpeglib.h (the include file to be used by application
+programs) for full details about data structures and function parameter lists.
+The library source code, of course, is the ultimate reference.
+
+Note that there have been *major* changes from the application interface
+presented by IJG version 4 and earlier versions. The old design had several
+inherent limitations, and it had accumulated a lot of cruft as we added
+features while trying to minimize application-interface changes. We have
+sacrificed backward compatibility in the version 5 rewrite, but we think the
+improvements justify this.
+
+
+TABLE OF CONTENTS
+-----------------
+
+Overview:
+ Functions provided by the library
+ Outline of typical usage
+Basic library usage:
+ Data formats
+ Compression details
+ Decompression details
+ Mechanics of usage: include files, linking, etc
+Advanced features:
+ Compression parameter selection
+ Decompression parameter selection
+ Special color spaces
+ Error handling
+ Compressed data handling (source and destination managers)
+ I/O suspension
+ Progressive JPEG support
+ Buffered-image mode
+ Abbreviated datastreams and multiple images
+ Special markers
+ Raw (downsampled) image data
+ Really raw data: DCT coefficients
+ Progress monitoring
+ Memory management
+ Memory usage
+ Library compile-time options
+ Portability considerations
+ Notes for MS-DOS implementors
+
+You should read at least the overview and basic usage sections before trying
+to program with the library. The sections on advanced features can be read
+if and when you need them.
+
+
+OVERVIEW
+========
+
+Functions provided by the library
+---------------------------------
+
+The IJG JPEG library provides C code to read and write JPEG-compressed image
+files. The surrounding application program receives or supplies image data a
+scanline at a time, using a straightforward uncompressed image format. All
+details of color conversion and other preprocessing/postprocessing can be
+handled by the library.
+
+The library includes a substantial amount of code that is not covered by the
+JPEG standard but is necessary for typical applications of JPEG. These
+functions preprocess the image before JPEG compression or postprocess it after
+decompression. They include colorspace conversion, downsampling/upsampling,
+and color quantization. The application indirectly selects use of this code
+by specifying the format in which it wishes to supply or receive image data.
+For example, if colormapped output is requested, then the decompression
+library automatically invokes color quantization.
+
+A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
+and even more so in decompression postprocessing. The decompression library
+provides multiple implementations that cover most of the useful tradeoffs,
+ranging from very-high-quality down to fast-preview operation. On the
+compression side we have generally not provided low-quality choices, since
+compression is normally less time-critical. It should be understood that the
+low-quality modes may not meet the JPEG standard's accuracy requirements;
+nonetheless, they are useful for viewers.
+
+A word about functions *not* provided by the library. We handle a subset of
+the ISO JPEG standard; most baseline, extended-sequential, and progressive
+JPEG processes are supported. (Our subset includes all features now in common
+use.) Unsupported ISO options include:
+ * Hierarchical storage
+ * Lossless JPEG
+ * DNL marker
+ * Nonintegral subsampling ratios
+We support both 8- and 12-bit data precision, but this is a compile-time
+choice rather than a run-time choice; hence it is difficult to use both
+precisions in a single application.
+
+By itself, the library handles only interchange JPEG datastreams --- in
+particular the widely used JFIF file format. The library can be used by
+surrounding code to process interchange or abbreviated JPEG datastreams that
+are embedded in more complex file formats. (For example, this library is
+used by the free LIBTIFF library to support JPEG compression in TIFF.)
+
+
+Outline of typical usage
+------------------------
+
+The rough outline of a JPEG compression operation is:
+
+ Allocate and initialize a JPEG compression object
+ Specify the destination for the compressed data (eg, a file)
+ Set parameters for compression, including image size & colorspace
+ jpeg_start_compress(...);
+ while (scan lines remain to be written)
+ jpeg_write_scanlines(...);
+ jpeg_finish_compress(...);
+ Release the JPEG compression object
+
+A JPEG compression object holds parameters and working state for the JPEG
+library. We make creation/destruction of the object separate from starting
+or finishing compression of an image; the same object can be re-used for a
+series of image compression operations. This makes it easy to re-use the
+same parameter settings for a sequence of images. Re-use of a JPEG object
+also has important implications for processing abbreviated JPEG datastreams,
+as discussed later.
+
+The image data to be compressed is supplied to jpeg_write_scanlines() from
+in-memory buffers. If the application is doing file-to-file compression,
+reading image data from the source file is the application's responsibility.
+The library emits compressed data by calling a "data destination manager",
+which typically will write the data into a file; but the application can
+provide its own destination manager to do something else.
+
+Similarly, the rough outline of a JPEG decompression operation is:
+
+ Allocate and initialize a JPEG decompression object
+ Specify the source of the compressed data (eg, a file)
+ Call jpeg_read_header() to obtain image info
+ Set parameters for decompression
+ jpeg_start_decompress(...);
+ while (scan lines remain to be read)
+ jpeg_read_scanlines(...);
+ jpeg_finish_decompress(...);
+ Release the JPEG decompression object
+
+This is comparable to the compression outline except that reading the
+datastream header is a separate step. This is helpful because information
+about the image's size, colorspace, etc is available when the application
+selects decompression parameters. For example, the application can choose an
+output scaling ratio that will fit the image into the available screen size.
+
+The decompression library obtains compressed data by calling a data source
+manager, which typically will read the data from a file; but other behaviors
+can be obtained with a custom source manager. Decompressed data is delivered
+into in-memory buffers passed to jpeg_read_scanlines().
+
+It is possible to abort an incomplete compression or decompression operation
+by calling jpeg_abort(); or, if you do not need to retain the JPEG object,
+simply release it by calling jpeg_destroy().
+
+JPEG compression and decompression objects are two separate struct types.
+However, they share some common fields, and certain routines such as
+jpeg_destroy() can work on either type of object.
+
+The JPEG library has no static variables: all state is in the compression
+or decompression object. Therefore it is possible to process multiple
+compression and decompression operations concurrently, using multiple JPEG
+objects.
+
+Both compression and decompression can be done in an incremental memory-to-
+memory fashion, if suitable source/destination managers are used. See the
+section on "I/O suspension" for more details.
+
+
+BASIC LIBRARY USAGE
+===================
+
+Data formats
+------------
+
+Before diving into procedural details, it is helpful to understand the
+image data format that the JPEG library expects or returns.
+
+The standard input image format is a rectangular array of pixels, with each
+pixel having the same number of "component" or "sample" values (color
+channels). You must specify how many components there are and the colorspace
+interpretation of the components. Most applications will use RGB data
+(three components per pixel) or grayscale data (one component per pixel).
+PLEASE NOTE THAT RGB DATA IS THREE SAMPLES PER PIXEL, GRAYSCALE ONLY ONE.
+A remarkable number of people manage to miss this, only to find that their
+programs don't work with grayscale JPEG files.
+
+There is no provision for colormapped input. JPEG files are always full-color
+or full grayscale (or sometimes another colorspace such as CMYK). You can
+feed in a colormapped image by expanding it to full-color format. However
+JPEG often doesn't work very well with source data that has been colormapped,
+because of dithering noise. This is discussed in more detail in the JPEG FAQ
+and the other references mentioned in the README file.
+
+Pixels are stored by scanlines, with each scanline running from left to
+right. The component values for each pixel are adjacent in the row; for
+example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color. Each scanline is an
+array of data type JSAMPLE --- which is typically "unsigned char", unless
+you've changed jmorecfg.h. (You can also change the RGB pixel layout, say
+to B,G,R order, by modifying jmorecfg.h. But see the restrictions listed in
+that file before doing so.)
+
+A 2-D array of pixels is formed by making a list of pointers to the starts of
+scanlines; so the scanlines need not be physically adjacent in memory. Even
+if you process just one scanline at a time, you must make a one-element
+pointer array to conform to this structure. Pointers to JSAMPLE rows are of
+type JSAMPROW, and the pointer to the pointer array is of type JSAMPARRAY.
+
+The library accepts or supplies one or more complete scanlines per call.
+It is not possible to process part of a row at a time. Scanlines are always
+processed top-to-bottom. You can process an entire image in one call if you
+have it all in memory, but usually it's simplest to process one scanline at
+a time.
+
+For best results, source data values should have the precision specified by
+BITS_IN_JSAMPLE (normally 8 bits). For instance, if you choose to compress
+data that's only 6 bits/channel, you should left-justify each value in a
+byte before passing it to the compressor. If you need to compress data
+that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12.
+(See "Library compile-time options", later.)
+
+
+The data format returned by the decompressor is the same in all details,
+except that colormapped output is supported. (Again, a JPEG file is never
+colormapped. But you can ask the decompressor to perform on-the-fly color
+quantization to deliver colormapped output.) If you request colormapped
+output then the returned data array contains a single JSAMPLE per pixel;
+its value is an index into a color map. The color map is represented as
+a 2-D JSAMPARRAY in which each row holds the values of one color component,
+that is, colormap[i][j] is the value of the i'th color component for pixel
+value (map index) j. Note that since the colormap indexes are stored in
+JSAMPLEs, the maximum number of colors is limited by the size of JSAMPLE
+(ie, at most 256 colors for an 8-bit JPEG library).
+
+
+Compression details
+-------------------
+
+Here we revisit the JPEG compression outline given in the overview.
+
+1. Allocate and initialize a JPEG compression object.
+
+A JPEG compression object is a "struct jpeg_compress_struct". (It also has
+a bunch of subsidiary structures which are allocated via malloc(), but the
+application doesn't control those directly.) This struct can be just a local
+variable in the calling routine, if a single routine is going to execute the
+whole JPEG compression sequence. Otherwise it can be static or allocated
+from malloc().
+
+You will also need a structure representing a JPEG error handler. The part
+of this that the library cares about is a "struct jpeg_error_mgr". If you
+are providing your own error handler, you'll typically want to embed the
+jpeg_error_mgr struct in a larger structure; this is discussed later under
+"Error handling". For now we'll assume you are just using the default error
+handler. The default error handler will print JPEG error/warning messages
+on stderr, and it will call exit() if a fatal error occurs.
+
+You must initialize the error handler structure, store a pointer to it into
+the JPEG object's "err" field, and then call jpeg_create_compress() to
+initialize the rest of the JPEG object.
+
+Typical code for this step, if you are using the default error handler, is
+
+ struct jpeg_compress_struct cinfo;
+ struct jpeg_error_mgr jerr;
+ ...
+ cinfo.err = jpeg_std_error(&jerr);
+ jpeg_create_compress(&cinfo);
+
+jpeg_create_compress allocates a small amount of memory, so it could fail
+if you are out of memory. In that case it will exit via the error handler;
+that's why the error handler must be initialized first.
+
+
+2. Specify the destination for the compressed data (eg, a file).
+
+As previously mentioned, the JPEG library delivers compressed data to a
+"data destination" module. The library includes one data destination
+module which knows how to write to a stdio stream. You can use your own
+destination module if you want to do something else, as discussed later.
+
+If you use the standard destination module, you must open the target stdio
+stream beforehand. Typical code for this step looks like:
+
+ FILE * outfile;
+ ...
+ if ((outfile = fopen(filename, "wb")) == NULL) {
+ fprintf(stderr, "can't open %s\n", filename);
+ exit(1);
+ }
+ jpeg_stdio_dest(&cinfo, outfile);
+
+where the last line invokes the standard destination module.
+
+WARNING: it is critical that the binary compressed data be delivered to the
+output file unchanged. On non-Unix systems the stdio library may perform
+newline translation or otherwise corrupt binary data. To suppress this
+behavior, you may need to use a "b" option to fopen (as shown above), or use
+setmode() or another routine to put the stdio stream in binary mode. See
+cjpeg.c and djpeg.c for code that has been found to work on many systems.
+
+You can select the data destination after setting other parameters (step 3),
+if that's more convenient. You may not change the destination between
+calling jpeg_start_compress() and jpeg_finish_compress().
+
+
+3. Set parameters for compression, including image size & colorspace.
+
+You must supply information about the source image by setting the following
+fields in the JPEG object (cinfo structure):
+
+ image_width Width of image, in pixels
+ image_height Height of image, in pixels
+ input_components Number of color channels (samples per pixel)
+ in_color_space Color space of source image
+
+The image dimensions are, hopefully, obvious. JPEG supports image dimensions
+of 1 to 64K pixels in either direction. The input color space is typically
+RGB or grayscale, and input_components is 3 or 1 accordingly. (See "Special
+color spaces", later, for more info.) The in_color_space field must be
+assigned one of the J_COLOR_SPACE enum constants, typically JCS_RGB or
+JCS_GRAYSCALE.
+
+JPEG has a large number of compression parameters that determine how the
+image is encoded. Most applications don't need or want to know about all
+these parameters. You can set all the parameters to reasonable defaults by
+calling jpeg_set_defaults(); then, if there are particular values you want
+to change, you can do so after that. The "Compression parameter selection"
+section tells about all the parameters.
+
+You must set in_color_space correctly before calling jpeg_set_defaults(),
+because the defaults depend on the source image colorspace. However the
+other three source image parameters need not be valid until you call
+jpeg_start_compress(). There's no harm in calling jpeg_set_defaults() more
+than once, if that happens to be convenient.
+
+Typical code for a 24-bit RGB source image is
+
+ cinfo.image_width = Width; /* image width and height, in pixels */
+ cinfo.image_height = Height;
+ cinfo.input_components = 3; /* # of color components per pixel */
+ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
+
+ jpeg_set_defaults(&cinfo);
+ /* Make optional parameter settings here */
+
+
+4. jpeg_start_compress(...);
+
+After you have established the data destination and set all the necessary
+source image info and other parameters, call jpeg_start_compress() to begin
+a compression cycle. This will initialize internal state, allocate working
+storage, and emit the first few bytes of the JPEG datastream header.
+
+Typical code:
+
+ jpeg_start_compress(&cinfo, TRUE);
+
+The "TRUE" parameter ensures that a complete JPEG interchange datastream
+will be written. This is appropriate in most cases. If you think you might
+want to use an abbreviated datastream, read the section on abbreviated
+datastreams, below.
+
+Once you have called jpeg_start_compress(), you may not alter any JPEG
+parameters or other fields of the JPEG object until you have completed
+the compression cycle.
+
+
+5. while (scan lines remain to be written)
+ jpeg_write_scanlines(...);
+
+Now write all the required image data by calling jpeg_write_scanlines()
+one or more times. You can pass one or more scanlines in each call, up
+to the total image height. In most applications it is convenient to pass
+just one or a few scanlines at a time. The expected format for the passed
+data is discussed under "Data formats", above.
+
+Image data should be written in top-to-bottom scanline order. The JPEG spec
+contains some weasel wording about how top and bottom are application-defined
+terms (a curious interpretation of the English language...) but if you want
+your files to be compatible with everyone else's, you WILL use top-to-bottom
+order. If the source data must be read in bottom-to-top order, you can use
+the JPEG library's virtual array mechanism to invert the data efficiently.
+Examples of this can be found in the sample application cjpeg.
+
+The library maintains a count of the number of scanlines written so far
+in the next_scanline field of the JPEG object. Usually you can just use
+this variable as the loop counter, so that the loop test looks like
+"while (cinfo.next_scanline < cinfo.image_height)".
+
+Code for this step depends heavily on the way that you store the source data.
+example.c shows the following code for the case of a full-size 2-D source
+array containing 3-byte RGB pixels:
+
+ JSAMPROW row_pointer[1]; /* pointer to a single row */
+ int row_stride; /* physical row width in buffer */
+
+ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
+
+ while (cinfo.next_scanline < cinfo.image_height) {
+ row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
+ jpeg_write_scanlines(&cinfo, row_pointer, 1);
+ }
+
+jpeg_write_scanlines() returns the number of scanlines actually written.
+This will normally be equal to the number passed in, so you can usually
+ignore the return value. It is different in just two cases:
+ * If you try to write more scanlines than the declared image height,
+ the additional scanlines are ignored.
+ * If you use a suspending data destination manager, output buffer overrun
+ will cause the compressor to return before accepting all the passed lines.
+ This feature is discussed under "I/O suspension", below. The normal
+ stdio destination manager will NOT cause this to happen.
+In any case, the return value is the same as the change in the value of
+next_scanline.
+
+
+6. jpeg_finish_compress(...);
+
+After all the image data has been written, call jpeg_finish_compress() to
+complete the compression cycle. This step is ESSENTIAL to ensure that the
+last bufferload of data is written to the data destination.
+jpeg_finish_compress() also releases working memory associated with the JPEG
+object.
+
+Typical code:
+
+ jpeg_finish_compress(&cinfo);
+
+If using the stdio destination manager, don't forget to close the output
+stdio stream (if necessary) afterwards.
+
+If you have requested a multi-pass operating mode, such as Huffman code
+optimization, jpeg_finish_compress() will perform the additional passes using
+data buffered by the first pass. In this case jpeg_finish_compress() may take
+quite a while to complete. With the default compression parameters, this will
+not happen.
+
+It is an error to call jpeg_finish_compress() before writing the necessary
+total number of scanlines. If you wish to abort compression, call
+jpeg_abort() as discussed below.
+
+After completing a compression cycle, you may dispose of the JPEG object
+as discussed next, or you may use it to compress another image. In that case
+return to step 2, 3, or 4 as appropriate. If you do not change the
+destination manager, the new datastream will be written to the same target.
+If you do not change any JPEG parameters, the new datastream will be written
+with the same parameters as before. Note that you can change the input image
+dimensions freely between cycles, but if you change the input colorspace, you
+should call jpeg_set_defaults() to adjust for the new colorspace; and then
+you'll need to repeat all of step 3.
+
+
+7. Release the JPEG compression object.
+
+When you are done with a JPEG compression object, destroy it by calling
+jpeg_destroy_compress(). This will free all subsidiary memory (regardless of
+the previous state of the object). Or you can call jpeg_destroy(), which
+works for either compression or decompression objects --- this may be more
+convenient if you are sharing code between compression and decompression
+cases. (Actually, these routines are equivalent except for the declared type
+of the passed pointer. To avoid gripes from ANSI C compilers, jpeg_destroy()
+should be passed a j_common_ptr.)
+
+If you allocated the jpeg_compress_struct structure from malloc(), freeing
+it is your responsibility --- jpeg_destroy() won't. Ditto for the error
+handler structure.
+
+Typical code:
+
+ jpeg_destroy_compress(&cinfo);
+
+
+8. Aborting.
+
+If you decide to abort a compression cycle before finishing, you can clean up
+in either of two ways:
+
+* If you don't need the JPEG object any more, just call
+ jpeg_destroy_compress() or jpeg_destroy() to release memory. This is
+ legitimate at any point after calling jpeg_create_compress() --- in fact,
+ it's safe even if jpeg_create_compress() fails.
+
+* If you want to re-use the JPEG object, call jpeg_abort_compress(), or call
+ jpeg_abort() which works on both compression and decompression objects.
+ This will return the object to an idle state, releasing any working memory.
+ jpeg_abort() is allowed at any time after successful object creation.
+
+Note that cleaning up the data destination, if required, is your
+responsibility; neither of these routines will call term_destination().
+(See "Compressed data handling", below, for more about that.)
+
+jpeg_destroy() and jpeg_abort() are the only safe calls to make on a JPEG
+object that has reported an error by calling error_exit (see "Error handling"
+for more info). The internal state of such an object is likely to be out of
+whack. Either of these two routines will return the object to a known state.
+
+
+Decompression details
+---------------------
+
+Here we revisit the JPEG decompression outline given in the overview.
+
+1. Allocate and initialize a JPEG decompression object.
+
+This is just like initialization for compression, as discussed above,
+except that the object is a "struct jpeg_decompress_struct" and you
+call jpeg_create_decompress(). Error handling is exactly the same.
+
+Typical code:
+
+ struct jpeg_decompress_struct cinfo;
+ struct jpeg_error_mgr jerr;
+ ...
+ cinfo.err = jpeg_std_error(&jerr);
+ jpeg_create_decompress(&cinfo);
+
+(Both here and in the IJG code, we usually use variable name "cinfo" for
+both compression and decompression objects.)
+
+
+2. Specify the source of the compressed data (eg, a file).
+
+As previously mentioned, the JPEG library reads compressed data from a "data
+source" module. The library includes one data source module which knows how
+to read from a stdio stream. You can use your own source module if you want
+to do something else, as discussed later.
+
+If you use the standard source module, you must open the source stdio stream
+beforehand. Typical code for this step looks like:
+
+ FILE * infile;
+ ...
+ if ((infile = fopen(filename, "rb")) == NULL) {
+ fprintf(stderr, "can't open %s\n", filename);
+ exit(1);
+ }
+ jpeg_stdio_src(&cinfo, infile);
+
+where the last line invokes the standard source module.
+
+WARNING: it is critical that the binary compressed data be read unchanged.
+On non-Unix systems the stdio library may perform newline translation or
+otherwise corrupt binary data. To suppress this behavior, you may need to use
+a "b" option to fopen (as shown above), or use setmode() or another routine to
+put the stdio stream in binary mode. See cjpeg.c and djpeg.c for code that
+has been found to work on many systems.
+
+You may not change the data source between calling jpeg_read_header() and
+jpeg_finish_decompress(). If you wish to read a series of JPEG images from
+a single source file, you should repeat the jpeg_read_header() to
+jpeg_finish_decompress() sequence without reinitializing either the JPEG
+object or the data source module; this prevents buffered input data from
+being discarded.
+
+
+3. Call jpeg_read_header() to obtain image info.
+
+Typical code for this step is just
+
+ jpeg_read_header(&cinfo, TRUE);
+
+This will read the source datastream header markers, up to the beginning
+of the compressed data proper. On return, the image dimensions and other
+info have been stored in the JPEG object. The application may wish to
+consult this information before selecting decompression parameters.
+
+More complex code is necessary if
+ * A suspending data source is used --- in that case jpeg_read_header()
+ may return before it has read all the header data. See "I/O suspension",
+ below. The normal stdio source manager will NOT cause this to happen.
+ * Abbreviated JPEG files are to be processed --- see the section on
+ abbreviated datastreams. Standard applications that deal only in
+ interchange JPEG files need not be concerned with this case either.
+
+It is permissible to stop at this point if you just wanted to find out the
+image dimensions and other header info for a JPEG file. In that case,
+call jpeg_destroy() when you are done with the JPEG object, or call
+jpeg_abort() to return it to an idle state before selecting a new data
+source and reading another header.
+
+
+4. Set parameters for decompression.
+
+jpeg_read_header() sets appropriate default decompression parameters based on
+the properties of the image (in particular, its colorspace). However, you
+may well want to alter these defaults before beginning the decompression.
+For example, the default is to produce full color output from a color file.
+If you want colormapped output you must ask for it. Other options allow the
+returned image to be scaled and allow various speed/quality tradeoffs to be
+selected. "Decompression parameter selection", below, gives details.
+
+If the defaults are appropriate, nothing need be done at this step.
+
+Note that all default values are set by each call to jpeg_read_header().
+If you reuse a decompression object, you cannot expect your parameter
+settings to be preserved across cycles, as you can for compression.
+You must set desired parameter values each time.
+
+
+5. jpeg_start_decompress(...);
+
+Once the parameter values are satisfactory, call jpeg_start_decompress() to
+begin decompression. This will initialize internal state, allocate working
+memory, and prepare for returning data.
+
+Typical code is just
+
+ jpeg_start_decompress(&cinfo);
+
+If you have requested a multi-pass operating mode, such as 2-pass color
+quantization, jpeg_start_decompress() will do everything needed before data
+output can begin. In this case jpeg_start_decompress() may take quite a while
+to complete. With a single-scan (non progressive) JPEG file and default
+decompression parameters, this will not happen; jpeg_start_decompress() will
+return quickly.
+
+After this call, the final output image dimensions, including any requested
+scaling, are available in the JPEG object; so is the selected colormap, if
+colormapped output has been requested. Useful fields include
+
+ output_width image width and height, as scaled
+ output_height
+ out_color_components # of color components in out_color_space
+ output_components # of color components returned per pixel
+ colormap the selected colormap, if any
+ actual_number_of_colors number of entries in colormap
+
+output_components is 1 (a colormap index) when quantizing colors; otherwise it
+equals out_color_components. It is the number of JSAMPLE values that will be
+emitted per pixel in the output arrays.
+
+Typically you will need to allocate data buffers to hold the incoming image.
+You will need output_width * output_components JSAMPLEs per scanline in your
+output buffer, and a total of output_height scanlines will be returned.
+
+Note: if you are using the JPEG library's internal memory manager to allocate
+data buffers (as djpeg does), then the manager's protocol requires that you
+request large buffers *before* calling jpeg_start_decompress(). This is a
+little tricky since the output_XXX fields are not normally valid then. You
+can make them valid by calling jpeg_calc_output_dimensions() after setting the
+relevant parameters (scaling, output color space, and quantization flag).
+
+
+6. while (scan lines remain to be read)
+ jpeg_read_scanlines(...);
+
+Now you can read the decompressed image data by calling jpeg_read_scanlines()
+one or more times. At each call, you pass in the maximum number of scanlines
+to be read (ie, the height of your working buffer); jpeg_read_scanlines()
+will return up to that many lines. The return value is the number of lines
+actually read. The format of the returned data is discussed under "Data
+formats", above. Don't forget that grayscale and color JPEGs will return
+different data formats!
+
+Image data is returned in top-to-bottom scanline order. If you must write
+out the image in bottom-to-top order, you can use the JPEG library's virtual
+array mechanism to invert the data efficiently. Examples of this can be
+found in the sample application djpeg.
+
+The library maintains a count of the number of scanlines returned so far
+in the output_scanline field of the JPEG object. Usually you can just use
+this variable as the loop counter, so that the loop test looks like
+"while (cinfo.output_scanline < cinfo.output_height)". (Note that the test
+should NOT be against image_height, unless you never use scaling. The
+image_height field is the height of the original unscaled image.)
+The return value always equals the change in the value of output_scanline.
+
+If you don't use a suspending data source, it is safe to assume that
+jpeg_read_scanlines() reads at least one scanline per call, until the
+bottom of the image has been reached.
+
+If you use a buffer larger than one scanline, it is NOT safe to assume that
+jpeg_read_scanlines() fills it. (The current implementation returns only a
+few scanlines per call, no matter how large a buffer you pass.) So you must
+always provide a loop that calls jpeg_read_scanlines() repeatedly until the
+whole image has been read.
+
+
+7. jpeg_finish_decompress(...);
+
+After all the image data has been read, call jpeg_finish_decompress() to
+complete the decompression cycle. This causes working memory associated
+with the JPEG object to be released.
+
+Typical code:
+
+ jpeg_finish_decompress(&cinfo);
+
+If using the stdio source manager, don't forget to close the source stdio
+stream if necessary.
+
+It is an error to call jpeg_finish_decompress() before reading the correct
+total number of scanlines. If you wish to abort decompression, call
+jpeg_abort() as discussed below.
+
+After completing a decompression cycle, you may dispose of the JPEG object as
+discussed next, or you may use it to decompress another image. In that case
+return to step 2 or 3 as appropriate. If you do not change the source
+manager, the next image will be read from the same source.
+
+
+8. Release the JPEG decompression object.
+
+When you are done with a JPEG decompression object, destroy it by calling
+jpeg_destroy_decompress() or jpeg_destroy(). The previous discussion of
+destroying compression objects applies here too.
+
+Typical code:
+
+ jpeg_destroy_decompress(&cinfo);
+
+
+9. Aborting.
+
+You can abort a decompression cycle by calling jpeg_destroy_decompress() or
+jpeg_destroy() if you don't need the JPEG object any more, or
+jpeg_abort_decompress() or jpeg_abort() if you want to reuse the object.
+The previous discussion of aborting compression cycles applies here too.
+
+
+Mechanics of usage: include files, linking, etc
+-----------------------------------------------
+
+Applications using the JPEG library should include the header file jpeglib.h
+to obtain declarations of data types and routines. Before including
+jpeglib.h, include system headers that define at least the typedefs FILE and
+size_t. On ANSI-conforming systems, including <stdio.h> is sufficient; on
+older Unix systems, you may need <sys/types.h> to define size_t.
+
+If the application needs to refer to individual JPEG library error codes, also
+include jerror.h to define those symbols.
+
+jpeglib.h indirectly includes the files jconfig.h and jmorecfg.h. If you are
+installing the JPEG header files in a system directory, you will want to
+install all four files: jpeglib.h, jerror.h, jconfig.h, jmorecfg.h.
+
+The most convenient way to include the JPEG code into your executable program
+is to prepare a library file ("libjpeg.a", or a corresponding name on non-Unix
+machines) and reference it at your link step. If you use only half of the
+library (only compression or only decompression), only that much code will be
+included from the library, unless your linker is hopelessly brain-damaged.
+The supplied makefiles build libjpeg.a automatically (see install.txt).
+
+While you can build the JPEG library as a shared library if the whim strikes
+you, we don't really recommend it. The trouble with shared libraries is that
+at some point you'll probably try to substitute a new version of the library
+without recompiling the calling applications. That generally doesn't work
+because the parameter struct declarations usually change with each new
+version. In other words, the library's API is *not* guaranteed binary
+compatible across versions; we only try to ensure source-code compatibility.
+(In hindsight, it might have been smarter to hide the parameter structs from
+applications and introduce a ton of access functions instead. Too late now,
+however.)
+
+On some systems your application may need to set up a signal handler to ensure
+that temporary files are deleted if the program is interrupted. This is most
+critical if you are on MS-DOS and use the jmemdos.c memory manager back end;
+it will try to grab extended memory for temp files, and that space will NOT be
+freed automatically. See cjpeg.c or djpeg.c for an example signal handler.
+
+It may be worth pointing out that the core JPEG library does not actually
+require the stdio library: only the default source/destination managers and
+error handler need it. You can use the library in a stdio-less environment
+if you replace those modules and use jmemnobs.c (or another memory manager of
+your own devising). More info about the minimum system library requirements
+may be found in jinclude.h.
+
+
+ADVANCED FEATURES
+=================
+
+Compression parameter selection
+-------------------------------
+
+This section describes all the optional parameters you can set for JPEG
+compression, as well as the "helper" routines provided to assist in this
+task. Proper setting of some parameters requires detailed understanding
+of the JPEG standard; if you don't know what a parameter is for, it's best
+not to mess with it! See REFERENCES in the README file for pointers to
+more info about JPEG.
+
+It's a good idea to call jpeg_set_defaults() first, even if you plan to set
+all the parameters; that way your code is more likely to work with future JPEG
+libraries that have additional parameters. For the same reason, we recommend
+you use a helper routine where one is provided, in preference to twiddling
+cinfo fields directly.
+
+The helper routines are:
+
+jpeg_set_defaults (j_compress_ptr cinfo)
+ This routine sets all JPEG parameters to reasonable defaults, using
+ only the input image's color space (field in_color_space, which must
+ already be set in cinfo). Many applications will only need to use
+ this routine and perhaps jpeg_set_quality().
+
+jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
+ Sets the JPEG file's colorspace (field jpeg_color_space) as specified,
+ and sets other color-space-dependent parameters appropriately. See
+ "Special color spaces", below, before using this. A large number of
+ parameters, including all per-component parameters, are set by this
+ routine; if you want to twiddle individual parameters you should call
+ jpeg_set_colorspace() before rather than after.
+
+jpeg_default_colorspace (j_compress_ptr cinfo)
+ Selects an appropriate JPEG colorspace based on cinfo->in_color_space,
+ and calls jpeg_set_colorspace(). This is actually a subroutine of
+ jpeg_set_defaults(). It's broken out in case you want to change
+ just the colorspace-dependent JPEG parameters.
+
+jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
+ Constructs JPEG quantization tables appropriate for the indicated
+ quality setting. The quality value is expressed on the 0..100 scale
+ recommended by IJG (cjpeg's "-quality" switch uses this routine).
+ Note that the exact mapping from quality values to tables may change
+ in future IJG releases as more is learned about DCT quantization.
+ If the force_baseline parameter is TRUE, then the quantization table
+ entries are constrained to the range 1..255 for full JPEG baseline
+ compatibility. In the current implementation, this only makes a
+ difference for quality settings below 25, and it effectively prevents
+ very small/low quality files from being generated. The IJG decoder
+ is capable of reading the non-baseline files generated at low quality
+ settings when force_baseline is FALSE, but other decoders may not be.
+
+jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
+ boolean force_baseline)
+ Same as jpeg_set_quality() except that the generated tables are the
+ sample tables given in the JPEC spec section K.1, multiplied by the
+ specified scale factor (which is expressed as a percentage; thus
+ scale_factor = 100 reproduces the spec's tables). Note that larger
+ scale factors give lower quality. This entry point is useful for
+ conforming to the Adobe PostScript DCT conventions, but we do not
+ recommend linear scaling as a user-visible quality scale otherwise.
+ force_baseline again constrains the computed table entries to 1..255.
+
+int jpeg_quality_scaling (int quality)
+ Converts a value on the IJG-recommended quality scale to a linear
+ scaling percentage. Note that this routine may change or go away
+ in future releases --- IJG may choose to adopt a scaling method that
+ can't be expressed as a simple scalar multiplier, in which case the
+ premise of this routine collapses. Caveat user.
+
+jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
+ Set default quantization tables with linear q_scale_factor[] values
+ (see below).
+
+jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
+ const unsigned int *basic_table,
+ int scale_factor, boolean force_baseline)
+ Allows an arbitrary quantization table to be created. which_tbl
+ indicates which table slot to fill. basic_table points to an array
+ of 64 unsigned ints given in normal array order. These values are
+ multiplied by scale_factor/100 and then clamped to the range 1..65535
+ (or to 1..255 if force_baseline is TRUE).
+ CAUTION: prior to library version 6a, jpeg_add_quant_table expected
+ the basic table to be given in JPEG zigzag order. If you need to
+ write code that works with either older or newer versions of this
+ routine, you must check the library version number. Something like
+ "#if JPEG_LIB_VERSION >= 61" is the right test.
+
+jpeg_simple_progression (j_compress_ptr cinfo)
+ Generates a default scan script for writing a progressive-JPEG file.
+ This is the recommended method of creating a progressive file,
+ unless you want to make a custom scan sequence. You must ensure that
+ the JPEG color space is set correctly before calling this routine.
+
+
+Compression parameters (cinfo fields) include:
+
+J_DCT_METHOD dct_method
+ Selects the algorithm used for the DCT step. Choices are:
+ JDCT_ISLOW: slow but accurate integer algorithm
+ JDCT_IFAST: faster, less accurate integer method
+ JDCT_FLOAT: floating-point method
+ JDCT_DEFAULT: default method (normally JDCT_ISLOW)
+ JDCT_FASTEST: fastest method (normally JDCT_IFAST)
+ The FLOAT method is very slightly more accurate than the ISLOW method,
+ but may give different results on different machines due to varying
+ roundoff behavior. The integer methods should give the same results
+ on all machines. On machines with sufficiently fast FP hardware, the
+ floating-point method may also be the fastest. The IFAST method is
+ considerably less accurate than the other two; its use is not
+ recommended if high quality is a concern. JDCT_DEFAULT and
+ JDCT_FASTEST are macros configurable by each installation.
+
+unsigned int scale_num, scale_denom
+ Scale the image by the fraction scale_num/scale_denom. Default is
+ 1/1, or no scaling. Currently, the supported scaling ratios are
+ 8/N with all N from 1 to 16. (The library design allows for arbitrary
+ scaling ratios but this is not likely to be implemented any time soon.)
+
+J_COLOR_SPACE jpeg_color_space
+int num_components
+ The JPEG color space and corresponding number of components; see
+ "Special color spaces", below, for more info. We recommend using
+ jpeg_set_color_space() if you want to change these.
+
+boolean optimize_coding
+ TRUE causes the compressor to compute optimal Huffman coding tables
+ for the image. This requires an extra pass over the data and
+ therefore costs a good deal of space and time. The default is
+ FALSE, which tells the compressor to use the supplied or default
+ Huffman tables. In most cases optimal tables save only a few percent
+ of file size compared to the default tables. Note that when this is
+ TRUE, you need not supply Huffman tables at all, and any you do
+ supply will be overwritten.
+
+unsigned int restart_interval
+int restart_in_rows
+ To emit restart markers in the JPEG file, set one of these nonzero.
+ Set restart_interval to specify the exact interval in MCU blocks.
+ Set restart_in_rows to specify the interval in MCU rows. (If
+ restart_in_rows is not 0, then restart_interval is set after the
+ image width in MCUs is computed.) Defaults are zero (no restarts).
+ One restart marker per MCU row is often a good choice.
+ NOTE: the overhead of restart markers is higher in grayscale JPEG
+ files than in color files, and MUCH higher in progressive JPEGs.
+ If you use restarts, you may want to use larger intervals in those
+ cases.
+
+const jpeg_scan_info * scan_info
+int num_scans
+ By default, scan_info is NULL; this causes the compressor to write a
+ single-scan sequential JPEG file. If not NULL, scan_info points to
+ an array of scan definition records of length num_scans. The
+ compressor will then write a JPEG file having one scan for each scan
+ definition record. This is used to generate noninterleaved or
+ progressive JPEG files. The library checks that the scan array
+ defines a valid JPEG scan sequence. (jpeg_simple_progression creates
+ a suitable scan definition array for progressive JPEG.) This is
+ discussed further under "Progressive JPEG support".
+
+boolean do_fancy_downsampling
+ If TRUE, use direct DCT scaling with DCT size > 8 for downsampling
+ of chroma components.
+ If FALSE, use only DCT size <= 8 and simple separate downsampling.
+ Default is TRUE.
+ For better image stability in multiple generation compression cycles
+ it is preferable that this value matches the corresponding
+ do_fancy_upsampling value in decompression.
+
+int smoothing_factor
+ If non-zero, the input image is smoothed; the value should be 1 for
+ minimal smoothing to 100 for maximum smoothing. Consult jcsample.c
+ for details of the smoothing algorithm. The default is zero.
+
+boolean write_JFIF_header
+ If TRUE, a JFIF APP0 marker is emitted. jpeg_set_defaults() and
+ jpeg_set_colorspace() set this TRUE if a JFIF-legal JPEG color space
+ (ie, YCbCr or grayscale) is selected, otherwise FALSE.
+
+UINT8 JFIF_major_version
+UINT8 JFIF_minor_version
+ The version number to be written into the JFIF marker.
+ jpeg_set_defaults() initializes the version to 1.01 (major=minor=1).
+ You should set it to 1.02 (major=1, minor=2) if you plan to write
+ any JFIF 1.02 extension markers.
+
+UINT8 density_unit
+UINT16 X_density
+UINT16 Y_density
+ The resolution information to be written into the JFIF marker;
+ not used otherwise. density_unit may be 0 for unknown,
+ 1 for dots/inch, or 2 for dots/cm. The default values are 0,1,1
+ indicating square pixels of unknown size.
+
+boolean write_Adobe_marker
+ If TRUE, an Adobe APP14 marker is emitted. jpeg_set_defaults() and
+ jpeg_set_colorspace() set this TRUE if JPEG color space RGB, CMYK,
+ or YCCK is selected, otherwise FALSE. It is generally a bad idea
+ to set both write_JFIF_header and write_Adobe_marker. In fact,
+ you probably shouldn't change the default settings at all --- the
+ default behavior ensures that the JPEG file's color space can be
+ recognized by the decoder.
+
+JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]
+ Pointers to coefficient quantization tables, one per table slot,
+ or NULL if no table is defined for a slot. Usually these should
+ be set via one of the above helper routines; jpeg_add_quant_table()
+ is general enough to define any quantization table. The other
+ routines will set up table slot 0 for luminance quality and table
+ slot 1 for chrominance.
+
+int q_scale_factor[NUM_QUANT_TBLS]
+ Linear quantization scaling factors (percentage, initialized 100)
+ for use with jpeg_default_qtables().
+ See rdswitch.c and cjpeg.c for an example of usage.
+ Note that the q_scale_factor[] fields are the "linear" scales, so you
+ have to convert from user-defined ratings via jpeg_quality_scaling().
+ Here is an example code which corresponds to cjpeg -quality 90,70:
+
+ jpeg_set_defaults(cinfo);
+
+ /* Set luminance quality 90. */
+ cinfo->q_scale_factor[0] = jpeg_quality_scaling(90);
+ /* Set chrominance quality 70. */
+ cinfo->q_scale_factor[1] = jpeg_quality_scaling(70);
+
+ jpeg_default_qtables(cinfo, force_baseline);
+
+ CAUTION: You must also set 1x1 subsampling for efficient separate
+ color quality selection, since the default value used by library
+ is 2x2:
+
+ cinfo->comp_info[0].v_samp_factor = 1;
+ cinfo->comp_info[0].h_samp_factor = 1;
+
+JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]
+JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]
+ Pointers to Huffman coding tables, one per table slot, or NULL if
+ no table is defined for a slot. Slots 0 and 1 are filled with the
+ JPEG sample tables by jpeg_set_defaults(). If you need to allocate
+ more table structures, jpeg_alloc_huff_table() may be used.
+ Note that optimal Huffman tables can be computed for an image
+ by setting optimize_coding, as discussed above; there's seldom
+ any need to mess with providing your own Huffman tables.
+
+
+The actual dimensions of the JPEG image that will be written to the file are
+given by the following fields. These are computed from the input image
+dimensions and the compression parameters by jpeg_start_compress(). You can
+also call jpeg_calc_jpeg_dimensions() to obtain the values that will result
+from the current parameter settings. This can be useful if you are trying
+to pick a scaling ratio that will get close to a desired target size.
+
+JDIMENSION jpeg_width Actual dimensions of output image.
+JDIMENSION jpeg_height
+
+
+Per-component parameters are stored in the struct cinfo.comp_info[i] for
+component number i. Note that components here refer to components of the
+JPEG color space, *not* the source image color space. A suitably large
+comp_info[] array is allocated by jpeg_set_defaults(); if you choose not
+to use that routine, it's up to you to allocate the array.
+
+int component_id
+ The one-byte identifier code to be recorded in the JPEG file for
+ this component. For the standard color spaces, we recommend you
+ leave the default values alone.
+
+int h_samp_factor
+int v_samp_factor
+ Horizontal and vertical sampling factors for the component; must
+ be 1..4 according to the JPEG standard. Note that larger sampling
+ factors indicate a higher-resolution component; many people find
+ this behavior quite unintuitive. The default values are 2,2 for
+ luminance components and 1,1 for chrominance components, except
+ for grayscale where 1,1 is used.
+
+int quant_tbl_no
+ Quantization table number for component. The default value is
+ 0 for luminance components and 1 for chrominance components.
+
+int dc_tbl_no
+int ac_tbl_no
+ DC and AC entropy coding table numbers. The default values are
+ 0 for luminance components and 1 for chrominance components.
+
+int component_index
+ Must equal the component's index in comp_info[]. (Beginning in
+ release v6, the compressor library will fill this in automatically;
+ you don't have to.)
+
+
+Decompression parameter selection
+---------------------------------
+
+Decompression parameter selection is somewhat simpler than compression
+parameter selection, since all of the JPEG internal parameters are
+recorded in the source file and need not be supplied by the application.
+(Unless you are working with abbreviated files, in which case see
+"Abbreviated datastreams", below.) Decompression parameters control
+the postprocessing done on the image to deliver it in a format suitable
+for the application's use. Many of the parameters control speed/quality
+tradeoffs, in which faster decompression may be obtained at the price of
+a poorer-quality image. The defaults select the highest quality (slowest)
+processing.
+
+The following fields in the JPEG object are set by jpeg_read_header() and
+may be useful to the application in choosing decompression parameters:
+
+JDIMENSION image_width Width and height of image
+JDIMENSION image_height
+int num_components Number of color components
+J_COLOR_SPACE jpeg_color_space Colorspace of image
+boolean saw_JFIF_marker TRUE if a JFIF APP0 marker was seen
+ UINT8 JFIF_major_version Version information from JFIF marker
+ UINT8 JFIF_minor_version
+ UINT8 density_unit Resolution data from JFIF marker
+ UINT16 X_density
+ UINT16 Y_density
+boolean saw_Adobe_marker TRUE if an Adobe APP14 marker was seen
+ UINT8 Adobe_transform Color transform code from Adobe marker
+
+The JPEG color space, unfortunately, is something of a guess since the JPEG
+standard proper does not provide a way to record it. In practice most files
+adhere to the JFIF or Adobe conventions, and the decoder will recognize these
+correctly. See "Special color spaces", below, for more info.
+
+
+The decompression parameters that determine the basic properties of the
+returned image are:
+
+J_COLOR_SPACE out_color_space
+ Output color space. jpeg_read_header() sets an appropriate default
+ based on jpeg_color_space; typically it will be RGB or grayscale.
+ The application can change this field to request output in a different
+ colorspace. For example, set it to JCS_GRAYSCALE to get grayscale
+ output from a color file. (This is useful for previewing: grayscale
+ output is faster than full color since the color components need not
+ be processed.) Note that not all possible color space transforms are
+ currently implemented; you may need to extend jdcolor.c if you want an
+ unusual conversion.
+
+unsigned int scale_num, scale_denom
+ Scale the image by the fraction scale_num/scale_denom. Currently,
+ the supported scaling ratios are M/N with all M from 1 to 16, where
+ N is the source DCT size, which is 8 for baseline JPEG. (The library
+ design allows for arbitrary scaling ratios but this is not likely
+ to be implemented any time soon.) The values are initialized by
+ jpeg_read_header() with the source DCT size. For baseline JPEG
+ this is 8/8. If you change only the scale_num value while leaving
+ the other unchanged, then this specifies the DCT scaled size to be
+ applied on the given input. For baseline JPEG this is equivalent
+ to M/8 scaling, since the source DCT size for baseline JPEG is 8.
+ Smaller scaling ratios permit significantly faster decoding since
+ fewer pixels need be processed and a simpler IDCT method can be used.
+
+boolean quantize_colors
+ If set TRUE, colormapped output will be delivered. Default is FALSE,
+ meaning that full-color output will be delivered.
+
+The next three parameters are relevant only if quantize_colors is TRUE.
+
+int desired_number_of_colors
+ Maximum number of colors to use in generating a library-supplied color
+ map (the actual number of colors is returned in a different field).
+ Default 256. Ignored when the application supplies its own color map.
+
+boolean two_pass_quantize
+ If TRUE, an extra pass over the image is made to select a custom color
+ map for the image. This usually looks a lot better than the one-size-
+ fits-all colormap that is used otherwise. Default is TRUE. Ignored
+ when the application supplies its own color map.
+
+J_DITHER_MODE dither_mode
+ Selects color dithering method. Supported values are:
+ JDITHER_NONE no dithering: fast, very low quality
+ JDITHER_ORDERED ordered dither: moderate speed and quality
+ JDITHER_FS Floyd-Steinberg dither: slow, high quality
+ Default is JDITHER_FS. (At present, ordered dither is implemented
+ only in the single-pass, standard-colormap case. If you ask for
+ ordered dither when two_pass_quantize is TRUE or when you supply
+ an external color map, you'll get F-S dithering.)
+
+When quantize_colors is TRUE, the target color map is described by the next
+two fields. colormap is set to NULL by jpeg_read_header(). The application
+can supply a color map by setting colormap non-NULL and setting
+actual_number_of_colors to the map size. Otherwise, jpeg_start_decompress()
+selects a suitable color map and sets these two fields itself.
+[Implementation restriction: at present, an externally supplied colormap is
+only accepted for 3-component output color spaces.]
+
+JSAMPARRAY colormap
+ The color map, represented as a 2-D pixel array of out_color_components
+ rows and actual_number_of_colors columns. Ignored if not quantizing.
+ CAUTION: if the JPEG library creates its own colormap, the storage
+ pointed to by this field is released by jpeg_finish_decompress().
+ Copy the colormap somewhere else first, if you want to save it.
+
+int actual_number_of_colors
+ The number of colors in the color map.
+
+Additional decompression parameters that the application may set include:
+
+J_DCT_METHOD dct_method
+ Selects the algorithm used for the DCT step. Choices are the same
+ as described above for compression.
+
+boolean do_fancy_upsampling
+ If TRUE, use direct DCT scaling with DCT size > 8 for upsampling
+ of chroma components.
+ If FALSE, use only DCT size <= 8 and simple separate upsampling.
+ Default is TRUE.
+ For better image stability in multiple generation compression cycles
+ it is preferable that this value matches the corresponding
+ do_fancy_downsampling value in compression.
+
+boolean do_block_smoothing
+ If TRUE, interblock smoothing is applied in early stages of decoding
+ progressive JPEG files; if FALSE, not. Default is TRUE. Early
+ progression stages look "fuzzy" with smoothing, "blocky" without.
+ In any case, block smoothing ceases to be applied after the first few
+ AC coefficients are known to full accuracy, so it is relevant only
+ when using buffered-image mode for progressive images.
+
+boolean enable_1pass_quant
+boolean enable_external_quant
+boolean enable_2pass_quant
+ These are significant only in buffered-image mode, which is
+ described in its own section below.
+
+
+The output image dimensions are given by the following fields. These are
+computed from the source image dimensions and the decompression parameters
+by jpeg_start_decompress(). You can also call jpeg_calc_output_dimensions()
+to obtain the values that will result from the current parameter settings.
+This can be useful if you are trying to pick a scaling ratio that will get
+close to a desired target size. It's also important if you are using the
+JPEG library's memory manager to allocate output buffer space, because you
+are supposed to request such buffers *before* jpeg_start_decompress().
+
+JDIMENSION output_width Actual dimensions of output image.
+JDIMENSION output_height
+int out_color_components Number of color components in out_color_space.
+int output_components Number of color components returned.
+int rec_outbuf_height Recommended height of scanline buffer.
+
+When quantizing colors, output_components is 1, indicating a single color map
+index per pixel. Otherwise it equals out_color_components. The output arrays
+are required to be output_width * output_components JSAMPLEs wide.
+
+rec_outbuf_height is the recommended minimum height (in scanlines) of the
+buffer passed to jpeg_read_scanlines(). If the buffer is smaller, the
+library will still work, but time will be wasted due to unnecessary data
+copying. In high-quality modes, rec_outbuf_height is always 1, but some
+faster, lower-quality modes set it to larger values (typically 2 to 4).
+If you are going to ask for a high-speed processing mode, you may as well
+go to the trouble of honoring rec_outbuf_height so as to avoid data copying.
+(An output buffer larger than rec_outbuf_height lines is OK, but won't
+provide any material speed improvement over that height.)
+
+
+Special color spaces
+--------------------
+
+The JPEG standard itself is "color blind" and doesn't specify any particular
+color space. It is customary to convert color data to a luminance/chrominance
+color space before compressing, since this permits greater compression. The
+existing de-facto JPEG file format standards specify YCbCr or grayscale data
+(JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe). For special
+applications such as multispectral images, other color spaces can be used,
+but it must be understood that such files will be unportable.
+
+The JPEG library can handle the most common colorspace conversions (namely
+RGB <=> YCbCr and CMYK <=> YCCK). It can also deal with data of an unknown
+color space, passing it through without conversion. If you deal extensively
+with an unusual color space, you can easily extend the library to understand
+additional color spaces and perform appropriate conversions.
+
+For compression, the source data's color space is specified by field
+in_color_space. This is transformed to the JPEG file's color space given
+by jpeg_color_space. jpeg_set_defaults() chooses a reasonable JPEG color
+space depending on in_color_space, but you can override this by calling
+jpeg_set_colorspace(). Of course you must select a supported transformation.
+jccolor.c currently supports the following transformations:
+ RGB => YCbCr
+ RGB => GRAYSCALE
+ YCbCr => GRAYSCALE
+ CMYK => YCCK
+plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB,
+YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN.
+
+The de-facto file format standards (JFIF and Adobe) specify APPn markers that
+indicate the color space of the JPEG file. It is important to ensure that
+these are written correctly, or omitted if the JPEG file's color space is not
+one of the ones supported by the de-facto standards. jpeg_set_colorspace()
+will set the compression parameters to include or omit the APPn markers
+properly, so long as it is told the truth about the JPEG color space.
+For example, if you are writing some random 3-component color space without
+conversion, don't try to fake out the library by setting in_color_space and
+jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. You may want to write an
+APPn marker of your own devising to identify the colorspace --- see "Special
+markers", below.
+
+When told that the color space is UNKNOWN, the library will default to using
+luminance-quality compression parameters for all color components. You may
+well want to change these parameters. See the source code for
+jpeg_set_colorspace(), in jcparam.c, for details.
+
+For decompression, the JPEG file's color space is given in jpeg_color_space,
+and this is transformed to the output color space out_color_space.
+jpeg_read_header's setting of jpeg_color_space can be relied on if the file
+conforms to JFIF or Adobe conventions, but otherwise it is no better than a
+guess. If you know the JPEG file's color space for certain, you can override
+jpeg_read_header's guess by setting jpeg_color_space. jpeg_read_header also
+selects a default output color space based on (its guess of) jpeg_color_space;
+set out_color_space to override this. Again, you must select a supported
+transformation. jdcolor.c currently supports
+ YCbCr => GRAYSCALE
+ YCbCr => RGB
+ GRAYSCALE => RGB
+ YCCK => CMYK
+as well as the null transforms. (Since GRAYSCALE=>RGB is provided, an
+application can force grayscale JPEGs to look like color JPEGs if it only
+wants to handle one case.)
+
+The two-pass color quantizer, jquant2.c, is specialized to handle RGB data
+(it weights distances appropriately for RGB colors). You'll need to modify
+the code if you want to use it for non-RGB output color spaces. Note that
+jquant2.c is used to map to an application-supplied colormap as well as for
+the normal two-pass colormap selection process.
+
+CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG
+files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect.
+This is arguably a bug in Photoshop, but if you need to work with Photoshop
+CMYK files, you will have to deal with it in your application. We cannot
+"fix" this in the library by inverting the data during the CMYK<=>YCCK
+transform, because that would break other applications, notably Ghostscript.
+Photoshop versions prior to 3.0 write EPS files containing JPEG-encoded CMYK
+data in the same inverted-YCCK representation used in bare JPEG files, but
+the surrounding PostScript code performs an inversion using the PS image
+operator. I am told that Photoshop 3.0 will write uninverted YCCK in
+EPS/JPEG files, and will omit the PS-level inversion. (But the data
+polarity used in bare JPEG files will not change in 3.0.) In either case,
+the JPEG library must not invert the data itself, or else Ghostscript would
+read these EPS files incorrectly.
+
+
+Error handling
+--------------
+
+When the default error handler is used, any error detected inside the JPEG
+routines will cause a message to be printed on stderr, followed by exit().
+You can supply your own error handling routines to override this behavior
+and to control the treatment of nonfatal warnings and trace/debug messages.
+The file example.c illustrates the most common case, which is to have the
+application regain control after an error rather than exiting.
+
+The JPEG library never writes any message directly; it always goes through
+the error handling routines. Three classes of messages are recognized:
+ * Fatal errors: the library cannot continue.
+ * Warnings: the library can continue, but the data is corrupt, and a
+ damaged output image is likely to result.
+ * Trace/informational messages. These come with a trace level indicating
+ the importance of the message; you can control the verbosity of the
+ program by adjusting the maximum trace level that will be displayed.
+
+You may, if you wish, simply replace the entire JPEG error handling module
+(jerror.c) with your own code. However, you can avoid code duplication by
+only replacing some of the routines depending on the behavior you need.
+This is accomplished by calling jpeg_std_error() as usual, but then overriding
+some of the method pointers in the jpeg_error_mgr struct, as illustrated by
+example.c.
+
+All of the error handling routines will receive a pointer to the JPEG object
+(a j_common_ptr which points to either a jpeg_compress_struct or a
+jpeg_decompress_struct; if you need to tell which, test the is_decompressor
+field). This struct includes a pointer to the error manager struct in its
+"err" field. Frequently, custom error handler routines will need to access
+additional data which is not known to the JPEG library or the standard error
+handler. The most convenient way to do this is to embed either the JPEG
+object or the jpeg_error_mgr struct in a larger structure that contains
+additional fields; then casting the passed pointer provides access to the
+additional fields. Again, see example.c for one way to do it. (Beginning
+with IJG version 6b, there is also a void pointer "client_data" in each
+JPEG object, which the application can also use to find related data.
+The library does not touch client_data at all.)
+
+The individual methods that you might wish to override are:
+
+error_exit (j_common_ptr cinfo)
+ Receives control for a fatal error. Information sufficient to
+ generate the error message has been stored in cinfo->err; call
+ output_message to display it. Control must NOT return to the caller;
+ generally this routine will exit() or longjmp() somewhere.
+ Typically you would override this routine to get rid of the exit()
+ default behavior. Note that if you continue processing, you should
+ clean up the JPEG object with jpeg_abort() or jpeg_destroy().
+
+output_message (j_common_ptr cinfo)
+ Actual output of any JPEG message. Override this to send messages
+ somewhere other than stderr. Note that this method does not know
+ how to generate a message, only where to send it.
+
+format_message (j_common_ptr cinfo, char * buffer)
+ Constructs a readable error message string based on the error info
+ stored in cinfo->err. This method is called by output_message. Few
+ applications should need to override this method. One possible
+ reason for doing so is to implement dynamic switching of error message
+ language.
+
+emit_message (j_common_ptr cinfo, int msg_level)
+ Decide whether or not to emit a warning or trace message; if so,
+ calls output_message. The main reason for overriding this method
+ would be to abort on warnings. msg_level is -1 for warnings,
+ 0 and up for trace messages.
+
+Only error_exit() and emit_message() are called from the rest of the JPEG
+library; the other two are internal to the error handler.
+
+The actual message texts are stored in an array of strings which is pointed to
+by the field err->jpeg_message_table. The messages are numbered from 0 to
+err->last_jpeg_message, and it is these code numbers that are used in the
+JPEG library code. You could replace the message texts (for instance, with
+messages in French or German) by changing the message table pointer. See
+jerror.h for the default texts. CAUTION: this table will almost certainly
+change or grow from one library version to the next.
+
+It may be useful for an application to add its own message texts that are
+handled by the same mechanism. The error handler supports a second "add-on"
+message table for this purpose. To define an addon table, set the pointer
+err->addon_message_table and the message numbers err->first_addon_message and
+err->last_addon_message. If you number the addon messages beginning at 1000
+or so, you won't have to worry about conflicts with the library's built-in
+messages. See the sample applications cjpeg/djpeg for an example of using
+addon messages (the addon messages are defined in cderror.h).
+
+Actual invocation of the error handler is done via macros defined in jerror.h:
+ ERREXITn(...) for fatal errors
+ WARNMSn(...) for corrupt-data warnings
+ TRACEMSn(...) for trace and informational messages.
+These macros store the message code and any additional parameters into the
+error handler struct, then invoke the error_exit() or emit_message() method.
+The variants of each macro are for varying numbers of additional parameters.
+The additional parameters are inserted into the generated message using
+standard printf() format codes.
+
+See jerror.h and jerror.c for further details.
+
+
+Compressed data handling (source and destination managers)
+----------------------------------------------------------
+
+The JPEG compression library sends its compressed data to a "destination
+manager" module. The default destination manager just writes the data to a
+memory buffer or to a stdio stream, but you can provide your own manager to
+do something else. Similarly, the decompression library calls a "source
+manager" to obtain the compressed data; you can provide your own source
+manager if you want the data to come from somewhere other than a memory
+buffer or a stdio stream.
+
+In both cases, compressed data is processed a bufferload at a time: the
+destination or source manager provides a work buffer, and the library invokes
+the manager only when the buffer is filled or emptied. (You could define a
+one-character buffer to force the manager to be invoked for each byte, but
+that would be rather inefficient.) The buffer's size and location are
+controlled by the manager, not by the library. For example, the memory
+source manager just makes the buffer pointer and length point to the original
+data in memory. In this case the buffer-reload procedure will be invoked
+only if the decompressor ran off the end of the datastream, which would
+indicate an erroneous datastream.
+
+The work buffer is defined as an array of datatype JOCTET, which is generally
+"char" or "unsigned char". On a machine where char is not exactly 8 bits
+wide, you must define JOCTET as a wider data type and then modify the data
+source and destination modules to transcribe the work arrays into 8-bit units
+on external storage.
+
+A data destination manager struct contains a pointer and count defining the
+next byte to write in the work buffer and the remaining free space:
+
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+
+The library increments the pointer and decrements the count until the buffer
+is filled. The manager's empty_output_buffer method must reset the pointer
+and count. The manager is expected to remember the buffer's starting address
+and total size in private fields not visible to the library.
+
+A data destination manager provides three methods:
+
+init_destination (j_compress_ptr cinfo)
+ Initialize destination. This is called by jpeg_start_compress()
+ before any data is actually written. It must initialize
+ next_output_byte and free_in_buffer. free_in_buffer must be
+ initialized to a positive value.
+
+empty_output_buffer (j_compress_ptr cinfo)
+ This is called whenever the buffer has filled (free_in_buffer
+ reaches zero). In typical applications, it should write out the
+ *entire* buffer (use the saved start address and buffer length;
+ ignore the current state of next_output_byte and free_in_buffer).
+ Then reset the pointer & count to the start of the buffer, and
+ return TRUE indicating that the buffer has been dumped.
+ free_in_buffer must be set to a positive value when TRUE is
+ returned. A FALSE return should only be used when I/O suspension is
+ desired (this operating mode is discussed in the next section).
+
+term_destination (j_compress_ptr cinfo)
+ Terminate destination --- called by jpeg_finish_compress() after all
+ data has been written. In most applications, this must flush any
+ data remaining in the buffer. Use either next_output_byte or
+ free_in_buffer to determine how much data is in the buffer.
+
+term_destination() is NOT called by jpeg_abort() or jpeg_destroy(). If you
+want the destination manager to be cleaned up during an abort, you must do it
+yourself.
+
+You will also need code to create a jpeg_destination_mgr struct, fill in its
+method pointers, and insert a pointer to the struct into the "dest" field of
+the JPEG compression object. This can be done in-line in your setup code if
+you like, but it's probably cleaner to provide a separate routine similar to
+the jpeg_stdio_dest() or jpeg_mem_dest() routines of the supplied destination
+managers.
+
+Decompression source managers follow a parallel design, but with some
+additional frammishes. The source manager struct contains a pointer and count
+defining the next byte to read from the work buffer and the number of bytes
+remaining:
+
+ const JOCTET * next_input_byte; /* => next byte to read from buffer */
+ size_t bytes_in_buffer; /* # of bytes remaining in buffer */
+
+The library increments the pointer and decrements the count until the buffer
+is emptied. The manager's fill_input_buffer method must reset the pointer and
+count. In most applications, the manager must remember the buffer's starting
+address and total size in private fields not visible to the library.
+
+A data source manager provides five methods:
+
+init_source (j_decompress_ptr cinfo)
+ Initialize source. This is called by jpeg_read_header() before any
+ data is actually read. Unlike init_destination(), it may leave
+ bytes_in_buffer set to 0 (in which case a fill_input_buffer() call
+ will occur immediately).
+
+fill_input_buffer (j_decompress_ptr cinfo)
+ This is called whenever bytes_in_buffer has reached zero and more
+ data is wanted. In typical applications, it should read fresh data
+ into the buffer (ignoring the current state of next_input_byte and
+ bytes_in_buffer), reset the pointer & count to the start of the
+ buffer, and return TRUE indicating that the buffer has been reloaded.
+ It is not necessary to fill the buffer entirely, only to obtain at
+ least one more byte. bytes_in_buffer MUST be set to a positive value
+ if TRUE is returned. A FALSE return should only be used when I/O
+ suspension is desired (this mode is discussed in the next section).
+
+skip_input_data (j_decompress_ptr cinfo, long num_bytes)
+ Skip num_bytes worth of data. The buffer pointer and count should
+ be advanced over num_bytes input bytes, refilling the buffer as
+ needed. This is used to skip over a potentially large amount of
+ uninteresting data (such as an APPn marker). In some applications
+ it may be possible to optimize away the reading of the skipped data,
+ but it's not clear that being smart is worth much trouble; large
+ skips are uncommon. bytes_in_buffer may be zero on return.
+ A zero or negative skip count should be treated as a no-op.
+
+resync_to_restart (j_decompress_ptr cinfo, int desired)
+ This routine is called only when the decompressor has failed to find
+ a restart (RSTn) marker where one is expected. Its mission is to
+ find a suitable point for resuming decompression. For most
+ applications, we recommend that you just use the default resync
+ procedure, jpeg_resync_to_restart(). However, if you are able to back
+ up in the input data stream, or if you have a-priori knowledge about
+ the likely location of restart markers, you may be able to do better.
+ Read the read_restart_marker() and jpeg_resync_to_restart() routines
+ in jdmarker.c if you think you'd like to implement your own resync
+ procedure.
+
+term_source (j_decompress_ptr cinfo)
+ Terminate source --- called by jpeg_finish_decompress() after all
+ data has been read. Often a no-op.
+
+For both fill_input_buffer() and skip_input_data(), there is no such thing
+as an EOF return. If the end of the file has been reached, the routine has
+a choice of exiting via ERREXIT() or inserting fake data into the buffer.
+In most cases, generating a warning message and inserting a fake EOI marker
+is the best course of action --- this will allow the decompressor to output
+however much of the image is there. In pathological cases, the decompressor
+may swallow the EOI and again demand data ... just keep feeding it fake EOIs.
+jdatasrc.c illustrates the recommended error recovery behavior.
+
+term_source() is NOT called by jpeg_abort() or jpeg_destroy(). If you want
+the source manager to be cleaned up during an abort, you must do it yourself.
+
+You will also need code to create a jpeg_source_mgr struct, fill in its method
+pointers, and insert a pointer to the struct into the "src" field of the JPEG
+decompression object. This can be done in-line in your setup code if you
+like, but it's probably cleaner to provide a separate routine similar to the
+jpeg_stdio_src() or jpeg_mem_src() routines of the supplied source managers.
+
+For more information, consult the memory and stdio source and destination
+managers in jdatasrc.c and jdatadst.c.
+
+
+I/O suspension
+--------------
+
+Some applications need to use the JPEG library as an incremental memory-to-
+memory filter: when the compressed data buffer is filled or emptied, they want
+control to return to the outer loop, rather than expecting that the buffer can
+be emptied or reloaded within the data source/destination manager subroutine.
+The library supports this need by providing an "I/O suspension" mode, which we
+describe in this section.
+
+The I/O suspension mode is not a panacea: nothing is guaranteed about the
+maximum amount of time spent in any one call to the library, so it will not
+eliminate response-time problems in single-threaded applications. If you
+need guaranteed response time, we suggest you "bite the bullet" and implement
+a real multi-tasking capability.
+
+To use I/O suspension, cooperation is needed between the calling application
+and the data source or destination manager; you will always need a custom
+source/destination manager. (Please read the previous section if you haven't
+already.) The basic idea is that the empty_output_buffer() or
+fill_input_buffer() routine is a no-op, merely returning FALSE to indicate
+that it has done nothing. Upon seeing this, the JPEG library suspends
+operation and returns to its caller. The surrounding application is
+responsible for emptying or refilling the work buffer before calling the
+JPEG library again.
+
+Compression suspension:
+
+For compression suspension, use an empty_output_buffer() routine that returns
+FALSE; typically it will not do anything else. This will cause the
+compressor to return to the caller of jpeg_write_scanlines(), with the return
+value indicating that not all the supplied scanlines have been accepted.
+The application must make more room in the output buffer, adjust the output
+buffer pointer/count appropriately, and then call jpeg_write_scanlines()
+again, pointing to the first unconsumed scanline.
+
+When forced to suspend, the compressor will backtrack to a convenient stopping
+point (usually the start of the current MCU); it will regenerate some output
+data when restarted. Therefore, although empty_output_buffer() is only
+called when the buffer is filled, you should NOT write out the entire buffer
+after a suspension. Write only the data up to the current position of
+next_output_byte/free_in_buffer. The data beyond that point will be
+regenerated after resumption.
+
+Because of the backtracking behavior, a good-size output buffer is essential
+for efficiency; you don't want the compressor to suspend often. (In fact, an
+overly small buffer could lead to infinite looping, if a single MCU required
+more data than would fit in the buffer.) We recommend a buffer of at least
+several Kbytes. You may want to insert explicit code to ensure that you don't
+call jpeg_write_scanlines() unless there is a reasonable amount of space in
+the output buffer; in other words, flush the buffer before trying to compress
+more data.
+
+The compressor does not allow suspension while it is trying to write JPEG
+markers at the beginning and end of the file. This means that:
+ * At the beginning of a compression operation, there must be enough free
+ space in the output buffer to hold the header markers (typically 600 or
+ so bytes). The recommended buffer size is bigger than this anyway, so
+ this is not a problem as long as you start with an empty buffer. However,
+ this restriction might catch you if you insert large special markers, such
+ as a JFIF thumbnail image, without flushing the buffer afterwards.
+ * When you call jpeg_finish_compress(), there must be enough space in the
+ output buffer to emit any buffered data and the final EOI marker. In the
+ current implementation, half a dozen bytes should suffice for this, but
+ for safety's sake we recommend ensuring that at least 100 bytes are free
+ before calling jpeg_finish_compress().
+
+A more significant restriction is that jpeg_finish_compress() cannot suspend.
+This means you cannot use suspension with multi-pass operating modes, namely
+Huffman code optimization and multiple-scan output. Those modes write the
+whole file during jpeg_finish_compress(), which will certainly result in
+buffer overrun. (Note that this restriction applies only to compression,
+not decompression. The decompressor supports input suspension in all of its
+operating modes.)
+
+Decompression suspension:
+
+For decompression suspension, use a fill_input_buffer() routine that simply
+returns FALSE (except perhaps during error recovery, as discussed below).
+This will cause the decompressor to return to its caller with an indication
+that suspension has occurred. This can happen at four places:
+ * jpeg_read_header(): will return JPEG_SUSPENDED.
+ * jpeg_start_decompress(): will return FALSE, rather than its usual TRUE.
+ * jpeg_read_scanlines(): will return the number of scanlines already
+ completed (possibly 0).
+ * jpeg_finish_decompress(): will return FALSE, rather than its usual TRUE.
+The surrounding application must recognize these cases, load more data into
+the input buffer, and repeat the call. In the case of jpeg_read_scanlines(),
+increment the passed pointers past any scanlines successfully read.
+
+Just as with compression, the decompressor will typically backtrack to a
+convenient restart point before suspending. When fill_input_buffer() is
+called, next_input_byte/bytes_in_buffer point to the current restart point,
+which is where the decompressor will backtrack to if FALSE is returned.
+The data beyond that position must NOT be discarded if you suspend; it needs
+to be re-read upon resumption. In most implementations, you'll need to shift
+this data down to the start of your work buffer and then load more data after
+it. Again, this behavior means that a several-Kbyte work buffer is essential
+for decent performance; furthermore, you should load a reasonable amount of
+new data before resuming decompression. (If you loaded, say, only one new
+byte each time around, you could waste a LOT of cycles.)
+
+The skip_input_data() source manager routine requires special care in a
+suspension scenario. This routine is NOT granted the ability to suspend the
+decompressor; it can decrement bytes_in_buffer to zero, but no more. If the
+requested skip distance exceeds the amount of data currently in the input
+buffer, then skip_input_data() must set bytes_in_buffer to zero and record the
+additional skip distance somewhere else. The decompressor will immediately
+call fill_input_buffer(), which should return FALSE, which will cause a
+suspension return. The surrounding application must then arrange to discard
+the recorded number of bytes before it resumes loading the input buffer.
+(Yes, this design is rather baroque, but it avoids complexity in the far more
+common case where a non-suspending source manager is used.)
+
+If the input data has been exhausted, we recommend that you emit a warning
+and insert dummy EOI markers just as a non-suspending data source manager
+would do. This can be handled either in the surrounding application logic or
+within fill_input_buffer(); the latter is probably more efficient. If
+fill_input_buffer() knows that no more data is available, it can set the
+pointer/count to point to a dummy EOI marker and then return TRUE just as
+though it had read more data in a non-suspending situation.
+
+The decompressor does not attempt to suspend within standard JPEG markers;
+instead it will backtrack to the start of the marker and reprocess the whole
+marker next time. Hence the input buffer must be large enough to hold the
+longest standard marker in the file. Standard JPEG markers should normally
+not exceed a few hundred bytes each (DHT tables are typically the longest).
+We recommend at least a 2K buffer for performance reasons, which is much
+larger than any correct marker is likely to be. For robustness against
+damaged marker length counts, you may wish to insert a test in your
+application for the case that the input buffer is completely full and yet
+the decoder has suspended without consuming any data --- otherwise, if this
+situation did occur, it would lead to an endless loop. (The library can't
+provide this test since it has no idea whether "the buffer is full", or
+even whether there is a fixed-size input buffer.)
+
+The input buffer would need to be 64K to allow for arbitrary COM or APPn
+markers, but these are handled specially: they are either saved into allocated
+memory, or skipped over by calling skip_input_data(). In the former case,
+suspension is handled correctly, and in the latter case, the problem of
+buffer overrun is placed on skip_input_data's shoulders, as explained above.
+Note that if you provide your own marker handling routine for large markers,
+you should consider how to deal with buffer overflow.
+
+Multiple-buffer management:
+
+In some applications it is desirable to store the compressed data in a linked
+list of buffer areas, so as to avoid data copying. This can be handled by
+having empty_output_buffer() or fill_input_buffer() set the pointer and count
+to reference the next available buffer; FALSE is returned only if no more
+buffers are available. Although seemingly straightforward, there is a
+pitfall in this approach: the backtrack that occurs when FALSE is returned
+could back up into an earlier buffer. For example, when fill_input_buffer()
+is called, the current pointer & count indicate the backtrack restart point.
+Since fill_input_buffer() will set the pointer and count to refer to a new
+buffer, the restart position must be saved somewhere else. Suppose a second
+call to fill_input_buffer() occurs in the same library call, and no
+additional input data is available, so fill_input_buffer must return FALSE.
+If the JPEG library has not moved the pointer/count forward in the current
+buffer, then *the correct restart point is the saved position in the prior
+buffer*. Prior buffers may be discarded only after the library establishes
+a restart point within a later buffer. Similar remarks apply for output into
+a chain of buffers.
+
+The library will never attempt to backtrack over a skip_input_data() call,
+so any skipped data can be permanently discarded. You still have to deal
+with the case of skipping not-yet-received data, however.
+
+It's much simpler to use only a single buffer; when fill_input_buffer() is
+called, move any unconsumed data (beyond the current pointer/count) down to
+the beginning of this buffer and then load new data into the remaining buffer
+space. This approach requires a little more data copying but is far easier
+to get right.
+
+
+Progressive JPEG support
+------------------------
+
+Progressive JPEG rearranges the stored data into a series of scans of
+increasing quality. In situations where a JPEG file is transmitted across a
+slow communications link, a decoder can generate a low-quality image very
+quickly from the first scan, then gradually improve the displayed quality as
+more scans are received. The final image after all scans are complete is
+identical to that of a regular (sequential) JPEG file of the same quality
+setting. Progressive JPEG files are often slightly smaller than equivalent
+sequential JPEG files, but the possibility of incremental display is the main
+reason for using progressive JPEG.
+
+The IJG encoder library generates progressive JPEG files when given a
+suitable "scan script" defining how to divide the data into scans.
+Creation of progressive JPEG files is otherwise transparent to the encoder.
+Progressive JPEG files can also be read transparently by the decoder library.
+If the decoding application simply uses the library as defined above, it
+will receive a final decoded image without any indication that the file was
+progressive. Of course, this approach does not allow incremental display.
+To perform incremental display, an application needs to use the decoder
+library's "buffered-image" mode, in which it receives a decoded image
+multiple times.
+
+Each displayed scan requires about as much work to decode as a full JPEG
+image of the same size, so the decoder must be fairly fast in relation to the
+data transmission rate in order to make incremental display useful. However,
+it is possible to skip displaying the image and simply add the incoming bits
+to the decoder's coefficient buffer. This is fast because only Huffman
+decoding need be done, not IDCT, upsampling, colorspace conversion, etc.
+The IJG decoder library allows the application to switch dynamically between
+displaying the image and simply absorbing the incoming bits. A properly
+coded application can automatically adapt the number of display passes to
+suit the time available as the image is received. Also, a final
+higher-quality display cycle can be performed from the buffered data after
+the end of the file is reached.
+
+Progressive compression:
+
+To create a progressive JPEG file (or a multiple-scan sequential JPEG file),
+set the scan_info cinfo field to point to an array of scan descriptors, and
+perform compression as usual. Instead of constructing your own scan list,
+you can call the jpeg_simple_progression() helper routine to create a
+recommended progression sequence; this method should be used by all
+applications that don't want to get involved in the nitty-gritty of
+progressive scan sequence design. (If you want to provide user control of
+scan sequences, you may wish to borrow the scan script reading code found
+in rdswitch.c, so that you can read scan script files just like cjpeg's.)
+When scan_info is not NULL, the compression library will store DCT'd data
+into a buffer array as jpeg_write_scanlines() is called, and will emit all
+the requested scans during jpeg_finish_compress(). This implies that
+multiple-scan output cannot be created with a suspending data destination
+manager, since jpeg_finish_compress() does not support suspension. We
+should also note that the compressor currently forces Huffman optimization
+mode when creating a progressive JPEG file, because the default Huffman
+tables are unsuitable for progressive files.
+
+Progressive decompression:
+
+When buffered-image mode is not used, the decoder library will read all of
+a multi-scan file during jpeg_start_decompress(), so that it can provide a
+final decoded image. (Here "multi-scan" means either progressive or
+multi-scan sequential.) This makes multi-scan files transparent to the
+decoding application. However, existing applications that used suspending
+input with version 5 of the IJG library will need to be modified to check
+for a suspension return from jpeg_start_decompress().
+
+To perform incremental display, an application must use the library's
+buffered-image mode. This is described in the next section.
+
+
+Buffered-image mode
+-------------------
+
+In buffered-image mode, the library stores the partially decoded image in a
+coefficient buffer, from which it can be read out as many times as desired.
+This mode is typically used for incremental display of progressive JPEG files,
+but it can be used with any JPEG file. Each scan of a progressive JPEG file
+adds more data (more detail) to the buffered image. The application can
+display in lockstep with the source file (one display pass per input scan),
+or it can allow input processing to outrun display processing. By making
+input and display processing run independently, it is possible for the
+application to adapt progressive display to a wide range of data transmission
+rates.
+
+The basic control flow for buffered-image decoding is
+
+ jpeg_create_decompress()
+ set data source
+ jpeg_read_header()
+ set overall decompression parameters
+ cinfo.buffered_image = TRUE; /* select buffered-image mode */
+ jpeg_start_decompress()
+ for (each output pass) {
+ adjust output decompression parameters if required
+ jpeg_start_output() /* start a new output pass */
+ for (all scanlines in image) {
+ jpeg_read_scanlines()
+ display scanlines
+ }
+ jpeg_finish_output() /* terminate output pass */
+ }
+ jpeg_finish_decompress()
+ jpeg_destroy_decompress()
+
+This differs from ordinary unbuffered decoding in that there is an additional
+level of looping. The application can choose how many output passes to make
+and how to display each pass.
+
+The simplest approach to displaying progressive images is to do one display
+pass for each scan appearing in the input file. In this case the outer loop
+condition is typically
+ while (! jpeg_input_complete(&cinfo))
+and the start-output call should read
+ jpeg_start_output(&cinfo, cinfo.input_scan_number);
+The second parameter to jpeg_start_output() indicates which scan of the input
+file is to be displayed; the scans are numbered starting at 1 for this
+purpose. (You can use a loop counter starting at 1 if you like, but using
+the library's input scan counter is easier.) The library automatically reads
+data as necessary to complete each requested scan, and jpeg_finish_output()
+advances to the next scan or end-of-image marker (hence input_scan_number
+will be incremented by the time control arrives back at jpeg_start_output()).
+With this technique, data is read from the input file only as needed, and
+input and output processing run in lockstep.
+
+After reading the final scan and reaching the end of the input file, the
+buffered image remains available; it can be read additional times by
+repeating the jpeg_start_output()/jpeg_read_scanlines()/jpeg_finish_output()
+sequence. For example, a useful technique is to use fast one-pass color
+quantization for display passes made while the image is arriving, followed by
+a final display pass using two-pass quantization for highest quality. This
+is done by changing the library parameters before the final output pass.
+Changing parameters between passes is discussed in detail below.
+
+In general the last scan of a progressive file cannot be recognized as such
+until after it is read, so a post-input display pass is the best approach if
+you want special processing in the final pass.
+
+When done with the image, be sure to call jpeg_finish_decompress() to release
+the buffered image (or just use jpeg_destroy_decompress()).
+
+If input data arrives faster than it can be displayed, the application can
+cause the library to decode input data in advance of what's needed to produce
+output. This is done by calling the routine jpeg_consume_input().
+The return value is one of the following:
+ JPEG_REACHED_SOS: reached an SOS marker (the start of a new scan)
+ JPEG_REACHED_EOI: reached the EOI marker (end of image)
+ JPEG_ROW_COMPLETED: completed reading one MCU row of compressed data
+ JPEG_SCAN_COMPLETED: completed reading last MCU row of current scan
+ JPEG_SUSPENDED: suspended before completing any of the above
+(JPEG_SUSPENDED can occur only if a suspending data source is used.) This
+routine can be called at any time after initializing the JPEG object. It
+reads some additional data and returns when one of the indicated significant
+events occurs. (If called after the EOI marker is reached, it will
+immediately return JPEG_REACHED_EOI without attempting to read more data.)
+
+The library's output processing will automatically call jpeg_consume_input()
+whenever the output processing overtakes the input; thus, simple lockstep
+display requires no direct calls to jpeg_consume_input(). But by adding
+calls to jpeg_consume_input(), you can absorb data in advance of what is
+being displayed. This has two benefits:
+ * You can limit buildup of unprocessed data in your input buffer.
+ * You can eliminate extra display passes by paying attention to the
+ state of the library's input processing.
+
+The first of these benefits only requires interspersing calls to
+jpeg_consume_input() with your display operations and any other processing
+you may be doing. To avoid wasting cycles due to backtracking, it's best to
+call jpeg_consume_input() only after a hundred or so new bytes have arrived.
+This is discussed further under "I/O suspension", above. (Note: the JPEG
+library currently is not thread-safe. You must not call jpeg_consume_input()
+from one thread of control if a different library routine is working on the
+same JPEG object in another thread.)
+
+When input arrives fast enough that more than one new scan is available
+before you start a new output pass, you may as well skip the output pass
+corresponding to the completed scan. This occurs for free if you pass
+cinfo.input_scan_number as the target scan number to jpeg_start_output().
+The input_scan_number field is simply the index of the scan currently being
+consumed by the input processor. You can ensure that this is up-to-date by
+emptying the input buffer just before calling jpeg_start_output(): call
+jpeg_consume_input() repeatedly until it returns JPEG_SUSPENDED or
+JPEG_REACHED_EOI.
+
+The target scan number passed to jpeg_start_output() is saved in the
+cinfo.output_scan_number field. The library's output processing calls
+jpeg_consume_input() whenever the current input scan number and row within
+that scan is less than or equal to the current output scan number and row.
+Thus, input processing can "get ahead" of the output processing but is not
+allowed to "fall behind". You can achieve several different effects by
+manipulating this interlock rule. For example, if you pass a target scan
+number greater than the current input scan number, the output processor will
+wait until that scan starts to arrive before producing any output. (To avoid
+an infinite loop, the target scan number is automatically reset to the last
+scan number when the end of image is reached. Thus, if you specify a large
+target scan number, the library will just absorb the entire input file and
+then perform an output pass. This is effectively the same as what
+jpeg_start_decompress() does when you don't select buffered-image mode.)
+When you pass a target scan number equal to the current input scan number,
+the image is displayed no faster than the current input scan arrives. The
+final possibility is to pass a target scan number less than the current input
+scan number; this disables the input/output interlock and causes the output
+processor to simply display whatever it finds in the image buffer, without
+waiting for input. (However, the library will not accept a target scan
+number less than one, so you can't avoid waiting for the first scan.)
+
+When data is arriving faster than the output display processing can advance
+through the image, jpeg_consume_input() will store data into the buffered
+image beyond the point at which the output processing is reading data out
+again. If the input arrives fast enough, it may "wrap around" the buffer to
+the point where the input is more than one whole scan ahead of the output.
+If the output processing simply proceeds through its display pass without
+paying attention to the input, the effect seen on-screen is that the lower
+part of the image is one or more scans better in quality than the upper part.
+Then, when the next output scan is started, you have a choice of what target
+scan number to use. The recommended choice is to use the current input scan
+number at that time, which implies that you've skipped the output scans
+corresponding to the input scans that were completed while you processed the
+previous output scan. In this way, the decoder automatically adapts its
+speed to the arriving data, by skipping output scans as necessary to keep up
+with the arriving data.
+
+When using this strategy, you'll want to be sure that you perform a final
+output pass after receiving all the data; otherwise your last display may not
+be full quality across the whole screen. So the right outer loop logic is
+something like this:
+ do {
+ absorb any waiting input by calling jpeg_consume_input()
+ final_pass = jpeg_input_complete(&cinfo);
+ adjust output decompression parameters if required
+ jpeg_start_output(&cinfo, cinfo.input_scan_number);
+ ...
+ jpeg_finish_output()
+ } while (! final_pass);
+rather than quitting as soon as jpeg_input_complete() returns TRUE. This
+arrangement makes it simple to use higher-quality decoding parameters
+for the final pass. But if you don't want to use special parameters for
+the final pass, the right loop logic is like this:
+ for (;;) {
+ absorb any waiting input by calling jpeg_consume_input()
+ jpeg_start_output(&cinfo, cinfo.input_scan_number);
+ ...
+ jpeg_finish_output()
+ if (jpeg_input_complete(&cinfo) &&
+ cinfo.input_scan_number == cinfo.output_scan_number)
+ break;
+ }
+In this case you don't need to know in advance whether an output pass is to
+be the last one, so it's not necessary to have reached EOF before starting
+the final output pass; rather, what you want to test is whether the output
+pass was performed in sync with the final input scan. This form of the loop
+will avoid an extra output pass whenever the decoder is able (or nearly able)
+to keep up with the incoming data.
+
+When the data transmission speed is high, you might begin a display pass,
+then find that much or all of the file has arrived before you can complete
+the pass. (You can detect this by noting the JPEG_REACHED_EOI return code
+from jpeg_consume_input(), or equivalently by testing jpeg_input_complete().)
+In this situation you may wish to abort the current display pass and start a
+new one using the newly arrived information. To do so, just call
+jpeg_finish_output() and then start a new pass with jpeg_start_output().
+
+A variant strategy is to abort and restart display if more than one complete
+scan arrives during an output pass; this can be detected by noting
+JPEG_REACHED_SOS returns and/or examining cinfo.input_scan_number. This
+idea should be employed with caution, however, since the display process
+might never get to the bottom of the image before being aborted, resulting
+in the lower part of the screen being several passes worse than the upper.
+In most cases it's probably best to abort an output pass only if the whole
+file has arrived and you want to begin the final output pass immediately.
+
+When receiving data across a communication link, we recommend always using
+the current input scan number for the output target scan number; if a
+higher-quality final pass is to be done, it should be started (aborting any
+incomplete output pass) as soon as the end of file is received. However,
+many other strategies are possible. For example, the application can examine
+the parameters of the current input scan and decide whether to display it or
+not. If the scan contains only chroma data, one might choose not to use it
+as the target scan, expecting that the scan will be small and will arrive
+quickly. To skip to the next scan, call jpeg_consume_input() until it
+returns JPEG_REACHED_SOS or JPEG_REACHED_EOI. Or just use the next higher
+number as the target scan for jpeg_start_output(); but that method doesn't
+let you inspect the next scan's parameters before deciding to display it.
+
+
+In buffered-image mode, jpeg_start_decompress() never performs input and
+thus never suspends. An application that uses input suspension with
+buffered-image mode must be prepared for suspension returns from these
+routines:
+* jpeg_start_output() performs input only if you request 2-pass quantization
+ and the target scan isn't fully read yet. (This is discussed below.)
+* jpeg_read_scanlines(), as always, returns the number of scanlines that it
+ was able to produce before suspending.
+* jpeg_finish_output() will read any markers following the target scan,
+ up to the end of the file or the SOS marker that begins another scan.
+ (But it reads no input if jpeg_consume_input() has already reached the
+ end of the file or a SOS marker beyond the target output scan.)
+* jpeg_finish_decompress() will read until the end of file, and thus can
+ suspend if the end hasn't already been reached (as can be tested by
+ calling jpeg_input_complete()).
+jpeg_start_output(), jpeg_finish_output(), and jpeg_finish_decompress()
+all return TRUE if they completed their tasks, FALSE if they had to suspend.
+In the event of a FALSE return, the application must load more input data
+and repeat the call. Applications that use non-suspending data sources need
+not check the return values of these three routines.
+
+
+It is possible to change decoding parameters between output passes in the
+buffered-image mode. The decoder library currently supports only very
+limited changes of parameters. ONLY THE FOLLOWING parameter changes are
+allowed after jpeg_start_decompress() is called:
+* dct_method can be changed before each call to jpeg_start_output().
+ For example, one could use a fast DCT method for early scans, changing
+ to a higher quality method for the final scan.
+* dither_mode can be changed before each call to jpeg_start_output();
+ of course this has no impact if not using color quantization. Typically
+ one would use ordered dither for initial passes, then switch to
+ Floyd-Steinberg dither for the final pass. Caution: changing dither mode
+ can cause more memory to be allocated by the library. Although the amount
+ of memory involved is not large (a scanline or so), it may cause the
+ initial max_memory_to_use specification to be exceeded, which in the worst
+ case would result in an out-of-memory failure.
+* do_block_smoothing can be changed before each call to jpeg_start_output().
+ This setting is relevant only when decoding a progressive JPEG image.
+ During the first DC-only scan, block smoothing provides a very "fuzzy" look
+ instead of the very "blocky" look seen without it; which is better seems a
+ matter of personal taste. But block smoothing is nearly always a win
+ during later stages, especially when decoding a successive-approximation
+ image: smoothing helps to hide the slight blockiness that otherwise shows
+ up on smooth gradients until the lowest coefficient bits are sent.
+* Color quantization mode can be changed under the rules described below.
+ You *cannot* change between full-color and quantized output (because that
+ would alter the required I/O buffer sizes), but you can change which
+ quantization method is used.
+
+When generating color-quantized output, changing quantization method is a
+very useful way of switching between high-speed and high-quality display.
+The library allows you to change among its three quantization methods:
+1. Single-pass quantization to a fixed color cube.
+ Selected by cinfo.two_pass_quantize = FALSE and cinfo.colormap = NULL.
+2. Single-pass quantization to an application-supplied colormap.
+ Selected by setting cinfo.colormap to point to the colormap (the value of
+ two_pass_quantize is ignored); also set cinfo.actual_number_of_colors.
+3. Two-pass quantization to a colormap chosen specifically for the image.
+ Selected by cinfo.two_pass_quantize = TRUE and cinfo.colormap = NULL.
+ (This is the default setting selected by jpeg_read_header, but it is
+ probably NOT what you want for the first pass of progressive display!)
+These methods offer successively better quality and lesser speed. However,
+only the first method is available for quantizing in non-RGB color spaces.
+
+IMPORTANT: because the different quantizer methods have very different
+working-storage requirements, the library requires you to indicate which
+one(s) you intend to use before you call jpeg_start_decompress(). (If we did
+not require this, the max_memory_to_use setting would be a complete fiction.)
+You do this by setting one or more of these three cinfo fields to TRUE:
+ enable_1pass_quant Fixed color cube colormap
+ enable_external_quant Externally-supplied colormap
+ enable_2pass_quant Two-pass custom colormap
+All three are initialized FALSE by jpeg_read_header(). But
+jpeg_start_decompress() automatically sets TRUE the one selected by the
+current two_pass_quantize and colormap settings, so you only need to set the
+enable flags for any other quantization methods you plan to change to later.
+
+After setting the enable flags correctly at jpeg_start_decompress() time, you
+can change to any enabled quantization method by setting two_pass_quantize
+and colormap properly just before calling jpeg_start_output(). The following
+special rules apply:
+1. You must explicitly set cinfo.colormap to NULL when switching to 1-pass
+ or 2-pass mode from a different mode, or when you want the 2-pass
+ quantizer to be re-run to generate a new colormap.
+2. To switch to an external colormap, or to change to a different external
+ colormap than was used on the prior pass, you must call
+ jpeg_new_colormap() after setting cinfo.colormap.
+NOTE: if you want to use the same colormap as was used in the prior pass,
+you should not do either of these things. This will save some nontrivial
+switchover costs.
+(These requirements exist because cinfo.colormap will always be non-NULL
+after completing a prior output pass, since both the 1-pass and 2-pass
+quantizers set it to point to their output colormaps. Thus you have to
+do one of these two things to notify the library that something has changed.
+Yup, it's a bit klugy, but it's necessary to do it this way for backwards
+compatibility.)
+
+Note that in buffered-image mode, the library generates any requested colormap
+during jpeg_start_output(), not during jpeg_start_decompress().
+
+When using two-pass quantization, jpeg_start_output() makes a pass over the
+buffered image to determine the optimum color map; it therefore may take a
+significant amount of time, whereas ordinarily it does little work. The
+progress monitor hook is called during this pass, if defined. It is also
+important to realize that if the specified target scan number is greater than
+or equal to the current input scan number, jpeg_start_output() will attempt
+to consume input as it makes this pass. If you use a suspending data source,
+you need to check for a FALSE return from jpeg_start_output() under these
+conditions. The combination of 2-pass quantization and a not-yet-fully-read
+target scan is the only case in which jpeg_start_output() will consume input.
+
+
+Application authors who support buffered-image mode may be tempted to use it
+for all JPEG images, even single-scan ones. This will work, but it is
+inefficient: there is no need to create an image-sized coefficient buffer for
+single-scan images. Requesting buffered-image mode for such an image wastes
+memory. Worse, it can cost time on large images, since the buffered data has
+to be swapped out or written to a temporary file. If you are concerned about
+maximum performance on baseline JPEG files, you should use buffered-image
+mode only when the incoming file actually has multiple scans. This can be
+tested by calling jpeg_has_multiple_scans(), which will return a correct
+result at any time after jpeg_read_header() completes.
+
+It is also worth noting that when you use jpeg_consume_input() to let input
+processing get ahead of output processing, the resulting pattern of access to
+the coefficient buffer is quite nonsequential. It's best to use the memory
+manager jmemnobs.c if you can (ie, if you have enough real or virtual main
+memory). If not, at least make sure that max_memory_to_use is set as high as
+possible. If the JPEG memory manager has to use a temporary file, you will
+probably see a lot of disk traffic and poor performance. (This could be
+improved with additional work on the memory manager, but we haven't gotten
+around to it yet.)
+
+In some applications it may be convenient to use jpeg_consume_input() for all
+input processing, including reading the initial markers; that is, you may
+wish to call jpeg_consume_input() instead of jpeg_read_header() during
+startup. This works, but note that you must check for JPEG_REACHED_SOS and
+JPEG_REACHED_EOI return codes as the equivalent of jpeg_read_header's codes.
+Once the first SOS marker has been reached, you must call
+jpeg_start_decompress() before jpeg_consume_input() will consume more input;
+it'll just keep returning JPEG_REACHED_SOS until you do. If you read a
+tables-only file this way, jpeg_consume_input() will return JPEG_REACHED_EOI
+without ever returning JPEG_REACHED_SOS; be sure to check for this case.
+If this happens, the decompressor will not read any more input until you call
+jpeg_abort() to reset it. It is OK to call jpeg_consume_input() even when not
+using buffered-image mode, but in that case it's basically a no-op after the
+initial markers have been read: it will just return JPEG_SUSPENDED.
+
+
+Abbreviated datastreams and multiple images
+-------------------------------------------
+
+A JPEG compression or decompression object can be reused to process multiple
+images. This saves a small amount of time per image by eliminating the
+"create" and "destroy" operations, but that isn't the real purpose of the
+feature. Rather, reuse of an object provides support for abbreviated JPEG
+datastreams. Object reuse can also simplify processing a series of images in
+a single input or output file. This section explains these features.
+
+A JPEG file normally contains several hundred bytes worth of quantization
+and Huffman tables. In a situation where many images will be stored or
+transmitted with identical tables, this may represent an annoying overhead.
+The JPEG standard therefore permits tables to be omitted. The standard
+defines three classes of JPEG datastreams:
+ * "Interchange" datastreams contain an image and all tables needed to decode
+ the image. These are the usual kind of JPEG file.
+ * "Abbreviated image" datastreams contain an image, but are missing some or
+ all of the tables needed to decode that image.
+ * "Abbreviated table specification" (henceforth "tables-only") datastreams
+ contain only table specifications.
+To decode an abbreviated image, it is necessary to load the missing table(s)
+into the decoder beforehand. This can be accomplished by reading a separate
+tables-only file. A variant scheme uses a series of images in which the first
+image is an interchange (complete) datastream, while subsequent ones are
+abbreviated and rely on the tables loaded by the first image. It is assumed
+that once the decoder has read a table, it will remember that table until a
+new definition for the same table number is encountered.
+
+It is the application designer's responsibility to figure out how to associate
+the correct tables with an abbreviated image. While abbreviated datastreams
+can be useful in a closed environment, their use is strongly discouraged in
+any situation where data exchange with other applications might be needed.
+Caveat designer.
+
+The JPEG library provides support for reading and writing any combination of
+tables-only datastreams and abbreviated images. In both compression and
+decompression objects, a quantization or Huffman table will be retained for
+the lifetime of the object, unless it is overwritten by a new table definition.
+
+
+To create abbreviated image datastreams, it is only necessary to tell the
+compressor not to emit some or all of the tables it is using. Each
+quantization and Huffman table struct contains a boolean field "sent_table",
+which normally is initialized to FALSE. For each table used by the image, the
+header-writing process emits the table and sets sent_table = TRUE unless it is
+already TRUE. (In normal usage, this prevents outputting the same table
+definition multiple times, as would otherwise occur because the chroma
+components typically share tables.) Thus, setting this field to TRUE before
+calling jpeg_start_compress() will prevent the table from being written at
+all.
+
+If you want to create a "pure" abbreviated image file containing no tables,
+just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the
+tables. If you want to emit some but not all tables, you'll need to set the
+individual sent_table fields directly.
+
+To create an abbreviated image, you must also call jpeg_start_compress()
+with a second parameter of FALSE, not TRUE. Otherwise jpeg_start_compress()
+will force all the sent_table fields to FALSE. (This is a safety feature to
+prevent abbreviated images from being created accidentally.)
+
+To create a tables-only file, perform the same parameter setup that you
+normally would, but instead of calling jpeg_start_compress() and so on, call
+jpeg_write_tables(&cinfo). This will write an abbreviated datastream
+containing only SOI, DQT and/or DHT markers, and EOI. All the quantization
+and Huffman tables that are currently defined in the compression object will
+be emitted unless their sent_tables flag is already TRUE, and then all the
+sent_tables flags will be set TRUE.
+
+A sure-fire way to create matching tables-only and abbreviated image files
+is to proceed as follows:
+
+ create JPEG compression object
+ set JPEG parameters
+ set destination to tables-only file
+ jpeg_write_tables(&cinfo);
+ set destination to image file
+ jpeg_start_compress(&cinfo, FALSE);
+ write data...
+ jpeg_finish_compress(&cinfo);
+
+Since the JPEG parameters are not altered between writing the table file and
+the abbreviated image file, the same tables are sure to be used. Of course,
+you can repeat the jpeg_start_compress() ... jpeg_finish_compress() sequence
+many times to produce many abbreviated image files matching the table file.
+
+You cannot suppress output of the computed Huffman tables when Huffman
+optimization is selected. (If you could, there'd be no way to decode the
+image...) Generally, you don't want to set optimize_coding = TRUE when
+you are trying to produce abbreviated files.
+
+In some cases you might want to compress an image using tables which are
+not stored in the application, but are defined in an interchange or
+tables-only file readable by the application. This can be done by setting up
+a JPEG decompression object to read the specification file, then copying the
+tables into your compression object. See jpeg_copy_critical_parameters()
+for an example of copying quantization tables.
+
+
+To read abbreviated image files, you simply need to load the proper tables
+into the decompression object before trying to read the abbreviated image.
+If the proper tables are stored in the application program, you can just
+allocate the table structs and fill in their contents directly. For example,
+to load a fixed quantization table into table slot "n":
+
+ if (cinfo.quant_tbl_ptrs[n] == NULL)
+ cinfo.quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) &cinfo);
+ quant_ptr = cinfo.quant_tbl_ptrs[n]; /* quant_ptr is JQUANT_TBL* */
+ for (i = 0; i < 64; i++) {
+ /* Qtable[] is desired quantization table, in natural array order */
+ quant_ptr->quantval[i] = Qtable[i];
+ }
+
+Code to load a fixed Huffman table is typically (for AC table "n"):
+
+ if (cinfo.ac_huff_tbl_ptrs[n] == NULL)
+ cinfo.ac_huff_tbl_ptrs[n] = jpeg_alloc_huff_table((j_common_ptr) &cinfo);
+ huff_ptr = cinfo.ac_huff_tbl_ptrs[n]; /* huff_ptr is JHUFF_TBL* */
+ for (i = 1; i <= 16; i++) {
+ /* counts[i] is number of Huffman codes of length i bits, i=1..16 */
+ huff_ptr->bits[i] = counts[i];
+ }
+ for (i = 0; i < 256; i++) {
+ /* symbols[] is the list of Huffman symbols, in code-length order */
+ huff_ptr->huffval[i] = symbols[i];
+ }
+
+(Note that trying to set cinfo.quant_tbl_ptrs[n] to point directly at a
+constant JQUANT_TBL object is not safe. If the incoming file happened to
+contain a quantization table definition, your master table would get
+overwritten! Instead allocate a working table copy and copy the master table
+into it, as illustrated above. Ditto for Huffman tables, of course.)
+
+You might want to read the tables from a tables-only file, rather than
+hard-wiring them into your application. The jpeg_read_header() call is
+sufficient to read a tables-only file. You must pass a second parameter of
+FALSE to indicate that you do not require an image to be present. Thus, the
+typical scenario is
+
+ create JPEG decompression object
+ set source to tables-only file
+ jpeg_read_header(&cinfo, FALSE);
+ set source to abbreviated image file
+ jpeg_read_header(&cinfo, TRUE);
+ set decompression parameters
+ jpeg_start_decompress(&cinfo);
+ read data...
+ jpeg_finish_decompress(&cinfo);
+
+In some cases, you may want to read a file without knowing whether it contains
+an image or just tables. In that case, pass FALSE and check the return value
+from jpeg_read_header(): it will be JPEG_HEADER_OK if an image was found,
+JPEG_HEADER_TABLES_ONLY if only tables were found. (A third return value,
+JPEG_SUSPENDED, is possible when using a suspending data source manager.)
+Note that jpeg_read_header() will not complain if you read an abbreviated
+image for which you haven't loaded the missing tables; the missing-table check
+occurs later, in jpeg_start_decompress().
+
+
+It is possible to read a series of images from a single source file by
+repeating the jpeg_read_header() ... jpeg_finish_decompress() sequence,
+without releasing/recreating the JPEG object or the data source module.
+(If you did reinitialize, any partial bufferload left in the data source
+buffer at the end of one image would be discarded, causing you to lose the
+start of the next image.) When you use this method, stored tables are
+automatically carried forward, so some of the images can be abbreviated images
+that depend on tables from earlier images.
+
+If you intend to write a series of images into a single destination file,
+you might want to make a specialized data destination module that doesn't
+flush the output buffer at term_destination() time. This would speed things
+up by some trifling amount. Of course, you'd need to remember to flush the
+buffer after the last image. You can make the later images be abbreviated
+ones by passing FALSE to jpeg_start_compress().
+
+
+Special markers
+---------------
+
+Some applications may need to insert or extract special data in the JPEG
+datastream. The JPEG standard provides marker types "COM" (comment) and
+"APP0" through "APP15" (application) to hold application-specific data.
+Unfortunately, the use of these markers is not specified by the standard.
+COM markers are fairly widely used to hold user-supplied text. The JFIF file
+format spec uses APP0 markers with specified initial strings to hold certain
+data. Adobe applications use APP14 markers beginning with the string "Adobe"
+for miscellaneous data. Other APPn markers are rarely seen, but might
+contain almost anything.
+
+If you wish to store user-supplied text, we recommend you use COM markers
+and place readable 7-bit ASCII text in them. Newline conventions are not
+standardized --- expect to find LF (Unix style), CR/LF (DOS style), or CR
+(Mac style). A robust COM reader should be able to cope with random binary
+garbage, including nulls, since some applications generate COM markers
+containing non-ASCII junk. (But yours should not be one of them.)
+
+For program-supplied data, use an APPn marker, and be sure to begin it with an
+identifying string so that you can tell whether the marker is actually yours.
+It's probably best to avoid using APP0 or APP14 for any private markers.
+(NOTE: the upcoming SPIFF standard will use APP8 markers; we recommend you
+not use APP8 markers for any private purposes, either.)
+
+Keep in mind that at most 65533 bytes can be put into one marker, but you
+can have as many markers as you like.
+
+By default, the IJG compression library will write a JFIF APP0 marker if the
+selected JPEG colorspace is grayscale or YCbCr, or an Adobe APP14 marker if
+the selected colorspace is RGB, CMYK, or YCCK. You can disable this, but
+we don't recommend it. The decompression library will recognize JFIF and
+Adobe markers and will set the JPEG colorspace properly when one is found.
+
+
+You can write special markers immediately following the datastream header by
+calling jpeg_write_marker() after jpeg_start_compress() and before the first
+call to jpeg_write_scanlines(). When you do this, the markers appear after
+the SOI and the JFIF APP0 and Adobe APP14 markers (if written), but before
+all else. Specify the marker type parameter as "JPEG_COM" for COM or
+"JPEG_APP0 + n" for APPn. (Actually, jpeg_write_marker will let you write
+any marker type, but we don't recommend writing any other kinds of marker.)
+For example, to write a user comment string pointed to by comment_text:
+ jpeg_write_marker(cinfo, JPEG_COM, comment_text, strlen(comment_text));
+
+If it's not convenient to store all the marker data in memory at once,
+you can instead call jpeg_write_m_header() followed by multiple calls to
+jpeg_write_m_byte(). If you do it this way, it's your responsibility to
+call jpeg_write_m_byte() exactly the number of times given in the length
+parameter to jpeg_write_m_header(). (This method lets you empty the
+output buffer partway through a marker, which might be important when
+using a suspending data destination module. In any case, if you are using
+a suspending destination, you should flush its buffer after inserting
+any special markers. See "I/O suspension".)
+
+Or, if you prefer to synthesize the marker byte sequence yourself,
+you can just cram it straight into the data destination module.
+
+If you are writing JFIF 1.02 extension markers (thumbnail images), don't
+forget to set cinfo.JFIF_minor_version = 2 so that the encoder will write the
+correct JFIF version number in the JFIF header marker. The library's default
+is to write version 1.01, but that's wrong if you insert any 1.02 extension
+markers. (We could probably get away with just defaulting to 1.02, but there
+used to be broken decoders that would complain about unknown minor version
+numbers. To reduce compatibility risks it's safest not to write 1.02 unless
+you are actually using 1.02 extensions.)
+
+
+When reading, two methods of handling special markers are available:
+1. You can ask the library to save the contents of COM and/or APPn markers
+into memory, and then examine them at your leisure afterwards.
+2. You can supply your own routine to process COM and/or APPn markers
+on-the-fly as they are read.
+The first method is simpler to use, especially if you are using a suspending
+data source; writing a marker processor that copes with input suspension is
+not easy (consider what happens if the marker is longer than your available
+input buffer). However, the second method conserves memory since the marker
+data need not be kept around after it's been processed.
+
+For either method, you'd normally set up marker handling after creating a
+decompression object and before calling jpeg_read_header(), because the
+markers of interest will typically be near the head of the file and so will
+be scanned by jpeg_read_header. Once you've established a marker handling
+method, it will be used for the life of that decompression object
+(potentially many datastreams), unless you change it. Marker handling is
+determined separately for COM markers and for each APPn marker code.
+
+
+To save the contents of special markers in memory, call
+ jpeg_save_markers(cinfo, marker_code, length_limit)
+where marker_code is the marker type to save, JPEG_COM or JPEG_APP0+n.
+(To arrange to save all the special marker types, you need to call this
+routine 17 times, for COM and APP0-APP15.) If the incoming marker is longer
+than length_limit data bytes, only length_limit bytes will be saved; this
+parameter allows you to avoid chewing up memory when you only need to see the
+first few bytes of a potentially large marker. If you want to save all the
+data, set length_limit to 0xFFFF; that is enough since marker lengths are only
+16 bits. As a special case, setting length_limit to 0 prevents that marker
+type from being saved at all. (That is the default behavior, in fact.)
+
+After jpeg_read_header() completes, you can examine the special markers by
+following the cinfo->marker_list pointer chain. All the special markers in
+the file appear in this list, in order of their occurrence in the file (but
+omitting any markers of types you didn't ask for). Both the original data
+length and the saved data length are recorded for each list entry; the latter
+will not exceed length_limit for the particular marker type. Note that these
+lengths exclude the marker length word, whereas the stored representation
+within the JPEG file includes it. (Hence the maximum data length is really
+only 65533.)
+
+It is possible that additional special markers appear in the file beyond the
+SOS marker at which jpeg_read_header stops; if so, the marker list will be
+extended during reading of the rest of the file. This is not expected to be
+common, however. If you are short on memory you may want to reset the length
+limit to zero for all marker types after finishing jpeg_read_header, to
+ensure that the max_memory_to_use setting cannot be exceeded due to addition
+of later markers.
+
+The marker list remains stored until you call jpeg_finish_decompress or
+jpeg_abort, at which point the memory is freed and the list is set to empty.
+(jpeg_destroy also releases the storage, of course.)
+
+Note that the library is internally interested in APP0 and APP14 markers;
+if you try to set a small nonzero length limit on these types, the library
+will silently force the length up to the minimum it wants. (But you can set
+a zero length limit to prevent them from being saved at all.) Also, in a
+16-bit environment, the maximum length limit may be constrained to less than
+65533 by malloc() limitations. It is therefore best not to assume that the
+effective length limit is exactly what you set it to be.
+
+
+If you want to supply your own marker-reading routine, you do it by calling
+jpeg_set_marker_processor(). A marker processor routine must have the
+signature
+ boolean jpeg_marker_parser_method (j_decompress_ptr cinfo)
+Although the marker code is not explicitly passed, the routine can find it
+in cinfo->unread_marker. At the time of call, the marker proper has been
+read from the data source module. The processor routine is responsible for
+reading the marker length word and the remaining parameter bytes, if any.
+Return TRUE to indicate success. (FALSE should be returned only if you are
+using a suspending data source and it tells you to suspend. See the standard
+marker processors in jdmarker.c for appropriate coding methods if you need to
+use a suspending data source.)
+
+If you override the default APP0 or APP14 processors, it is up to you to
+recognize JFIF and Adobe markers if you want colorspace recognition to occur
+properly. We recommend copying and extending the default processors if you
+want to do that. (A better idea is to save these marker types for later
+examination by calling jpeg_save_markers(); that method doesn't interfere
+with the library's own processing of these markers.)
+
+jpeg_set_marker_processor() and jpeg_save_markers() are mutually exclusive
+--- if you call one it overrides any previous call to the other, for the
+particular marker type specified.
+
+A simple example of an external COM processor can be found in djpeg.c.
+Also, see jpegtran.c for an example of using jpeg_save_markers.
+
+
+Raw (downsampled) image data
+----------------------------
+
+Some applications need to supply already-downsampled image data to the JPEG
+compressor, or to receive raw downsampled data from the decompressor. The
+library supports this requirement by allowing the application to write or
+read raw data, bypassing the normal preprocessing or postprocessing steps.
+The interface is different from the standard one and is somewhat harder to
+use. If your interest is merely in bypassing color conversion, we recommend
+that you use the standard interface and simply set jpeg_color_space =
+in_color_space (or jpeg_color_space = out_color_space for decompression).
+The mechanism described in this section is necessary only to supply or
+receive downsampled image data, in which not all components have the same
+dimensions.
+
+
+To compress raw data, you must supply the data in the colorspace to be used
+in the JPEG file (please read the earlier section on Special color spaces)
+and downsampled to the sampling factors specified in the JPEG parameters.
+You must supply the data in the format used internally by the JPEG library,
+namely a JSAMPIMAGE array. This is an array of pointers to two-dimensional
+arrays, each of type JSAMPARRAY. Each 2-D array holds the values for one
+color component. This structure is necessary since the components are of
+different sizes. If the image dimensions are not a multiple of the MCU size,
+you must also pad the data correctly (usually, this is done by replicating
+the last column and/or row). The data must be padded to a multiple of a DCT
+block in each component: that is, each downsampled row must contain a
+multiple of 8 valid samples, and there must be a multiple of 8 sample rows
+for each component. (For applications such as conversion of digital TV
+images, the standard image size is usually a multiple of the DCT block size,
+so that no padding need actually be done.)
+
+The procedure for compression of raw data is basically the same as normal
+compression, except that you call jpeg_write_raw_data() in place of
+jpeg_write_scanlines(). Before calling jpeg_start_compress(), you must do
+the following:
+ * Set cinfo->raw_data_in to TRUE. (It is set FALSE by jpeg_set_defaults().)
+ This notifies the library that you will be supplying raw data.
+ Furthermore, set cinfo->do_fancy_downsampling to FALSE if you want to use
+ real downsampled data. (It is set TRUE by jpeg_set_defaults().)
+ * Ensure jpeg_color_space is correct --- an explicit jpeg_set_colorspace()
+ call is a good idea. Note that since color conversion is bypassed,
+ in_color_space is ignored, except that jpeg_set_defaults() uses it to
+ choose the default jpeg_color_space setting.
+ * Ensure the sampling factors, cinfo->comp_info[i].h_samp_factor and
+ cinfo->comp_info[i].v_samp_factor, are correct. Since these indicate the
+ dimensions of the data you are supplying, it's wise to set them
+ explicitly, rather than assuming the library's defaults are what you want.
+
+To pass raw data to the library, call jpeg_write_raw_data() in place of
+jpeg_write_scanlines(). The two routines work similarly except that
+jpeg_write_raw_data takes a JSAMPIMAGE data array rather than JSAMPARRAY.
+The scanlines count passed to and returned from jpeg_write_raw_data is
+measured in terms of the component with the largest v_samp_factor.
+
+jpeg_write_raw_data() processes one MCU row per call, which is to say
+v_samp_factor*DCTSIZE sample rows of each component. The passed num_lines
+value must be at least max_v_samp_factor*DCTSIZE, and the return value will
+be exactly that amount (or possibly some multiple of that amount, in future
+library versions). This is true even on the last call at the bottom of the
+image; don't forget to pad your data as necessary.
+
+The required dimensions of the supplied data can be computed for each
+component as
+ cinfo->comp_info[i].width_in_blocks*DCTSIZE samples per row
+ cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image
+after jpeg_start_compress() has initialized those fields. If the valid data
+is smaller than this, it must be padded appropriately. For some sampling
+factors and image sizes, additional dummy DCT blocks are inserted to make
+the image a multiple of the MCU dimensions. The library creates such dummy
+blocks itself; it does not read them from your supplied data. Therefore you
+need never pad by more than DCTSIZE samples. An example may help here.
+Assume 2h2v downsampling of YCbCr data, that is
+ cinfo->comp_info[0].h_samp_factor = 2 for Y
+ cinfo->comp_info[0].v_samp_factor = 2
+ cinfo->comp_info[1].h_samp_factor = 1 for Cb
+ cinfo->comp_info[1].v_samp_factor = 1
+ cinfo->comp_info[2].h_samp_factor = 1 for Cr
+ cinfo->comp_info[2].v_samp_factor = 1
+and suppose that the nominal image dimensions (cinfo->image_width and
+cinfo->image_height) are 101x101 pixels. Then jpeg_start_compress() will
+compute downsampled_width = 101 and width_in_blocks = 13 for Y,
+downsampled_width = 51 and width_in_blocks = 7 for Cb and Cr (and the same
+for the height fields). You must pad the Y data to at least 13*8 = 104
+columns and rows, the Cb/Cr data to at least 7*8 = 56 columns and rows. The
+MCU height is max_v_samp_factor = 2 DCT rows so you must pass at least 16
+scanlines on each call to jpeg_write_raw_data(), which is to say 16 actual
+sample rows of Y and 8 each of Cb and Cr. A total of 7 MCU rows are needed,
+so you must pass a total of 7*16 = 112 "scanlines". The last DCT block row
+of Y data is dummy, so it doesn't matter what you pass for it in the data
+arrays, but the scanlines count must total up to 112 so that all of the Cb
+and Cr data gets passed.
+
+Output suspension is supported with raw-data compression: if the data
+destination module suspends, jpeg_write_raw_data() will return 0.
+In this case the same data rows must be passed again on the next call.
+
+
+Decompression with raw data output implies bypassing all postprocessing.
+You must deal with the color space and sampling factors present in the
+incoming file. If your application only handles, say, 2h1v YCbCr data,
+you must check for and fail on other color spaces or other sampling factors.
+The library will not convert to a different color space for you.
+
+To obtain raw data output, set cinfo->raw_data_out = TRUE before
+jpeg_start_decompress() (it is set FALSE by jpeg_read_header()). Be sure to
+verify that the color space and sampling factors are ones you can handle.
+Furthermore, set cinfo->do_fancy_upsampling = FALSE if you want to get real
+downsampled data (it is set TRUE by jpeg_read_header()).
+Then call jpeg_read_raw_data() in place of jpeg_read_scanlines(). The
+decompression process is otherwise the same as usual.
+
+jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a
+buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is
+the same as for raw-data compression). The buffer you pass must be large
+enough to hold the actual data plus padding to DCT-block boundaries. As with
+compression, any entirely dummy DCT blocks are not processed so you need not
+allocate space for them, but the total scanline count includes them. The
+above example of computing buffer dimensions for raw-data compression is
+equally valid for decompression.
+
+Input suspension is supported with raw-data decompression: if the data source
+module suspends, jpeg_read_raw_data() will return 0. You can also use
+buffered-image mode to read raw data in multiple passes.
+
+
+Really raw data: DCT coefficients
+---------------------------------
+
+It is possible to read or write the contents of a JPEG file as raw DCT
+coefficients. This facility is mainly intended for use in lossless
+transcoding between different JPEG file formats. Other possible applications
+include lossless cropping of a JPEG image, lossless reassembly of a
+multi-strip or multi-tile TIFF/JPEG file into a single JPEG datastream, etc.
+
+To read the contents of a JPEG file as DCT coefficients, open the file and do
+jpeg_read_header() as usual. But instead of calling jpeg_start_decompress()
+and jpeg_read_scanlines(), call jpeg_read_coefficients(). This will read the
+entire image into a set of virtual coefficient-block arrays, one array per
+component. The return value is a pointer to an array of virtual-array
+descriptors. Each virtual array can be accessed directly using the JPEG
+memory manager's access_virt_barray method (see Memory management, below,
+and also read structure.txt's discussion of virtual array handling). Or,
+for simple transcoding to a different JPEG file format, the array list can
+just be handed directly to jpeg_write_coefficients().
+
+Each block in the block arrays contains quantized coefficient values in
+normal array order (not JPEG zigzag order). The block arrays contain only
+DCT blocks containing real data; any entirely-dummy blocks added to fill out
+interleaved MCUs at the right or bottom edges of the image are discarded
+during reading and are not stored in the block arrays. (The size of each
+block array can be determined from the width_in_blocks and height_in_blocks
+fields of the component's comp_info entry.) This is also the data format
+expected by jpeg_write_coefficients().
+
+When you are done using the virtual arrays, call jpeg_finish_decompress()
+to release the array storage and return the decompression object to an idle
+state; or just call jpeg_destroy() if you don't need to reuse the object.
+
+If you use a suspending data source, jpeg_read_coefficients() will return
+NULL if it is forced to suspend; a non-NULL return value indicates successful
+completion. You need not test for a NULL return value when using a
+non-suspending data source.
+
+It is also possible to call jpeg_read_coefficients() to obtain access to the
+decoder's coefficient arrays during a normal decode cycle in buffered-image
+mode. This frammish might be useful for progressively displaying an incoming
+image and then re-encoding it without loss. To do this, decode in buffered-
+image mode as discussed previously, then call jpeg_read_coefficients() after
+the last jpeg_finish_output() call. The arrays will be available for your use
+until you call jpeg_finish_decompress().
+
+
+To write the contents of a JPEG file as DCT coefficients, you must provide
+the DCT coefficients stored in virtual block arrays. You can either pass
+block arrays read from an input JPEG file by jpeg_read_coefficients(), or
+allocate virtual arrays from the JPEG compression object and fill them
+yourself. In either case, jpeg_write_coefficients() is substituted for
+jpeg_start_compress() and jpeg_write_scanlines(). Thus the sequence is
+ * Create compression object
+ * Set all compression parameters as necessary
+ * Request virtual arrays if needed
+ * jpeg_write_coefficients()
+ * jpeg_finish_compress()
+ * Destroy or re-use compression object
+jpeg_write_coefficients() is passed a pointer to an array of virtual block
+array descriptors; the number of arrays is equal to cinfo.num_components.
+
+The virtual arrays need only have been requested, not realized, before
+jpeg_write_coefficients() is called. A side-effect of
+jpeg_write_coefficients() is to realize any virtual arrays that have been
+requested from the compression object's memory manager. Thus, when obtaining
+the virtual arrays from the compression object, you should fill the arrays
+after calling jpeg_write_coefficients(). The data is actually written out
+when you call jpeg_finish_compress(); jpeg_write_coefficients() only writes
+the file header.
+
+When writing raw DCT coefficients, it is crucial that the JPEG quantization
+tables and sampling factors match the way the data was encoded, or the
+resulting file will be invalid. For transcoding from an existing JPEG file,
+we recommend using jpeg_copy_critical_parameters(). This routine initializes
+all the compression parameters to default values (like jpeg_set_defaults()),
+then copies the critical information from a source decompression object.
+The decompression object should have just been used to read the entire
+JPEG input file --- that is, it should be awaiting jpeg_finish_decompress().
+
+jpeg_write_coefficients() marks all tables stored in the compression object
+as needing to be written to the output file (thus, it acts like
+jpeg_start_compress(cinfo, TRUE)). This is for safety's sake, to avoid
+emitting abbreviated JPEG files by accident. If you really want to emit an
+abbreviated JPEG file, call jpeg_suppress_tables(), or set the tables'
+individual sent_table flags, between calling jpeg_write_coefficients() and
+jpeg_finish_compress().
+
+
+Progress monitoring
+-------------------
+
+Some applications may need to regain control from the JPEG library every so
+often. The typical use of this feature is to produce a percent-done bar or
+other progress display. (For a simple example, see cjpeg.c or djpeg.c.)
+Although you do get control back frequently during the data-transferring pass
+(the jpeg_read_scanlines or jpeg_write_scanlines loop), any additional passes
+will occur inside jpeg_finish_compress or jpeg_start_decompress; those
+routines may take a long time to execute, and you don't get control back
+until they are done.
+
+You can define a progress-monitor routine which will be called periodically
+by the library. No guarantees are made about how often this call will occur,
+so we don't recommend you use it for mouse tracking or anything like that.
+At present, a call will occur once per MCU row, scanline, or sample row
+group, whichever unit is convenient for the current processing mode; so the
+wider the image, the longer the time between calls. During the data
+transferring pass, only one call occurs per call of jpeg_read_scanlines or
+jpeg_write_scanlines, so don't pass a large number of scanlines at once if
+you want fine resolution in the progress count. (If you really need to use
+the callback mechanism for time-critical tasks like mouse tracking, you could
+insert additional calls inside some of the library's inner loops.)
+
+To establish a progress-monitor callback, create a struct jpeg_progress_mgr,
+fill in its progress_monitor field with a pointer to your callback routine,
+and set cinfo->progress to point to the struct. The callback will be called
+whenever cinfo->progress is non-NULL. (This pointer is set to NULL by
+jpeg_create_compress or jpeg_create_decompress; the library will not change
+it thereafter. So if you allocate dynamic storage for the progress struct,
+make sure it will live as long as the JPEG object does. Allocating from the
+JPEG memory manager with lifetime JPOOL_PERMANENT will work nicely.) You
+can use the same callback routine for both compression and decompression.
+
+The jpeg_progress_mgr struct contains four fields which are set by the library:
+ long pass_counter; /* work units completed in this pass */
+ long pass_limit; /* total number of work units in this pass */
+ int completed_passes; /* passes completed so far */
+ int total_passes; /* total number of passes expected */
+During any one pass, pass_counter increases from 0 up to (not including)
+pass_limit; the step size is usually but not necessarily 1. The pass_limit
+value may change from one pass to another. The expected total number of
+passes is in total_passes, and the number of passes already completed is in
+completed_passes. Thus the fraction of work completed may be estimated as
+ completed_passes + (pass_counter/pass_limit)
+ --------------------------------------------
+ total_passes
+ignoring the fact that the passes may not be equal amounts of work.
+
+When decompressing, pass_limit can even change within a pass, because it
+depends on the number of scans in the JPEG file, which isn't always known in
+advance. The computed fraction-of-work-done may jump suddenly (if the library
+discovers it has overestimated the number of scans) or even decrease (in the
+opposite case). It is not wise to put great faith in the work estimate.
+
+When using the decompressor's buffered-image mode, the progress monitor work
+estimate is likely to be completely unhelpful, because the library has no way
+to know how many output passes will be demanded of it. Currently, the library
+sets total_passes based on the assumption that there will be one more output
+pass if the input file end hasn't yet been read (jpeg_input_complete() isn't
+TRUE), but no more output passes if the file end has been reached when the
+output pass is started. This means that total_passes will rise as additional
+output passes are requested. If you have a way of determining the input file
+size, estimating progress based on the fraction of the file that's been read
+will probably be more useful than using the library's value.
+
+
+Memory management
+-----------------
+
+This section covers some key facts about the JPEG library's built-in memory
+manager. For more info, please read structure.txt's section about the memory
+manager, and consult the source code if necessary.
+
+All memory and temporary file allocation within the library is done via the
+memory manager. If necessary, you can replace the "back end" of the memory
+manager to control allocation yourself (for example, if you don't want the
+library to use malloc() and free() for some reason).
+
+Some data is allocated "permanently" and will not be freed until the JPEG
+object is destroyed. Most data is allocated "per image" and is freed by
+jpeg_finish_compress, jpeg_finish_decompress, or jpeg_abort. You can call the
+memory manager yourself to allocate structures that will automatically be
+freed at these times. Typical code for this is
+ ptr = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, size);
+Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object.
+Use alloc_large instead of alloc_small for anything bigger than a few Kbytes.
+There are also alloc_sarray and alloc_barray routines that automatically
+build 2-D sample or block arrays.
+
+The library's minimum space requirements to process an image depend on the
+image's width, but not on its height, because the library ordinarily works
+with "strip" buffers that are as wide as the image but just a few rows high.
+Some operating modes (eg, two-pass color quantization) require full-image
+buffers. Such buffers are treated as "virtual arrays": only the current strip
+need be in memory, and the rest can be swapped out to a temporary file.
+
+If you use the simplest memory manager back end (jmemnobs.c), then no
+temporary files are used; virtual arrays are simply malloc()'d. Images bigger
+than memory can be processed only if your system supports virtual memory.
+The other memory manager back ends support temporary files of various flavors
+and thus work in machines without virtual memory. They may also be useful on
+Unix machines if you need to process images that exceed available swap space.
+
+When using temporary files, the library will make the in-memory buffers for
+its virtual arrays just big enough to stay within a "maximum memory" setting.
+Your application can set this limit by setting cinfo->mem->max_memory_to_use
+after creating the JPEG object. (Of course, there is still a minimum size for
+the buffers, so the max-memory setting is effective only if it is bigger than
+the minimum space needed.) If you allocate any large structures yourself, you
+must allocate them before jpeg_start_compress() or jpeg_start_decompress() in
+order to have them counted against the max memory limit. Also keep in mind
+that space allocated with alloc_small() is ignored, on the assumption that
+it's too small to be worth worrying about; so a reasonable safety margin
+should be left when setting max_memory_to_use.
+
+If you use the jmemname.c or jmemdos.c memory manager back end, it is
+important to clean up the JPEG object properly to ensure that the temporary
+files get deleted. (This is especially crucial with jmemdos.c, where the
+"temporary files" may be extended-memory segments; if they are not freed,
+DOS will require a reboot to recover the memory.) Thus, with these memory
+managers, it's a good idea to provide a signal handler that will trap any
+early exit from your program. The handler should call either jpeg_abort()
+or jpeg_destroy() for any active JPEG objects. A handler is not needed with
+jmemnobs.c, and shouldn't be necessary with jmemansi.c or jmemmac.c either,
+since the C library is supposed to take care of deleting files made with
+tmpfile().
+
+
+Memory usage
+------------
+
+Working memory requirements while performing compression or decompression
+depend on image dimensions, image characteristics (such as colorspace and
+JPEG process), and operating mode (application-selected options).
+
+As of v6b, the decompressor requires:
+ 1. About 24K in more-or-less-fixed-size data. This varies a bit depending
+ on operating mode and image characteristics (particularly color vs.
+ grayscale), but it doesn't depend on image dimensions.
+ 2. Strip buffers (of size proportional to the image width) for IDCT and
+ upsampling results. The worst case for commonly used sampling factors
+ is about 34 bytes * width in pixels for a color image. A grayscale image
+ only needs about 8 bytes per pixel column.
+ 3. A full-image DCT coefficient buffer is needed to decode a multi-scan JPEG
+ file (including progressive JPEGs), or whenever you select buffered-image
+ mode. This takes 2 bytes/coefficient. At typical 2x2 sampling, that's
+ 3 bytes per pixel for a color image. Worst case (1x1 sampling) requires
+ 6 bytes/pixel. For grayscale, figure 2 bytes/pixel.
+ 4. To perform 2-pass color quantization, the decompressor also needs a
+ 128K color lookup table and a full-image pixel buffer (3 bytes/pixel).
+This does not count any memory allocated by the application, such as a
+buffer to hold the final output image.
+
+The above figures are valid for 8-bit JPEG data precision and a machine with
+32-bit ints. For 12-bit JPEG data, double the size of the strip buffers and
+quantization pixel buffer. The "fixed-size" data will be somewhat smaller
+with 16-bit ints, larger with 64-bit ints. Also, CMYK or other unusual
+color spaces will require different amounts of space.
+
+The full-image coefficient and pixel buffers, if needed at all, do not
+have to be fully RAM resident; you can have the library use temporary
+files instead when the total memory usage would exceed a limit you set.
+(But if your OS supports virtual memory, it's probably better to just use
+jmemnobs and let the OS do the swapping.)
+
+The compressor's memory requirements are similar, except that it has no need
+for color quantization. Also, it needs a full-image DCT coefficient buffer
+if Huffman-table optimization is asked for, even if progressive mode is not
+requested.
+
+If you need more detailed information about memory usage in a particular
+situation, you can enable the MEM_STATS code in jmemmgr.c.
+
+
+Library compile-time options
+----------------------------
+
+A number of compile-time options are available by modifying jmorecfg.h.
+
+The JPEG standard provides for both the baseline 8-bit DCT process and
+a 12-bit DCT process. The IJG code supports 12-bit lossy JPEG if you define
+BITS_IN_JSAMPLE as 12 rather than 8. Note that this causes JSAMPLE to be
+larger than a char, so it affects the surrounding application's image data.
+The sample applications cjpeg and djpeg can support 12-bit mode only for PPM
+and GIF file formats; you must disable the other file formats to compile a
+12-bit cjpeg or djpeg. (install.txt has more information about that.)
+At present, a 12-bit library can handle *only* 12-bit images, not both
+precisions. (If you need to include both 8- and 12-bit libraries in a single
+application, you could probably do it by defining NEED_SHORT_EXTERNAL_NAMES
+for just one of the copies. You'd have to access the 8-bit and 12-bit copies
+from separate application source files. This is untested ... if you try it,
+we'd like to hear whether it works!)
+
+Note that a 12-bit library always compresses in Huffman optimization mode,
+in order to generate valid Huffman tables. This is necessary because our
+default Huffman tables only cover 8-bit data. If you need to output 12-bit
+files in one pass, you'll have to supply suitable default Huffman tables.
+You may also want to supply your own DCT quantization tables; the existing
+quality-scaling code has been developed for 8-bit use, and probably doesn't
+generate especially good tables for 12-bit.
+
+The maximum number of components (color channels) in the image is determined
+by MAX_COMPONENTS. The JPEG standard allows up to 255 components, but we
+expect that few applications will need more than four or so.
+
+On machines with unusual data type sizes, you may be able to improve
+performance or reduce memory space by tweaking the various typedefs in
+jmorecfg.h. In particular, on some RISC CPUs, access to arrays of "short"s
+is quite slow; consider trading memory for speed by making JCOEF, INT16, and
+UINT16 be "int" or "unsigned int". UINT8 is also a candidate to become int.
+You probably don't want to make JSAMPLE be int unless you have lots of memory
+to burn.
+
+You can reduce the size of the library by compiling out various optional
+functions. To do this, undefine xxx_SUPPORTED symbols as necessary.
+
+You can also save a few K by not having text error messages in the library;
+the standard error message table occupies about 5Kb. This is particularly
+reasonable for embedded applications where there's no good way to display
+a message anyway. To do this, remove the creation of the message table
+(jpeg_std_message_table[]) from jerror.c, and alter format_message to do
+something reasonable without it. You could output the numeric value of the
+message code number, for example. If you do this, you can also save a couple
+more K by modifying the TRACEMSn() macros in jerror.h to expand to nothing;
+you don't need trace capability anyway, right?
+
+
+Portability considerations
+--------------------------
+
+The JPEG library has been written to be extremely portable; the sample
+applications cjpeg and djpeg are slightly less so. This section summarizes
+the design goals in this area. (If you encounter any bugs that cause the
+library to be less portable than is claimed here, we'd appreciate hearing
+about them.)
+
+The code works fine on ANSI C, C++, and pre-ANSI C compilers, using any of
+the popular system include file setups, and some not-so-popular ones too.
+See install.txt for configuration procedures.
+
+The code is not dependent on the exact sizes of the C data types. As
+distributed, we make the assumptions that
+ char is at least 8 bits wide
+ short is at least 16 bits wide
+ int is at least 16 bits wide
+ long is at least 32 bits wide
+(These are the minimum requirements of the ANSI C standard.) Wider types will
+work fine, although memory may be used inefficiently if char is much larger
+than 8 bits or short is much bigger than 16 bits. The code should work
+equally well with 16- or 32-bit ints.
+
+In a system where these assumptions are not met, you may be able to make the
+code work by modifying the typedefs in jmorecfg.h. However, you will probably
+have difficulty if int is less than 16 bits wide, since references to plain
+int abound in the code.
+
+char can be either signed or unsigned, although the code runs faster if an
+unsigned char type is available. If char is wider than 8 bits, you will need
+to redefine JOCTET and/or provide custom data source/destination managers so
+that JOCTET represents exactly 8 bits of data on external storage.
+
+The JPEG library proper does not assume ASCII representation of characters.
+But some of the image file I/O modules in cjpeg/djpeg do have ASCII
+dependencies in file-header manipulation; so does cjpeg's select_file_type()
+routine.
+
+The JPEG library does not rely heavily on the C library. In particular, C
+stdio is used only by the data source/destination modules and the error
+handler, all of which are application-replaceable. (cjpeg/djpeg are more
+heavily dependent on stdio.) malloc and free are called only from the memory
+manager "back end" module, so you can use a different memory allocator by
+replacing that one file.
+
+The code generally assumes that C names must be unique in the first 15
+characters. However, global function names can be made unique in the
+first 6 characters by defining NEED_SHORT_EXTERNAL_NAMES.
+
+More info about porting the code may be gleaned by reading jconfig.txt,
+jmorecfg.h, and jinclude.h.
+
+
+Notes for MS-DOS implementors
+-----------------------------
+
+The IJG code is designed to work efficiently in 80x86 "small" or "medium"
+memory models (i.e., data pointers are 16 bits unless explicitly declared
+"far"; code pointers can be either size). You may be able to use small
+model to compile cjpeg or djpeg by itself, but you will probably have to use
+medium model for any larger application. This won't make much difference in
+performance. You *will* take a noticeable performance hit if you use a
+large-data memory model (perhaps 10%-25%), and you should avoid "huge" model
+if at all possible.
+
+The JPEG library typically needs 2Kb-3Kb of stack space. It will also
+malloc about 20K-30K of near heap space while executing (and lots of far
+heap, but that doesn't count in this calculation). This figure will vary
+depending on selected operating mode, and to a lesser extent on image size.
+There is also about 5Kb-6Kb of constant data which will be allocated in the
+near data segment (about 4Kb of this is the error message table).
+Thus you have perhaps 20K available for other modules' static data and near
+heap space before you need to go to a larger memory model. The C library's
+static data will account for several K of this, but that still leaves a good
+deal for your needs. (If you are tight on space, you could reduce the sizes
+of the I/O buffers allocated by jdatasrc.c and jdatadst.c, say from 4K to
+1K. Another possibility is to move the error message table to far memory;
+this should be doable with only localized hacking on jerror.c.)
+
+About 2K of the near heap space is "permanent" memory that will not be
+released until you destroy the JPEG object. This is only an issue if you
+save a JPEG object between compression or decompression operations.
+
+Far data space may also be a tight resource when you are dealing with large
+images. The most memory-intensive case is decompression with two-pass color
+quantization, or single-pass quantization to an externally supplied color
+map. This requires a 128Kb color lookup table plus strip buffers amounting
+to about 40 bytes per column for typical sampling ratios (eg, about 25600
+bytes for a 640-pixel-wide image). You may not be able to process wide
+images if you have large data structures of your own.
+
+Of course, all of these concerns vanish if you use a 32-bit flat-memory-model
+compiler, such as DJGPP or Watcom C. We highly recommend flat model if you
+can use it; the JPEG library is significantly faster in flat model.
diff --git a/src/3rdparty/libjpeg/makcjpeg.st b/src/3rdparty/libjpeg/makcjpeg.st
new file mode 100644
index 0000000..628f533
--- /dev/null
+++ b/src/3rdparty/libjpeg/makcjpeg.st
@@ -0,0 +1,36 @@
+; Project file for Independent JPEG Group's software
+;
+; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
+; Thanks to Frank Moehle, B. Setzepfandt, and Guido Vollbeding.
+;
+; To use this file, rename it to cjpeg.prj.
+; If you are using Turbo C, change filenames beginning with "pc..." to "tc..."
+; Read installation instructions before trying to make the program!
+;
+;
+; * * * Output file * * *
+cjpeg.ttp
+;
+; * * * COMPILER OPTIONS * * *
+.C[-P] ; absolute calls
+.C[-M] ; and no string merging, folks
+.C[-w-cln] ; no "constant is long" warnings
+.C[-w-par] ; no "parameter xxxx unused"
+.C[-w-rch] ; no "unreachable code"
+.C[-wsig] ; warn if significant digits may be lost
+=
+; * * * * List of modules * * * *
+pcstart.o
+cjpeg.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h,jversion.h)
+cdjpeg.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdswitch.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdppm.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdgif.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdtarga.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdbmp.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdrle.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+libjpeg.lib ; built by libjpeg.prj
+pcfltlib.lib ; floating point library
+; the float library can be omitted if you've turned off DCT_FLOAT_SUPPORTED
+pcstdlib.lib ; standard library
+pcextlib.lib ; extended library
diff --git a/src/3rdparty/libjpeg/makdjpeg.st b/src/3rdparty/libjpeg/makdjpeg.st
new file mode 100644
index 0000000..4b61404
--- /dev/null
+++ b/src/3rdparty/libjpeg/makdjpeg.st
@@ -0,0 +1,36 @@
+; Project file for Independent JPEG Group's software
+;
+; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
+; Thanks to Frank Moehle, B. Setzepfandt, and Guido Vollbeding.
+;
+; To use this file, rename it to djpeg.prj.
+; If you are using Turbo C, change filenames beginning with "pc..." to "tc..."
+; Read installation instructions before trying to make the program!
+;
+;
+; * * * Output file * * *
+djpeg.ttp
+;
+; * * * COMPILER OPTIONS * * *
+.C[-P] ; absolute calls
+.C[-M] ; and no string merging, folks
+.C[-w-cln] ; no "constant is long" warnings
+.C[-w-par] ; no "parameter xxxx unused"
+.C[-w-rch] ; no "unreachable code"
+.C[-wsig] ; warn if significant digits may be lost
+=
+; * * * * List of modules * * * *
+pcstart.o
+djpeg.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h,jversion.h)
+cdjpeg.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdcolmap.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+wrppm.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+wrgif.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+wrtarga.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+wrbmp.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+wrrle.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+libjpeg.lib ; built by libjpeg.prj
+pcfltlib.lib ; floating point library
+; the float library can be omitted if you've turned off DCT_FLOAT_SUPPORTED
+pcstdlib.lib ; standard library
+pcextlib.lib ; extended library
diff --git a/src/3rdparty/libjpeg/makeadsw.vc6 b/src/3rdparty/libjpeg/makeadsw.vc6
new file mode 100644
index 0000000..80459c5
--- /dev/null
+++ b/src/3rdparty/libjpeg/makeadsw.vc6
@@ -0,0 +1,77 @@
+Microsoft Developer Studio Workspace File, Format Version 6.00
+# WARNUNG: DIESE ARBEITSBEREICHSDATEI DARF NICHT BEARBEITET ODER GEL™SCHT WERDEN!
+
+###############################################################################
+
+Project: "cjpeg"=".\cjpeg.dsp" - Package Owner=<4>
+
+Package=<5>
+{{{
+}}}
+
+Package=<4>
+{{{
+}}}
+
+###############################################################################
+
+Project: "djpeg"=".\djpeg.dsp" - Package Owner=<4>
+
+Package=<5>
+{{{
+}}}
+
+Package=<4>
+{{{
+}}}
+
+###############################################################################
+
+Project: "jpegtran"=".\jpegtran.dsp" - Package Owner=<4>
+
+Package=<5>
+{{{
+}}}
+
+Package=<4>
+{{{
+}}}
+
+###############################################################################
+
+Project: "rdjpgcom"=".\rdjpgcom.dsp" - Package Owner=<4>
+
+Package=<5>
+{{{
+}}}
+
+Package=<4>
+{{{
+}}}
+
+###############################################################################
+
+Project: "wrjpgcom"=".\wrjpgcom.dsp" - Package Owner=<4>
+
+Package=<5>
+{{{
+}}}
+
+Package=<4>
+{{{
+}}}
+
+###############################################################################
+
+Global:
+
+Package=<5>
+{{{
+}}}
+
+Package=<3>
+{{{
+}}}
+
+###############################################################################
+
diff --git a/src/3rdparty/libjpeg/makeasln.vc9 b/src/3rdparty/libjpeg/makeasln.vc9
new file mode 100644
index 0000000..c88ba8d
--- /dev/null
+++ b/src/3rdparty/libjpeg/makeasln.vc9
@@ -0,0 +1,33 @@
+‹¯¨
+Microsoft Visual Studio Solution File, Format Version 10.00
+# Visual C++ Express 2008
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "cjpeg", "cjpeg.vcproj", "{B4F61778-C45D-45C6-9E87-06F03F50519F}"
+EndProject
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "djpeg", "djpeg.vcproj", "{9B7E57AE-31CD-405E-8070-26A8303B9DC9}"
+EndProject
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "jpegtran", "jpegtran.vcproj", "{813C33AF-9031-49D2-BA19-93D600CDD404}"
+EndProject
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "rdjpgcom", "rdjpgcom.vcproj", "{EB107F86-A8CC-4507-8115-88D31DDE4CDF}"
+EndProject
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "wrjpgcom", "wrjpgcom.vcproj", "{178670D7-FA7F-44A8-96C7-11B1CA14269C}"
+EndProject
+Global
+ GlobalSection(SolutionConfigurationPlatforms) = preSolution
+ Release|Win32 = Release|Win32
+ EndGlobalSection
+ GlobalSection(ProjectConfigurationPlatforms) = postSolution
+ {B4F61778-C45D-45C6-9E87-06F03F50519F}.Release|Win32.ActiveCfg = Release|Win32
+ {B4F61778-C45D-45C6-9E87-06F03F50519F}.Release|Win32.Build.0 = Release|Win32
+ {9B7E57AE-31CD-405E-8070-26A8303B9DC9}.Release|Win32.ActiveCfg = Release|Win32
+ {9B7E57AE-31CD-405E-8070-26A8303B9DC9}.Release|Win32.Build.0 = Release|Win32
+ {813C33AF-9031-49D2-BA19-93D600CDD404}.Release|Win32.ActiveCfg = Release|Win32
+ {813C33AF-9031-49D2-BA19-93D600CDD404}.Release|Win32.Build.0 = Release|Win32
+ {EB107F86-A8CC-4507-8115-88D31DDE4CDF}.Release|Win32.ActiveCfg = Release|Win32
+ {EB107F86-A8CC-4507-8115-88D31DDE4CDF}.Release|Win32.Build.0 = Release|Win32
+ {178670D7-FA7F-44A8-96C7-11B1CA14269C}.Release|Win32.ActiveCfg = Release|Win32
+ {178670D7-FA7F-44A8-96C7-11B1CA14269C}.Release|Win32.Build.0 = Release|Win32
+ EndGlobalSection
+ GlobalSection(SolutionProperties) = preSolution
+ HideSolutionNode = FALSE
+ EndGlobalSection
+EndGlobal
diff --git a/src/3rdparty/libjpeg/makecdep.vc6 b/src/3rdparty/libjpeg/makecdep.vc6
new file mode 100644
index 0000000..11dff77
--- /dev/null
+++ b/src/3rdparty/libjpeg/makecdep.vc6
@@ -0,0 +1,82 @@
+# Microsoft Developer Studio erstellte Abh„ngigkeitsdatei, einbezogen von cjpeg.mak
+
+.\cdjpeg.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\cjpeg.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+ ".\jversion.h"\
+
+
+.\rdbmp.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\rdgif.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\rdppm.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\rdrle.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\rdswitch.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\rdtarga.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
diff --git a/src/3rdparty/libjpeg/makecdsp.vc6 b/src/3rdparty/libjpeg/makecdsp.vc6
new file mode 100644
index 0000000..3ab5965
--- /dev/null
+++ b/src/3rdparty/libjpeg/makecdsp.vc6
@@ -0,0 +1,130 @@
+# Microsoft Developer Studio Project File - Name="cjpeg" - Package Owner=<4>
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
+# ** NICHT BEARBEITEN **
+
+# TARGTYPE "Win32 (x86) Console Application" 0x0103
+
+CFG=cjpeg - Win32
+!MESSAGE Dies ist kein gltiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
+!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und fhren Sie den Befehl
+!MESSAGE
+!MESSAGE NMAKE /f "cjpeg.mak".
+!MESSAGE
+!MESSAGE Sie k÷nnen beim Ausfhren von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "cjpeg.mak" CFG="cjpeg - Win32"
+!MESSAGE
+!MESSAGE Fr die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "cjpeg - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+
+# Begin Project
+# PROP AllowPerConfigDependencies 0
+# PROP Scc_ProjName ""
+# PROP Scc_LocalPath ""
+CPP=cl.exe
+RSC=rc.exe
+# PROP BASE Use_MFC 0
+# PROP BASE Use_Debug_Libraries 0
+# PROP BASE Output_Dir ".\cjpeg\Release"
+# PROP BASE Intermediate_Dir ".\cjpeg\Release"
+# PROP BASE Target_Dir ".\cjpeg"
+# PROP Use_MFC 0
+# PROP Use_Debug_Libraries 0
+# PROP Output_Dir ".\cjpeg\Release"
+# PROP Intermediate_Dir ".\cjpeg\Release"
+# PROP Ignore_Export_Lib 0
+# PROP Target_Dir ".\cjpeg"
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /c
+# ADD CPP /nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /FD /c
+# ADD BASE RSC /l 0x409 /d "NDEBUG"
+# ADD RSC /l 0x409 /d "NDEBUG"
+BSC32=bscmake.exe
+# ADD BASE BSC32 /nologo
+# ADD BSC32 /nologo
+LINK32=link.exe
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# ADD LINK32 Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# Begin Target
+
+# Name "cjpeg - Win32"
+# Begin Group "Quellcodedateien"
+
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat;for;f90"
+# Begin Source File
+
+SOURCE=.\cdjpeg.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\cjpeg.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdbmp.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdgif.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdppm.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdrle.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdswitch.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdtarga.c
+# End Source File
+# End Group
+# Begin Group "Header-Dateien"
+
+# PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
+# Begin Source File
+
+SOURCE=.\cderror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\cdjpeg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jconfig.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jerror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jinclude.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmorecfg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpeglib.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jversion.h
+# End Source File
+# End Group
+# Begin Group "Ressourcendateien"
+
+# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
+# End Group
+# End Target
+# End Project
diff --git a/src/3rdparty/libjpeg/makecmak.vc6 b/src/3rdparty/libjpeg/makecmak.vc6
new file mode 100644
index 0000000..bee03bf
--- /dev/null
+++ b/src/3rdparty/libjpeg/makecmak.vc6
@@ -0,0 +1,159 @@
+# Microsoft Developer Studio Generated NMAKE File, Based on cjpeg.dsp
+!IF "$(CFG)" == ""
+CFG=cjpeg - Win32
+!MESSAGE Keine Konfiguration angegeben. cjpeg - Win32 wird als Standard verwendet.
+!ENDIF
+
+!IF "$(CFG)" != "cjpeg - Win32"
+!MESSAGE Ungültige Konfiguration "$(CFG)" angegeben.
+!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "cjpeg.mak" CFG="cjpeg - Win32"
+!MESSAGE
+!MESSAGE Für die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "cjpeg - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+!ERROR Eine ungültige Konfiguration wurde angegeben.
+!ENDIF
+
+!IF "$(OS)" == "Windows_NT"
+NULL=
+!ELSE
+NULL=nul
+!ENDIF
+
+CPP=cl.exe
+RSC=rc.exe
+OUTDIR=.\cjpeg\Release
+INTDIR=.\cjpeg\Release
+# Begin Custom Macros
+OutDir=.\cjpeg\Release
+# End Custom Macros
+
+ALL : "$(OUTDIR)\cjpeg.exe"
+
+
+CLEAN :
+ -@erase "$(INTDIR)\cdjpeg.obj"
+ -@erase "$(INTDIR)\cjpeg.obj"
+ -@erase "$(INTDIR)\rdbmp.obj"
+ -@erase "$(INTDIR)\rdgif.obj"
+ -@erase "$(INTDIR)\rdppm.obj"
+ -@erase "$(INTDIR)\rdrle.obj"
+ -@erase "$(INTDIR)\rdswitch.obj"
+ -@erase "$(INTDIR)\rdtarga.obj"
+ -@erase "$(INTDIR)\vc60.idb"
+ -@erase "$(OUTDIR)\cjpeg.exe"
+
+"$(OUTDIR)" :
+ if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
+
+BSC32=bscmake.exe
+BSC32_FLAGS=/nologo /o"$(OUTDIR)\cjpeg.bsc"
+BSC32_SBRS= \
+
+LINK32=link.exe
+LINK32_FLAGS=Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:no /pdb:"$(OUTDIR)\cjpeg.pdb" /machine:I386 /out:"$(OUTDIR)\cjpeg.exe"
+LINK32_OBJS= \
+ "$(INTDIR)\cdjpeg.obj" \
+ "$(INTDIR)\cjpeg.obj" \
+ "$(INTDIR)\rdbmp.obj" \
+ "$(INTDIR)\rdgif.obj" \
+ "$(INTDIR)\rdppm.obj" \
+ "$(INTDIR)\rdrle.obj" \
+ "$(INTDIR)\rdswitch.obj" \
+ "$(INTDIR)\rdtarga.obj"
+
+"$(OUTDIR)\cjpeg.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
+ $(LINK32) @<<
+ $(LINK32_FLAGS) $(LINK32_OBJS)
+<<
+
+CPP_PROJ=/nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /Fp"$(INTDIR)\cjpeg.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
+
+.c{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.c{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+
+!IF "$(NO_EXTERNAL_DEPS)" != "1"
+!IF EXISTS("cjpeg.dep")
+!INCLUDE "cjpeg.dep"
+!ELSE
+!MESSAGE Warning: cannot find "cjpeg.dep"
+!ENDIF
+!ENDIF
+
+
+!IF "$(CFG)" == "cjpeg - Win32"
+SOURCE=.\cdjpeg.c
+
+"$(INTDIR)\cdjpeg.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\cjpeg.c
+
+"$(INTDIR)\cjpeg.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdbmp.c
+
+"$(INTDIR)\rdbmp.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdgif.c
+
+"$(INTDIR)\rdgif.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdppm.c
+
+"$(INTDIR)\rdppm.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdrle.c
+
+"$(INTDIR)\rdrle.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdswitch.c
+
+"$(INTDIR)\rdswitch.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdtarga.c
+
+"$(INTDIR)\rdtarga.obj" : $(SOURCE) "$(INTDIR)"
+
+
+
+!ENDIF
+
diff --git a/src/3rdparty/libjpeg/makecvcp.vc9 b/src/3rdparty/libjpeg/makecvcp.vc9
new file mode 100644
index 0000000..b38e6a1
--- /dev/null
+++ b/src/3rdparty/libjpeg/makecvcp.vc9
@@ -0,0 +1,186 @@
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="9,00"
+ Name="cjpeg"
+ ProjectGUID="{B4F61778-C45D-45C6-9E87-06F03F50519F}"
+ RootNamespace="cjpeg"
+ Keyword="Win32Proj"
+ TargetFrameworkVersion="196613"
+ >
+ <Platforms>
+ <Platform
+ Name="Win32"
+ />
+ </Platforms>
+ <ToolFiles>
+ </ToolFiles>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory="$(ProjectName)\$(ConfigurationName)"
+ IntermediateDirectory="$(ProjectName)\$(ConfigurationName)"
+ ConfigurationType="1"
+ CharacterSet="0"
+ WholeProgramOptimization="1"
+ >
+ <Tool
+ Name="VCPreBuildEventTool"
+ />
+ <Tool
+ Name="VCCustomBuildTool"
+ />
+ <Tool
+ Name="VCXMLDataGeneratorTool"
+ />
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"
+ />
+ <Tool
+ Name="VCMIDLTool"
+ />
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="3"
+ EnableIntrinsicFunctions="false"
+ EnableFiberSafeOptimizations="true"
+ PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS"
+ RuntimeLibrary="2"
+ EnableFunctionLevelLinking="true"
+ UsePrecompiledHeader="0"
+ WarningLevel="3"
+ DebugInformationFormat="3"
+ CompileAs="0"
+ DisableSpecificWarnings="4996"
+ />
+ <Tool
+ Name="VCManagedResourceCompilerTool"
+ />
+ <Tool
+ Name="VCResourceCompilerTool"
+ />
+ <Tool
+ Name="VCPreLinkEventTool"
+ />
+ <Tool
+ Name="VCLinkerTool"
+ AdditionalDependencies="Release\jpeg.lib"
+ LinkIncremental="1"
+ GenerateDebugInformation="true"
+ SubSystem="1"
+ OptimizeReferences="2"
+ EnableCOMDATFolding="2"
+ TargetMachine="1"
+ />
+ <Tool
+ Name="VCALinkTool"
+ />
+ <Tool
+ Name="VCManifestTool"
+ />
+ <Tool
+ Name="VCXDCMakeTool"
+ />
+ <Tool
+ Name="VCBscMakeTool"
+ />
+ <Tool
+ Name="VCFxCopTool"
+ />
+ <Tool
+ Name="VCAppVerifierTool"
+ />
+ <Tool
+ Name="VCPostBuildEventTool"
+ />
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Quelldateien"
+ Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
+ UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
+ >
+ <File
+ RelativePath=".\cdjpeg.c"
+ >
+ </File>
+ <File
+ RelativePath=".\cjpeg.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdbmp.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdgif.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdppm.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdrle.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdswitch.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdtarga.c"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Headerdateien"
+ Filter="h;hpp;hxx;hm;inl;inc;xsd"
+ UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
+ >
+ <File
+ RelativePath=".\cderror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\cdjpeg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jconfig.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jerror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jinclude.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jmorecfg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jpeglib.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jversion.h"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Ressourcendateien"
+ Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
+ UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
+ >
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/src/3rdparty/libjpeg/makeddep.vc6 b/src/3rdparty/libjpeg/makeddep.vc6
new file mode 100644
index 0000000..f911eba
--- /dev/null
+++ b/src/3rdparty/libjpeg/makeddep.vc6
@@ -0,0 +1,82 @@
+# Microsoft Developer Studio erstellte Abh„ngigkeitsdatei, einbezogen von djpeg.mak
+
+.\cdjpeg.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\djpeg.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+ ".\jversion.h"\
+
+
+.\rdcolmap.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\wrbmp.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\wrgif.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\wrppm.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\wrrle.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\wrtarga.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
diff --git a/src/3rdparty/libjpeg/makeddsp.vc6 b/src/3rdparty/libjpeg/makeddsp.vc6
new file mode 100644
index 0000000..f583a0f
--- /dev/null
+++ b/src/3rdparty/libjpeg/makeddsp.vc6
@@ -0,0 +1,130 @@
+# Microsoft Developer Studio Project File - Name="djpeg" - Package Owner=<4>
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
+# ** NICHT BEARBEITEN **
+
+# TARGTYPE "Win32 (x86) Console Application" 0x0103
+
+CFG=djpeg - Win32
+!MESSAGE Dies ist kein gltiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
+!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und fhren Sie den Befehl
+!MESSAGE
+!MESSAGE NMAKE /f "djpeg.mak".
+!MESSAGE
+!MESSAGE Sie k÷nnen beim Ausfhren von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "djpeg.mak" CFG="djpeg - Win32"
+!MESSAGE
+!MESSAGE Fr die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "djpeg - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+
+# Begin Project
+# PROP AllowPerConfigDependencies 0
+# PROP Scc_ProjName ""
+# PROP Scc_LocalPath ""
+CPP=cl.exe
+RSC=rc.exe
+# PROP BASE Use_MFC 0
+# PROP BASE Use_Debug_Libraries 0
+# PROP BASE Output_Dir ".\djpeg\Release"
+# PROP BASE Intermediate_Dir ".\djpeg\Release"
+# PROP BASE Target_Dir ".\djpeg"
+# PROP Use_MFC 0
+# PROP Use_Debug_Libraries 0
+# PROP Output_Dir ".\djpeg\Release"
+# PROP Intermediate_Dir ".\djpeg\Release"
+# PROP Ignore_Export_Lib 0
+# PROP Target_Dir ".\djpeg"
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /c
+# ADD CPP /nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /FD /c
+# ADD BASE RSC /l 0x409 /d "NDEBUG"
+# ADD RSC /l 0x409 /d "NDEBUG"
+BSC32=bscmake.exe
+# ADD BASE BSC32 /nologo
+# ADD BSC32 /nologo
+LINK32=link.exe
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# ADD LINK32 Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# Begin Target
+
+# Name "djpeg - Win32"
+# Begin Group "Quellcodedateien"
+
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat;for;f90"
+# Begin Source File
+
+SOURCE=.\cdjpeg.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\djpeg.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdcolmap.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\wrbmp.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\wrgif.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\wrppm.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\wrrle.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\wrtarga.c
+# End Source File
+# End Group
+# Begin Group "Header-Dateien"
+
+# PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
+# Begin Source File
+
+SOURCE=.\cderror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\cdjpeg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jconfig.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jerror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jinclude.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmorecfg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpeglib.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jversion.h
+# End Source File
+# End Group
+# Begin Group "Ressourcendateien"
+
+# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
+# End Group
+# End Target
+# End Project
diff --git a/src/3rdparty/libjpeg/makedmak.vc6 b/src/3rdparty/libjpeg/makedmak.vc6
new file mode 100644
index 0000000..e16487f
--- /dev/null
+++ b/src/3rdparty/libjpeg/makedmak.vc6
@@ -0,0 +1,159 @@
+# Microsoft Developer Studio Generated NMAKE File, Based on djpeg.dsp
+!IF "$(CFG)" == ""
+CFG=djpeg - Win32
+!MESSAGE Keine Konfiguration angegeben. djpeg - Win32 wird als Standard verwendet.
+!ENDIF
+
+!IF "$(CFG)" != "djpeg - Win32"
+!MESSAGE Ungültige Konfiguration "$(CFG)" angegeben.
+!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "djpeg.mak" CFG="djpeg - Win32"
+!MESSAGE
+!MESSAGE Für die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "djpeg - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+!ERROR Eine ungültige Konfiguration wurde angegeben.
+!ENDIF
+
+!IF "$(OS)" == "Windows_NT"
+NULL=
+!ELSE
+NULL=nul
+!ENDIF
+
+CPP=cl.exe
+RSC=rc.exe
+OUTDIR=.\djpeg\Release
+INTDIR=.\djpeg\Release
+# Begin Custom Macros
+OutDir=.\djpeg\Release
+# End Custom Macros
+
+ALL : "$(OUTDIR)\djpeg.exe"
+
+
+CLEAN :
+ -@erase "$(INTDIR)\cdjpeg.obj"
+ -@erase "$(INTDIR)\djpeg.obj"
+ -@erase "$(INTDIR)\rdcolmap.obj"
+ -@erase "$(INTDIR)\vc60.idb"
+ -@erase "$(INTDIR)\wrbmp.obj"
+ -@erase "$(INTDIR)\wrgif.obj"
+ -@erase "$(INTDIR)\wrppm.obj"
+ -@erase "$(INTDIR)\wrrle.obj"
+ -@erase "$(INTDIR)\wrtarga.obj"
+ -@erase "$(OUTDIR)\djpeg.exe"
+
+"$(OUTDIR)" :
+ if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
+
+BSC32=bscmake.exe
+BSC32_FLAGS=/nologo /o"$(OUTDIR)\djpeg.bsc"
+BSC32_SBRS= \
+
+LINK32=link.exe
+LINK32_FLAGS=Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:no /pdb:"$(OUTDIR)\djpeg.pdb" /machine:I386 /out:"$(OUTDIR)\djpeg.exe"
+LINK32_OBJS= \
+ "$(INTDIR)\cdjpeg.obj" \
+ "$(INTDIR)\djpeg.obj" \
+ "$(INTDIR)\rdcolmap.obj" \
+ "$(INTDIR)\wrbmp.obj" \
+ "$(INTDIR)\wrgif.obj" \
+ "$(INTDIR)\wrppm.obj" \
+ "$(INTDIR)\wrrle.obj" \
+ "$(INTDIR)\wrtarga.obj"
+
+"$(OUTDIR)\djpeg.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
+ $(LINK32) @<<
+ $(LINK32_FLAGS) $(LINK32_OBJS)
+<<
+
+CPP_PROJ=/nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /Fp"$(INTDIR)\djpeg.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
+
+.c{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.c{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+
+!IF "$(NO_EXTERNAL_DEPS)" != "1"
+!IF EXISTS("djpeg.dep")
+!INCLUDE "djpeg.dep"
+!ELSE
+!MESSAGE Warning: cannot find "djpeg.dep"
+!ENDIF
+!ENDIF
+
+
+!IF "$(CFG)" == "djpeg - Win32"
+SOURCE=.\cdjpeg.c
+
+"$(INTDIR)\cdjpeg.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\djpeg.c
+
+"$(INTDIR)\djpeg.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdcolmap.c
+
+"$(INTDIR)\rdcolmap.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\wrbmp.c
+
+"$(INTDIR)\wrbmp.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\wrgif.c
+
+"$(INTDIR)\wrgif.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\wrppm.c
+
+"$(INTDIR)\wrppm.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\wrrle.c
+
+"$(INTDIR)\wrrle.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\wrtarga.c
+
+"$(INTDIR)\wrtarga.obj" : $(SOURCE) "$(INTDIR)"
+
+
+
+!ENDIF
+
diff --git a/src/3rdparty/libjpeg/makedvcp.vc9 b/src/3rdparty/libjpeg/makedvcp.vc9
new file mode 100644
index 0000000..6f5bb1e
--- /dev/null
+++ b/src/3rdparty/libjpeg/makedvcp.vc9
@@ -0,0 +1,186 @@
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="9,00"
+ Name="djpeg"
+ ProjectGUID="{9B7E57AE-31CD-405E-8070-26A8303B9DC9}"
+ RootNamespace="djpeg"
+ Keyword="Win32Proj"
+ TargetFrameworkVersion="196613"
+ >
+ <Platforms>
+ <Platform
+ Name="Win32"
+ />
+ </Platforms>
+ <ToolFiles>
+ </ToolFiles>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory="$(ProjectName)\$(ConfigurationName)"
+ IntermediateDirectory="$(ProjectName)\$(ConfigurationName)"
+ ConfigurationType="1"
+ CharacterSet="0"
+ WholeProgramOptimization="1"
+ >
+ <Tool
+ Name="VCPreBuildEventTool"
+ />
+ <Tool
+ Name="VCCustomBuildTool"
+ />
+ <Tool
+ Name="VCXMLDataGeneratorTool"
+ />
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"
+ />
+ <Tool
+ Name="VCMIDLTool"
+ />
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="3"
+ EnableIntrinsicFunctions="false"
+ EnableFiberSafeOptimizations="true"
+ PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS"
+ RuntimeLibrary="2"
+ EnableFunctionLevelLinking="true"
+ UsePrecompiledHeader="0"
+ WarningLevel="3"
+ DebugInformationFormat="3"
+ CompileAs="0"
+ DisableSpecificWarnings="4996"
+ />
+ <Tool
+ Name="VCManagedResourceCompilerTool"
+ />
+ <Tool
+ Name="VCResourceCompilerTool"
+ />
+ <Tool
+ Name="VCPreLinkEventTool"
+ />
+ <Tool
+ Name="VCLinkerTool"
+ AdditionalDependencies="Release\jpeg.lib"
+ LinkIncremental="1"
+ GenerateDebugInformation="true"
+ SubSystem="1"
+ OptimizeReferences="2"
+ EnableCOMDATFolding="2"
+ TargetMachine="1"
+ />
+ <Tool
+ Name="VCALinkTool"
+ />
+ <Tool
+ Name="VCManifestTool"
+ />
+ <Tool
+ Name="VCXDCMakeTool"
+ />
+ <Tool
+ Name="VCBscMakeTool"
+ />
+ <Tool
+ Name="VCFxCopTool"
+ />
+ <Tool
+ Name="VCAppVerifierTool"
+ />
+ <Tool
+ Name="VCPostBuildEventTool"
+ />
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Quelldateien"
+ Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
+ UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
+ >
+ <File
+ RelativePath=".\cdjpeg.c"
+ >
+ </File>
+ <File
+ RelativePath=".\djpeg.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdcolmap.c"
+ >
+ </File>
+ <File
+ RelativePath=".\wrbmp.c"
+ >
+ </File>
+ <File
+ RelativePath=".\wrgif.c"
+ >
+ </File>
+ <File
+ RelativePath=".\wrppm.c"
+ >
+ </File>
+ <File
+ RelativePath=".\wrrle.c"
+ >
+ </File>
+ <File
+ RelativePath=".\wrtarga.c"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Headerdateien"
+ Filter="h;hpp;hxx;hm;inl;inc;xsd"
+ UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
+ >
+ <File
+ RelativePath=".\cderror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\cdjpeg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jconfig.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jerror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jinclude.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jmorecfg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jpeglib.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jversion.h"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Ressourcendateien"
+ Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
+ UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
+ >
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/src/3rdparty/libjpeg/makefile.ansi b/src/3rdparty/libjpeg/makefile.ansi
new file mode 100644
index 0000000..30e41c9
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.ansi
@@ -0,0 +1,220 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is suitable for Unix-like systems with ANSI-capable compilers.
+# If you have a non-ANSI compiler, makefile.unix is a better starting point.
+
+# Read installation instructions before saying "make" !!
+
+# The name of your C compiler:
+CC= cc
+
+# You may need to adjust these cc options:
+CFLAGS= -O
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+
+# Link-time cc options:
+LDFLAGS=
+
+# To link any special libraries, add the necessary -l commands here.
+LDLIBS=
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For Unix this is usually jmemnobs.o, but you may want
+# to use jmemansi.o or jmemname.o if you have limited swap space.
+SYSDEPMEM= jmemnobs.o
+
+# miscellaneous OS-dependent stuff
+# linker
+LN= $(CC)
+# file deletion command
+RM= rm -f
+# library (.a) file creation command
+AR= ar rc
+# second step in .a creation (use "touch" if not needed)
+AR2= ranlib
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.o jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.o jcapistd.o jcarith.o jctrans.o jcparam.o \
+ jdatadst.o jcinit.o jcmaster.o jcmarker.o jcmainct.o jcprepct.o \
+ jccoefct.o jccolor.o jcsample.o jchuff.o jcdctmgr.o jfdctfst.o \
+ jfdctflt.o jfdctint.o
+# decompression library object files
+DLIBOBJECTS= jdapimin.o jdapistd.o jdarith.o jdtrans.o jdatasrc.o \
+ jdmaster.o jdinput.o jdmarker.o jdhuff.o jdmainct.o \
+ jdcoefct.o jdpostct.o jddctmgr.o jidctfst.o jidctflt.o \
+ jidctint.o jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
+# These objectfiles are included in libjpeg.a
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
+ cdjpeg.o
+DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
+ cdjpeg.o
+TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o
+
+
+all: libjpeg.a cjpeg djpeg jpegtran rdjpgcom wrjpgcom
+
+libjpeg.a: $(LIBOBJECTS)
+ $(RM) libjpeg.a
+ $(AR) libjpeg.a $(LIBOBJECTS)
+ $(AR2) libjpeg.a
+
+cjpeg: $(COBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.a $(LDLIBS)
+
+djpeg: $(DOBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.a $(LDLIBS)
+
+jpegtran: $(TROBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.a $(LDLIBS)
+
+rdjpgcom: rdjpgcom.o
+ $(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.o $(LDLIBS)
+
+wrjpgcom: wrjpgcom.o
+ $(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.o $(LDLIBS)
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ $(RM) *.o cjpeg djpeg jpegtran libjpeg.a rdjpgcom wrjpgcom
+ $(RM) core testout*
+
+test: cjpeg djpeg jpegtran
+ $(RM) testout*
+ ./djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ ./djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ ./cjpeg -dct int -outfile testout.jpg testimg.ppm
+ ./djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ ./cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ ./jpegtran -outfile testoutt.jpg testprog.jpg
+ cmp testimg.ppm testout.ppm
+ cmp testimg.bmp testout.bmp
+ cmp testimg.jpg testout.jpg
+ cmp testimg.ppm testoutp.ppm
+ cmp testimgp.jpg testoutp.jpg
+ cmp testorig.jpg testoutt.jpg
+
+
+jaricom.o: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.o: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.o: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.bcc b/src/3rdparty/libjpeg/makefile.bcc
new file mode 100644
index 0000000..c9e2311
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.bcc
@@ -0,0 +1,291 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is suitable for Borland C on MS-DOS or OS/2.
+# It works with Borland C++ for DOS, revision 3.0 or later,
+# and has been tested with Borland C++ for OS/2.
+# Watch out for optimization bugs in the OS/2 compilers --- see notes below!
+# Thanks to Tom Wright and Ge' Weijers (original DOS) and
+# Ken Porter (OS/2) for this file.
+
+# Read installation instructions before saying "make" !!
+
+# Are we under DOS or OS/2?
+!if !$d(DOS) && !$d(OS2)
+!if $d(__OS2__)
+OS2=1
+!else
+DOS=1
+!endif
+!endif
+
+# The name of your C compiler:
+CC= bcc
+
+# You may need to adjust these cc options:
+!if $d(DOS)
+CFLAGS= -O2 -mm -w-par -w-stu -w-ccc -w-rch
+!else
+CFLAGS= -O1 -w-par -w-stu -w-ccc -w-rch
+!endif
+# -O2 enables full code optimization (for pre-3.0 Borland C++, use -O -G -Z).
+# -O2 is buggy in Borland OS/2 C++ revision 2.0, so use -O1 there for now.
+# If you have Borland OS/2 C++ revision 1.0, use -O or no optimization at all.
+# -mm selects medium memory model (near data, far code pointers; DOS only!)
+# -w-par suppresses warnings about unused function parameters
+# -w-stu suppresses warnings about incomplete structures
+# -w-ccc suppresses warnings about compile-time-constant conditions
+# -w-rch suppresses warnings about unreachable code
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+
+# Link-time cc options:
+!if $d(DOS)
+LDFLAGS= -mm
+# memory model option here must match CFLAGS!
+!else
+LDFLAGS=
+# -lai full-screen app
+# -lc case-significant link
+!endif
+
+# Put here the object file name for the correct system-dependent memory
+# manager file.
+# For DOS, we recommend jmemdos.c and jmemdosa.asm.
+# For OS/2, we recommend jmemnobs.c (flat memory!)
+# SYSDEPMEMLIB must list the same files with "+" signs for the librarian.
+!if $d(DOS)
+SYSDEPMEM= jmemdos.obj jmemdosa.obj
+SYSDEPMEMLIB= +jmemdos.obj +jmemdosa.obj
+!else
+SYSDEPMEM= jmemnobs.obj
+SYSDEPMEMLIB= +jmemnobs.obj
+!endif
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.obj jcomapi.obj jutils.obj jerror.obj jmemmgr.obj $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.obj jcapistd.obj jcarith.obj jctrans.obj jcparam.obj \
+ jdatadst.obj jcinit.obj jcmaster.obj jcmarker.obj jcmainct.obj \
+ jcprepct.obj jccoefct.obj jccolor.obj jcsample.obj jchuff.obj \
+ jcdctmgr.obj jfdctfst.obj jfdctflt.obj jfdctint.obj
+# decompression library object files
+DLIBOBJECTS= jdapimin.obj jdapistd.obj jdarith.obj jdtrans.obj jdatasrc.obj \
+ jdmaster.obj jdinput.obj jdmarker.obj jdhuff.obj jdmainct.obj \
+ jdcoefct.obj jdpostct.obj jddctmgr.obj jidctfst.obj jidctflt.obj \
+ jidctint.obj jdsample.obj jdcolor.obj jquant1.obj jquant2.obj \
+ jdmerge.obj
+# These objectfiles are included in libjpeg.lib
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.obj rdppm.obj rdgif.obj rdtarga.obj rdrle.obj rdbmp.obj \
+ rdswitch.obj cdjpeg.obj
+DOBJECTS= djpeg.obj wrppm.obj wrgif.obj wrtarga.obj wrrle.obj wrbmp.obj \
+ rdcolmap.obj cdjpeg.obj
+TROBJECTS= jpegtran.obj rdswitch.obj cdjpeg.obj transupp.obj
+
+
+all: libjpeg.lib cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe
+
+libjpeg.lib: $(LIBOBJECTS)
+ - del libjpeg.lib
+ tlib libjpeg.lib /E /C @&&|
++jcapimin.obj +jcapistd.obj +jcarith.obj +jctrans.obj +jcparam.obj &
++jdatadst.obj +jcinit.obj +jcmaster.obj +jcmarker.obj +jcmainct.obj &
++jcprepct.obj +jccoefct.obj +jccolor.obj +jcsample.obj +jchuff.obj &
++jcdctmgr.obj +jfdctfst.obj +jfdctflt.obj +jfdctint.obj +jdapimin.obj &
++jdapistd.obj +jdarith.obj +jdtrans.obj +jdatasrc.obj +jdmaster.obj &
++jdinput.obj +jdmarker.obj +jdhuff.obj +jdmainct.obj +jdcoefct.obj &
++jdpostct.obj +jddctmgr.obj +jidctfst.obj +jidctflt.obj +jidctint.obj &
++jdsample.obj +jdcolor.obj +jquant1.obj +jquant2.obj +jdmerge.obj &
++jaricom.obj +jcomapi.obj +jutils.obj +jerror.obj +jmemmgr.obj &
+$(SYSDEPMEMLIB)
+|
+
+cjpeg.exe: $(COBJECTS) libjpeg.lib
+ $(CC) $(LDFLAGS) -ecjpeg.exe $(COBJECTS) libjpeg.lib
+
+djpeg.exe: $(DOBJECTS) libjpeg.lib
+ $(CC) $(LDFLAGS) -edjpeg.exe $(DOBJECTS) libjpeg.lib
+
+jpegtran.exe: $(TROBJECTS) libjpeg.lib
+ $(CC) $(LDFLAGS) -ejpegtran.exe $(TROBJECTS) libjpeg.lib
+
+rdjpgcom.exe: rdjpgcom.c
+!if $d(DOS)
+ $(CC) -ms -O rdjpgcom.c
+!else
+ $(CC) $(CFLAGS) rdjpgcom.c
+!endif
+
+# On DOS, wrjpgcom needs large model so it can malloc a 64K chunk
+wrjpgcom.exe: wrjpgcom.c
+!if $d(DOS)
+ $(CC) -ml -O wrjpgcom.c
+!else
+ $(CC) $(CFLAGS) wrjpgcom.c
+!endif
+
+# This "{}" syntax allows Borland Make to "batch" source files.
+# In this way, each run of the compiler can build many modules.
+.c.obj:
+ $(CC) $(CFLAGS) -c{ $<}
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ - del *.obj
+ - del libjpeg.lib
+ - del cjpeg.exe
+ - del djpeg.exe
+ - del jpegtran.exe
+ - del rdjpgcom.exe
+ - del wrjpgcom.exe
+ - del testout*.*
+
+test: cjpeg.exe djpeg.exe jpegtran.exe
+ - del testout*.*
+ djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ cjpeg -dct int -outfile testout.jpg testimg.ppm
+ djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ jpegtran -outfile testoutt.jpg testprog.jpg
+!if $d(DOS)
+ fc /b testimg.ppm testout.ppm
+ fc /b testimg.bmp testout.bmp
+ fc /b testimg.jpg testout.jpg
+ fc /b testimg.ppm testoutp.ppm
+ fc /b testimgp.jpg testoutp.jpg
+ fc /b testorig.jpg testoutt.jpg
+!else
+ echo n > n.tmp
+ comp testimg.ppm testout.ppm < n.tmp
+ comp testimg.bmp testout.bmp < n.tmp
+ comp testimg.jpg testout.jpg < n.tmp
+ comp testimg.ppm testoutp.ppm < n.tmp
+ comp testimgp.jpg testoutp.jpg < n.tmp
+ comp testorig.jpg testoutt.jpg < n.tmp
+ del n.tmp
+!endif
+
+
+jaricom.obj: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.obj: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.obj: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.obj: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.obj: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.obj: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.obj: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.obj: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.obj: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.obj: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.obj: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.obj: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.obj: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.obj: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.obj: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.obj: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.obj: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.obj: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.obj: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.obj: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.obj: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.obj: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.obj: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.obj: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.obj: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.obj: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.obj: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.obj: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.obj: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.obj: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.obj: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.obj: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.obj: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.obj: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.obj: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.obj: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.obj: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.obj: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.obj: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.obj: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.obj: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.obj: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.obj: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.obj: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.obj: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.obj: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.obj: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.obj: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.obj: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.obj: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.obj: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.obj: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.obj: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.obj: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.obj: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.obj: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.obj: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.obj: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.obj: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.obj: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.obj: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.obj: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.obj: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.obj: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.obj: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.obj: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.obj: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.obj: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.obj: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+jmemdosa.obj: jmemdosa.asm
+ tasm /mx jmemdosa.asm
diff --git a/src/3rdparty/libjpeg/makefile.dj b/src/3rdparty/libjpeg/makefile.dj
new file mode 100644
index 0000000..14d0ee6
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.dj
@@ -0,0 +1,226 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is for DJGPP (Delorie's GNU C port on MS-DOS), v2.0 or later.
+# Thanks to Frank J. Donahoe for this version.
+
+# Read installation instructions before saying "make" !!
+
+# The name of your C compiler:
+CC= gcc
+
+# You may need to adjust these cc options:
+CFLAGS= -O2 -Wall -I.
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+
+# Link-time cc options:
+LDFLAGS= -s
+
+# To link any special libraries, add the necessary -l commands here.
+LDLIBS=
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For DJGPP this is usually jmemnobs.o, but you could
+# use jmemname.o if you want to use named temp files instead of swap space.
+SYSDEPMEM= jmemnobs.o
+
+# miscellaneous OS-dependent stuff
+# linker
+LN= $(CC)
+# file deletion command
+RM= del
+# library (.a) file creation command
+AR= ar rc
+# second step in .a creation (use "touch" if not needed)
+AR2= ranlib
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.o jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.o jcapistd.o jcarith.o jctrans.o jcparam.o \
+ jdatadst.o jcinit.o jcmaster.o jcmarker.o jcmainct.o jcprepct.o \
+ jccoefct.o jccolor.o jcsample.o jchuff.o jcdctmgr.o jfdctfst.o \
+ jfdctflt.o jfdctint.o
+# decompression library object files
+DLIBOBJECTS= jdapimin.o jdapistd.o jdarith.o jdtrans.o jdatasrc.o \
+ jdmaster.o jdinput.o jdmarker.o jdhuff.o jdmainct.o \
+ jdcoefct.o jdpostct.o jddctmgr.o jidctfst.o jidctflt.o \
+ jidctint.o jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
+# These objectfiles are included in libjpeg.a
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
+ cdjpeg.o
+DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
+ cdjpeg.o
+TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o
+
+
+all: libjpeg.a cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe
+
+libjpeg.a: $(LIBOBJECTS)
+ $(RM) libjpeg.a
+ $(AR) libjpeg.a $(LIBOBJECTS)
+ $(AR2) libjpeg.a
+
+cjpeg.exe: $(COBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o cjpeg.exe $(COBJECTS) libjpeg.a $(LDLIBS)
+
+djpeg.exe: $(DOBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o djpeg.exe $(DOBJECTS) libjpeg.a $(LDLIBS)
+
+jpegtran.exe: $(TROBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o jpegtran.exe $(TROBJECTS) libjpeg.a $(LDLIBS)
+
+rdjpgcom.exe: rdjpgcom.o
+ $(LN) $(LDFLAGS) -o rdjpgcom.exe rdjpgcom.o $(LDLIBS)
+
+wrjpgcom.exe: wrjpgcom.o
+ $(LN) $(LDFLAGS) -o wrjpgcom.exe wrjpgcom.o $(LDLIBS)
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ $(RM) *.o
+ $(RM) cjpeg.exe
+ $(RM) djpeg.exe
+ $(RM) jpegtran.exe
+ $(RM) rdjpgcom.exe
+ $(RM) wrjpgcom.exe
+ $(RM) libjpeg.a
+ $(RM) testout*.*
+
+test: cjpeg.exe djpeg.exe jpegtran.exe
+ $(RM) testout*.*
+ ./djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ ./djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ ./cjpeg -dct int -outfile testout.jpg testimg.ppm
+ ./djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ ./cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ ./jpegtran -outfile testoutt.jpg testprog.jpg
+ fc /b testimg.ppm testout.ppm
+ fc /b testimg.bmp testout.bmp
+ fc /b testimg.jpg testout.jpg
+ fc /b testimg.ppm testoutp.ppm
+ fc /b testimgp.jpg testoutp.jpg
+ fc /b testorig.jpg testoutt.jpg
+
+
+jaricom.o: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.o: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.o: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.manx b/src/3rdparty/libjpeg/makefile.manx
new file mode 100644
index 0000000..d1af57c
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.manx
@@ -0,0 +1,220 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is for Amiga systems using Manx Aztec C ver 5.x.
+# Thanks to D.J. James (djjames@cup.portal.com) for this version.
+
+# Read installation instructions before saying "make" !!
+
+# The name of your C compiler:
+CC= cc
+
+# You may need to adjust these cc options:
+# Uncomment for generic 68000 code (will work on any Amiga)
+ARCHFLAGS= -sn
+
+# Uncomment for 68020/68030 code (faster, but won't run on 68000 CPU)
+#ARCHFLAGS= -c2
+
+CFLAGS= -MC -MD $(ARCHFLAGS) -spfam -r4
+
+# Link-time cc options:
+LDFLAGS= -g
+
+# To link any special libraries, add the necessary -l commands here.
+LDLIBS= -lml -lcl
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For Amiga we recommend jmemname.o.
+SYSDEPMEM= jmemname.o
+
+# miscellaneous OS-dependent stuff
+# linker
+LN= ln
+# file deletion command
+RM= delete quiet
+# library (.lib) file creation command
+AR= lb
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.o jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.o jcapistd.o jcarith.o jctrans.o jcparam.o \
+ jdatadst.o jcinit.o jcmaster.o jcmarker.o jcmainct.o jcprepct.o \
+ jccoefct.o jccolor.o jcsample.o jchuff.o jcdctmgr.o jfdctfst.o \
+ jfdctflt.o jfdctint.o
+# decompression library object files
+DLIBOBJECTS= jdapimin.o jdapistd.o jdarith.o jdtrans.o jdatasrc.o \
+ jdmaster.o jdinput.o jdmarker.o jdhuff.o jdmainct.o \
+ jdcoefct.o jdpostct.o jddctmgr.o jidctfst.o jidctflt.o \
+ jidctint.o jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
+# These objectfiles are included in libjpeg.lib
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
+ cdjpeg.o
+DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
+ cdjpeg.o
+TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o
+
+
+all: libjpeg.lib cjpeg djpeg jpegtran rdjpgcom wrjpgcom
+
+libjpeg.lib: $(LIBOBJECTS)
+ -$(RM) libjpeg.lib
+ $(AR) libjpeg.lib $(LIBOBJECTS)
+
+cjpeg: $(COBJECTS) libjpeg.lib
+ $(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.lib $(LDLIBS)
+
+djpeg: $(DOBJECTS) libjpeg.lib
+ $(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.lib $(LDLIBS)
+
+jpegtran: $(TROBJECTS) libjpeg.lib
+ $(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.lib $(LDLIBS)
+
+rdjpgcom: rdjpgcom.o
+ $(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.o $(LDLIBS)
+
+wrjpgcom: wrjpgcom.o
+ $(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.o $(LDLIBS)
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ -$(RM) *.o cjpeg djpeg jpegtran libjpeg.lib rdjpgcom wrjpgcom
+ -$(RM) core testout*.*
+
+test: cjpeg djpeg jpegtran
+ -$(RM) testout*.*
+ djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ cjpeg -dct int -outfile testout.jpg testimg.ppm
+ djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ jpegtran -outfile testoutt.jpg testprog.jpg
+ cmp testimg.ppm testout.ppm
+ cmp testimg.bmp testout.bmp
+ cmp testimg.jpg testout.jpg
+ cmp testimg.ppm testoutp.ppm
+ cmp testimgp.jpg testoutp.jpg
+ cmp testorig.jpg testoutt.jpg
+
+
+jaricom.o: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.o: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.o: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.mc6 b/src/3rdparty/libjpeg/makefile.mc6
new file mode 100644
index 0000000..2e0c747
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.mc6
@@ -0,0 +1,255 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is for Microsoft C for MS-DOS, version 6.00A and up.
+# Use NMAKE, not Microsoft's brain-damaged MAKE.
+# Thanks to Alan Wright and Chris Turner of Olivetti Research Ltd.
+
+# Read installation instructions before saying "nmake" !!
+
+# You may need to adjust these compiler options:
+CFLAGS = -AM -Oecigt -Gs -W3
+# -AM medium memory model (or use -AS for small model, if you remove features)
+# -Oecigt -Gs maximum safe optimisation (-Ol has bugs in MSC 6.00A)
+# -W3 warning level 3
+# You might also want to add -G2 if you have an 80286, etc.
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+
+# Jan-Herman Buining suggests the following switches for MS C 8.0 and a 486:
+# CFLAGS = /AM /f- /FPi87 /G3 /Gs /Gy /Ob1 /Oc /Oe /Og /Oi /Ol /On /Oo /Ot \
+# /OV4 /W3
+# except for jquant1.c, which must be compiled with /Oo- to avoid a compiler
+# crash.
+
+# Ingar Steinsland suggests the following switches when building
+# a 16-bit Windows DLL:
+# CFLAGS = -ALw -Gsw -Zpe -W3 -O2 -Zi -Zd
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For DOS, we recommend jmemdos.c and jmemdosa.asm.
+# (But not for Windows; see install.txt if you use this makefile for Windows.)
+SYSDEPMEM= jmemdos.obj jmemdosa.obj
+# SYSDEPMEMLIB must list the same files with "+" signs for the librarian.
+SYSDEPMEMLIB= +jmemdos.obj +jmemdosa.obj
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.obj jcomapi.obj jutils.obj jerror.obj jmemmgr.obj $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.obj jcapistd.obj jcarith.obj jctrans.obj jcparam.obj \
+ jdatadst.obj jcinit.obj jcmaster.obj jcmarker.obj jcmainct.obj \
+ jcprepct.obj jccoefct.obj jccolor.obj jcsample.obj jchuff.obj \
+ jcdctmgr.obj jfdctfst.obj jfdctflt.obj jfdctint.obj
+# decompression library object files
+DLIBOBJECTS= jdapimin.obj jdapistd.obj jdarith.obj jdtrans.obj jdatasrc.obj \
+ jdmaster.obj jdinput.obj jdmarker.obj jdhuff.obj jdmainct.obj \
+ jdcoefct.obj jdpostct.obj jddctmgr.obj jidctfst.obj jidctflt.obj \
+ jidctint.obj jdsample.obj jdcolor.obj jquant1.obj jquant2.obj \
+ jdmerge.obj
+# These objectfiles are included in libjpeg.lib
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.obj rdppm.obj rdgif.obj rdtarga.obj rdrle.obj rdbmp.obj \
+ rdswitch.obj cdjpeg.obj
+DOBJECTS= djpeg.obj wrppm.obj wrgif.obj wrtarga.obj wrrle.obj wrbmp.obj \
+ rdcolmap.obj cdjpeg.obj
+TROBJECTS= jpegtran.obj rdswitch.obj cdjpeg.obj transupp.obj
+
+# need linker response file because file list > 128 chars
+RFILE = libjpeg.ans
+
+
+all: libjpeg.lib cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe
+
+libjpeg.lib: $(LIBOBJECTS) $(RFILE)
+ del libjpeg.lib
+ lib @$(RFILE)
+
+# linker response file for building libjpeg.lib
+$(RFILE) : makefile
+ del $(RFILE)
+ echo libjpeg.lib >$(RFILE)
+# silly want-to-create-it prompt:
+ echo y >>$(RFILE)
+ echo +jcapimin.obj +jcapistd.obj +jcarith.obj +jctrans.obj & >>$(RFILE)
+ echo +jcparam.obj +jdatadst.obj +jcinit.obj +jcmaster.obj & >>$(RFILE)
+ echo +jcmarker.obj +jcmainct.obj +jcprepct.obj & >>$(RFILE)
+ echo +jccoefct.obj +jccolor.obj +jcsample.obj +jchuff.obj & >>$(RFILE)
+ echo +jcdctmgr.obj +jfdctfst.obj +jfdctflt.obj & >>$(RFILE)
+ echo +jfdctint.obj +jdapimin.obj +jdapistd.obj & >>$(RFILE)
+ echo +jdarith.obj +jdtrans.obj +jdatasrc.obj +jdmaster.obj & >>$(RFILE)
+ echo +jdinput.obj +jdmarker.obj +jdhuff.obj +jdmainct.obj & >>$(RFILE)
+ echo +jdcoefct.obj +jdpostct.obj +jddctmgr.obj & >>$(RFILE)
+ echo +jidctfst.obj +jidctflt.obj +jidctint.obj & >>$(RFILE)
+ echo +jdsample.obj +jdcolor.obj +jquant1.obj & >>$(RFILE)
+ echo +jquant2.obj +jdmerge.obj +jaricom.obj +jcomapi.obj & >>$(RFILE)
+ echo +jutils.obj +jerror.obj +jmemmgr.obj & >>$(RFILE)
+ echo $(SYSDEPMEMLIB) ; >>$(RFILE)
+
+cjpeg.exe: $(COBJECTS) libjpeg.lib
+ echo $(COBJECTS) >cjpeg.lst
+ link /STACK:4096 /EXEPACK @cjpeg.lst, cjpeg.exe, , libjpeg.lib, ;
+ del cjpeg.lst
+
+djpeg.exe: $(DOBJECTS) libjpeg.lib
+ echo $(DOBJECTS) >djpeg.lst
+ link /STACK:4096 /EXEPACK @djpeg.lst, djpeg.exe, , libjpeg.lib, ;
+ del djpeg.lst
+
+jpegtran.exe: $(TROBJECTS) libjpeg.lib
+ link /STACK:4096 /EXEPACK $(TROBJECTS), jpegtran.exe, , libjpeg.lib, ;
+
+rdjpgcom.exe: rdjpgcom.c
+ $(CC) -AS -O -W3 rdjpgcom.c
+
+# wrjpgcom needs large model so it can malloc a 64K chunk
+wrjpgcom.exe: wrjpgcom.c
+ $(CC) -AL -O -W3 wrjpgcom.c
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ del *.obj
+ del libjpeg.lib
+ del cjpeg.exe
+ del djpeg.exe
+ del jpegtran.exe
+ del rdjpgcom.exe
+ del wrjpgcom.exe
+ del testout*.*
+
+test: cjpeg.exe djpeg.exe jpegtran.exe
+ del testout*.*
+ djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ cjpeg -dct int -outfile testout.jpg testimg.ppm
+ djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ jpegtran -outfile testoutt.jpg testprog.jpg
+ fc /b testimg.ppm testout.ppm
+ fc /b testimg.bmp testout.bmp
+ fc /b testimg.jpg testout.jpg
+ fc /b testimg.ppm testoutp.ppm
+ fc /b testimgp.jpg testoutp.jpg
+ fc /b testorig.jpg testoutt.jpg
+
+
+jaricom.obj: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.obj: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.obj: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.obj: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.obj: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.obj: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.obj: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.obj: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.obj: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.obj: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.obj: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.obj: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.obj: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.obj: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.obj: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.obj: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.obj: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.obj: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.obj: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.obj: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.obj: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.obj: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.obj: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.obj: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.obj: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.obj: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.obj: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.obj: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.obj: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.obj: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.obj: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.obj: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.obj: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.obj: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.obj: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.obj: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.obj: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.obj: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.obj: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.obj: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.obj: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.obj: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.obj: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.obj: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.obj: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.obj: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.obj: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.obj: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.obj: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.obj: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.obj: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.obj: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.obj: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.obj: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.obj: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.obj: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.obj: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.obj: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.obj: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.obj: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.obj: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.obj: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.obj: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.obj: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.obj: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.obj: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.obj: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.obj: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.obj: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+jmemdosa.obj : jmemdosa.asm
+ masm /mx $*;
diff --git a/src/3rdparty/libjpeg/makefile.mms b/src/3rdparty/libjpeg/makefile.mms
new file mode 100644
index 0000000..992c25f
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.mms
@@ -0,0 +1,224 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is for use with MMS on Digital VMS systems.
+# Thanks to Rick Dyson (dyson@iowasp.physics.uiowa.edu)
+# and Tim Bell (tbell@netcom.com) for their help.
+
+# Read installation instructions before saying "MMS" !!
+
+# You may need to adjust these cc options:
+CFLAGS= $(CFLAGS) /NoDebug /Optimize
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via /Define switches here.
+.ifdef ALPHA
+OPT=
+.else
+OPT= ,Sys$Disk:[]MAKVMS.OPT/Option
+.endif
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For Unix this is usually jmemnobs.o, but you may want
+# to use jmemansi.o or jmemname.o if you have limited swap space.
+SYSDEPMEM= jmemnobs.obj
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.obj jcomapi.obj jutils.obj jerror.obj jmemmgr.obj $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.obj jcapistd.obj jcarith.obj jctrans.obj jcparam.obj \
+ jdatadst.obj jcinit.obj jcmaster.obj jcmarker.obj jcmainct.obj \
+ jcprepct.obj jccoefct.obj jccolor.obj jcsample.obj jchuff.obj \
+ jcdctmgr.obj jfdctfst.obj jfdctflt.obj jfdctint.obj
+# decompression library object files
+DLIBOBJECTS= jdapimin.obj jdapistd.obj jdarith.obj jdtrans.obj jdatasrc.obj \
+ jdmaster.obj jdinput.obj jdmarker.obj jdhuff.obj jdmainct.obj \
+ jdcoefct.obj jdpostct.obj jddctmgr.obj jidctfst.obj jidctflt.obj \
+ jidctint.obj jdsample.obj jdcolor.obj jquant1.obj jquant2.obj \
+ jdmerge.obj
+# These objectfiles are included in libjpeg.olb
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.obj rdppm.obj rdgif.obj rdtarga.obj rdrle.obj rdbmp.obj \
+ rdswitch.obj cdjpeg.obj
+DOBJECTS= djpeg.obj wrppm.obj wrgif.obj wrtarga.obj wrrle.obj wrbmp.obj \
+ rdcolmap.obj cdjpeg.obj
+TROBJECTS= jpegtran.obj rdswitch.obj cdjpeg.obj transupp.obj
+# objectfile lists with commas --- what a crock
+COBJLIST= cjpeg.obj,rdppm.obj,rdgif.obj,rdtarga.obj,rdrle.obj,rdbmp.obj,\
+ rdswitch.obj,cdjpeg.obj
+DOBJLIST= djpeg.obj,wrppm.obj,wrgif.obj,wrtarga.obj,wrrle.obj,wrbmp.obj,\
+ rdcolmap.obj,cdjpeg.obj
+TROBJLIST= jpegtran.obj,rdswitch.obj,cdjpeg.obj,transupp.obj
+LIBOBJLIST= jaricom.obj,jcapimin.obj,jcapistd.obj,jcarith.obj,jctrans.obj,\
+ jcparam.obj,jdatadst.obj,jcinit.obj,jcmaster.obj,jcmarker.obj,\
+ jcmainct.obj,jcprepct.obj,jccoefct.obj,jccolor.obj,jcsample.obj,\
+ jchuff.obj,jcdctmgr.obj,jfdctfst.obj,jfdctflt.obj,jfdctint.obj,\
+ jdapimin.obj,jdapistd.obj,jdarith.obj,jdtrans.obj,jdatasrc.obj,\
+ jdmaster.obj,jdinput.obj,jdmarker.obj,jdhuff.obj,jdmainct.obj,\
+ jdcoefct.obj,jdpostct.obj,jddctmgr.obj,jidctfst.obj,jidctflt.obj,\
+ jidctint.obj,jdsample.obj,jdcolor.obj,jquant1.obj,jquant2.obj,\
+ jdmerge.obj,jcomapi.obj,jutils.obj,jerror.obj,jmemmgr.obj,$(SYSDEPMEM)
+
+
+.first
+ @- Define /NoLog Sys Sys$Library
+
+ALL : libjpeg.olb cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe
+ @ Continue
+
+libjpeg.olb : $(LIBOBJECTS)
+ Library /Create libjpeg.olb $(LIBOBJLIST)
+
+cjpeg.exe : $(COBJECTS) libjpeg.olb
+ $(LINK) $(LFLAGS) /Executable = cjpeg.exe $(COBJLIST),libjpeg.olb/Library$(OPT)
+
+djpeg.exe : $(DOBJECTS) libjpeg.olb
+ $(LINK) $(LFLAGS) /Executable = djpeg.exe $(DOBJLIST),libjpeg.olb/Library$(OPT)
+
+jpegtran.exe : $(TROBJECTS) libjpeg.olb
+ $(LINK) $(LFLAGS) /Executable = jpegtran.exe $(TROBJLIST),libjpeg.olb/Library$(OPT)
+
+rdjpgcom.exe : rdjpgcom.obj
+ $(LINK) $(LFLAGS) /Executable = rdjpgcom.exe rdjpgcom.obj$(OPT)
+
+wrjpgcom.exe : wrjpgcom.obj
+ $(LINK) $(LFLAGS) /Executable = wrjpgcom.exe wrjpgcom.obj$(OPT)
+
+jconfig.h : jconfig.vms
+ @- Copy jconfig.vms jconfig.h
+
+clean :
+ @- Set Protection = Owner:RWED *.*;-1
+ @- Set Protection = Owner:RWED *.OBJ
+ - Purge /NoLog /NoConfirm *.*
+ - Delete /NoLog /NoConfirm *.OBJ;
+
+test : cjpeg.exe djpeg.exe jpegtran.exe
+ mcr sys$disk:[]djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ mcr sys$disk:[]djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ mcr sys$disk:[]cjpeg -dct int -outfile testout.jpg testimg.ppm
+ mcr sys$disk:[]djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ mcr sys$disk:[]cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ mcr sys$disk:[]jpegtran -outfile testoutt.jpg testprog.jpg
+ - Backup /Compare/Log testimg.ppm testout.ppm
+ - Backup /Compare/Log testimg.bmp testout.bmp
+ - Backup /Compare/Log testimg.jpg testout.jpg
+ - Backup /Compare/Log testimg.ppm testoutp.ppm
+ - Backup /Compare/Log testimgp.jpg testoutp.jpg
+ - Backup /Compare/Log testorig.jpg testoutt.jpg
+
+
+jaricom.obj : jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.obj : jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.obj : jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.obj : jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.obj : jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.obj : jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.obj : jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.obj : jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.obj : jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.obj : jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.obj : jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.obj : jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.obj : jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.obj : jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.obj : jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.obj : jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.obj : jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.obj : jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.obj : jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.obj : jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.obj : jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.obj : jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.obj : jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.obj : jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.obj : jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.obj : jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.obj : jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.obj : jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.obj : jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.obj : jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.obj : jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.obj : jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.obj : jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.obj : jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.obj : jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.obj : jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.obj : jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.obj : jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.obj : jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.obj : jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.obj : jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.obj : jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.obj : jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.obj : jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.obj : jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.obj : jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.obj : jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.obj : jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.obj : jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.obj : jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.obj : cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.obj : djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.obj : jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.obj : rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.obj : wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.obj : cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.obj : rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.obj : rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.obj : transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.obj : rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.obj : wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.obj : rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.obj : wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.obj : rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.obj : wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.obj : rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.obj : wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.obj : rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.obj : wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.sas b/src/3rdparty/libjpeg/makefile.sas
new file mode 100644
index 0000000..c7a030c
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.sas
@@ -0,0 +1,258 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is for Amiga systems using SAS C 6.0 and up.
+# Thanks to Ed Hanway, Mark Rinfret, and Jim Zepeda.
+
+# Read installation instructions before saying "make" !!
+
+# The name of your C compiler:
+CC= sc
+
+# You may need to adjust these cc options:
+# Uncomment the following lines for generic 680x0 version
+ARCHFLAGS= cpu=any
+SUFFIX=
+
+# Uncomment the following lines for 68030-only version
+#ARCHFLAGS= cpu=68030
+#SUFFIX=.030
+
+CFLAGS= nostackcheck data=near parms=register optimize $(ARCHFLAGS) \
+ ignore=104 ignore=304 ignore=306
+# ignore=104 disables warnings for mismatched const qualifiers
+# ignore=304 disables warnings for variables being optimized out
+# ignore=306 disables warnings for the inlining of functions
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via define switches here.
+
+# Link-time cc options:
+LDFLAGS= SC SD ND BATCH
+
+# To link any special libraries, add the necessary commands here.
+LDLIBS= LIB:scm.lib LIB:sc.lib
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For Amiga we recommend jmemname.o.
+SYSDEPMEM= jmemname.o
+
+# miscellaneous OS-dependent stuff
+# linker
+LN= slink
+# file deletion command
+RM= delete quiet
+# library (.lib) file creation command
+AR= oml
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.o jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.o jcapistd.o jcarith.o jctrans.o jcparam.o \
+ jdatadst.o jcinit.o jcmaster.o jcmarker.o jcmainct.o jcprepct.o \
+ jccoefct.o jccolor.o jcsample.o jchuff.o jcdctmgr.o jfdctfst.o \
+ jfdctflt.o jfdctint.o
+# decompression library object files
+DLIBOBJECTS= jdapimin.o jdapistd.o jdarith.o jdtrans.o jdatasrc.o \
+ jdmaster.o jdinput.o jdmarker.o jdhuff.o jdmainct.o \
+ jdcoefct.o jdpostct.o jddctmgr.o jidctfst.o jidctflt.o \
+ jidctint.o jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
+# These objectfiles are included in libjpeg.lib
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
+ cdjpeg.o
+DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
+ cdjpeg.o
+TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o
+
+
+all: libjpeg.lib cjpeg$(SUFFIX) djpeg$(SUFFIX) jpegtran$(SUFFIX) rdjpgcom$(SUFFIX) wrjpgcom$(SUFFIX)
+
+# note: do several AR steps to avoid command line length limitations
+
+libjpeg.lib: $(LIBOBJECTS)
+ -$(RM) libjpeg.lib
+ $(AR) libjpeg.lib r $(CLIBOBJECTS)
+ $(AR) libjpeg.lib r $(DLIBOBJECTS)
+ $(AR) libjpeg.lib r $(COMOBJECTS)
+
+cjpeg$(SUFFIX): $(COBJECTS) libjpeg.lib
+ $(LN) <WITH <
+$(LDFLAGS)
+TO cjpeg$(SUFFIX)
+FROM LIB:c.o $(COBJECTS)
+LIB libjpeg.lib $(LDLIBS)
+<
+
+djpeg$(SUFFIX): $(DOBJECTS) libjpeg.lib
+ $(LN) <WITH <
+$(LDFLAGS)
+TO djpeg$(SUFFIX)
+FROM LIB:c.o $(DOBJECTS)
+LIB libjpeg.lib $(LDLIBS)
+<
+
+jpegtran$(SUFFIX): $(TROBJECTS) libjpeg.lib
+ $(LN) <WITH <
+$(LDFLAGS)
+TO jpegtran$(SUFFIX)
+FROM LIB:c.o $(TROBJECTS)
+LIB libjpeg.lib $(LDLIBS)
+<
+
+rdjpgcom$(SUFFIX): rdjpgcom.o
+ $(LN) <WITH <
+$(LDFLAGS)
+TO rdjpgcom$(SUFFIX)
+FROM LIB:c.o rdjpgcom.o
+LIB $(LDLIBS)
+<
+
+wrjpgcom$(SUFFIX): wrjpgcom.o
+ $(LN) <WITH <
+$(LDFLAGS)
+TO wrjpgcom$(SUFFIX)
+FROM LIB:c.o wrjpgcom.o
+LIB $(LDLIBS)
+<
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ -$(RM) *.o cjpeg djpeg jpegtran cjpeg.030 djpeg.030 jpegtran.030
+ -$(RM) rdjpgcom wrjpgcom rdjpgcom.030 wrjpgcom.030
+ -$(RM) libjpeg.lib core testout*.*
+
+test: cjpeg djpeg jpegtran
+ -$(RM) testout*.*
+ djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ cjpeg -dct int -outfile testout.jpg testimg.ppm
+ djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ jpegtran -outfile testoutt.jpg testprog.jpg
+ cmp testimg.ppm testout.ppm
+ cmp testimg.bmp testout.bmp
+ cmp testimg.jpg testout.jpg
+ cmp testimg.ppm testoutp.ppm
+ cmp testimgp.jpg testoutp.jpg
+ cmp testorig.jpg testoutt.jpg
+
+
+jaricom.o: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.o: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.o: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.unix b/src/3rdparty/libjpeg/makefile.unix
new file mode 100644
index 0000000..90332e3
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.unix
@@ -0,0 +1,234 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is suitable for Unix-like systems with non-ANSI compilers.
+# If you have an ANSI compiler, makefile.ansi is a better starting point.
+
+# Read installation instructions before saying "make" !!
+
+# The name of your C compiler:
+CC= cc
+
+# You may need to adjust these cc options:
+CFLAGS= -O
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+# However, any special defines for ansi2knr.c may be included here:
+ANSI2KNRFLAGS=
+
+# Link-time cc options:
+LDFLAGS=
+
+# To link any special libraries, add the necessary -l commands here.
+LDLIBS=
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For Unix this is usually jmemnobs.o, but you may want
+# to use jmemansi.o or jmemname.o if you have limited swap space.
+SYSDEPMEM= jmemnobs.o
+
+# miscellaneous OS-dependent stuff
+# linker
+LN= $(CC)
+# file deletion command
+RM= rm -f
+# file rename command
+MV= mv
+# library (.a) file creation command
+AR= ar rc
+# second step in .a creation (use "touch" if not needed)
+AR2= ranlib
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.o jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.o jcapistd.o jcarith.o jctrans.o jcparam.o \
+ jdatadst.o jcinit.o jcmaster.o jcmarker.o jcmainct.o jcprepct.o \
+ jccoefct.o jccolor.o jcsample.o jchuff.o jcdctmgr.o jfdctfst.o \
+ jfdctflt.o jfdctint.o
+# decompression library object files
+DLIBOBJECTS= jdapimin.o jdapistd.o jdarith.o jdtrans.o jdatasrc.o \
+ jdmaster.o jdinput.o jdmarker.o jdhuff.o jdmainct.o \
+ jdcoefct.o jdpostct.o jddctmgr.o jidctfst.o jidctflt.o \
+ jidctint.o jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
+# These objectfiles are included in libjpeg.a
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
+ cdjpeg.o
+DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
+ cdjpeg.o
+TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o
+
+
+all: ansi2knr libjpeg.a cjpeg djpeg jpegtran rdjpgcom wrjpgcom
+
+# This rule causes ansi2knr to be invoked.
+.c.o:
+ ./ansi2knr $*.c T$*.c
+ $(CC) $(CFLAGS) -c T$*.c
+ $(RM) T$*.c $*.o
+ $(MV) T$*.o $*.o
+
+ansi2knr: ansi2knr.c
+ $(CC) $(CFLAGS) $(ANSI2KNRFLAGS) -o ansi2knr ansi2knr.c
+
+libjpeg.a: ansi2knr $(LIBOBJECTS)
+ $(RM) libjpeg.a
+ $(AR) libjpeg.a $(LIBOBJECTS)
+ $(AR2) libjpeg.a
+
+cjpeg: ansi2knr $(COBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.a $(LDLIBS)
+
+djpeg: ansi2knr $(DOBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.a $(LDLIBS)
+
+jpegtran: ansi2knr $(TROBJECTS) libjpeg.a
+ $(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.a $(LDLIBS)
+
+rdjpgcom: rdjpgcom.o
+ $(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.o $(LDLIBS)
+
+wrjpgcom: wrjpgcom.o
+ $(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.o $(LDLIBS)
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean:
+ $(RM) *.o cjpeg djpeg jpegtran libjpeg.a rdjpgcom wrjpgcom
+ $(RM) ansi2knr core testout*
+
+test: cjpeg djpeg jpegtran
+ $(RM) testout*
+ ./djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ ./djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ ./cjpeg -dct int -outfile testout.jpg testimg.ppm
+ ./djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ ./cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ ./jpegtran -outfile testoutt.jpg testprog.jpg
+ cmp testimg.ppm testout.ppm
+ cmp testimg.bmp testout.bmp
+ cmp testimg.jpg testout.jpg
+ cmp testimg.ppm testoutp.ppm
+ cmp testimgp.jpg testoutp.jpg
+ cmp testorig.jpg testoutt.jpg
+
+
+jaricom.o: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.o: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.o: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.vc b/src/3rdparty/libjpeg/makefile.vc
new file mode 100644
index 0000000..41b998f
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.vc
@@ -0,0 +1,217 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is for Microsoft Visual C++ on Windows NT (and 95?).
+# It builds the IJG library as a statically linkable library (.LIB),
+# and builds the sample applications as console-mode apps.
+# Thanks to Xingong Chang, Raymond Everly and others.
+
+# Read installation instructions before saying "nmake" !!
+# To build an optimized library without debug info, say "nmake nodebug=1".
+
+# Pull in standard variable definitions
+!include <win32.mak>
+
+# You may want to adjust these compiler options:
+CFLAGS= $(cflags) $(cdebug) $(cvars) -I.
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+
+# Link-time options:
+LDFLAGS= $(ldebug) $(conlflags)
+
+# To link any special libraries, add the necessary commands here.
+LDLIBS= $(conlibs)
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. For NT we suggest jmemnobs.obj, which expects the OS to
+# provide adequate virtual memory.
+SYSDEPMEM= jmemnobs.obj
+
+# miscellaneous OS-dependent stuff
+# file deletion command
+RM= del
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c \
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c \
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c \
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c \
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h \
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt \
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc \
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 \
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 \
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 \
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 \
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 \
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 \
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st \
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms \
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm \
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.obj jcomapi.obj jutils.obj jerror.obj jmemmgr.obj $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.obj jcapistd.obj jcarith.obj jctrans.obj jcparam.obj \
+ jdatadst.obj jcinit.obj jcmaster.obj jcmarker.obj jcmainct.obj \
+ jcprepct.obj jccoefct.obj jccolor.obj jcsample.obj jchuff.obj \
+ jcdctmgr.obj jfdctfst.obj jfdctflt.obj jfdctint.obj
+# decompression library object files
+DLIBOBJECTS= jdapimin.obj jdapistd.obj jdarith.obj jdtrans.obj jdatasrc.obj \
+ jdmaster.obj jdinput.obj jdmarker.obj jdhuff.obj jdmainct.obj \
+ jdcoefct.obj jdpostct.obj jddctmgr.obj jidctfst.obj jidctflt.obj \
+ jidctint.obj jdsample.obj jdcolor.obj jquant1.obj jquant2.obj \
+ jdmerge.obj
+# These objectfiles are included in libjpeg.lib
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.obj rdppm.obj rdgif.obj rdtarga.obj rdrle.obj rdbmp.obj \
+ rdswitch.obj cdjpeg.obj
+DOBJECTS= djpeg.obj wrppm.obj wrgif.obj wrtarga.obj wrrle.obj wrbmp.obj \
+ rdcolmap.obj cdjpeg.obj
+TROBJECTS= jpegtran.obj rdswitch.obj cdjpeg.obj transupp.obj
+
+# Template command for compiling .c to .obj
+.c.obj:
+ $(cc) $(CFLAGS) $*.c
+
+
+all: libjpeg.lib cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe
+
+libjpeg.lib: $(LIBOBJECTS)
+ $(RM) libjpeg.lib
+ lib -out:libjpeg.lib $(LIBOBJECTS)
+
+cjpeg.exe: $(COBJECTS) libjpeg.lib
+ $(link) $(LDFLAGS) -out:cjpeg.exe $(COBJECTS) libjpeg.lib $(LDLIBS)
+
+djpeg.exe: $(DOBJECTS) libjpeg.lib
+ $(link) $(LDFLAGS) -out:djpeg.exe $(DOBJECTS) libjpeg.lib $(LDLIBS)
+
+jpegtran.exe: $(TROBJECTS) libjpeg.lib
+ $(link) $(LDFLAGS) -out:jpegtran.exe $(TROBJECTS) libjpeg.lib $(LDLIBS)
+
+rdjpgcom.exe: rdjpgcom.obj
+ $(link) $(LDFLAGS) -out:rdjpgcom.exe rdjpgcom.obj $(LDLIBS)
+
+wrjpgcom.exe: wrjpgcom.obj
+ $(link) $(LDFLAGS) -out:wrjpgcom.exe wrjpgcom.obj $(LDLIBS)
+
+
+clean:
+ $(RM) *.obj *.exe libjpeg.lib
+ $(RM) testout*
+
+test: cjpeg.exe djpeg.exe jpegtran.exe
+ $(RM) testout*
+ .\djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ .\djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ .\cjpeg -dct int -outfile testout.jpg testimg.ppm
+ .\djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ .\cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ .\jpegtran -outfile testoutt.jpg testprog.jpg
+ fc /b testimg.ppm testout.ppm
+ fc /b testimg.bmp testout.bmp
+ fc /b testimg.jpg testout.jpg
+ fc /b testimg.ppm testoutp.ppm
+ fc /b testimgp.jpg testoutp.jpg
+ fc /b testorig.jpg testoutt.jpg
+
+
+jaricom.obj: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.obj: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.obj: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.obj: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.obj: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.obj: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.obj: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.obj: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.obj: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.obj: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.obj: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.obj: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.obj: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.obj: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.obj: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.obj: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.obj: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.obj: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.obj: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.obj: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.obj: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.obj: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.obj: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.obj: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.obj: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.obj: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.obj: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.obj: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.obj: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.obj: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.obj: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.obj: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.obj: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.obj: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.obj: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.obj: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.obj: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.obj: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.obj: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.obj: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.obj: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.obj: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.obj: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.obj: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.obj: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.obj: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.obj: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.obj: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.obj: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.obj: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.obj: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.obj: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.obj: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.obj: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.obj: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.obj: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.obj: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.obj: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.obj: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.obj: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.obj: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.obj: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.obj: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.obj: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.obj: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.obj: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.obj: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.obj: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.obj: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makefile.vms b/src/3rdparty/libjpeg/makefile.vms
new file mode 100644
index 0000000..a07d070
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.vms
@@ -0,0 +1,142 @@
+$! Makefile for Independent JPEG Group's software
+$!
+$! This is a command procedure for Digital VMS systems that do not have MMS.
+$! It builds the JPEG software by brute force, recompiling everything whether
+$! or not it is necessary. It then runs the basic self-test.
+$! Thanks to Rick Dyson (dyson@iowasp.physics.uiowa.edu)
+$! and Tim Bell (tbell@netcom.com) for their help.
+$!
+$! Read installation instructions before running this!!
+$!
+$ If F$Mode () .eqs. "INTERACTIVE"
+$ Then
+$ VERIFY = F$Verify (0)
+$ Else
+$ VERIFY = F$Verify (1)
+$ EndIf
+$ On Control_Y Then GoTo End
+$ On Error Then GoTo End
+$
+$ If F$GetSyi ("HW_MODEL") .gt. 1023
+$ Then
+$ OPT = ""
+$ Else
+$ OPT = ",Sys$Disk:[]makvms.opt/Option"
+$ EndIf
+$
+$ DoCompile := CC /NoDebug /Optimize /NoList
+$!
+$ DoCompile jaricom.c
+$ DoCompile jcapimin.c
+$ DoCompile jcapistd.c
+$ DoCompile jcarith.c
+$ DoCompile jctrans.c
+$ DoCompile jcparam.c
+$ DoCompile jdatadst.c
+$ DoCompile jcinit.c
+$ DoCompile jcmaster.c
+$ DoCompile jcmarker.c
+$ DoCompile jcmainct.c
+$ DoCompile jcprepct.c
+$ DoCompile jccoefct.c
+$ DoCompile jccolor.c
+$ DoCompile jcsample.c
+$ DoCompile jchuff.c
+$ DoCompile jcdctmgr.c
+$ DoCompile jfdctfst.c
+$ DoCompile jfdctflt.c
+$ DoCompile jfdctint.c
+$ DoCompile jdapimin.c
+$ DoCompile jdapistd.c
+$ DoCompile jdarith.c
+$ DoCompile jdtrans.c
+$ DoCompile jdatasrc.c
+$ DoCompile jdmaster.c
+$ DoCompile jdinput.c
+$ DoCompile jdmarker.c
+$ DoCompile jdhuff.c
+$ DoCompile jdmainct.c
+$ DoCompile jdcoefct.c
+$ DoCompile jdpostct.c
+$ DoCompile jddctmgr.c
+$ DoCompile jidctfst.c
+$ DoCompile jidctflt.c
+$ DoCompile jidctint.c
+$ DoCompile jdsample.c
+$ DoCompile jdcolor.c
+$ DoCompile jquant1.c
+$ DoCompile jquant2.c
+$ DoCompile jdmerge.c
+$ DoCompile jcomapi.c
+$ DoCompile jutils.c
+$ DoCompile jerror.c
+$ DoCompile jmemmgr.c
+$ DoCompile jmemnobs.c
+$!
+$ Library /Create libjpeg.olb jaricom.obj,jcapimin.obj,jcapistd.obj, -
+ jcarith.obj,jctrans.obj,jcparam.obj,jdatadst.obj,jcinit.obj, -
+ jcmaster.obj,jcmarker.obj,jcmainct.obj,jcprepct.obj,jccoefct.obj, -
+ jccolor.obj,jcsample.obj,jchuff.obj,jcdctmgr.obj,jfdctfst.obj, -
+ jfdctflt.obj,jfdctint.obj,jdapimin.obj,jdapistd.obj,jdarith.obj, -
+ jdtrans.obj,jdatasrc.obj,jdmaster.obj,jdinput.obj,jdmarker.obj, -
+ jdhuff.obj,jdmainct.obj,jdcoefct.obj,jdpostct.obj,jddctmgr.obj, -
+ jidctfst.obj,jidctflt.obj,jidctint.obj,jdsample.obj,jdcolor.obj, -
+ jquant1.obj,jquant2.obj,jdmerge.obj,jcomapi.obj,jutils.obj, -
+ jerror.obj,jmemmgr.obj,jmemnobs.obj
+$!
+$ DoCompile cjpeg.c
+$ DoCompile rdppm.c
+$ DoCompile rdgif.c
+$ DoCompile rdtarga.c
+$ DoCompile rdrle.c
+$ DoCompile rdbmp.c
+$ DoCompile rdswitch.c
+$ DoCompile cdjpeg.c
+$!
+$ Link /NoMap /Executable = cjpeg.exe cjpeg.obj,rdppm.obj,rdgif.obj, -
+ rdtarga.obj,rdrle.obj,rdbmp.obj,rdswitch.obj,cdjpeg.obj,libjpeg.olb/Library'OPT'
+$!
+$ DoCompile djpeg.c
+$ DoCompile wrppm.c
+$ DoCompile wrgif.c
+$ DoCompile wrtarga.c
+$ DoCompile wrrle.c
+$ DoCompile wrbmp.c
+$ DoCompile rdcolmap.c
+$ DoCompile cdjpeg.c
+$!
+$ Link /NoMap /Executable = djpeg.exe djpeg.obj,wrppm.obj,wrgif.obj, -
+ wrtarga.obj,wrrle.obj,wrbmp.obj,rdcolmap.obj,cdjpeg.obj,libjpeg.olb/Library'OPT'
+$!
+$ DoCompile jpegtran.c
+$ DoCompile rdswitch.c
+$ DoCompile cdjpeg.c
+$ DoCompile transupp.c
+$!
+$ Link /NoMap /Executable = jpegtran.exe jpegtran.obj,rdswitch.obj, -
+ cdjpeg.obj,transupp.obj,libjpeg.olb/Library'OPT'
+$!
+$ DoCompile rdjpgcom.c
+$ Link /NoMap /Executable = rdjpgcom.exe rdjpgcom.obj'OPT'
+$!
+$ DoCompile wrjpgcom.c
+$ Link /NoMap /Executable = wrjpgcom.exe wrjpgcom.obj'OPT'
+$!
+$! Run the self-test
+$!
+$ mcr sys$disk:[]djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+$ mcr sys$disk:[]djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+$ mcr sys$disk:[]cjpeg -dct int -outfile testout.jpg testimg.ppm
+$ mcr sys$disk:[]djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+$ mcr sys$disk:[]cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+$ mcr sys$disk:[]jpegtran -outfile testoutt.jpg testprog.jpg
+$ Backup /Compare/Log testimg.ppm testout.ppm
+$ Backup /Compare/Log testimg.bmp testout.bmp
+$ Backup /Compare/Log testimg.jpg testout.jpg
+$ Backup /Compare/Log testimg.ppm testoutp.ppm
+$ Backup /Compare/Log testimgp.jpg testoutp.jpg
+$ Backup /Compare/Log testorig.jpg testoutt.jpg
+$!
+$End:
+$ If Verify Then Set Verify
+$ Exit
diff --git a/src/3rdparty/libjpeg/makefile.wat b/src/3rdparty/libjpeg/makefile.wat
new file mode 100644
index 0000000..f7ef6e6
--- /dev/null
+++ b/src/3rdparty/libjpeg/makefile.wat
@@ -0,0 +1,239 @@
+# Makefile for Independent JPEG Group's software
+
+# This makefile is suitable for Watcom C/C++ 10.0 on MS-DOS (using
+# dos4g extender), OS/2, and Windows NT console mode.
+# Thanks to Janos Haide, jhaide@btrvtech.com.
+
+# Read installation instructions before saying "wmake" !!
+
+# Uncomment line for desired system
+SYSTEM=DOS
+#SYSTEM=OS2
+#SYSTEM=NT
+
+# The name of your C compiler:
+CC= wcl386
+
+# You may need to adjust these cc options:
+CFLAGS= -4r -ort -wx -zq -bt=$(SYSTEM)
+# Caution: avoid -ol or -ox; these generate bad code with 10.0 or 10.0a.
+# Generally, we recommend defining any configuration symbols in jconfig.h,
+# NOT via -D switches here.
+
+# Link-time cc options:
+!ifeq SYSTEM DOS
+LDFLAGS= -zq -l=dos4g
+!else ifeq SYSTEM OS2
+LDFLAGS= -zq -l=os2v2
+!else ifeq SYSTEM NT
+LDFLAGS= -zq -l=nt
+!endif
+
+# Put here the object file name for the correct system-dependent memory
+# manager file. jmemnobs should work fine for dos4g or OS/2 environment.
+SYSDEPMEM= jmemnobs.obj
+
+# End of configurable options.
+
+
+# source files: JPEG library proper
+LIBSOURCES= jaricom.c jcapimin.c jcapistd.c jcarith.c jccoefct.c jccolor.c &
+ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c &
+ jcomapi.c jcparam.c jcprepct.c jcsample.c jctrans.c jdapimin.c &
+ jdapistd.c jdarith.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c &
+ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c &
+ jdmerge.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c &
+ jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jquant1.c &
+ jquant2.c jutils.c jmemmgr.c
+# memmgr back ends: compile only one of these into a working library
+SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
+# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
+APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c &
+ rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c &
+ rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
+SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
+# files included by source files
+INCLUDES= jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h jpegint.h &
+ jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
+# documentation, test, and support files
+DOCS= README install.txt usage.txt cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 &
+ wrjpgcom.1 wizard.txt example.c libjpeg.txt structure.txt &
+ coderules.txt filelist.txt change.log
+MKFILES= configure Makefile.in makefile.ansi makefile.unix makefile.bcc &
+ makefile.mc6 makefile.dj makefile.wat makefile.vc makejdsw.vc6 &
+ makeadsw.vc6 makejdep.vc6 makejdsp.vc6 makejmak.vc6 makecdep.vc6 &
+ makecdsp.vc6 makecmak.vc6 makeddep.vc6 makeddsp.vc6 makedmak.vc6 &
+ maketdep.vc6 maketdsp.vc6 maketmak.vc6 makerdep.vc6 makerdsp.vc6 &
+ makermak.vc6 makewdep.vc6 makewdsp.vc6 makewmak.vc6 makejsln.vc9 &
+ makeasln.vc9 makejvcp.vc9 makecvcp.vc9 makedvcp.vc9 maketvcp.vc9 &
+ makervcp.vc9 makewvcp.vc9 makeproj.mac makcjpeg.st makdjpeg.st &
+ makljpeg.st maktjpeg.st makefile.manx makefile.sas makefile.mms &
+ makefile.vms makvms.opt
+CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat &
+ jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas &
+ jconfig.vms
+CONFIGUREFILES= config.guess config.sub install-sh ltmain.sh depcomp missing
+OTHERFILES= jconfig.txt ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm &
+ libjpeg.map
+TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg &
+ testimgp.jpg
+DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) &
+ $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
+# library object files common to compression and decompression
+COMOBJECTS= jaricom.obj jcomapi.obj jutils.obj jerror.obj jmemmgr.obj $(SYSDEPMEM)
+# compression library object files
+CLIBOBJECTS= jcapimin.obj jcapistd.obj jcarith.obj jctrans.obj jcparam.obj &
+ jdatadst.obj jcinit.obj jcmaster.obj jcmarker.obj jcmainct.obj &
+ jcprepct.obj jccoefct.obj jccolor.obj jcsample.obj jchuff.obj &
+ jcdctmgr.obj jfdctfst.obj jfdctflt.obj jfdctint.obj
+# decompression library object files
+DLIBOBJECTS= jdapimin.obj jdapistd.obj jdarith.obj jdtrans.obj jdatasrc.obj &
+ jdmaster.obj jdinput.obj jdmarker.obj jdhuff.obj jdmainct.obj &
+ jdcoefct.obj jdpostct.obj jddctmgr.obj jidctfst.obj jidctflt.obj &
+ jidctint.obj jdsample.obj jdcolor.obj jquant1.obj jquant2.obj &
+ jdmerge.obj
+# These objectfiles are included in libjpeg.lib
+LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
+# object files for sample applications (excluding library files)
+COBJECTS= cjpeg.obj rdppm.obj rdgif.obj rdtarga.obj rdrle.obj rdbmp.obj &
+ rdswitch.obj cdjpeg.obj
+DOBJECTS= djpeg.obj wrppm.obj wrgif.obj wrtarga.obj wrrle.obj wrbmp.obj &
+ rdcolmap.obj cdjpeg.obj
+TROBJECTS= jpegtran.obj rdswitch.obj cdjpeg.obj transupp.obj
+
+
+all: libjpeg.lib cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe
+
+libjpeg.lib: $(LIBOBJECTS)
+ - del libjpeg.lib
+ * wlib -n libjpeg.lib $(LIBOBJECTS)
+
+cjpeg.exe: $(COBJECTS) libjpeg.lib
+ $(CC) $(LDFLAGS) $(COBJECTS) libjpeg.lib
+
+djpeg.exe: $(DOBJECTS) libjpeg.lib
+ $(CC) $(LDFLAGS) $(DOBJECTS) libjpeg.lib
+
+jpegtran.exe: $(TROBJECTS) libjpeg.lib
+ $(CC) $(LDFLAGS) $(TROBJECTS) libjpeg.lib
+
+rdjpgcom.exe: rdjpgcom.c
+ $(CC) $(CFLAGS) $(LDFLAGS) rdjpgcom.c
+
+wrjpgcom.exe: wrjpgcom.c
+ $(CC) $(CFLAGS) $(LDFLAGS) wrjpgcom.c
+
+.c.obj:
+ $(CC) $(CFLAGS) -c $<
+
+jconfig.h: jconfig.txt
+ echo You must prepare a system-dependent jconfig.h file.
+ echo Please read the installation directions in install.txt.
+ exit 1
+
+clean: .SYMBOLIC
+ - del *.obj
+ - del libjpeg.lib
+ - del cjpeg.exe
+ - del djpeg.exe
+ - del jpegtran.exe
+ - del rdjpgcom.exe
+ - del wrjpgcom.exe
+ - del testout*.*
+
+test: cjpeg.exe djpeg.exe jpegtran.exe .SYMBOLIC
+ - del testout*.*
+ djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
+ djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
+ cjpeg -dct int -outfile testout.jpg testimg.ppm
+ djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
+ cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
+ jpegtran -outfile testoutt.jpg testprog.jpg
+!ifeq SYSTEM DOS
+ fc /b testimg.ppm testout.ppm
+ fc /b testimg.bmp testout.bmp
+ fc /b testimg.jpg testout.jpg
+ fc /b testimg.ppm testoutp.ppm
+ fc /b testimgp.jpg testoutp.jpg
+ fc /b testorig.jpg testoutt.jpg
+!else
+ echo n > n.tmp
+ comp testimg.ppm testout.ppm < n.tmp
+ comp testimg.bmp testout.bmp < n.tmp
+ comp testimg.jpg testout.jpg < n.tmp
+ comp testimg.ppm testoutp.ppm < n.tmp
+ comp testimgp.jpg testoutp.jpg < n.tmp
+ comp testorig.jpg testoutt.jpg < n.tmp
+ del n.tmp
+!endif
+
+
+jaricom.obj: jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapimin.obj: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcapistd.obj: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcarith.obj: jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccoefct.obj: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jccolor.obj: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcdctmgr.obj: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jchuff.obj: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcinit.obj: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmainct.obj: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmarker.obj: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcmaster.obj: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcomapi.obj: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcparam.obj: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcprepct.obj: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jcsample.obj: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jctrans.obj: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapimin.obj: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdapistd.obj: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdarith.obj: jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdatadst.obj: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdatasrc.obj: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
+jdcoefct.obj: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdcolor.obj: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jddctmgr.obj: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jdhuff.obj: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdinput.obj: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmainct.obj: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmarker.obj: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmaster.obj: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdmerge.obj: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdpostct.obj: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdsample.obj: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jdtrans.obj: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jerror.obj: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
+jfdctflt.obj: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctfst.obj: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jfdctint.obj: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctflt.obj: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctfst.obj: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jidctint.obj: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
+jquant1.obj: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jquant2.obj: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jutils.obj: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
+jmemmgr.obj: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemansi.obj: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemname.obj: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemnobs.obj: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemdos.obj: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+jmemmac.obj: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
+cjpeg.obj: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+djpeg.obj: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
+jpegtran.obj: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
+rdjpgcom.obj: rdjpgcom.c jinclude.h jconfig.h
+wrjpgcom.obj: wrjpgcom.c jinclude.h jconfig.h
+cdjpeg.obj: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdcolmap.obj: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdswitch.obj: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+transupp.obj: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
+rdppm.obj: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrppm.obj: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdgif.obj: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrgif.obj: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdtarga.obj: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrtarga.obj: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdbmp.obj: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrbmp.obj: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+rdrle.obj: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
+wrrle.obj: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
diff --git a/src/3rdparty/libjpeg/makejdep.vc6 b/src/3rdparty/libjpeg/makejdep.vc6
new file mode 100644
index 0000000..1065b21
--- /dev/null
+++ b/src/3rdparty/libjpeg/makejdep.vc6
@@ -0,0 +1,423 @@
+# Microsoft Developer Studio erstellte Abh„ngigkeitsdatei, einbezogen von jpeg.mak
+
+.\jaricom.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcapimin.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcapistd.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcarith.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jccoefct.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jccolor.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcdctmgr.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jchuff.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcinit.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcmainct.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcmarker.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcmaster.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcomapi.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcparam.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcprepct.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jcsample.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jctrans.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdapimin.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdapistd.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdarith.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdatadst.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\jdatasrc.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\jdcoefct.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdcolor.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jddctmgr.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdhuff.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdinput.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdmainct.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdmarker.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdmaster.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdmerge.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdpostct.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdsample.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jdtrans.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jerror.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+ ".\jversion.h"\
+
+
+.\jfdctflt.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jfdctfst.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jfdctint.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jidctflt.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jidctfst.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jidctint.c : \
+ ".\jconfig.h"\
+ ".\jdct.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jmemmgr.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmemsys.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jmemnobs.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmemsys.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jquant1.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jquant2.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
+
+.\jutils.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+
diff --git a/src/3rdparty/libjpeg/makejdsp.vc6 b/src/3rdparty/libjpeg/makejdsp.vc6
new file mode 100644
index 0000000..738f1ab
--- /dev/null
+++ b/src/3rdparty/libjpeg/makejdsp.vc6
@@ -0,0 +1,285 @@
+# Microsoft Developer Studio Project File - Name="jpeg" - Package Owner=<4>
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
+# ** NICHT BEARBEITEN **
+
+# TARGTYPE "Win32 (x86) Static Library" 0x0104
+
+CFG=jpeg - Win32
+!MESSAGE Dies ist kein gltiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
+!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und fhren Sie den Befehl
+!MESSAGE
+!MESSAGE NMAKE /f "jpeg.mak".
+!MESSAGE
+!MESSAGE Sie k÷nnen beim Ausfhren von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "jpeg.mak" CFG="jpeg - Win32"
+!MESSAGE
+!MESSAGE Fr die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "jpeg - Win32" (basierend auf "Win32 (x86) Static Library")
+!MESSAGE
+
+# Begin Project
+# PROP AllowPerConfigDependencies 0
+# PROP Scc_ProjName ""
+# PROP Scc_LocalPath ""
+CPP=cl.exe
+RSC=rc.exe
+# PROP BASE Use_MFC 0
+# PROP BASE Use_Debug_Libraries 0
+# PROP BASE Output_Dir ".\Release"
+# PROP BASE Intermediate_Dir ".\Release"
+# PROP BASE Target_Dir ""
+# PROP Use_MFC 0
+# PROP Use_Debug_Libraries 0
+# PROP Output_Dir ".\Release"
+# PROP Intermediate_Dir ".\Release"
+# PROP Target_Dir ""
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /c
+# ADD CPP /nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
+# ADD BASE RSC /l 0x407
+# ADD RSC /l 0x407
+BSC32=bscmake.exe
+# ADD BASE BSC32 /nologo
+# ADD BSC32 /nologo
+LIB32=link.exe -lib
+# ADD BASE LIB32 /nologo
+# ADD LIB32 /nologo
+# Begin Target
+
+# Name "jpeg - Win32"
+# Begin Group "Quellcodedateien"
+
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat;for;f90"
+# Begin Source File
+
+SOURCE=.\jaricom.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcapimin.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcapistd.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcarith.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jccoefct.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jccolor.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcdctmgr.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jchuff.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcinit.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcmainct.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcmarker.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcmaster.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcomapi.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcparam.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcprepct.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jcsample.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jctrans.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdapimin.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdapistd.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdarith.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdatadst.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdatasrc.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdcoefct.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdcolor.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jddctmgr.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdhuff.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdinput.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdmainct.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdmarker.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdmaster.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdmerge.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdpostct.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdsample.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdtrans.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jerror.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jfdctflt.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jfdctfst.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jfdctint.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jidctflt.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jidctfst.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jidctint.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmemmgr.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmemnobs.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jquant1.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jquant2.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jutils.c
+# End Source File
+# End Group
+# Begin Group "Header-Dateien"
+
+# PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
+# Begin Source File
+
+SOURCE=.\jconfig.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jdct.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jerror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jinclude.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmemsys.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmorecfg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpegint.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpeglib.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jversion.h
+# End Source File
+# End Group
+# Begin Group "Ressourcendateien"
+
+# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
+# End Group
+# End Target
+# End Project
diff --git a/src/3rdparty/libjpeg/makejdsw.vc6 b/src/3rdparty/libjpeg/makejdsw.vc6
new file mode 100644
index 0000000..d11fab1
--- /dev/null
+++ b/src/3rdparty/libjpeg/makejdsw.vc6
@@ -0,0 +1,29 @@
+Microsoft Developer Studio Workspace File, Format Version 6.00
+# WARNUNG: DIESE ARBEITSBEREICHSDATEI DARF NICHT BEARBEITET ODER GEL™SCHT WERDEN!
+
+###############################################################################
+
+Project: "jpeg"=".\jpeg.dsp" - Package Owner=<4>
+
+Package=<5>
+{{{
+}}}
+
+Package=<4>
+{{{
+}}}
+
+###############################################################################
+
+Global:
+
+Package=<5>
+{{{
+}}}
+
+Package=<3>
+{{{
+}}}
+
+###############################################################################
+
diff --git a/src/3rdparty/libjpeg/makejmak.vc6 b/src/3rdparty/libjpeg/makejmak.vc6
new file mode 100644
index 0000000..1107336
--- /dev/null
+++ b/src/3rdparty/libjpeg/makejmak.vc6
@@ -0,0 +1,425 @@
+# Microsoft Developer Studio Generated NMAKE File, Based on jpeg.dsp
+!IF "$(CFG)" == ""
+CFG=jpeg - Win32
+!MESSAGE Keine Konfiguration angegeben. jpeg - Win32 wird als Standard verwendet.
+!ENDIF
+
+!IF "$(CFG)" != "jpeg - Win32"
+!MESSAGE Ungültige Konfiguration "$(CFG)" angegeben.
+!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "jpeg.mak" CFG="jpeg - Win32"
+!MESSAGE
+!MESSAGE Für die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "jpeg - Win32" (basierend auf "Win32 (x86) Static Library")
+!MESSAGE
+!ERROR Eine ungültige Konfiguration wurde angegeben.
+!ENDIF
+
+!IF "$(OS)" == "Windows_NT"
+NULL=
+!ELSE
+NULL=nul
+!ENDIF
+
+OUTDIR=.\Release
+INTDIR=.\Release
+# Begin Custom Macros
+OutDir=.\Release
+# End Custom Macros
+
+ALL : "$(OUTDIR)\jpeg.lib"
+
+
+CLEAN :
+ -@erase "$(INTDIR)\jaricom.obj"
+ -@erase "$(INTDIR)\jcapimin.obj"
+ -@erase "$(INTDIR)\jcapistd.obj"
+ -@erase "$(INTDIR)\jcarith.obj"
+ -@erase "$(INTDIR)\jccoefct.obj"
+ -@erase "$(INTDIR)\jccolor.obj"
+ -@erase "$(INTDIR)\jcdctmgr.obj"
+ -@erase "$(INTDIR)\jchuff.obj"
+ -@erase "$(INTDIR)\jcinit.obj"
+ -@erase "$(INTDIR)\jcmainct.obj"
+ -@erase "$(INTDIR)\jcmarker.obj"
+ -@erase "$(INTDIR)\jcmaster.obj"
+ -@erase "$(INTDIR)\jcomapi.obj"
+ -@erase "$(INTDIR)\jcparam.obj"
+ -@erase "$(INTDIR)\jcprepct.obj"
+ -@erase "$(INTDIR)\jcsample.obj"
+ -@erase "$(INTDIR)\jctrans.obj"
+ -@erase "$(INTDIR)\jdapimin.obj"
+ -@erase "$(INTDIR)\jdapistd.obj"
+ -@erase "$(INTDIR)\jdarith.obj"
+ -@erase "$(INTDIR)\jdatadst.obj"
+ -@erase "$(INTDIR)\jdatasrc.obj"
+ -@erase "$(INTDIR)\jdcoefct.obj"
+ -@erase "$(INTDIR)\jdcolor.obj"
+ -@erase "$(INTDIR)\jddctmgr.obj"
+ -@erase "$(INTDIR)\jdhuff.obj"
+ -@erase "$(INTDIR)\jdinput.obj"
+ -@erase "$(INTDIR)\jdmainct.obj"
+ -@erase "$(INTDIR)\jdmarker.obj"
+ -@erase "$(INTDIR)\jdmaster.obj"
+ -@erase "$(INTDIR)\jdmerge.obj"
+ -@erase "$(INTDIR)\jdpostct.obj"
+ -@erase "$(INTDIR)\jdsample.obj"
+ -@erase "$(INTDIR)\jdtrans.obj"
+ -@erase "$(INTDIR)\jerror.obj"
+ -@erase "$(INTDIR)\jfdctflt.obj"
+ -@erase "$(INTDIR)\jfdctfst.obj"
+ -@erase "$(INTDIR)\jfdctint.obj"
+ -@erase "$(INTDIR)\jidctflt.obj"
+ -@erase "$(INTDIR)\jidctfst.obj"
+ -@erase "$(INTDIR)\jidctint.obj"
+ -@erase "$(INTDIR)\jmemmgr.obj"
+ -@erase "$(INTDIR)\jmemnobs.obj"
+ -@erase "$(INTDIR)\jquant1.obj"
+ -@erase "$(INTDIR)\jquant2.obj"
+ -@erase "$(INTDIR)\jutils.obj"
+ -@erase "$(INTDIR)\vc60.idb"
+ -@erase "$(OUTDIR)\jpeg.lib"
+
+"$(OUTDIR)" :
+ if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
+
+CPP=cl.exe
+CPP_PROJ=/nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /Fp"$(INTDIR)\jpeg.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
+
+.c{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.c{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+RSC=rc.exe
+BSC32=bscmake.exe
+BSC32_FLAGS=/nologo /o"$(OUTDIR)\jpeg.bsc"
+BSC32_SBRS= \
+
+LIB32=link.exe -lib
+LIB32_FLAGS=/nologo /out:"$(OUTDIR)\jpeg.lib"
+LIB32_OBJS= \
+ "$(INTDIR)\jaricom.obj" \
+ "$(INTDIR)\jcapimin.obj" \
+ "$(INTDIR)\jcapistd.obj" \
+ "$(INTDIR)\jcarith.obj" \
+ "$(INTDIR)\jccoefct.obj" \
+ "$(INTDIR)\jccolor.obj" \
+ "$(INTDIR)\jcdctmgr.obj" \
+ "$(INTDIR)\jchuff.obj" \
+ "$(INTDIR)\jcinit.obj" \
+ "$(INTDIR)\jcmainct.obj" \
+ "$(INTDIR)\jcmarker.obj" \
+ "$(INTDIR)\jcmaster.obj" \
+ "$(INTDIR)\jcomapi.obj" \
+ "$(INTDIR)\jcparam.obj" \
+ "$(INTDIR)\jcprepct.obj" \
+ "$(INTDIR)\jcsample.obj" \
+ "$(INTDIR)\jctrans.obj" \
+ "$(INTDIR)\jdapimin.obj" \
+ "$(INTDIR)\jdapistd.obj" \
+ "$(INTDIR)\jdarith.obj" \
+ "$(INTDIR)\jdatadst.obj" \
+ "$(INTDIR)\jdatasrc.obj" \
+ "$(INTDIR)\jdcoefct.obj" \
+ "$(INTDIR)\jdcolor.obj" \
+ "$(INTDIR)\jddctmgr.obj" \
+ "$(INTDIR)\jdhuff.obj" \
+ "$(INTDIR)\jdinput.obj" \
+ "$(INTDIR)\jdmainct.obj" \
+ "$(INTDIR)\jdmarker.obj" \
+ "$(INTDIR)\jdmaster.obj" \
+ "$(INTDIR)\jdmerge.obj" \
+ "$(INTDIR)\jdpostct.obj" \
+ "$(INTDIR)\jdsample.obj" \
+ "$(INTDIR)\jdtrans.obj" \
+ "$(INTDIR)\jerror.obj" \
+ "$(INTDIR)\jfdctflt.obj" \
+ "$(INTDIR)\jfdctfst.obj" \
+ "$(INTDIR)\jfdctint.obj" \
+ "$(INTDIR)\jidctflt.obj" \
+ "$(INTDIR)\jidctfst.obj" \
+ "$(INTDIR)\jidctint.obj" \
+ "$(INTDIR)\jmemmgr.obj" \
+ "$(INTDIR)\jmemnobs.obj" \
+ "$(INTDIR)\jquant1.obj" \
+ "$(INTDIR)\jquant2.obj" \
+ "$(INTDIR)\jutils.obj"
+
+"$(OUTDIR)\jpeg.lib" : "$(OUTDIR)" $(DEF_FILE) $(LIB32_OBJS)
+ $(LIB32) @<<
+ $(LIB32_FLAGS) $(DEF_FLAGS) $(LIB32_OBJS)
+<<
+
+
+!IF "$(NO_EXTERNAL_DEPS)" != "1"
+!IF EXISTS("jpeg.dep")
+!INCLUDE "jpeg.dep"
+!ELSE
+!MESSAGE Warning: cannot find "jpeg.dep"
+!ENDIF
+!ENDIF
+
+
+!IF "$(CFG)" == "jpeg - Win32"
+SOURCE=.\jaricom.c
+
+"$(INTDIR)\jaricom.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcapimin.c
+
+"$(INTDIR)\jcapimin.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcapistd.c
+
+"$(INTDIR)\jcapistd.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcarith.c
+
+"$(INTDIR)\jcarith.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jccoefct.c
+
+"$(INTDIR)\jccoefct.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jccolor.c
+
+"$(INTDIR)\jccolor.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcdctmgr.c
+
+"$(INTDIR)\jcdctmgr.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jchuff.c
+
+"$(INTDIR)\jchuff.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcinit.c
+
+"$(INTDIR)\jcinit.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcmainct.c
+
+"$(INTDIR)\jcmainct.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcmarker.c
+
+"$(INTDIR)\jcmarker.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcmaster.c
+
+"$(INTDIR)\jcmaster.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcomapi.c
+
+"$(INTDIR)\jcomapi.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcparam.c
+
+"$(INTDIR)\jcparam.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcprepct.c
+
+"$(INTDIR)\jcprepct.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jcsample.c
+
+"$(INTDIR)\jcsample.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jctrans.c
+
+"$(INTDIR)\jctrans.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdapimin.c
+
+"$(INTDIR)\jdapimin.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdapistd.c
+
+"$(INTDIR)\jdapistd.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdarith.c
+
+"$(INTDIR)\jdarith.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdatadst.c
+
+"$(INTDIR)\jdatadst.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdatasrc.c
+
+"$(INTDIR)\jdatasrc.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdcoefct.c
+
+"$(INTDIR)\jdcoefct.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdcolor.c
+
+"$(INTDIR)\jdcolor.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jddctmgr.c
+
+"$(INTDIR)\jddctmgr.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdhuff.c
+
+"$(INTDIR)\jdhuff.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdinput.c
+
+"$(INTDIR)\jdinput.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdmainct.c
+
+"$(INTDIR)\jdmainct.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdmarker.c
+
+"$(INTDIR)\jdmarker.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdmaster.c
+
+"$(INTDIR)\jdmaster.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdmerge.c
+
+"$(INTDIR)\jdmerge.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdpostct.c
+
+"$(INTDIR)\jdpostct.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdsample.c
+
+"$(INTDIR)\jdsample.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jdtrans.c
+
+"$(INTDIR)\jdtrans.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jerror.c
+
+"$(INTDIR)\jerror.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jfdctflt.c
+
+"$(INTDIR)\jfdctflt.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jfdctfst.c
+
+"$(INTDIR)\jfdctfst.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jfdctint.c
+
+"$(INTDIR)\jfdctint.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jidctflt.c
+
+"$(INTDIR)\jidctflt.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jidctfst.c
+
+"$(INTDIR)\jidctfst.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jidctint.c
+
+"$(INTDIR)\jidctint.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jmemmgr.c
+
+"$(INTDIR)\jmemmgr.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jmemnobs.c
+
+"$(INTDIR)\jmemnobs.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jquant1.c
+
+"$(INTDIR)\jquant1.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jquant2.c
+
+"$(INTDIR)\jquant2.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jutils.c
+
+"$(INTDIR)\jutils.obj" : $(SOURCE) "$(INTDIR)"
+
+
+
+!ENDIF
+
diff --git a/src/3rdparty/libjpeg/makejsln.vc9 b/src/3rdparty/libjpeg/makejsln.vc9
new file mode 100644
index 0000000..ddb6a30
--- /dev/null
+++ b/src/3rdparty/libjpeg/makejsln.vc9
@@ -0,0 +1,17 @@
+‹¯¨
+Microsoft Visual Studio Solution File, Format Version 10.00
+# Visual C++ Express 2008
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "jpeg", "jpeg.vcproj", "{E61592E1-28F4-4AFC-9EE1-9BE833A061C1}"
+EndProject
+Global
+ GlobalSection(SolutionConfigurationPlatforms) = preSolution
+ Release|Win32 = Release|Win32
+ EndGlobalSection
+ GlobalSection(ProjectConfigurationPlatforms) = postSolution
+ {E61592E1-28F4-4AFC-9EE1-9BE833A061C1}.Release|Win32.ActiveCfg = Release|Win32
+ {E61592E1-28F4-4AFC-9EE1-9BE833A061C1}.Release|Win32.Build.0 = Release|Win32
+ EndGlobalSection
+ GlobalSection(SolutionProperties) = preSolution
+ HideSolutionNode = FALSE
+ EndGlobalSection
+EndGlobal
diff --git a/src/3rdparty/libjpeg/makejvcp.vc9 b/src/3rdparty/libjpeg/makejvcp.vc9
new file mode 100644
index 0000000..b08809b
--- /dev/null
+++ b/src/3rdparty/libjpeg/makejvcp.vc9
@@ -0,0 +1,328 @@
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="9,00"
+ Name="jpeg"
+ ProjectGUID="{E61592E1-28F4-4AFC-9EE1-9BE833A061C1}"
+ RootNamespace="jpeg"
+ Keyword="Win32Proj"
+ TargetFrameworkVersion="196613"
+ >
+ <Platforms>
+ <Platform
+ Name="Win32"
+ />
+ </Platforms>
+ <ToolFiles>
+ </ToolFiles>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory="$(SolutionDir)$(ConfigurationName)"
+ IntermediateDirectory="$(ConfigurationName)"
+ ConfigurationType="4"
+ CharacterSet="0"
+ WholeProgramOptimization="1"
+ >
+ <Tool
+ Name="VCPreBuildEventTool"
+ />
+ <Tool
+ Name="VCCustomBuildTool"
+ />
+ <Tool
+ Name="VCXMLDataGeneratorTool"
+ />
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"
+ />
+ <Tool
+ Name="VCMIDLTool"
+ />
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="3"
+ EnableIntrinsicFunctions="false"
+ EnableFiberSafeOptimizations="true"
+ PreprocessorDefinitions="WIN32;NDEBUG;_LIB;_CRT_SECURE_NO_WARNINGS"
+ RuntimeLibrary="2"
+ EnableFunctionLevelLinking="true"
+ UsePrecompiledHeader="0"
+ WarningLevel="3"
+ DebugInformationFormat="3"
+ CompileAs="0"
+ />
+ <Tool
+ Name="VCManagedResourceCompilerTool"
+ />
+ <Tool
+ Name="VCResourceCompilerTool"
+ />
+ <Tool
+ Name="VCPreLinkEventTool"
+ />
+ <Tool
+ Name="VCLibrarianTool"
+ />
+ <Tool
+ Name="VCALinkTool"
+ />
+ <Tool
+ Name="VCXDCMakeTool"
+ />
+ <Tool
+ Name="VCBscMakeTool"
+ />
+ <Tool
+ Name="VCFxCopTool"
+ />
+ <Tool
+ Name="VCPostBuildEventTool"
+ />
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Quelldateien"
+ Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
+ UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
+ >
+ <File
+ RelativePath=".\jaricom.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcapimin.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcapistd.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcarith.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jccoefct.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jccolor.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcdctmgr.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jchuff.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcinit.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcmainct.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcmarker.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcmaster.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcomapi.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcparam.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcprepct.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jcsample.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jctrans.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdapimin.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdapistd.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdarith.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdatadst.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdatasrc.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdcoefct.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdcolor.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jddctmgr.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdhuff.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdinput.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdmainct.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdmarker.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdmaster.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdmerge.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdpostct.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdsample.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jdtrans.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jerror.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jfdctflt.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jfdctfst.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jfdctint.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jidctflt.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jidctfst.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jidctint.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jmemmgr.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jmemnobs.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jquant1.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jquant2.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jutils.c"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Headerdateien"
+ Filter="h;hpp;hxx;hm;inl;inc;xsd"
+ UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
+ >
+ <File
+ RelativePath=".\jconfig.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jdct.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jerror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jinclude.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jmemsys.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jmorecfg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jpegint.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jpeglib.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jversion.h"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Ressourcendateien"
+ Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
+ UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
+ >
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/src/3rdparty/libjpeg/makeproj.mac b/src/3rdparty/libjpeg/makeproj.mac
new file mode 100644
index 0000000..e5b5102
--- /dev/null
+++ b/src/3rdparty/libjpeg/makeproj.mac
@@ -0,0 +1,213 @@
+--
+-- makeproj.mac
+--
+-- This AppleScript builds Code Warrior PRO Release 2 project files for the
+-- libjpeg library as well as the test programs 'cjpeg', 'djpeg', 'jpegtran'.
+-- (We'd distribute real project files, except they're not text
+-- and would create maintenance headaches.)
+--
+-- The script then compiles and links the library and the test programs.
+-- NOTE: if you haven't already created a 'jconfig.h' file, the script
+-- automatically copies 'jconfig.mac' to 'jconfig.h'.
+--
+-- To use this script, you must have AppleScript 1.1 or later installed
+-- and a suitable AppleScript editor like Script Editor or Script Debugger
+-- (http://www.latenightsw.com). Open this file with your AppleScript
+-- editor and execute the "run" command to build the projects.
+--
+-- Thanks to Dan Sears and Don Agro for this script.
+-- Questions about this script can be addressed to dogpark@interlog.com
+--
+
+on run
+
+ choose folder with prompt ">>> Select IJG source folder <<<"
+ set ijg_folder to result
+
+ choose folder with prompt ">>> Select MetroWerks folder <<<"
+ set cw_folder to result
+
+ -- if jconfig.h doesn't already exist, copy jconfig.mac
+
+ tell application "Finder"
+ if not (exists file "jconfig.h" of ijg_folder) then
+ duplicate {file "jconfig.mac" of folder ijg_folder}
+ select file "jconfig.mac copy" of folder ijg_folder
+ set name of selection to "jconfig.h"
+ end if
+ end tell
+
+ tell application "CodeWarrior IDE 2.1"
+ with timeout of 10000 seconds
+
+ -- create libjpeg project
+
+ activate
+ Create Project (ijg_folder as string) & "libjpeg.proj"
+ Set Preferences of panel "Target Settings" to {Target Name:"libjpeg"}
+ Set Preferences of panel "PPC Project" to {File Name:"libjpeg"}
+ Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
+ Set Preferences of panel "PPC Project" to {Project Type:library}
+ Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
+ Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
+ Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
+ Set Preferences of panel "PPC Linker" to {Generate SYM File:false}
+
+ Add Files (ijg_folder as string) & "jaricom.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcapimin.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcapistd.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcarith.c" To Segment 1
+ Add Files (ijg_folder as string) & "jctrans.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcparam.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdatadst.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcinit.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcmaster.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcmarker.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcmainct.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcprepct.c" To Segment 1
+ Add Files (ijg_folder as string) & "jccoefct.c" To Segment 1
+ Add Files (ijg_folder as string) & "jccolor.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcsample.c" To Segment 1
+ Add Files (ijg_folder as string) & "jchuff.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcdctmgr.c" To Segment 1
+ Add Files (ijg_folder as string) & "jfdctfst.c" To Segment 1
+ Add Files (ijg_folder as string) & "jfdctflt.c" To Segment 1
+ Add Files (ijg_folder as string) & "jfdctint.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdapimin.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdapistd.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdarith.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdtrans.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdatasrc.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdmaster.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdinput.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdmarker.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdhuff.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdmainct.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdcoefct.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdpostct.c" To Segment 1
+ Add Files (ijg_folder as string) & "jddctmgr.c" To Segment 1
+ Add Files (ijg_folder as string) & "jidctfst.c" To Segment 1
+ Add Files (ijg_folder as string) & "jidctflt.c" To Segment 1
+ Add Files (ijg_folder as string) & "jidctint.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdsample.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdcolor.c" To Segment 1
+ Add Files (ijg_folder as string) & "jquant1.c" To Segment 1
+ Add Files (ijg_folder as string) & "jquant2.c" To Segment 1
+ Add Files (ijg_folder as string) & "jdmerge.c" To Segment 1
+ Add Files (ijg_folder as string) & "jcomapi.c" To Segment 1
+ Add Files (ijg_folder as string) & "jutils.c" To Segment 1
+ Add Files (ijg_folder as string) & "jerror.c" To Segment 1
+ Add Files (ijg_folder as string) & "jmemmgr.c" To Segment 1
+ Add Files (ijg_folder as string) & "jmemmac.c" To Segment 1
+
+ -- compile and link the library
+
+ Make Project
+ Close Project
+
+ -- create cjpeg project
+
+ activate
+ Create Project (ijg_folder as string) & "cjpeg.proj"
+ Set Preferences of panel "Target Settings" to {Target Name:"cjpeg"}
+ Set Preferences of panel "PPC Project" to {File Name:"cjpeg"}
+ Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
+ Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
+ Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
+ Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
+ Set Preferences of panel "PPC Linker" to {Generate SYM File:false}
+
+ Add Files (ijg_folder as string) & "cjpeg.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdppm.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdgif.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdtarga.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdrle.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdbmp.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdswitch.c" To Segment 1
+ Add Files (ijg_folder as string) & "cdjpeg.c" To Segment 1
+
+ Add Files (ijg_folder as string) & "libjpeg" To Segment 2
+
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL C.PPC.Lib" To Segment 3
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL SIOUX.PPC.Lib" To Segment 3
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:Runtime:Runtime PPC:MSL RuntimePPC.Lib" To Segment 3
+
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:InterfaceLib" To Segment 4
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:MathLib" To Segment 4
+
+ -- compile and link cjpeg
+
+ Make Project
+ Close Project
+
+ -- create djpeg project
+
+ activate
+ Create Project (ijg_folder as string) & "djpeg.proj"
+ Set Preferences of panel "Target Settings" to {Target Name:"djpeg"}
+ Set Preferences of panel "PPC Project" to {File Name:"djpeg"}
+ Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
+ Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
+ Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
+ Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
+ Set Preferences of panel "PPC Linker" to {Generate SYM File:false}
+
+ Add Files (ijg_folder as string) & "djpeg.c" To Segment 1
+ Add Files (ijg_folder as string) & "wrppm.c" To Segment 1
+ Add Files (ijg_folder as string) & "wrgif.c" To Segment 1
+ Add Files (ijg_folder as string) & "wrtarga.c" To Segment 1
+ Add Files (ijg_folder as string) & "wrrle.c" To Segment 1
+ Add Files (ijg_folder as string) & "wrbmp.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdcolmap.c" To Segment 1
+ Add Files (ijg_folder as string) & "cdjpeg.c" To Segment 1
+
+ Add Files (ijg_folder as string) & "libjpeg" To Segment 2
+
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL C.PPC.Lib" To Segment 3
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL SIOUX.PPC.Lib" To Segment 3
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:Runtime:Runtime PPC:MSL RuntimePPC.Lib" To Segment 3
+
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:InterfaceLib" To Segment 4
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:MathLib" To Segment 4
+
+ -- compile and link djpeg
+
+ Make Project
+ Close Project
+
+ -- create jpegtran project
+
+ activate
+ Create Project (ijg_folder as string) & "jpegtran.proj"
+ Set Preferences of panel "Target Settings" to {Target Name:"jpegtran"}
+ Set Preferences of panel "PPC Project" to {File Name:"jpegtran"}
+ Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
+ Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
+ Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
+ Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
+ Set Preferences of panel "PPC Linker" to {Generate SYM File:false}
+
+ Add Files (ijg_folder as string) & "jpegtran.c" To Segment 1
+ Add Files (ijg_folder as string) & "rdswitch.c" To Segment 1
+ Add Files (ijg_folder as string) & "cdjpeg.c" To Segment 1
+ Add Files (ijg_folder as string) & "transupp.c" To Segment 1
+
+ Add Files (ijg_folder as string) & "libjpeg" To Segment 2
+
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL C.PPC.Lib" To Segment 3
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL SIOUX.PPC.Lib" To Segment 3
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:Runtime:Runtime PPC:MSL RuntimePPC.Lib" To Segment 3
+
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:InterfaceLib" To Segment 4
+ Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:MathLib" To Segment 4
+
+ -- compile and link jpegtran
+
+ Make Project
+ Close Project
+
+ quit
+
+ end timeout
+ end tell
+end run
diff --git a/src/3rdparty/libjpeg/makerdep.vc6 b/src/3rdparty/libjpeg/makerdep.vc6
new file mode 100644
index 0000000..94748d0
--- /dev/null
+++ b/src/3rdparty/libjpeg/makerdep.vc6
@@ -0,0 +1,6 @@
+# Microsoft Developer Studio erstellte Abh„ngigkeitsdatei, einbezogen von rdjpgcom.mak
+
+.\rdjpgcom.c : \
+ ".\jconfig.h"\
+ ".\jinclude.h"\
+
diff --git a/src/3rdparty/libjpeg/makerdsp.vc6 b/src/3rdparty/libjpeg/makerdsp.vc6
new file mode 100644
index 0000000..60de09a
--- /dev/null
+++ b/src/3rdparty/libjpeg/makerdsp.vc6
@@ -0,0 +1,78 @@
+# Microsoft Developer Studio Project File - Name="rdjpgcom" - Package Owner=<4>
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
+# ** NICHT BEARBEITEN **
+
+# TARGTYPE "Win32 (x86) Console Application" 0x0103
+
+CFG=rdjpgcom - Win32
+!MESSAGE Dies ist kein gltiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
+!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und fhren Sie den Befehl
+!MESSAGE
+!MESSAGE NMAKE /f "rdjpgcom.mak".
+!MESSAGE
+!MESSAGE Sie k÷nnen beim Ausfhren von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "rdjpgcom.mak" CFG="rdjpgcom - Win32"
+!MESSAGE
+!MESSAGE Fr die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "rdjpgcom - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+
+# Begin Project
+# PROP AllowPerConfigDependencies 0
+# PROP Scc_ProjName ""
+# PROP Scc_LocalPath ""
+CPP=cl.exe
+RSC=rc.exe
+# PROP BASE Use_MFC 0
+# PROP BASE Use_Debug_Libraries 0
+# PROP BASE Output_Dir ".\rdjpgcom\Release"
+# PROP BASE Intermediate_Dir ".\rdjpgcom\Release"
+# PROP BASE Target_Dir ".\rdjpgcom"
+# PROP Use_MFC 0
+# PROP Use_Debug_Libraries 0
+# PROP Output_Dir ".\rdjpgcom\Release"
+# PROP Intermediate_Dir ".\rdjpgcom\Release"
+# PROP Ignore_Export_Lib 0
+# PROP Target_Dir ".\rdjpgcom"
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /c
+# ADD CPP /nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /FD /c
+# ADD BASE RSC /l 0x409 /d "NDEBUG"
+# ADD RSC /l 0x409 /d "NDEBUG"
+BSC32=bscmake.exe
+# ADD BASE BSC32 /nologo
+# ADD BSC32 /nologo
+LINK32=link.exe
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# ADD LINK32 Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# Begin Target
+
+# Name "rdjpgcom - Win32"
+# Begin Group "Quellcodedateien"
+
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat;for;f90"
+# Begin Source File
+
+SOURCE=.\rdjpgcom.c
+# End Source File
+# End Group
+# Begin Group "Header-Dateien"
+
+# PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
+# Begin Source File
+
+SOURCE=.\jconfig.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jinclude.h
+# End Source File
+# End Group
+# Begin Group "Ressourcendateien"
+
+# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
+# End Group
+# End Target
+# End Project
diff --git a/src/3rdparty/libjpeg/makermak.vc6 b/src/3rdparty/libjpeg/makermak.vc6
new file mode 100644
index 0000000..6d2d4c7
--- /dev/null
+++ b/src/3rdparty/libjpeg/makermak.vc6
@@ -0,0 +1,110 @@
+# Microsoft Developer Studio Generated NMAKE File, Based on rdjpgcom.dsp
+!IF "$(CFG)" == ""
+CFG=rdjpgcom - Win32
+!MESSAGE Keine Konfiguration angegeben. rdjpgcom - Win32 wird als Standard verwendet.
+!ENDIF
+
+!IF "$(CFG)" != "rdjpgcom - Win32"
+!MESSAGE Ungültige Konfiguration "$(CFG)" angegeben.
+!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "rdjpgcom.mak" CFG="rdjpgcom - Win32"
+!MESSAGE
+!MESSAGE Für die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "rdjpgcom - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+!ERROR Eine ungültige Konfiguration wurde angegeben.
+!ENDIF
+
+!IF "$(OS)" == "Windows_NT"
+NULL=
+!ELSE
+NULL=nul
+!ENDIF
+
+CPP=cl.exe
+RSC=rc.exe
+OUTDIR=.\rdjpgcom\Release
+INTDIR=.\rdjpgcom\Release
+# Begin Custom Macros
+OutDir=.\rdjpgcom\Release
+# End Custom Macros
+
+ALL : "$(OUTDIR)\rdjpgcom.exe"
+
+
+CLEAN :
+ -@erase "$(INTDIR)\rdjpgcom.obj"
+ -@erase "$(INTDIR)\vc60.idb"
+ -@erase "$(OUTDIR)\rdjpgcom.exe"
+
+"$(OUTDIR)" :
+ if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
+
+BSC32=bscmake.exe
+BSC32_FLAGS=/nologo /o"$(OUTDIR)\rdjpgcom.bsc"
+BSC32_SBRS= \
+
+LINK32=link.exe
+LINK32_FLAGS=Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:no /pdb:"$(OUTDIR)\rdjpgcom.pdb" /machine:I386 /out:"$(OUTDIR)\rdjpgcom.exe"
+LINK32_OBJS= \
+ "$(INTDIR)\rdjpgcom.obj"
+
+"$(OUTDIR)\rdjpgcom.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
+ $(LINK32) @<<
+ $(LINK32_FLAGS) $(LINK32_OBJS)
+<<
+
+CPP_PROJ=/nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /Fp"$(INTDIR)\rdjpgcom.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
+
+.c{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.c{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+
+!IF "$(NO_EXTERNAL_DEPS)" != "1"
+!IF EXISTS("rdjpgcom.dep")
+!INCLUDE "rdjpgcom.dep"
+!ELSE
+!MESSAGE Warning: cannot find "rdjpgcom.dep"
+!ENDIF
+!ENDIF
+
+
+!IF "$(CFG)" == "rdjpgcom - Win32"
+SOURCE=.\rdjpgcom.c
+
+"$(INTDIR)\rdjpgcom.obj" : $(SOURCE) "$(INTDIR)"
+
+
+
+!ENDIF
+
diff --git a/src/3rdparty/libjpeg/makervcp.vc9 b/src/3rdparty/libjpeg/makervcp.vc9
new file mode 100644
index 0000000..2f73ffc
--- /dev/null
+++ b/src/3rdparty/libjpeg/makervcp.vc9
@@ -0,0 +1,133 @@
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="9,00"
+ Name="rdjpgcom"
+ ProjectGUID="{EB107F86-A8CC-4507-8115-88D31DDE4CDF}"
+ RootNamespace="rdjpgcom"
+ Keyword="Win32Proj"
+ TargetFrameworkVersion="196613"
+ >
+ <Platforms>
+ <Platform
+ Name="Win32"
+ />
+ </Platforms>
+ <ToolFiles>
+ </ToolFiles>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory="$(ProjectName)\$(ConfigurationName)"
+ IntermediateDirectory="$(ProjectName)\$(ConfigurationName)"
+ ConfigurationType="1"
+ CharacterSet="0"
+ WholeProgramOptimization="1"
+ >
+ <Tool
+ Name="VCPreBuildEventTool"
+ />
+ <Tool
+ Name="VCCustomBuildTool"
+ />
+ <Tool
+ Name="VCXMLDataGeneratorTool"
+ />
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"
+ />
+ <Tool
+ Name="VCMIDLTool"
+ />
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="3"
+ EnableIntrinsicFunctions="false"
+ EnableFiberSafeOptimizations="true"
+ PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS"
+ RuntimeLibrary="2"
+ EnableFunctionLevelLinking="true"
+ UsePrecompiledHeader="0"
+ WarningLevel="3"
+ DebugInformationFormat="3"
+ CompileAs="0"
+ DisableSpecificWarnings="4996"
+ />
+ <Tool
+ Name="VCManagedResourceCompilerTool"
+ />
+ <Tool
+ Name="VCResourceCompilerTool"
+ />
+ <Tool
+ Name="VCPreLinkEventTool"
+ />
+ <Tool
+ Name="VCLinkerTool"
+ LinkIncremental="1"
+ GenerateDebugInformation="true"
+ SubSystem="1"
+ OptimizeReferences="2"
+ EnableCOMDATFolding="2"
+ TargetMachine="1"
+ />
+ <Tool
+ Name="VCALinkTool"
+ />
+ <Tool
+ Name="VCManifestTool"
+ />
+ <Tool
+ Name="VCXDCMakeTool"
+ />
+ <Tool
+ Name="VCBscMakeTool"
+ />
+ <Tool
+ Name="VCFxCopTool"
+ />
+ <Tool
+ Name="VCAppVerifierTool"
+ />
+ <Tool
+ Name="VCPostBuildEventTool"
+ />
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Quelldateien"
+ Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
+ UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
+ >
+ <File
+ RelativePath=".\rdjpgcom.c"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Headerdateien"
+ Filter="h;hpp;hxx;hm;inl;inc;xsd"
+ UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
+ >
+ <File
+ RelativePath=".\jconfig.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jinclude.h"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Ressourcendateien"
+ Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
+ UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
+ >
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/src/3rdparty/libjpeg/maketdep.vc6 b/src/3rdparty/libjpeg/maketdep.vc6
new file mode 100644
index 0000000..e177ecb
--- /dev/null
+++ b/src/3rdparty/libjpeg/maketdep.vc6
@@ -0,0 +1,43 @@
+# Microsoft Developer Studio erstellte Abh„ngigkeitsdatei, einbezogen von jpegtran.mak
+
+.\cdjpeg.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\jpegtran.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+ ".\jversion.h"\
+ ".\transupp.h"\
+
+
+.\rdswitch.c : \
+ ".\cderror.h"\
+ ".\cdjpeg.h"\
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpeglib.h"\
+
+
+.\transupp.c : \
+ ".\jconfig.h"\
+ ".\jerror.h"\
+ ".\jinclude.h"\
+ ".\jmorecfg.h"\
+ ".\jpegint.h"\
+ ".\jpeglib.h"\
+ ".\transupp.h"\
+
diff --git a/src/3rdparty/libjpeg/maketdsp.vc6 b/src/3rdparty/libjpeg/maketdsp.vc6
new file mode 100644
index 0000000..fe1ae9a
--- /dev/null
+++ b/src/3rdparty/libjpeg/maketdsp.vc6
@@ -0,0 +1,122 @@
+# Microsoft Developer Studio Project File - Name="jpegtran" - Package Owner=<4>
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
+# ** NICHT BEARBEITEN **
+
+# TARGTYPE "Win32 (x86) Console Application" 0x0103
+
+CFG=jpegtran - Win32
+!MESSAGE Dies ist kein gltiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
+!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und fhren Sie den Befehl
+!MESSAGE
+!MESSAGE NMAKE /f "jpegtran.mak".
+!MESSAGE
+!MESSAGE Sie k÷nnen beim Ausfhren von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "jpegtran.mak" CFG="jpegtran - Win32"
+!MESSAGE
+!MESSAGE Fr die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "jpegtran - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+
+# Begin Project
+# PROP AllowPerConfigDependencies 0
+# PROP Scc_ProjName ""
+# PROP Scc_LocalPath ""
+CPP=cl.exe
+RSC=rc.exe
+# PROP BASE Use_MFC 0
+# PROP BASE Use_Debug_Libraries 0
+# PROP BASE Output_Dir ".\jpegtran\Release"
+# PROP BASE Intermediate_Dir ".\jpegtran\Release"
+# PROP BASE Target_Dir ".\jpegtran"
+# PROP Use_MFC 0
+# PROP Use_Debug_Libraries 0
+# PROP Output_Dir ".\jpegtran\Release"
+# PROP Intermediate_Dir ".\jpegtran\Release"
+# PROP Ignore_Export_Lib 0
+# PROP Target_Dir ".\jpegtran"
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /c
+# ADD CPP /nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /FD /c
+# ADD BASE RSC /l 0x409 /d "NDEBUG"
+# ADD RSC /l 0x409 /d "NDEBUG"
+BSC32=bscmake.exe
+# ADD BASE BSC32 /nologo
+# ADD BSC32 /nologo
+LINK32=link.exe
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# ADD LINK32 Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# Begin Target
+
+# Name "jpegtran - Win32"
+# Begin Group "Quellcodedateien"
+
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat;for;f90"
+# Begin Source File
+
+SOURCE=.\cdjpeg.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpegtran.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\rdswitch.c
+# End Source File
+# Begin Source File
+
+SOURCE=.\transupp.c
+# End Source File
+# End Group
+# Begin Group "Header-Dateien"
+
+# PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
+# Begin Source File
+
+SOURCE=.\cderror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\cdjpeg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jconfig.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jerror.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jinclude.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jmorecfg.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpegint.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jpeglib.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jversion.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\transupp.h
+# End Source File
+# End Group
+# Begin Group "Ressourcendateien"
+
+# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
+# End Group
+# End Target
+# End Project
diff --git a/src/3rdparty/libjpeg/maketmak.vc6 b/src/3rdparty/libjpeg/maketmak.vc6
new file mode 100644
index 0000000..a0de38c
--- /dev/null
+++ b/src/3rdparty/libjpeg/maketmak.vc6
@@ -0,0 +1,131 @@
+# Microsoft Developer Studio Generated NMAKE File, Based on jpegtran.dsp
+!IF "$(CFG)" == ""
+CFG=jpegtran - Win32
+!MESSAGE Keine Konfiguration angegeben. jpegtran - Win32 wird als Standard verwendet.
+!ENDIF
+
+!IF "$(CFG)" != "jpegtran - Win32"
+!MESSAGE Ungültige Konfiguration "$(CFG)" angegeben.
+!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "jpegtran.mak" CFG="jpegtran - Win32"
+!MESSAGE
+!MESSAGE Für die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "jpegtran - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+!ERROR Eine ungültige Konfiguration wurde angegeben.
+!ENDIF
+
+!IF "$(OS)" == "Windows_NT"
+NULL=
+!ELSE
+NULL=nul
+!ENDIF
+
+CPP=cl.exe
+RSC=rc.exe
+OUTDIR=.\jpegtran\Release
+INTDIR=.\jpegtran\Release
+# Begin Custom Macros
+OutDir=.\jpegtran\Release
+# End Custom Macros
+
+ALL : "$(OUTDIR)\jpegtran.exe"
+
+
+CLEAN :
+ -@erase "$(INTDIR)\cdjpeg.obj"
+ -@erase "$(INTDIR)\jpegtran.obj"
+ -@erase "$(INTDIR)\rdswitch.obj"
+ -@erase "$(INTDIR)\transupp.obj"
+ -@erase "$(INTDIR)\vc60.idb"
+ -@erase "$(OUTDIR)\jpegtran.exe"
+
+"$(OUTDIR)" :
+ if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
+
+BSC32=bscmake.exe
+BSC32_FLAGS=/nologo /o"$(OUTDIR)\jpegtran.bsc"
+BSC32_SBRS= \
+
+LINK32=link.exe
+LINK32_FLAGS=Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:no /pdb:"$(OUTDIR)\jpegtran.pdb" /machine:I386 /out:"$(OUTDIR)\jpegtran.exe"
+LINK32_OBJS= \
+ "$(INTDIR)\cdjpeg.obj" \
+ "$(INTDIR)\jpegtran.obj" \
+ "$(INTDIR)\rdswitch.obj" \
+ "$(INTDIR)\transupp.obj"
+
+"$(OUTDIR)\jpegtran.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
+ $(LINK32) @<<
+ $(LINK32_FLAGS) $(LINK32_OBJS)
+<<
+
+CPP_PROJ=/nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /Fp"$(INTDIR)\jpegtran.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
+
+.c{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.c{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+
+!IF "$(NO_EXTERNAL_DEPS)" != "1"
+!IF EXISTS("jpegtran.dep")
+!INCLUDE "jpegtran.dep"
+!ELSE
+!MESSAGE Warning: cannot find "jpegtran.dep"
+!ENDIF
+!ENDIF
+
+
+!IF "$(CFG)" == "jpegtran - Win32"
+SOURCE=.\cdjpeg.c
+
+"$(INTDIR)\cdjpeg.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\jpegtran.c
+
+"$(INTDIR)\jpegtran.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\rdswitch.c
+
+"$(INTDIR)\rdswitch.obj" : $(SOURCE) "$(INTDIR)"
+
+
+SOURCE=.\transupp.c
+
+"$(INTDIR)\transupp.obj" : $(SOURCE) "$(INTDIR)"
+
+
+
+!ENDIF
+
diff --git a/src/3rdparty/libjpeg/maketvcp.vc9 b/src/3rdparty/libjpeg/maketvcp.vc9
new file mode 100644
index 0000000..af0348d
--- /dev/null
+++ b/src/3rdparty/libjpeg/maketvcp.vc9
@@ -0,0 +1,178 @@
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="9,00"
+ Name="jpegtran"
+ ProjectGUID="{813C33AF-9031-49D2-BA19-93D600CDD404}"
+ RootNamespace="jpegtran"
+ Keyword="Win32Proj"
+ TargetFrameworkVersion="196613"
+ >
+ <Platforms>
+ <Platform
+ Name="Win32"
+ />
+ </Platforms>
+ <ToolFiles>
+ </ToolFiles>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory="$(ProjectName)\$(ConfigurationName)"
+ IntermediateDirectory="$(ProjectName)\$(ConfigurationName)"
+ ConfigurationType="1"
+ CharacterSet="0"
+ WholeProgramOptimization="1"
+ >
+ <Tool
+ Name="VCPreBuildEventTool"
+ />
+ <Tool
+ Name="VCCustomBuildTool"
+ />
+ <Tool
+ Name="VCXMLDataGeneratorTool"
+ />
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"
+ />
+ <Tool
+ Name="VCMIDLTool"
+ />
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="3"
+ EnableIntrinsicFunctions="false"
+ EnableFiberSafeOptimizations="true"
+ PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS"
+ RuntimeLibrary="2"
+ EnableFunctionLevelLinking="true"
+ UsePrecompiledHeader="0"
+ WarningLevel="3"
+ DebugInformationFormat="3"
+ CompileAs="0"
+ DisableSpecificWarnings="4996"
+ />
+ <Tool
+ Name="VCManagedResourceCompilerTool"
+ />
+ <Tool
+ Name="VCResourceCompilerTool"
+ />
+ <Tool
+ Name="VCPreLinkEventTool"
+ />
+ <Tool
+ Name="VCLinkerTool"
+ AdditionalDependencies="Release\jpeg.lib"
+ LinkIncremental="1"
+ GenerateDebugInformation="true"
+ SubSystem="1"
+ OptimizeReferences="2"
+ EnableCOMDATFolding="2"
+ TargetMachine="1"
+ />
+ <Tool
+ Name="VCALinkTool"
+ />
+ <Tool
+ Name="VCManifestTool"
+ />
+ <Tool
+ Name="VCXDCMakeTool"
+ />
+ <Tool
+ Name="VCBscMakeTool"
+ />
+ <Tool
+ Name="VCFxCopTool"
+ />
+ <Tool
+ Name="VCAppVerifierTool"
+ />
+ <Tool
+ Name="VCPostBuildEventTool"
+ />
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Quelldateien"
+ Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
+ UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
+ >
+ <File
+ RelativePath=".\cdjpeg.c"
+ >
+ </File>
+ <File
+ RelativePath=".\jpegtran.c"
+ >
+ </File>
+ <File
+ RelativePath=".\rdswitch.c"
+ >
+ </File>
+ <File
+ RelativePath=".\transupp.c"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Headerdateien"
+ Filter="h;hpp;hxx;hm;inl;inc;xsd"
+ UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
+ >
+ <File
+ RelativePath=".\cderror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\cdjpeg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jconfig.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jerror.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jinclude.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jmorecfg.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jpegint.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jpeglib.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jversion.h"
+ >
+ </File>
+ <File
+ RelativePath=".\transupp.h"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Ressourcendateien"
+ Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
+ UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
+ >
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/src/3rdparty/libjpeg/makewdep.vc6 b/src/3rdparty/libjpeg/makewdep.vc6
new file mode 100644
index 0000000..15929bf
--- /dev/null
+++ b/src/3rdparty/libjpeg/makewdep.vc6
@@ -0,0 +1,6 @@
+# Microsoft Developer Studio erstellte Abh„ngigkeitsdatei, einbezogen von wrjpgcom.mak
+
+.\wrjpgcom.c : \
+ ".\jconfig.h"\
+ ".\jinclude.h"\
+
diff --git a/src/3rdparty/libjpeg/makewdsp.vc6 b/src/3rdparty/libjpeg/makewdsp.vc6
new file mode 100644
index 0000000..2063b1a
--- /dev/null
+++ b/src/3rdparty/libjpeg/makewdsp.vc6
@@ -0,0 +1,78 @@
+# Microsoft Developer Studio Project File - Name="wrjpgcom" - Package Owner=<4>
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
+# ** NICHT BEARBEITEN **
+
+# TARGTYPE "Win32 (x86) Console Application" 0x0103
+
+CFG=wrjpgcom - Win32
+!MESSAGE Dies ist kein gltiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
+!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und fhren Sie den Befehl
+!MESSAGE
+!MESSAGE NMAKE /f "wrjpgcom.mak".
+!MESSAGE
+!MESSAGE Sie k÷nnen beim Ausfhren von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "wrjpgcom.mak" CFG="wrjpgcom - Win32"
+!MESSAGE
+!MESSAGE Fr die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "wrjpgcom - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+
+# Begin Project
+# PROP AllowPerConfigDependencies 0
+# PROP Scc_ProjName ""
+# PROP Scc_LocalPath ""
+CPP=cl.exe
+RSC=rc.exe
+# PROP BASE Use_MFC 0
+# PROP BASE Use_Debug_Libraries 0
+# PROP BASE Output_Dir ".\wrjpgcom\Release"
+# PROP BASE Intermediate_Dir ".\wrjpgcom\Release"
+# PROP BASE Target_Dir ".\wrjpgcom"
+# PROP Use_MFC 0
+# PROP Use_Debug_Libraries 0
+# PROP Output_Dir ".\wrjpgcom\Release"
+# PROP Intermediate_Dir ".\wrjpgcom\Release"
+# PROP Ignore_Export_Lib 0
+# PROP Target_Dir ".\wrjpgcom"
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /c
+# ADD CPP /nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /YX /FD /c
+# ADD BASE RSC /l 0x409 /d "NDEBUG"
+# ADD RSC /l 0x409 /d "NDEBUG"
+BSC32=bscmake.exe
+# ADD BASE BSC32 /nologo
+# ADD BSC32 /nologo
+LINK32=link.exe
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# ADD LINK32 Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
+# Begin Target
+
+# Name "wrjpgcom - Win32"
+# Begin Group "Quellcodedateien"
+
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat;for;f90"
+# Begin Source File
+
+SOURCE=.\wrjpgcom.c
+# End Source File
+# End Group
+# Begin Group "Header-Dateien"
+
+# PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
+# Begin Source File
+
+SOURCE=.\jconfig.h
+# End Source File
+# Begin Source File
+
+SOURCE=.\jinclude.h
+# End Source File
+# End Group
+# Begin Group "Ressourcendateien"
+
+# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
+# End Group
+# End Target
+# End Project
diff --git a/src/3rdparty/libjpeg/makewmak.vc6 b/src/3rdparty/libjpeg/makewmak.vc6
new file mode 100644
index 0000000..22b9086
--- /dev/null
+++ b/src/3rdparty/libjpeg/makewmak.vc6
@@ -0,0 +1,110 @@
+# Microsoft Developer Studio Generated NMAKE File, Based on wrjpgcom.dsp
+!IF "$(CFG)" == ""
+CFG=wrjpgcom - Win32
+!MESSAGE Keine Konfiguration angegeben. wrjpgcom - Win32 wird als Standard verwendet.
+!ENDIF
+
+!IF "$(CFG)" != "wrjpgcom - Win32"
+!MESSAGE Ungültige Konfiguration "$(CFG)" angegeben.
+!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
+!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
+!MESSAGE
+!MESSAGE NMAKE /f "wrjpgcom.mak" CFG="wrjpgcom - Win32"
+!MESSAGE
+!MESSAGE Für die Konfiguration stehen zur Auswahl:
+!MESSAGE
+!MESSAGE "wrjpgcom - Win32" (basierend auf "Win32 (x86) Console Application")
+!MESSAGE
+!ERROR Eine ungültige Konfiguration wurde angegeben.
+!ENDIF
+
+!IF "$(OS)" == "Windows_NT"
+NULL=
+!ELSE
+NULL=nul
+!ENDIF
+
+CPP=cl.exe
+RSC=rc.exe
+OUTDIR=.\wrjpgcom\Release
+INTDIR=.\wrjpgcom\Release
+# Begin Custom Macros
+OutDir=.\wrjpgcom\Release
+# End Custom Macros
+
+ALL : "$(OUTDIR)\wrjpgcom.exe"
+
+
+CLEAN :
+ -@erase "$(INTDIR)\vc60.idb"
+ -@erase "$(INTDIR)\wrjpgcom.obj"
+ -@erase "$(OUTDIR)\wrjpgcom.exe"
+
+"$(OUTDIR)" :
+ if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
+
+BSC32=bscmake.exe
+BSC32_FLAGS=/nologo /o"$(OUTDIR)\wrjpgcom.bsc"
+BSC32_SBRS= \
+
+LINK32=link.exe
+LINK32_FLAGS=Release\jpeg.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:no /pdb:"$(OUTDIR)\wrjpgcom.pdb" /machine:I386 /out:"$(OUTDIR)\wrjpgcom.exe"
+LINK32_OBJS= \
+ "$(INTDIR)\wrjpgcom.obj"
+
+"$(OUTDIR)\wrjpgcom.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
+ $(LINK32) @<<
+ $(LINK32_FLAGS) $(LINK32_OBJS)
+<<
+
+CPP_PROJ=/nologo /G6 /MT /W3 /GX /Ox /Oa /Ob2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /Fp"$(INTDIR)\wrjpgcom.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
+
+.c{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.obj::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.c{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cpp{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+.cxx{$(INTDIR)}.sbr::
+ $(CPP) @<<
+ $(CPP_PROJ) $<
+<<
+
+
+!IF "$(NO_EXTERNAL_DEPS)" != "1"
+!IF EXISTS("wrjpgcom.dep")
+!INCLUDE "wrjpgcom.dep"
+!ELSE
+!MESSAGE Warning: cannot find "wrjpgcom.dep"
+!ENDIF
+!ENDIF
+
+
+!IF "$(CFG)" == "wrjpgcom - Win32"
+SOURCE=.\wrjpgcom.c
+
+"$(INTDIR)\wrjpgcom.obj" : $(SOURCE) "$(INTDIR)"
+
+
+
+!ENDIF
+
diff --git a/src/3rdparty/libjpeg/makewvcp.vc9 b/src/3rdparty/libjpeg/makewvcp.vc9
new file mode 100644
index 0000000..196de0c
--- /dev/null
+++ b/src/3rdparty/libjpeg/makewvcp.vc9
@@ -0,0 +1,133 @@
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="9,00"
+ Name="wrjpgcom"
+ ProjectGUID="{178670D7-FA7F-44A8-96C7-11B1CA14269C}"
+ RootNamespace="wrjpgcom"
+ Keyword="Win32Proj"
+ TargetFrameworkVersion="196613"
+ >
+ <Platforms>
+ <Platform
+ Name="Win32"
+ />
+ </Platforms>
+ <ToolFiles>
+ </ToolFiles>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory="$(ProjectName)\$(ConfigurationName)"
+ IntermediateDirectory="$(ProjectName)\$(ConfigurationName)"
+ ConfigurationType="1"
+ CharacterSet="0"
+ WholeProgramOptimization="1"
+ >
+ <Tool
+ Name="VCPreBuildEventTool"
+ />
+ <Tool
+ Name="VCCustomBuildTool"
+ />
+ <Tool
+ Name="VCXMLDataGeneratorTool"
+ />
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"
+ />
+ <Tool
+ Name="VCMIDLTool"
+ />
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="3"
+ EnableIntrinsicFunctions="false"
+ EnableFiberSafeOptimizations="true"
+ PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS"
+ RuntimeLibrary="2"
+ EnableFunctionLevelLinking="true"
+ UsePrecompiledHeader="0"
+ WarningLevel="3"
+ DebugInformationFormat="3"
+ CompileAs="0"
+ DisableSpecificWarnings="4996"
+ />
+ <Tool
+ Name="VCManagedResourceCompilerTool"
+ />
+ <Tool
+ Name="VCResourceCompilerTool"
+ />
+ <Tool
+ Name="VCPreLinkEventTool"
+ />
+ <Tool
+ Name="VCLinkerTool"
+ LinkIncremental="1"
+ GenerateDebugInformation="true"
+ SubSystem="1"
+ OptimizeReferences="2"
+ EnableCOMDATFolding="2"
+ TargetMachine="1"
+ />
+ <Tool
+ Name="VCALinkTool"
+ />
+ <Tool
+ Name="VCManifestTool"
+ />
+ <Tool
+ Name="VCXDCMakeTool"
+ />
+ <Tool
+ Name="VCBscMakeTool"
+ />
+ <Tool
+ Name="VCFxCopTool"
+ />
+ <Tool
+ Name="VCAppVerifierTool"
+ />
+ <Tool
+ Name="VCPostBuildEventTool"
+ />
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Quelldateien"
+ Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
+ UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
+ >
+ <File
+ RelativePath=".\wrjpgcom.c"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Headerdateien"
+ Filter="h;hpp;hxx;hm;inl;inc;xsd"
+ UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
+ >
+ <File
+ RelativePath=".\jconfig.h"
+ >
+ </File>
+ <File
+ RelativePath=".\jinclude.h"
+ >
+ </File>
+ </Filter>
+ <Filter
+ Name="Ressourcendateien"
+ Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
+ UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
+ >
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/src/3rdparty/libjpeg/makljpeg.st b/src/3rdparty/libjpeg/makljpeg.st
new file mode 100644
index 0000000..cc1ba01
--- /dev/null
+++ b/src/3rdparty/libjpeg/makljpeg.st
@@ -0,0 +1,68 @@
+; Project file for Independent JPEG Group's software
+;
+; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
+; Thanks to Frank Moehle, B. Setzepfandt, and Guido Vollbeding.
+;
+; To use this file, rename it to libjpeg.prj.
+; Read installation instructions before trying to make the program!
+;
+;
+; * * * Output file * * *
+libjpeg.lib
+;
+; * * * COMPILER OPTIONS * * *
+.C[-P] ; absolute calls
+.C[-M] ; and no string merging, folks
+.C[-w-cln] ; no "constant is long" warnings
+.C[-w-par] ; no "parameter xxxx unused"
+.C[-w-rch] ; no "unreachable code"
+.C[-wsig] ; warn if significant digits may be lost
+.L[-J] ; link new Obj-format (so we get a library)
+=
+; * * * * List of modules * * * *
+jaricom.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcapimin.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcapistd.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcarith.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jccoefct.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jccolor.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcdctmgr.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jchuff.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcinit.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcmainct.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcmarker.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcmaster.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcomapi.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcparam.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcprepct.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jcsample.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jctrans.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdapimin.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdapistd.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdarith.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdatadst.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h)
+jdatasrc.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h)
+jdcoefct.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdcolor.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jddctmgr.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jdhuff.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdinput.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdmainct.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdmarker.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdmaster.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdmerge.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdpostct.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdsample.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jdtrans.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jerror.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jversion.h,jerror.h)
+jfdctflt.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jfdctfst.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jfdctint.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jidctflt.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jidctfst.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jidctint.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
+jquant1.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jquant2.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jutils.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
+jmemmgr.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jmemsys.h)
+jmemansi.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jmemsys.h)
diff --git a/src/3rdparty/libjpeg/maktjpeg.st b/src/3rdparty/libjpeg/maktjpeg.st
new file mode 100644
index 0000000..43f078a
--- /dev/null
+++ b/src/3rdparty/libjpeg/maktjpeg.st
@@ -0,0 +1,30 @@
+; Project file for Independent JPEG Group's software
+;
+; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
+; Thanks to Frank Moehle, B. Setzepfandt, and Guido Vollbeding.
+;
+; To use this file, rename it to jpegtran.prj.
+; If you are using Turbo C, change filenames beginning with "pc..." to "tc..."
+; Read installation instructions before trying to make the program!
+;
+;
+; * * * Output file * * *
+jpegtran.ttp
+;
+; * * * COMPILER OPTIONS * * *
+.C[-P] ; absolute calls
+.C[-M] ; and no string merging, folks
+.C[-w-cln] ; no "constant is long" warnings
+.C[-w-par] ; no "parameter xxxx unused"
+.C[-w-rch] ; no "unreachable code"
+.C[-wsig] ; warn if significant digits may be lost
+=
+; * * * * List of modules * * * *
+pcstart.o
+jpegtran.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h,transupp.h,jversion.h)
+cdjpeg.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+rdswitch.c (cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
+transupp.c (jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,transupp.h)
+libjpeg.lib ; built by libjpeg.prj
+pcstdlib.lib ; standard library
+pcextlib.lib ; extended library
diff --git a/src/3rdparty/libjpeg/makvms.opt b/src/3rdparty/libjpeg/makvms.opt
new file mode 100644
index 0000000..675e8fe
--- /dev/null
+++ b/src/3rdparty/libjpeg/makvms.opt
@@ -0,0 +1,4 @@
+! A pointer to the VAX/VMS C Run-Time Shareable Library.
+! This file is needed by makefile.mms and makefile.vms,
+! but only for the older VAX C compiler. DEC C does not need it.
+Sys$Library:VAXCRTL.EXE /Share
diff --git a/src/3rdparty/libjpeg/rdjpgcom.1 b/src/3rdparty/libjpeg/rdjpgcom.1
new file mode 100644
index 0000000..97611df
--- /dev/null
+++ b/src/3rdparty/libjpeg/rdjpgcom.1
@@ -0,0 +1,63 @@
+.TH RDJPGCOM 1 "02 April 2009"
+.SH NAME
+rdjpgcom \- display text comments from a JPEG file
+.SH SYNOPSIS
+.B rdjpgcom
+[
+.B \-raw
+]
+[
+.B \-verbose
+]
+[
+.I filename
+]
+.LP
+.SH DESCRIPTION
+.LP
+.B rdjpgcom
+reads the named JPEG/JFIF file, or the standard input if no file is named,
+and prints any text comments found in the file on the standard output.
+.PP
+The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.
+Although the standard doesn't actually define what COM blocks are for, they
+are widely used to hold user-supplied text strings. This lets you add
+annotations, titles, index terms, etc to your JPEG files, and later retrieve
+them as text. COM blocks do not interfere with the image stored in the JPEG
+file. The maximum size of a COM block is 64K, but you can have as many of
+them as you like in one JPEG file.
+.SH OPTIONS
+.TP
+.B \-raw
+Normally
+.B rdjpgcom
+escapes non-printable characters in comments, for security reasons.
+This option avoids that.
+.PP
+.B \-verbose
+Causes
+.B rdjpgcom
+to also display the JPEG image dimensions.
+.PP
+Switch names may be abbreviated, and are not case sensitive.
+.SH HINTS
+.B rdjpgcom
+does not depend on the IJG JPEG library. Its source code is intended as an
+illustration of the minimum amount of code required to parse a JPEG file
+header correctly.
+.PP
+In
+.B \-verbose
+mode,
+.B rdjpgcom
+will also attempt to print the contents of any "APP12" markers as text.
+Some digital cameras produce APP12 markers containing useful textual
+information. If you like, you can modify the source code to print
+other APPn marker types as well.
+.SH SEE ALSO
+.BR cjpeg (1),
+.BR djpeg (1),
+.BR jpegtran (1),
+.BR wrjpgcom (1)
+.SH AUTHOR
+Independent JPEG Group
diff --git a/src/3rdparty/libjpeg/structure.txt b/src/3rdparty/libjpeg/structure.txt
new file mode 100644
index 0000000..fe88701
--- /dev/null
+++ b/src/3rdparty/libjpeg/structure.txt
@@ -0,0 +1,945 @@
+IJG JPEG LIBRARY: SYSTEM ARCHITECTURE
+
+Copyright (C) 1991-2009, Thomas G. Lane, Guido Vollbeding.
+This file is part of the Independent JPEG Group's software.
+For conditions of distribution and use, see the accompanying README file.
+
+
+This file provides an overview of the architecture of the IJG JPEG software;
+that is, the functions of the various modules in the system and the interfaces
+between modules. For more precise details about any data structure or calling
+convention, see the include files and comments in the source code.
+
+We assume that the reader is already somewhat familiar with the JPEG standard.
+The README file includes references for learning about JPEG. The file
+libjpeg.txt describes the library from the viewpoint of an application
+programmer using the library; it's best to read that file before this one.
+Also, the file coderules.txt describes the coding style conventions we use.
+
+In this document, JPEG-specific terminology follows the JPEG standard:
+ A "component" means a color channel, e.g., Red or Luminance.
+ A "sample" is a single component value (i.e., one number in the image data).
+ A "coefficient" is a frequency coefficient (a DCT transform output number).
+ A "block" is an 8x8 group of samples or coefficients.
+ An "MCU" (minimum coded unit) is an interleaved set of blocks of size
+ determined by the sampling factors, or a single block in a
+ noninterleaved scan.
+We do not use the terms "pixel" and "sample" interchangeably. When we say
+pixel, we mean an element of the full-size image, while a sample is an element
+of the downsampled image. Thus the number of samples may vary across
+components while the number of pixels does not. (This terminology is not used
+rigorously throughout the code, but it is used in places where confusion would
+otherwise result.)
+
+
+*** System features ***
+
+The IJG distribution contains two parts:
+ * A subroutine library for JPEG compression and decompression.
+ * cjpeg/djpeg, two sample applications that use the library to transform
+ JFIF JPEG files to and from several other image formats.
+cjpeg/djpeg are of no great intellectual complexity: they merely add a simple
+command-line user interface and I/O routines for several uncompressed image
+formats. This document concentrates on the library itself.
+
+We desire the library to be capable of supporting all JPEG baseline, extended
+sequential, and progressive DCT processes. Hierarchical processes are not
+supported.
+
+The library does not support the lossless (spatial) JPEG process. Lossless
+JPEG shares little or no code with lossy JPEG, and would normally be used
+without the extensive pre- and post-processing provided by this library.
+We feel that lossless JPEG is better handled by a separate library.
+
+Within these limits, any set of compression parameters allowed by the JPEG
+spec should be readable for decompression. (We can be more restrictive about
+what formats we can generate.) Although the system design allows for all
+parameter values, some uncommon settings are not yet implemented and may
+never be; nonintegral sampling ratios are the prime example. Furthermore,
+we treat 8-bit vs. 12-bit data precision as a compile-time switch, not a
+run-time option, because most machines can store 8-bit pixels much more
+compactly than 12-bit.
+
+By itself, the library handles only interchange JPEG datastreams --- in
+particular the widely used JFIF file format. The library can be used by
+surrounding code to process interchange or abbreviated JPEG datastreams that
+are embedded in more complex file formats. (For example, libtiff uses this
+library to implement JPEG compression within the TIFF file format.)
+
+The library includes a substantial amount of code that is not covered by the
+JPEG standard but is necessary for typical applications of JPEG. These
+functions preprocess the image before JPEG compression or postprocess it after
+decompression. They include colorspace conversion, downsampling/upsampling,
+and color quantization. This code can be omitted if not needed.
+
+A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
+and even more so in decompression postprocessing. The decompression library
+provides multiple implementations that cover most of the useful tradeoffs,
+ranging from very-high-quality down to fast-preview operation. On the
+compression side we have generally not provided low-quality choices, since
+compression is normally less time-critical. It should be understood that the
+low-quality modes may not meet the JPEG standard's accuracy requirements;
+nonetheless, they are useful for viewers.
+
+
+*** Portability issues ***
+
+Portability is an essential requirement for the library. The key portability
+issues that show up at the level of system architecture are:
+
+1. Memory usage. We want the code to be able to run on PC-class machines
+with limited memory. Images should therefore be processed sequentially (in
+strips), to avoid holding the whole image in memory at once. Where a
+full-image buffer is necessary, we should be able to use either virtual memory
+or temporary files.
+
+2. Near/far pointer distinction. To run efficiently on 80x86 machines, the
+code should distinguish "small" objects (kept in near data space) from
+"large" ones (kept in far data space). This is an annoying restriction, but
+fortunately it does not impact code quality for less brain-damaged machines,
+and the source code clutter turns out to be minimal with sufficient use of
+pointer typedefs.
+
+3. Data precision. We assume that "char" is at least 8 bits, "short" and
+"int" at least 16, "long" at least 32. The code will work fine with larger
+data sizes, although memory may be used inefficiently in some cases. However,
+the JPEG compressed datastream must ultimately appear on external storage as a
+sequence of 8-bit bytes if it is to conform to the standard. This may pose a
+problem on machines where char is wider than 8 bits. The library represents
+compressed data as an array of values of typedef JOCTET. If no data type
+exactly 8 bits wide is available, custom data source and data destination
+modules must be written to unpack and pack the chosen JOCTET datatype into
+8-bit external representation.
+
+
+*** System overview ***
+
+The compressor and decompressor are each divided into two main sections:
+the JPEG compressor or decompressor proper, and the preprocessing or
+postprocessing functions. The interface between these two sections is the
+image data that the official JPEG spec regards as its input or output: this
+data is in the colorspace to be used for compression, and it is downsampled
+to the sampling factors to be used. The preprocessing and postprocessing
+steps are responsible for converting a normal image representation to or from
+this form. (Those few applications that want to deal with YCbCr downsampled
+data can skip the preprocessing or postprocessing step.)
+
+Looking more closely, the compressor library contains the following main
+elements:
+
+ Preprocessing:
+ * Color space conversion (e.g., RGB to YCbCr).
+ * Edge expansion and downsampling. Optionally, this step can do simple
+ smoothing --- this is often helpful for low-quality source data.
+ JPEG proper:
+ * MCU assembly, DCT, quantization.
+ * Entropy coding (sequential or progressive, Huffman or arithmetic).
+
+In addition to these modules we need overall control, marker generation,
+and support code (memory management & error handling). There is also a
+module responsible for physically writing the output data --- typically
+this is just an interface to fwrite(), but some applications may need to
+do something else with the data.
+
+The decompressor library contains the following main elements:
+
+ JPEG proper:
+ * Entropy decoding (sequential or progressive, Huffman or arithmetic).
+ * Dequantization, inverse DCT, MCU disassembly.
+ Postprocessing:
+ * Upsampling. Optionally, this step may be able to do more general
+ rescaling of the image.
+ * Color space conversion (e.g., YCbCr to RGB). This step may also
+ provide gamma adjustment [ currently it does not ].
+ * Optional color quantization (e.g., reduction to 256 colors).
+ * Optional color precision reduction (e.g., 24-bit to 15-bit color).
+ [This feature is not currently implemented.]
+
+We also need overall control, marker parsing, and a data source module.
+The support code (memory management & error handling) can be shared with
+the compression half of the library.
+
+There may be several implementations of each of these elements, particularly
+in the decompressor, where a wide range of speed/quality tradeoffs is very
+useful. It must be understood that some of the best speedups involve
+merging adjacent steps in the pipeline. For example, upsampling, color space
+conversion, and color quantization might all be done at once when using a
+low-quality ordered-dither technique. The system architecture is designed to
+allow such merging where appropriate.
+
+
+Note: it is convenient to regard edge expansion (padding to block boundaries)
+as a preprocessing/postprocessing function, even though the JPEG spec includes
+it in compression/decompression. We do this because downsampling/upsampling
+can be simplified a little if they work on padded data: it's not necessary to
+have special cases at the right and bottom edges. Therefore the interface
+buffer is always an integral number of blocks wide and high, and we expect
+compression preprocessing to pad the source data properly. Padding will occur
+only to the next block (8-sample) boundary. In an interleaved-scan situation,
+additional dummy blocks may be used to fill out MCUs, but the MCU assembly and
+disassembly logic will create or discard these blocks internally. (This is
+advantageous for speed reasons, since we avoid DCTing the dummy blocks.
+It also permits a small reduction in file size, because the compressor can
+choose dummy block contents so as to minimize their size in compressed form.
+Finally, it makes the interface buffer specification independent of whether
+the file is actually interleaved or not.) Applications that wish to deal
+directly with the downsampled data must provide similar buffering and padding
+for odd-sized images.
+
+
+*** Poor man's object-oriented programming ***
+
+It should be clear by now that we have a lot of quasi-independent processing
+steps, many of which have several possible behaviors. To avoid cluttering the
+code with lots of switch statements, we use a simple form of object-style
+programming to separate out the different possibilities.
+
+For example, two different color quantization algorithms could be implemented
+as two separate modules that present the same external interface; at runtime,
+the calling code will access the proper module indirectly through an "object".
+
+We can get the limited features we need while staying within portable C.
+The basic tool is a function pointer. An "object" is just a struct
+containing one or more function pointer fields, each of which corresponds to
+a method name in real object-oriented languages. During initialization we
+fill in the function pointers with references to whichever module we have
+determined we need to use in this run. Then invocation of the module is done
+by indirecting through a function pointer; on most machines this is no more
+expensive than a switch statement, which would be the only other way of
+making the required run-time choice. The really significant benefit, of
+course, is keeping the source code clean and well structured.
+
+We can also arrange to have private storage that varies between different
+implementations of the same kind of object. We do this by making all the
+module-specific object structs be separately allocated entities, which will
+be accessed via pointers in the master compression or decompression struct.
+The "public" fields or methods for a given kind of object are specified by
+a commonly known struct. But a module's initialization code can allocate
+a larger struct that contains the common struct as its first member, plus
+additional private fields. With appropriate pointer casting, the module's
+internal functions can access these private fields. (For a simple example,
+see jdatadst.c, which implements the external interface specified by struct
+jpeg_destination_mgr, but adds extra fields.)
+
+(Of course this would all be a lot easier if we were using C++, but we are
+not yet prepared to assume that everyone has a C++ compiler.)
+
+An important benefit of this scheme is that it is easy to provide multiple
+versions of any method, each tuned to a particular case. While a lot of
+precalculation might be done to select an optimal implementation of a method,
+the cost per invocation is constant. For example, the upsampling step might
+have a "generic" method, plus one or more "hardwired" methods for the most
+popular sampling factors; the hardwired methods would be faster because they'd
+use straight-line code instead of for-loops. The cost to determine which
+method to use is paid only once, at startup, and the selection criteria are
+hidden from the callers of the method.
+
+This plan differs a little bit from usual object-oriented structures, in that
+only one instance of each object class will exist during execution. The
+reason for having the class structure is that on different runs we may create
+different instances (choose to execute different modules). You can think of
+the term "method" as denoting the common interface presented by a particular
+set of interchangeable functions, and "object" as denoting a group of related
+methods, or the total shared interface behavior of a group of modules.
+
+
+*** Overall control structure ***
+
+We previously mentioned the need for overall control logic in the compression
+and decompression libraries. In IJG implementations prior to v5, overall
+control was mostly provided by "pipeline control" modules, which proved to be
+large, unwieldy, and hard to understand. To improve the situation, the
+control logic has been subdivided into multiple modules. The control modules
+consist of:
+
+1. Master control for module selection and initialization. This has two
+responsibilities:
+
+ 1A. Startup initialization at the beginning of image processing.
+ The individual processing modules to be used in this run are selected
+ and given initialization calls.
+
+ 1B. Per-pass control. This determines how many passes will be performed
+ and calls each active processing module to configure itself
+ appropriately at the beginning of each pass. End-of-pass processing,
+ where necessary, is also invoked from the master control module.
+
+ Method selection is partially distributed, in that a particular processing
+ module may contain several possible implementations of a particular method,
+ which it will select among when given its initialization call. The master
+ control code need only be concerned with decisions that affect more than
+ one module.
+
+2. Data buffering control. A separate control module exists for each
+ inter-processing-step data buffer. This module is responsible for
+ invoking the processing steps that write or read that data buffer.
+
+Each buffer controller sees the world as follows:
+
+input data => processing step A => buffer => processing step B => output data
+ | | |
+ ------------------ controller ------------------
+
+The controller knows the dataflow requirements of steps A and B: how much data
+they want to accept in one chunk and how much they output in one chunk. Its
+function is to manage its buffer and call A and B at the proper times.
+
+A data buffer control module may itself be viewed as a processing step by a
+higher-level control module; thus the control modules form a binary tree with
+elementary processing steps at the leaves of the tree.
+
+The control modules are objects. A considerable amount of flexibility can
+be had by replacing implementations of a control module. For example:
+* Merging of adjacent steps in the pipeline is done by replacing a control
+ module and its pair of processing-step modules with a single processing-
+ step module. (Hence the possible merges are determined by the tree of
+ control modules.)
+* In some processing modes, a given interstep buffer need only be a "strip"
+ buffer large enough to accommodate the desired data chunk sizes. In other
+ modes, a full-image buffer is needed and several passes are required.
+ The control module determines which kind of buffer is used and manipulates
+ virtual array buffers as needed. One or both processing steps may be
+ unaware of the multi-pass behavior.
+
+In theory, we might be able to make all of the data buffer controllers
+interchangeable and provide just one set of implementations for all. In
+practice, each one contains considerable special-case processing for its
+particular job. The buffer controller concept should be regarded as an
+overall system structuring principle, not as a complete description of the
+task performed by any one controller.
+
+
+*** Compression object structure ***
+
+Here is a sketch of the logical structure of the JPEG compression library:
+
+ |-- Colorspace conversion
+ |-- Preprocessing controller --|
+ | |-- Downsampling
+Main controller --|
+ | |-- Forward DCT, quantize
+ |-- Coefficient controller --|
+ |-- Entropy encoding
+
+This sketch also describes the flow of control (subroutine calls) during
+typical image data processing. Each of the components shown in the diagram is
+an "object" which may have several different implementations available. One
+or more source code files contain the actual implementation(s) of each object.
+
+The objects shown above are:
+
+* Main controller: buffer controller for the subsampled-data buffer, which
+ holds the preprocessed input data. This controller invokes preprocessing to
+ fill the subsampled-data buffer, and JPEG compression to empty it. There is
+ usually no need for a full-image buffer here; a strip buffer is adequate.
+
+* Preprocessing controller: buffer controller for the downsampling input data
+ buffer, which lies between colorspace conversion and downsampling. Note
+ that a unified conversion/downsampling module would probably replace this
+ controller entirely.
+
+* Colorspace conversion: converts application image data into the desired
+ JPEG color space; also changes the data from pixel-interleaved layout to
+ separate component planes. Processes one pixel row at a time.
+
+* Downsampling: performs reduction of chroma components as required.
+ Optionally may perform pixel-level smoothing as well. Processes a "row
+ group" at a time, where a row group is defined as Vmax pixel rows of each
+ component before downsampling, and Vk sample rows afterwards (remember Vk
+ differs across components). Some downsampling or smoothing algorithms may
+ require context rows above and below the current row group; the
+ preprocessing controller is responsible for supplying these rows via proper
+ buffering. The downsampler is responsible for edge expansion at the right
+ edge (i.e., extending each sample row to a multiple of 8 samples); but the
+ preprocessing controller is responsible for vertical edge expansion (i.e.,
+ duplicating the bottom sample row as needed to make a multiple of 8 rows).
+
+* Coefficient controller: buffer controller for the DCT-coefficient data.
+ This controller handles MCU assembly, including insertion of dummy DCT
+ blocks when needed at the right or bottom edge. When performing
+ Huffman-code optimization or emitting a multiscan JPEG file, this
+ controller is responsible for buffering the full image. The equivalent of
+ one fully interleaved MCU row of subsampled data is processed per call,
+ even when the JPEG file is noninterleaved.
+
+* Forward DCT and quantization: Perform DCT, quantize, and emit coefficients.
+ Works on one or more DCT blocks at a time. (Note: the coefficients are now
+ emitted in normal array order, which the entropy encoder is expected to
+ convert to zigzag order as necessary. Prior versions of the IJG code did
+ the conversion to zigzag order within the quantization step.)
+
+* Entropy encoding: Perform Huffman or arithmetic entropy coding and emit the
+ coded data to the data destination module. Works on one MCU per call.
+ For progressive JPEG, the same DCT blocks are fed to the entropy coder
+ during each pass, and the coder must emit the appropriate subset of
+ coefficients.
+
+In addition to the above objects, the compression library includes these
+objects:
+
+* Master control: determines the number of passes required, controls overall
+ and per-pass initialization of the other modules.
+
+* Marker writing: generates JPEG markers (except for RSTn, which is emitted
+ by the entropy encoder when needed).
+
+* Data destination manager: writes the output JPEG datastream to its final
+ destination (e.g., a file). The destination manager supplied with the
+ library knows how to write to a stdio stream; for other behaviors, the
+ surrounding application may provide its own destination manager.
+
+* Memory manager: allocates and releases memory, controls virtual arrays
+ (with backing store management, where required).
+
+* Error handler: performs formatting and output of error and trace messages;
+ determines handling of nonfatal errors. The surrounding application may
+ override some or all of this object's methods to change error handling.
+
+* Progress monitor: supports output of "percent-done" progress reports.
+ This object represents an optional callback to the surrounding application:
+ if wanted, it must be supplied by the application.
+
+The error handler, destination manager, and progress monitor objects are
+defined as separate objects in order to simplify application-specific
+customization of the JPEG library. A surrounding application may override
+individual methods or supply its own all-new implementation of one of these
+objects. The object interfaces for these objects are therefore treated as
+part of the application interface of the library, whereas the other objects
+are internal to the library.
+
+The error handler and memory manager are shared by JPEG compression and
+decompression; the progress monitor, if used, may be shared as well.
+
+
+*** Decompression object structure ***
+
+Here is a sketch of the logical structure of the JPEG decompression library:
+
+ |-- Entropy decoding
+ |-- Coefficient controller --|
+ | |-- Dequantize, Inverse DCT
+Main controller --|
+ | |-- Upsampling
+ |-- Postprocessing controller --| |-- Colorspace conversion
+ |-- Color quantization
+ |-- Color precision reduction
+
+As before, this diagram also represents typical control flow. The objects
+shown are:
+
+* Main controller: buffer controller for the subsampled-data buffer, which
+ holds the output of JPEG decompression proper. This controller's primary
+ task is to feed the postprocessing procedure. Some upsampling algorithms
+ may require context rows above and below the current row group; when this
+ is true, the main controller is responsible for managing its buffer so as
+ to make context rows available. In the current design, the main buffer is
+ always a strip buffer; a full-image buffer is never required.
+
+* Coefficient controller: buffer controller for the DCT-coefficient data.
+ This controller handles MCU disassembly, including deletion of any dummy
+ DCT blocks at the right or bottom edge. When reading a multiscan JPEG
+ file, this controller is responsible for buffering the full image.
+ (Buffering DCT coefficients, rather than samples, is necessary to support
+ progressive JPEG.) The equivalent of one fully interleaved MCU row of
+ subsampled data is processed per call, even when the source JPEG file is
+ noninterleaved.
+
+* Entropy decoding: Read coded data from the data source module and perform
+ Huffman or arithmetic entropy decoding. Works on one MCU per call.
+ For progressive JPEG decoding, the coefficient controller supplies the prior
+ coefficients of each MCU (initially all zeroes), which the entropy decoder
+ modifies in each scan.
+
+* Dequantization and inverse DCT: like it says. Note that the coefficients
+ buffered by the coefficient controller have NOT been dequantized; we
+ merge dequantization and inverse DCT into a single step for speed reasons.
+ When scaled-down output is asked for, simplified DCT algorithms may be used
+ that need fewer coefficients and emit fewer samples per DCT block, not the
+ full 8x8. Works on one DCT block at a time.
+
+* Postprocessing controller: buffer controller for the color quantization
+ input buffer, when quantization is in use. (Without quantization, this
+ controller just calls the upsampler.) For two-pass quantization, this
+ controller is responsible for buffering the full-image data.
+
+* Upsampling: restores chroma components to full size. (May support more
+ general output rescaling, too. Note that if undersized DCT outputs have
+ been emitted by the DCT module, this module must adjust so that properly
+ sized outputs are created.) Works on one row group at a time. This module
+ also calls the color conversion module, so its top level is effectively a
+ buffer controller for the upsampling->color conversion buffer. However, in
+ all but the highest-quality operating modes, upsampling and color
+ conversion are likely to be merged into a single step.
+
+* Colorspace conversion: convert from JPEG color space to output color space,
+ and change data layout from separate component planes to pixel-interleaved.
+ Works on one pixel row at a time.
+
+* Color quantization: reduce the data to colormapped form, using either an
+ externally specified colormap or an internally generated one. This module
+ is not used for full-color output. Works on one pixel row at a time; may
+ require two passes to generate a color map. Note that the output will
+ always be a single component representing colormap indexes. In the current
+ design, the output values are JSAMPLEs, so an 8-bit compilation cannot
+ quantize to more than 256 colors. This is unlikely to be a problem in
+ practice.
+
+* Color reduction: this module handles color precision reduction, e.g.,
+ generating 15-bit color (5 bits/primary) from JPEG's 24-bit output.
+ Not quite clear yet how this should be handled... should we merge it with
+ colorspace conversion???
+
+Note that some high-speed operating modes might condense the entire
+postprocessing sequence to a single module (upsample, color convert, and
+quantize in one step).
+
+In addition to the above objects, the decompression library includes these
+objects:
+
+* Master control: determines the number of passes required, controls overall
+ and per-pass initialization of the other modules. This is subdivided into
+ input and output control: jdinput.c controls only input-side processing,
+ while jdmaster.c handles overall initialization and output-side control.
+
+* Marker reading: decodes JPEG markers (except for RSTn).
+
+* Data source manager: supplies the input JPEG datastream. The source
+ manager supplied with the library knows how to read from a stdio stream;
+ for other behaviors, the surrounding application may provide its own source
+ manager.
+
+* Memory manager: same as for compression library.
+
+* Error handler: same as for compression library.
+
+* Progress monitor: same as for compression library.
+
+As with compression, the data source manager, error handler, and progress
+monitor are candidates for replacement by a surrounding application.
+
+
+*** Decompression input and output separation ***
+
+To support efficient incremental display of progressive JPEG files, the
+decompressor is divided into two sections that can run independently:
+
+1. Data input includes marker parsing, entropy decoding, and input into the
+ coefficient controller's DCT coefficient buffer. Note that this
+ processing is relatively cheap and fast.
+
+2. Data output reads from the DCT coefficient buffer and performs the IDCT
+ and all postprocessing steps.
+
+For a progressive JPEG file, the data input processing is allowed to get
+arbitrarily far ahead of the data output processing. (This occurs only
+if the application calls jpeg_consume_input(); otherwise input and output
+run in lockstep, since the input section is called only when the output
+section needs more data.) In this way the application can avoid making
+extra display passes when data is arriving faster than the display pass
+can run. Furthermore, it is possible to abort an output pass without
+losing anything, since the coefficient buffer is read-only as far as the
+output section is concerned. See libjpeg.txt for more detail.
+
+A full-image coefficient array is only created if the JPEG file has multiple
+scans (or if the application specifies buffered-image mode anyway). When
+reading a single-scan file, the coefficient controller normally creates only
+a one-MCU buffer, so input and output processing must run in lockstep in this
+case. jpeg_consume_input() is effectively a no-op in this situation.
+
+The main impact of dividing the decompressor in this fashion is that we must
+be very careful with shared variables in the cinfo data structure. Each
+variable that can change during the course of decompression must be
+classified as belonging to data input or data output, and each section must
+look only at its own variables. For example, the data output section may not
+depend on any of the variables that describe the current scan in the JPEG
+file, because these may change as the data input section advances into a new
+scan.
+
+The progress monitor is (somewhat arbitrarily) defined to treat input of the
+file as one pass when buffered-image mode is not used, and to ignore data
+input work completely when buffered-image mode is used. Note that the
+library has no reliable way to predict the number of passes when dealing
+with a progressive JPEG file, nor can it predict the number of output passes
+in buffered-image mode. So the work estimate is inherently bogus anyway.
+
+No comparable division is currently made in the compression library, because
+there isn't any real need for it.
+
+
+*** Data formats ***
+
+Arrays of pixel sample values use the following data structure:
+
+ typedef something JSAMPLE; a pixel component value, 0..MAXJSAMPLE
+ typedef JSAMPLE *JSAMPROW; ptr to a row of samples
+ typedef JSAMPROW *JSAMPARRAY; ptr to a list of rows
+ typedef JSAMPARRAY *JSAMPIMAGE; ptr to a list of color-component arrays
+
+The basic element type JSAMPLE will typically be one of unsigned char,
+(signed) char, or short. Short will be used if samples wider than 8 bits are
+to be supported (this is a compile-time option). Otherwise, unsigned char is
+used if possible. If the compiler only supports signed chars, then it is
+necessary to mask off the value when reading. Thus, all reads of JSAMPLE
+values must be coded as "GETJSAMPLE(value)", where the macro will be defined
+as "((value) & 0xFF)" on signed-char machines and "((int) (value))" elsewhere.
+
+With these conventions, JSAMPLE values can be assumed to be >= 0. This helps
+simplify correct rounding during downsampling, etc. The JPEG standard's
+specification that sample values run from -128..127 is accommodated by
+subtracting 128 from the sample value in the DCT step. Similarly, during
+decompression the output of the IDCT step will be immediately shifted back to
+0..255. (NB: different values are required when 12-bit samples are in use.
+The code is written in terms of MAXJSAMPLE and CENTERJSAMPLE, which will be
+defined as 255 and 128 respectively in an 8-bit implementation, and as 4095
+and 2048 in a 12-bit implementation.)
+
+We use a pointer per row, rather than a two-dimensional JSAMPLE array. This
+choice costs only a small amount of memory and has several benefits:
+* Code using the data structure doesn't need to know the allocated width of
+ the rows. This simplifies edge expansion/compression, since we can work
+ in an array that's wider than the logical picture width.
+* Indexing doesn't require multiplication; this is a performance win on many
+ machines.
+* Arrays with more than 64K total elements can be supported even on machines
+ where malloc() cannot allocate chunks larger than 64K.
+* The rows forming a component array may be allocated at different times
+ without extra copying. This trick allows some speedups in smoothing steps
+ that need access to the previous and next rows.
+
+Note that each color component is stored in a separate array; we don't use the
+traditional layout in which the components of a pixel are stored together.
+This simplifies coding of modules that work on each component independently,
+because they don't need to know how many components there are. Furthermore,
+we can read or write each component to a temporary file independently, which
+is helpful when dealing with noninterleaved JPEG files.
+
+In general, a specific sample value is accessed by code such as
+ GETJSAMPLE(image[colorcomponent][row][col])
+where col is measured from the image left edge, but row is measured from the
+first sample row currently in memory. Either of the first two indexings can
+be precomputed by copying the relevant pointer.
+
+
+Since most image-processing applications prefer to work on images in which
+the components of a pixel are stored together, the data passed to or from the
+surrounding application uses the traditional convention: a single pixel is
+represented by N consecutive JSAMPLE values, and an image row is an array of
+(# of color components)*(image width) JSAMPLEs. One or more rows of data can
+be represented by a pointer of type JSAMPARRAY in this scheme. This scheme is
+converted to component-wise storage inside the JPEG library. (Applications
+that want to skip JPEG preprocessing or postprocessing will have to contend
+with component-wise storage.)
+
+
+Arrays of DCT-coefficient values use the following data structure:
+
+ typedef short JCOEF; a 16-bit signed integer
+ typedef JCOEF JBLOCK[DCTSIZE2]; an 8x8 block of coefficients
+ typedef JBLOCK *JBLOCKROW; ptr to one horizontal row of 8x8 blocks
+ typedef JBLOCKROW *JBLOCKARRAY; ptr to a list of such rows
+ typedef JBLOCKARRAY *JBLOCKIMAGE; ptr to a list of color component arrays
+
+The underlying type is at least a 16-bit signed integer; while "short" is big
+enough on all machines of interest, on some machines it is preferable to use
+"int" for speed reasons, despite the storage cost. Coefficients are grouped
+into 8x8 blocks (but we always use #defines DCTSIZE and DCTSIZE2 rather than
+"8" and "64").
+
+The contents of a coefficient block may be in either "natural" or zigzagged
+order, and may be true values or divided by the quantization coefficients,
+depending on where the block is in the processing pipeline. In the current
+library, coefficient blocks are kept in natural order everywhere; the entropy
+codecs zigzag or dezigzag the data as it is written or read. The blocks
+contain quantized coefficients everywhere outside the DCT/IDCT subsystems.
+(This latter decision may need to be revisited to support variable
+quantization a la JPEG Part 3.)
+
+Notice that the allocation unit is now a row of 8x8 blocks, corresponding to
+eight rows of samples. Otherwise the structure is much the same as for
+samples, and for the same reasons.
+
+On machines where malloc() can't handle a request bigger than 64Kb, this data
+structure limits us to rows of less than 512 JBLOCKs, or a picture width of
+4000+ pixels. This seems an acceptable restriction.
+
+
+On 80x86 machines, the bottom-level pointer types (JSAMPROW and JBLOCKROW)
+must be declared as "far" pointers, but the upper levels can be "near"
+(implying that the pointer lists are allocated in the DS segment).
+We use a #define symbol FAR, which expands to the "far" keyword when
+compiling on 80x86 machines and to nothing elsewhere.
+
+
+*** Suspendable processing ***
+
+In some applications it is desirable to use the JPEG library as an
+incremental, memory-to-memory filter. In this situation the data source or
+destination may be a limited-size buffer, and we can't rely on being able to
+empty or refill the buffer at arbitrary times. Instead the application would
+like to have control return from the library at buffer overflow/underrun, and
+then resume compression or decompression at a later time.
+
+This scenario is supported for simple cases. (For anything more complex, we
+recommend that the application "bite the bullet" and develop real multitasking
+capability.) The libjpeg.txt file goes into more detail about the usage and
+limitations of this capability; here we address the implications for library
+structure.
+
+The essence of the problem is that the entropy codec (coder or decoder) must
+be prepared to stop at arbitrary times. In turn, the controllers that call
+the entropy codec must be able to stop before having produced or consumed all
+the data that they normally would handle in one call. That part is reasonably
+straightforward: we make the controller call interfaces include "progress
+counters" which indicate the number of data chunks successfully processed, and
+we require callers to test the counter rather than just assume all of the data
+was processed.
+
+Rather than trying to restart at an arbitrary point, the current Huffman
+codecs are designed to restart at the beginning of the current MCU after a
+suspension due to buffer overflow/underrun. At the start of each call, the
+codec's internal state is loaded from permanent storage (in the JPEG object
+structures) into local variables. On successful completion of the MCU, the
+permanent state is updated. (This copying is not very expensive, and may even
+lead to *improved* performance if the local variables can be registerized.)
+If a suspension occurs, the codec simply returns without updating the state,
+thus effectively reverting to the start of the MCU. Note that this implies
+leaving some data unprocessed in the source/destination buffer (ie, the
+compressed partial MCU). The data source/destination module interfaces are
+specified so as to make this possible. This also implies that the data buffer
+must be large enough to hold a worst-case compressed MCU; a couple thousand
+bytes should be enough.
+
+In a successive-approximation AC refinement scan, the progressive Huffman
+decoder has to be able to undo assignments of newly nonzero coefficients if it
+suspends before the MCU is complete, since decoding requires distinguishing
+previously-zero and previously-nonzero coefficients. This is a bit tedious
+but probably won't have much effect on performance. Other variants of Huffman
+decoding need not worry about this, since they will just store the same values
+again if forced to repeat the MCU.
+
+This approach would probably not work for an arithmetic codec, since its
+modifiable state is quite large and couldn't be copied cheaply. Instead it
+would have to suspend and resume exactly at the point of the buffer end.
+
+The JPEG marker reader is designed to cope with suspension at an arbitrary
+point. It does so by backing up to the start of the marker parameter segment,
+so the data buffer must be big enough to hold the largest marker of interest.
+Again, a couple KB should be adequate. (A special "skip" convention is used
+to bypass COM and APPn markers, so these can be larger than the buffer size
+without causing problems; otherwise a 64K buffer would be needed in the worst
+case.)
+
+The JPEG marker writer currently does *not* cope with suspension.
+We feel that this is not necessary; it is much easier simply to require
+the application to ensure there is enough buffer space before starting. (An
+empty 2K buffer is more than sufficient for the header markers; and ensuring
+there are a dozen or two bytes available before calling jpeg_finish_compress()
+will suffice for the trailer.) This would not work for writing multi-scan
+JPEG files, but we simply do not intend to support that capability with
+suspension.
+
+
+*** Memory manager services ***
+
+The JPEG library's memory manager controls allocation and deallocation of
+memory, and it manages large "virtual" data arrays on machines where the
+operating system does not provide virtual memory. Note that the same
+memory manager serves both compression and decompression operations.
+
+In all cases, allocated objects are tied to a particular compression or
+decompression master record, and they will be released when that master
+record is destroyed.
+
+The memory manager does not provide explicit deallocation of objects.
+Instead, objects are created in "pools" of free storage, and a whole pool
+can be freed at once. This approach helps prevent storage-leak bugs, and
+it speeds up operations whenever malloc/free are slow (as they often are).
+The pools can be regarded as lifetime identifiers for objects. Two
+pools/lifetimes are defined:
+ * JPOOL_PERMANENT lasts until master record is destroyed
+ * JPOOL_IMAGE lasts until done with image (JPEG datastream)
+Permanent lifetime is used for parameters and tables that should be carried
+across from one datastream to another; this includes all application-visible
+parameters. Image lifetime is used for everything else. (A third lifetime,
+JPOOL_PASS = one processing pass, was originally planned. However it was
+dropped as not being worthwhile. The actual usage patterns are such that the
+peak memory usage would be about the same anyway; and having per-pass storage
+substantially complicates the virtual memory allocation rules --- see below.)
+
+The memory manager deals with three kinds of object:
+1. "Small" objects. Typically these require no more than 10K-20K total.
+2. "Large" objects. These may require tens to hundreds of K depending on
+ image size. Semantically they behave the same as small objects, but we
+ distinguish them for two reasons:
+ * On MS-DOS machines, large objects are referenced by FAR pointers,
+ small objects by NEAR pointers.
+ * Pool allocation heuristics may differ for large and small objects.
+ Note that individual "large" objects cannot exceed the size allowed by
+ type size_t, which may be 64K or less on some machines.
+3. "Virtual" objects. These are large 2-D arrays of JSAMPLEs or JBLOCKs
+ (typically large enough for the entire image being processed). The
+ memory manager provides stripwise access to these arrays. On machines
+ without virtual memory, the rest of the array may be swapped out to a
+ temporary file.
+
+(Note: JSAMPARRAY and JBLOCKARRAY data structures are a combination of large
+objects for the data proper and small objects for the row pointers. For
+convenience and speed, the memory manager provides single routines to create
+these structures. Similarly, virtual arrays include a small control block
+and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.)
+
+In the present implementation, virtual arrays are only permitted to have image
+lifespan. (Permanent lifespan would not be reasonable, and pass lifespan is
+not very useful since a virtual array's raison d'etre is to store data for
+multiple passes through the image.) We also expect that only "small" objects
+will be given permanent lifespan, though this restriction is not required by
+the memory manager.
+
+In a non-virtual-memory machine, some performance benefit can be gained by
+making the in-memory buffers for virtual arrays be as large as possible.
+(For small images, the buffers might fit entirely in memory, so blind
+swapping would be very wasteful.) The memory manager will adjust the height
+of the buffers to fit within a prespecified maximum memory usage. In order
+to do this in a reasonably optimal fashion, the manager needs to allocate all
+of the virtual arrays at once. Therefore, there isn't a one-step allocation
+routine for virtual arrays; instead, there is a "request" routine that simply
+allocates the control block, and a "realize" routine (called just once) that
+determines space allocation and creates all of the actual buffers. The
+realize routine must allow for space occupied by non-virtual large objects.
+(We don't bother to factor in the space needed for small objects, on the
+grounds that it isn't worth the trouble.)
+
+To support all this, we establish the following protocol for doing business
+with the memory manager:
+ 1. Modules must request virtual arrays (which may have only image lifespan)
+ during the initial setup phase, i.e., in their jinit_xxx routines.
+ 2. All "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) must also be
+ allocated during initial setup.
+ 3. realize_virt_arrays will be called at the completion of initial setup.
+ The above conventions ensure that sufficient information is available
+ for it to choose a good size for virtual array buffers.
+Small objects of any lifespan may be allocated at any time. We expect that
+the total space used for small objects will be small enough to be negligible
+in the realize_virt_arrays computation.
+
+In a virtual-memory machine, we simply pretend that the available space is
+infinite, thus causing realize_virt_arrays to decide that it can allocate all
+the virtual arrays as full-size in-memory buffers. The overhead of the
+virtual-array access protocol is very small when no swapping occurs.
+
+A virtual array can be specified to be "pre-zeroed"; when this flag is set,
+never-yet-written sections of the array are set to zero before being made
+available to the caller. If this flag is not set, never-written sections
+of the array contain garbage. (This feature exists primarily because the
+equivalent logic would otherwise be needed in jdcoefct.c for progressive
+JPEG mode; we may as well make it available for possible other uses.)
+
+The first write pass on a virtual array is required to occur in top-to-bottom
+order; read passes, as well as any write passes after the first one, may
+access the array in any order. This restriction exists partly to simplify
+the virtual array control logic, and partly because some file systems may not
+support seeking beyond the current end-of-file in a temporary file. The main
+implication of this restriction is that rearrangement of rows (such as
+converting top-to-bottom data order to bottom-to-top) must be handled while
+reading data out of the virtual array, not while putting it in.
+
+
+*** Memory manager internal structure ***
+
+To isolate system dependencies as much as possible, we have broken the
+memory manager into two parts. There is a reasonably system-independent
+"front end" (jmemmgr.c) and a "back end" that contains only the code
+likely to change across systems. All of the memory management methods
+outlined above are implemented by the front end. The back end provides
+the following routines for use by the front end (none of these routines
+are known to the rest of the JPEG code):
+
+jpeg_mem_init, jpeg_mem_term system-dependent initialization/shutdown
+
+jpeg_get_small, jpeg_free_small interface to malloc and free library routines
+ (or their equivalents)
+
+jpeg_get_large, jpeg_free_large interface to FAR malloc/free in MSDOS machines;
+ else usually the same as
+ jpeg_get_small/jpeg_free_small
+
+jpeg_mem_available estimate available memory
+
+jpeg_open_backing_store create a backing-store object
+
+read_backing_store, manipulate a backing-store object
+write_backing_store,
+close_backing_store
+
+On some systems there will be more than one type of backing-store object
+(specifically, in MS-DOS a backing store file might be an area of extended
+memory as well as a disk file). jpeg_open_backing_store is responsible for
+choosing how to implement a given object. The read/write/close routines
+are method pointers in the structure that describes a given object; this
+lets them be different for different object types.
+
+It may be necessary to ensure that backing store objects are explicitly
+released upon abnormal program termination. For example, MS-DOS won't free
+extended memory by itself. To support this, we will expect the main program
+or surrounding application to arrange to call self_destruct (typically via
+jpeg_destroy) upon abnormal termination. This may require a SIGINT signal
+handler or equivalent. We don't want to have the back end module install its
+own signal handler, because that would pre-empt the surrounding application's
+ability to control signal handling.
+
+The IJG distribution includes several memory manager back end implementations.
+Usually the same back end should be suitable for all applications on a given
+system, but it is possible for an application to supply its own back end at
+need.
+
+
+*** Implications of DNL marker ***
+
+Some JPEG files may use a DNL marker to postpone definition of the image
+height (this would be useful for a fax-like scanner's output, for instance).
+In these files the SOF marker claims the image height is 0, and you only
+find out the true image height at the end of the first scan.
+
+We could read these files as follows:
+1. Upon seeing zero image height, replace it by 65535 (the maximum allowed).
+2. When the DNL is found, update the image height in the global image
+ descriptor.
+This implies that control modules must avoid making copies of the image
+height, and must re-test for termination after each MCU row. This would
+be easy enough to do.
+
+In cases where image-size data structures are allocated, this approach will
+result in very inefficient use of virtual memory or much-larger-than-necessary
+temporary files. This seems acceptable for something that probably won't be a
+mainstream usage. People might have to forgo use of memory-hogging options
+(such as two-pass color quantization or noninterleaved JPEG files) if they
+want efficient conversion of such files. (One could improve efficiency by
+demanding a user-supplied upper bound for the height, less than 65536; in most
+cases it could be much less.)
+
+The standard also permits the SOF marker to overestimate the image height,
+with a DNL to give the true, smaller height at the end of the first scan.
+This would solve the space problems if the overestimate wasn't too great.
+However, it implies that you don't even know whether DNL will be used.
+
+This leads to a couple of very serious objections:
+1. Testing for a DNL marker must occur in the inner loop of the decompressor's
+ Huffman decoder; this implies a speed penalty whether the feature is used
+ or not.
+2. There is no way to hide the last-minute change in image height from an
+ application using the decoder. Thus *every* application using the IJG
+ library would suffer a complexity penalty whether it cared about DNL or
+ not.
+We currently do not support DNL because of these problems.
+
+A different approach is to insist that DNL-using files be preprocessed by a
+separate program that reads ahead to the DNL, then goes back and fixes the SOF
+marker. This is a much simpler solution and is probably far more efficient.
+Even if one wants piped input, buffering the first scan of the JPEG file needs
+a lot smaller temp file than is implied by the maximum-height method. For
+this approach we'd simply treat DNL as a no-op in the decompressor (at most,
+check that it matches the SOF image height).
+
+We will not worry about making the compressor capable of outputting DNL.
+Something similar to the first scheme above could be applied if anyone ever
+wants to make that work.
diff --git a/src/3rdparty/libjpeg/transupp.h b/src/3rdparty/libjpeg/transupp.h
new file mode 100644
index 0000000..7c16c19
--- /dev/null
+++ b/src/3rdparty/libjpeg/transupp.h
@@ -0,0 +1,210 @@
+/*
+ * transupp.h
+ *
+ * Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for image transformation routines and
+ * other utility code used by the jpegtran sample application. These are
+ * NOT part of the core JPEG library. But we keep these routines separate
+ * from jpegtran.c to ease the task of maintaining jpegtran-like programs
+ * that have other user interfaces.
+ *
+ * NOTE: all the routines declared here have very specific requirements
+ * about when they are to be executed during the reading and writing of the
+ * source and destination files. See the comments in transupp.c, or see
+ * jpegtran.c for an example of correct usage.
+ */
+
+/* If you happen not to want the image transform support, disable it here */
+#ifndef TRANSFORMS_SUPPORTED
+#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
+#endif
+
+/*
+ * Although rotating and flipping data expressed as DCT coefficients is not
+ * hard, there is an asymmetry in the JPEG format specification for images
+ * whose dimensions aren't multiples of the iMCU size. The right and bottom
+ * image edges are padded out to the next iMCU boundary with junk data; but
+ * no padding is possible at the top and left edges. If we were to flip
+ * the whole image including the pad data, then pad garbage would become
+ * visible at the top and/or left, and real pixels would disappear into the
+ * pad margins --- perhaps permanently, since encoders & decoders may not
+ * bother to preserve DCT blocks that appear to be completely outside the
+ * nominal image area. So, we have to exclude any partial iMCUs from the
+ * basic transformation.
+ *
+ * Transpose is the only transformation that can handle partial iMCUs at the
+ * right and bottom edges completely cleanly. flip_h can flip partial iMCUs
+ * at the bottom, but leaves any partial iMCUs at the right edge untouched.
+ * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
+ * The other transforms are defined as combinations of these basic transforms
+ * and process edge blocks in a way that preserves the equivalence.
+ *
+ * The "trim" option causes untransformable partial iMCUs to be dropped;
+ * this is not strictly lossless, but it usually gives the best-looking
+ * result for odd-size images. Note that when this option is active,
+ * the expected mathematical equivalences between the transforms may not hold.
+ * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
+ * followed by -rot 180 -trim trims both edges.)
+ *
+ * We also offer a lossless-crop option, which discards data outside a given
+ * image region but losslessly preserves what is inside. Like the rotate and
+ * flip transforms, lossless crop is restricted by the JPEG format: the upper
+ * left corner of the selected region must fall on an iMCU boundary. If this
+ * does not hold for the given crop parameters, we silently move the upper left
+ * corner up and/or left to make it so, simultaneously increasing the region
+ * dimensions to keep the lower right crop corner unchanged. (Thus, the
+ * output image covers at least the requested region, but may cover more.)
+ *
+ * We also provide a lossless-resize option, which is kind of a lossless-crop
+ * operation in the DCT coefficient block domain - it discards higher-order
+ * coefficients and losslessly preserves lower-order coefficients of a
+ * sub-block.
+ *
+ * Rotate/flip transform, resize, and crop can be requested together in a
+ * single invocation. The crop is applied last --- that is, the crop region
+ * is specified in terms of the destination image after transform/resize.
+ *
+ * We also offer a "force to grayscale" option, which simply discards the
+ * chrominance channels of a YCbCr image. This is lossless in the sense that
+ * the luminance channel is preserved exactly. It's not the same kind of
+ * thing as the rotate/flip transformations, but it's convenient to handle it
+ * as part of this package, mainly because the transformation routines have to
+ * be aware of the option to know how many components to work on.
+ */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jtransform_parse_crop_spec jTrParCrop
+#define jtransform_request_workspace jTrRequest
+#define jtransform_adjust_parameters jTrAdjust
+#define jtransform_execute_transform jTrExec
+#define jtransform_perfect_transform jTrPerfect
+#define jcopy_markers_setup jCMrkSetup
+#define jcopy_markers_execute jCMrkExec
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * Codes for supported types of image transformations.
+ */
+
+typedef enum {
+ JXFORM_NONE, /* no transformation */
+ JXFORM_FLIP_H, /* horizontal flip */
+ JXFORM_FLIP_V, /* vertical flip */
+ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
+ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
+ JXFORM_ROT_90, /* 90-degree clockwise rotation */
+ JXFORM_ROT_180, /* 180-degree rotation */
+ JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */
+} JXFORM_CODE;
+
+/*
+ * Codes for crop parameters, which can individually be unspecified,
+ * positive, or negative. (Negative width or height makes no sense, though.)
+ */
+
+typedef enum {
+ JCROP_UNSET,
+ JCROP_POS,
+ JCROP_NEG
+} JCROP_CODE;
+
+/*
+ * Transform parameters struct.
+ * NB: application must not change any elements of this struct after
+ * calling jtransform_request_workspace.
+ */
+
+typedef struct {
+ /* Options: set by caller */
+ JXFORM_CODE transform; /* image transform operator */
+ boolean perfect; /* if TRUE, fail if partial MCUs are requested */
+ boolean trim; /* if TRUE, trim partial MCUs as needed */
+ boolean force_grayscale; /* if TRUE, convert color image to grayscale */
+ boolean crop; /* if TRUE, crop source image */
+
+ /* Crop parameters: application need not set these unless crop is TRUE.
+ * These can be filled in by jtransform_parse_crop_spec().
+ */
+ JDIMENSION crop_width; /* Width of selected region */
+ JCROP_CODE crop_width_set;
+ JDIMENSION crop_height; /* Height of selected region */
+ JCROP_CODE crop_height_set;
+ JDIMENSION crop_xoffset; /* X offset of selected region */
+ JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
+ JDIMENSION crop_yoffset; /* Y offset of selected region */
+ JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
+
+ /* Internal workspace: caller should not touch these */
+ int num_components; /* # of components in workspace */
+ jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
+ JDIMENSION output_width; /* cropped destination dimensions */
+ JDIMENSION output_height;
+ JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
+ JDIMENSION y_crop_offset;
+ int iMCU_sample_width; /* destination iMCU size */
+ int iMCU_sample_height;
+} jpeg_transform_info;
+
+
+#if TRANSFORMS_SUPPORTED
+
+/* Parse a crop specification (written in X11 geometry style) */
+EXTERN(boolean) jtransform_parse_crop_spec
+ JPP((jpeg_transform_info *info, const char *spec));
+/* Request any required workspace */
+EXTERN(boolean) jtransform_request_workspace
+ JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
+/* Adjust output image parameters */
+EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info));
+/* Execute the actual transformation, if any */
+EXTERN(void) jtransform_execute_transform
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info));
+/* Determine whether lossless transformation is perfectly
+ * possible for a specified image and transformation.
+ */
+EXTERN(boolean) jtransform_perfect_transform
+ JPP((JDIMENSION image_width, JDIMENSION image_height,
+ int MCU_width, int MCU_height,
+ JXFORM_CODE transform));
+
+/* jtransform_execute_transform used to be called
+ * jtransform_execute_transformation, but some compilers complain about
+ * routine names that long. This macro is here to avoid breaking any
+ * old source code that uses the original name...
+ */
+#define jtransform_execute_transformation jtransform_execute_transform
+
+#endif /* TRANSFORMS_SUPPORTED */
+
+
+/*
+ * Support for copying optional markers from source to destination file.
+ */
+
+typedef enum {
+ JCOPYOPT_NONE, /* copy no optional markers */
+ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
+ JCOPYOPT_ALL /* copy all optional markers */
+} JCOPY_OPTION;
+
+#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
+
+/* Setup decompression object to save desired markers in memory */
+EXTERN(void) jcopy_markers_setup
+ JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
+/* Copy markers saved in the given source object to the destination object */
+EXTERN(void) jcopy_markers_execute
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JCOPY_OPTION option));
diff --git a/src/3rdparty/libjpeg/usage.txt b/src/3rdparty/libjpeg/usage.txt
new file mode 100644
index 0000000..6e8546a
--- /dev/null
+++ b/src/3rdparty/libjpeg/usage.txt
@@ -0,0 +1,617 @@
+USAGE instructions for the Independent JPEG Group's JPEG software
+=================================================================
+
+This file describes usage of the JPEG conversion programs cjpeg and djpeg,
+as well as the utility programs jpegtran, rdjpgcom and wrjpgcom. (See
+the other documentation files if you wish to use the JPEG library within
+your own programs.)
+
+If you are on a Unix machine you may prefer to read the Unix-style manual
+pages in files cjpeg.1, djpeg.1, jpegtran.1, rdjpgcom.1, wrjpgcom.1.
+
+
+INTRODUCTION
+
+These programs implement JPEG image encoding, decoding, and transcoding.
+JPEG (pronounced "jay-peg") is a standardized compression method for
+full-color and gray-scale images.
+
+
+GENERAL USAGE
+
+We provide two programs, cjpeg to compress an image file into JPEG format,
+and djpeg to decompress a JPEG file back into a conventional image format.
+
+On Unix-like systems, you say:
+ cjpeg [switches] [imagefile] >jpegfile
+or
+ djpeg [switches] [jpegfile] >imagefile
+The programs read the specified input file, or standard input if none is
+named. They always write to standard output (with trace/error messages to
+standard error). These conventions are handy for piping images between
+programs.
+
+On most non-Unix systems, you say:
+ cjpeg [switches] imagefile jpegfile
+or
+ djpeg [switches] jpegfile imagefile
+i.e., both the input and output files are named on the command line. This
+style is a little more foolproof, and it loses no functionality if you don't
+have pipes. (You can get this style on Unix too, if you prefer, by defining
+TWO_FILE_COMMANDLINE when you compile the programs; see install.txt.)
+
+You can also say:
+ cjpeg [switches] -outfile jpegfile imagefile
+or
+ djpeg [switches] -outfile imagefile jpegfile
+This syntax works on all systems, so it is useful for scripts.
+
+The currently supported image file formats are: PPM (PBMPLUS color format),
+PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster Toolkit
+format). (RLE is supported only if the URT library is available.)
+cjpeg recognizes the input image format automatically, with the exception
+of some Targa-format files. You have to tell djpeg which format to generate.
+
+JPEG files are in the defacto standard JFIF file format. There are other,
+less widely used JPEG-based file formats, but we don't support them.
+
+All switch names may be abbreviated; for example, -grayscale may be written
+-gray or -gr. Most of the "basic" switches can be abbreviated to as little as
+one letter. Upper and lower case are equivalent (-BMP is the same as -bmp).
+British spellings are also accepted (e.g., -greyscale), though for brevity
+these are not mentioned below.
+
+
+CJPEG DETAILS
+
+The basic command line switches for cjpeg are:
+
+ -quality N[,...] Scale quantization tables to adjust image quality.
+ Quality is 0 (worst) to 100 (best); default is 75.
+ (See below for more info.)
+
+ -grayscale Create monochrome JPEG file from color input.
+ Be sure to use this switch when compressing a grayscale
+ BMP file, because cjpeg isn't bright enough to notice
+ whether a BMP file uses only shades of gray. By
+ saying -grayscale, you'll get a smaller JPEG file that
+ takes less time to process.
+
+ -optimize Perform optimization of entropy encoding parameters.
+ Without this, default encoding parameters are used.
+ -optimize usually makes the JPEG file a little smaller,
+ but cjpeg runs somewhat slower and needs much more
+ memory. Image quality and speed of decompression are
+ unaffected by -optimize.
+
+ -progressive Create progressive JPEG file (see below).
+
+ -scale M/N Scale the output image by a factor M/N. Currently
+ supported scale factors are 8/N with all N from 1 to
+ 16.
+
+ -targa Input file is Targa format. Targa files that contain
+ an "identification" field will not be automatically
+ recognized by cjpeg; for such files you must specify
+ -targa to make cjpeg treat the input as Targa format.
+ For most Targa files, you won't need this switch.
+
+The -quality switch lets you trade off compressed file size against quality of
+the reconstructed image: the higher the quality setting, the larger the JPEG
+file, and the closer the output image will be to the original input. Normally
+you want to use the lowest quality setting (smallest file) that decompresses
+into something visually indistinguishable from the original image. For this
+purpose the quality setting should be between 50 and 95; the default of 75 is
+often about right. If you see defects at -quality 75, then go up 5 or 10
+counts at a time until you are happy with the output image. (The optimal
+setting will vary from one image to another.)
+
+-quality 100 will generate a quantization table of all 1's, minimizing loss
+in the quantization step (but there is still information loss in subsampling,
+as well as roundoff error). This setting is mainly of interest for
+experimental purposes. Quality values above about 95 are NOT recommended for
+normal use; the compressed file size goes up dramatically for hardly any gain
+in output image quality.
+
+In the other direction, quality values below 50 will produce very small files
+of low image quality. Settings around 5 to 10 might be useful in preparing an
+index of a large image library, for example. Try -quality 2 (or so) for some
+amusing Cubist effects. (Note: quality values below about 25 generate 2-byte
+quantization tables, which are considered optional in the JPEG standard.
+cjpeg emits a warning message when you give such a quality value, because some
+other JPEG programs may be unable to decode the resulting file. Use -baseline
+if you need to ensure compatibility at low quality values.)
+
+The -quality option has been extended in IJG version 7 for support of separate
+quality settings for luminance and chrominance (or in general, for every
+provided quantization table slot). This feature is useful for high-quality
+applications which cannot accept the damage of color data by coarse
+subsampling settings. You can now easily reduce the color data amount more
+smoothly with finer control without separate subsampling. The resulting file
+is fully compliant with standard JPEG decoders.
+Note that the -quality ratings refer to the quantization table slots, and that
+the last value is replicated if there are more q-table slots than parameters.
+The default q-table slots are 0 for luminance and 1 for chrominance with
+default tables as given in the JPEG standard. This is compatible with the old
+behaviour in case that only one parameter is given, which is then used for
+both luminance and chrominance (slots 0 and 1). More or custom quantization
+tables can be set with -qtables and assigned to components with -qslots
+parameter (see the "wizard" switches below).
+CAUTION: You must explicitly add -sample 1x1 for efficient separate color
+quality selection, since the default value used by library is 2x2!
+
+The -progressive switch creates a "progressive JPEG" file. In this type of
+JPEG file, the data is stored in multiple scans of increasing quality. If the
+file is being transmitted over a slow communications link, the decoder can use
+the first scan to display a low-quality image very quickly, and can then
+improve the display with each subsequent scan. The final image is exactly
+equivalent to a standard JPEG file of the same quality setting, and the total
+file size is about the same --- often a little smaller.
+
+Switches for advanced users:
+
+ -dct int Use integer DCT method (default).
+ -dct fast Use fast integer DCT (less accurate).
+ -dct float Use floating-point DCT method.
+ The float method is very slightly more accurate than
+ the int method, but is much slower unless your machine
+ has very fast floating-point hardware. Also note that
+ results of the floating-point method may vary slightly
+ across machines, while the integer methods should give
+ the same results everywhere. The fast integer method
+ is much less accurate than the other two.
+
+ -nosmooth Don't use high-quality downsampling.
+
+ -restart N Emit a JPEG restart marker every N MCU rows, or every
+ N MCU blocks if "B" is attached to the number.
+ -restart 0 (the default) means no restart markers.
+
+ -smooth N Smooth the input image to eliminate dithering noise.
+ N, ranging from 1 to 100, indicates the strength of
+ smoothing. 0 (the default) means no smoothing.
+
+ -maxmemory N Set limit for amount of memory to use in processing
+ large images. Value is in thousands of bytes, or
+ millions of bytes if "M" is attached to the number.
+ For example, -max 4m selects 4000000 bytes. If more
+ space is needed, temporary files will be used.
+
+ -verbose Enable debug printout. More -v's give more printout.
+ or -debug Also, version information is printed at startup.
+
+The -restart option inserts extra markers that allow a JPEG decoder to
+resynchronize after a transmission error. Without restart markers, any damage
+to a compressed file will usually ruin the image from the point of the error
+to the end of the image; with restart markers, the damage is usually confined
+to the portion of the image up to the next restart marker. Of course, the
+restart markers occupy extra space. We recommend -restart 1 for images that
+will be transmitted across unreliable networks such as Usenet.
+
+The -smooth option filters the input to eliminate fine-scale noise. This is
+often useful when converting dithered images to JPEG: a moderate smoothing
+factor of 10 to 50 gets rid of dithering patterns in the input file, resulting
+in a smaller JPEG file and a better-looking image. Too large a smoothing
+factor will visibly blur the image, however.
+
+Switches for wizards:
+
+ -arithmetic Use arithmetic coding. CAUTION: arithmetic coded JPEG
+ is not yet widely implemented, so many decoders will
+ be unable to view an arithmetic coded JPEG file at
+ all.
+
+ -baseline Force baseline-compatible quantization tables to be
+ generated. This clamps quantization values to 8 bits
+ even at low quality settings. (This switch is poorly
+ named, since it does not ensure that the output is
+ actually baseline JPEG. For example, you can use
+ -baseline and -progressive together.)
+
+ -qtables file Use the quantization tables given in the specified
+ text file.
+
+ -qslots N[,...] Select which quantization table to use for each color
+ component.
+
+ -sample HxV[,...] Set JPEG sampling factors for each color component.
+
+ -scans file Use the scan script given in the specified text file.
+
+The "wizard" switches are intended for experimentation with JPEG. If you
+don't know what you are doing, DON'T USE THEM. These switches are documented
+further in the file wizard.txt.
+
+
+DJPEG DETAILS
+
+The basic command line switches for djpeg are:
+
+ -colors N Reduce image to at most N colors. This reduces the
+ or -quantize N number of colors used in the output image, so that it
+ can be displayed on a colormapped display or stored in
+ a colormapped file format. For example, if you have
+ an 8-bit display, you'd need to reduce to 256 or fewer
+ colors. (-colors is the recommended name, -quantize
+ is provided only for backwards compatibility.)
+
+ -fast Select recommended processing options for fast, low
+ quality output. (The default options are chosen for
+ highest quality output.) Currently, this is equivalent
+ to "-dct fast -nosmooth -onepass -dither ordered".
+
+ -grayscale Force gray-scale output even if JPEG file is color.
+ Useful for viewing on monochrome displays; also,
+ djpeg runs noticeably faster in this mode.
+
+ -scale M/N Scale the output image by a factor M/N. Currently
+ supported scale factors are M/N with all M from 1 to
+ 16, where N is the source DCT size, which is 8 for
+ baseline JPEG. If the /N part is omitted, then M
+ specifies the DCT scaled size to be applied on the
+ given input. For baseline JPEG this is equivalent to
+ M/8 scaling, since the source DCT size for baseline
+ JPEG is 8. Scaling is handy if the image is larger
+ than your screen; also, djpeg runs much faster when
+ scaling down the output.
+
+ -bmp Select BMP output format (Windows flavor). 8-bit
+ colormapped format is emitted if -colors or -grayscale
+ is specified, or if the JPEG file is gray-scale;
+ otherwise, 24-bit full-color format is emitted.
+
+ -gif Select GIF output format. Since GIF does not support
+ more than 256 colors, -colors 256 is assumed (unless
+ you specify a smaller number of colors). If you
+ specify -fast, the default number of colors is 216.
+
+ -os2 Select BMP output format (OS/2 1.x flavor). 8-bit
+ colormapped format is emitted if -colors or -grayscale
+ is specified, or if the JPEG file is gray-scale;
+ otherwise, 24-bit full-color format is emitted.
+
+ -pnm Select PBMPLUS (PPM/PGM) output format (this is the
+ default format). PGM is emitted if the JPEG file is
+ gray-scale or if -grayscale is specified; otherwise
+ PPM is emitted.
+
+ -rle Select RLE output format. (Requires URT library.)
+
+ -targa Select Targa output format. Gray-scale format is
+ emitted if the JPEG file is gray-scale or if
+ -grayscale is specified; otherwise, colormapped format
+ is emitted if -colors is specified; otherwise, 24-bit
+ full-color format is emitted.
+
+Switches for advanced users:
+
+ -dct int Use integer DCT method (default).
+ -dct fast Use fast integer DCT (less accurate).
+ -dct float Use floating-point DCT method.
+ The float method is very slightly more accurate than
+ the int method, but is much slower unless your machine
+ has very fast floating-point hardware. Also note that
+ results of the floating-point method may vary slightly
+ across machines, while the integer methods should give
+ the same results everywhere. The fast integer method
+ is much less accurate than the other two.
+
+ -dither fs Use Floyd-Steinberg dithering in color quantization.
+ -dither ordered Use ordered dithering in color quantization.
+ -dither none Do not use dithering in color quantization.
+ By default, Floyd-Steinberg dithering is applied when
+ quantizing colors; this is slow but usually produces
+ the best results. Ordered dither is a compromise
+ between speed and quality; no dithering is fast but
+ usually looks awful. Note that these switches have
+ no effect unless color quantization is being done.
+ Ordered dither is only available in -onepass mode.
+
+ -map FILE Quantize to the colors used in the specified image
+ file. This is useful for producing multiple files
+ with identical color maps, or for forcing a predefined
+ set of colors to be used. The FILE must be a GIF
+ or PPM file. This option overrides -colors and
+ -onepass.
+
+ -nosmooth Don't use high-quality upsampling.
+
+ -onepass Use one-pass instead of two-pass color quantization.
+ The one-pass method is faster and needs less memory,
+ but it produces a lower-quality image. -onepass is
+ ignored unless you also say -colors N. Also,
+ the one-pass method is always used for gray-scale
+ output (the two-pass method is no improvement then).
+
+ -maxmemory N Set limit for amount of memory to use in processing
+ large images. Value is in thousands of bytes, or
+ millions of bytes if "M" is attached to the number.
+ For example, -max 4m selects 4000000 bytes. If more
+ space is needed, temporary files will be used.
+
+ -verbose Enable debug printout. More -v's give more printout.
+ or -debug Also, version information is printed at startup.
+
+
+HINTS FOR CJPEG
+
+Color GIF files are not the ideal input for JPEG; JPEG is really intended for
+compressing full-color (24-bit) images. In particular, don't try to convert
+cartoons, line drawings, and other images that have only a few distinct
+colors. GIF works great on these, JPEG does not. If you want to convert a
+GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options
+to get a satisfactory conversion. -smooth 10 or so is often helpful.
+
+Avoid running an image through a series of JPEG compression/decompression
+cycles. Image quality loss will accumulate; after ten or so cycles the image
+may be noticeably worse than it was after one cycle. It's best to use a
+lossless format while manipulating an image, then convert to JPEG format when
+you are ready to file the image away.
+
+The -optimize option to cjpeg is worth using when you are making a "final"
+version for posting or archiving. It's also a win when you are using low
+quality settings to make very small JPEG files; the percentage improvement
+is often a lot more than it is on larger files. (At present, -optimize
+mode is always selected when generating progressive JPEG files.)
+
+GIF input files are no longer supported, to avoid the Unisys LZW patent.
+(Conversion of GIF files to JPEG is usually a bad idea anyway.)
+
+
+HINTS FOR DJPEG
+
+To get a quick preview of an image, use the -grayscale and/or -scale switches.
+"-grayscale -scale 1/8" is the fastest case.
+
+Several options are available that trade off image quality to gain speed.
+"-fast" turns on the recommended settings.
+
+"-dct fast" and/or "-nosmooth" gain speed at a small sacrifice in quality.
+When producing a color-quantized image, "-onepass -dither ordered" is fast but
+much lower quality than the default behavior. "-dither none" may give
+acceptable results in two-pass mode, but is seldom tolerable in one-pass mode.
+
+If you are fortunate enough to have very fast floating point hardware,
+"-dct float" may be even faster than "-dct fast". But on most machines
+"-dct float" is slower than "-dct int"; in this case it is not worth using,
+because its theoretical accuracy advantage is too small to be significant
+in practice.
+
+Two-pass color quantization requires a good deal of memory; on MS-DOS machines
+it may run out of memory even with -maxmemory 0. In that case you can still
+decompress, with some loss of image quality, by specifying -onepass for
+one-pass quantization.
+
+To avoid the Unisys LZW patent, djpeg produces uncompressed GIF files. These
+are larger than they should be, but are readable by standard GIF decoders.
+
+
+HINTS FOR BOTH PROGRAMS
+
+If more space is needed than will fit in the available main memory (as
+determined by -maxmemory), temporary files will be used. (MS-DOS versions
+will try to get extended or expanded memory first.) The temporary files are
+often rather large: in typical cases they occupy three bytes per pixel, for
+example 3*800*600 = 1.44Mb for an 800x600 image. If you don't have enough
+free disk space, leave out -progressive and -optimize (for cjpeg) or specify
+-onepass (for djpeg).
+
+On MS-DOS, the temporary files are created in the directory named by the TMP
+or TEMP environment variable, or in the current directory if neither of those
+exist. Amiga implementations put the temp files in the directory named by
+JPEGTMP:, so be sure to assign JPEGTMP: to a disk partition with adequate free
+space.
+
+The default memory usage limit (-maxmemory) is set when the software is
+compiled. If you get an "insufficient memory" error, try specifying a smaller
+-maxmemory value, even -maxmemory 0 to use the absolute minimum space. You
+may want to recompile with a smaller default value if this happens often.
+
+On machines that have "environment" variables, you can define the environment
+variable JPEGMEM to set the default memory limit. The value is specified as
+described for the -maxmemory switch. JPEGMEM overrides the default value
+specified when the program was compiled, and itself is overridden by an
+explicit -maxmemory switch.
+
+On MS-DOS machines, -maxmemory is the amount of main (conventional) memory to
+use. (Extended or expanded memory is also used if available.) Most
+DOS-specific versions of this software do their own memory space estimation
+and do not need you to specify -maxmemory.
+
+
+JPEGTRAN
+
+jpegtran performs various useful transformations of JPEG files.
+It can translate the coded representation from one variant of JPEG to another,
+for example from baseline JPEG to progressive JPEG or vice versa. It can also
+perform some rearrangements of the image data, for example turning an image
+from landscape to portrait format by rotation.
+
+jpegtran works by rearranging the compressed data (DCT coefficients), without
+ever fully decoding the image. Therefore, its transformations are lossless:
+there is no image degradation at all, which would not be true if you used
+djpeg followed by cjpeg to accomplish the same conversion. But by the same
+token, jpegtran cannot perform lossy operations such as changing the image
+quality.
+
+jpegtran uses a command line syntax similar to cjpeg or djpeg.
+On Unix-like systems, you say:
+ jpegtran [switches] [inputfile] >outputfile
+On most non-Unix systems, you say:
+ jpegtran [switches] inputfile outputfile
+where both the input and output files are JPEG files.
+
+To specify the coded JPEG representation used in the output file,
+jpegtran accepts a subset of the switches recognized by cjpeg:
+ -optimize Perform optimization of entropy encoding parameters.
+ -progressive Create progressive JPEG file.
+ -restart N Emit a JPEG restart marker every N MCU rows, or every
+ N MCU blocks if "B" is attached to the number.
+ -arithmetic Use arithmetic coding.
+ -scans file Use the scan script given in the specified text file.
+See the previous discussion of cjpeg for more details about these switches.
+If you specify none of these switches, you get a plain baseline-JPEG output
+file. The quality setting and so forth are determined by the input file.
+
+The image can be losslessly transformed by giving one of these switches:
+ -flip horizontal Mirror image horizontally (left-right).
+ -flip vertical Mirror image vertically (top-bottom).
+ -rotate 90 Rotate image 90 degrees clockwise.
+ -rotate 180 Rotate image 180 degrees.
+ -rotate 270 Rotate image 270 degrees clockwise (or 90 ccw).
+ -transpose Transpose image (across UL-to-LR axis).
+ -transverse Transverse transpose (across UR-to-LL axis).
+
+The transpose transformation has no restrictions regarding image dimensions.
+The other transformations operate rather oddly if the image dimensions are not
+a multiple of the iMCU size (usually 8 or 16 pixels), because they can only
+transform complete blocks of DCT coefficient data in the desired way.
+
+jpegtran's default behavior when transforming an odd-size image is designed
+to preserve exact reversibility and mathematical consistency of the
+transformation set. As stated, transpose is able to flip the entire image
+area. Horizontal mirroring leaves any partial iMCU column at the right edge
+untouched, but is able to flip all rows of the image. Similarly, vertical
+mirroring leaves any partial iMCU row at the bottom edge untouched, but is
+able to flip all columns. The other transforms can be built up as sequences
+of transpose and flip operations; for consistency, their actions on edge
+pixels are defined to be the same as the end result of the corresponding
+transpose-and-flip sequence.
+
+For practical use, you may prefer to discard any untransformable edge pixels
+rather than having a strange-looking strip along the right and/or bottom edges
+of a transformed image. To do this, add the -trim switch:
+ -trim Drop non-transformable edge blocks.
+Obviously, a transformation with -trim is not reversible, so strictly speaking
+jpegtran with this switch is not lossless. Also, the expected mathematical
+equivalences between the transformations no longer hold. For example,
+"-rot 270 -trim" trims only the bottom edge, but "-rot 90 -trim" followed by
+"-rot 180 -trim" trims both edges.
+
+If you are only interested in perfect transformation, add the -perfect switch:
+ -perfect Fails with an error if the transformation is not
+ perfect.
+For example you may want to do
+ jpegtran -rot 90 -perfect foo.jpg || djpeg foo.jpg | pnmflip -r90 | cjpeg
+to do a perfect rotation if available or an approximated one if not.
+
+We also offer a lossless-crop option, which discards data outside a given
+image region but losslessly preserves what is inside. Like the rotate and
+flip transforms, lossless crop is restricted by the current JPEG format: the
+upper left corner of the selected region must fall on an iMCU boundary. If
+this does not hold for the given crop parameters, we silently move the upper
+left corner up and/or left to make it so, simultaneously increasing the region
+dimensions to keep the lower right crop corner unchanged. (Thus, the output
+image covers at least the requested region, but may cover more.)
+
+The image can be losslessly cropped by giving the switch:
+ -crop WxH+X+Y Crop to a rectangular subarea of width W, height H
+ starting at point X,Y.
+
+Other not-strictly-lossless transformation switches are:
+
+ -grayscale Force grayscale output.
+This option discards the chrominance channels if the input image is YCbCr
+(ie, a standard color JPEG), resulting in a grayscale JPEG file. The
+luminance channel is preserved exactly, so this is a better method of reducing
+to grayscale than decompression, conversion, and recompression. This switch
+is particularly handy for fixing a monochrome picture that was mistakenly
+encoded as a color JPEG. (In such a case, the space savings from getting rid
+of the near-empty chroma channels won't be large; but the decoding time for
+a grayscale JPEG is substantially less than that for a color JPEG.)
+
+ -scale M/N Scale the output image by a factor M/N.
+Currently supported scale factors are M/N with all M from 1 to 16, where N is
+the source DCT size, which is 8 for baseline JPEG. If the /N part is omitted,
+then M specifies the DCT scaled size to be applied on the given input. For
+baseline JPEG this is equivalent to M/8 scaling, since the source DCT size
+for baseline JPEG is 8. CAUTION: An implementation of the JPEG SmartScale
+extension is required for this feature. SmartScale enabled JPEG is not yet
+widely implemented, so many decoders will be unable to view a SmartScale
+extended JPEG file at all.
+
+jpegtran also recognizes these switches that control what to do with "extra"
+markers, such as comment blocks:
+ -copy none Copy no extra markers from source file. This setting
+ suppresses all comments and other excess baggage
+ present in the source file.
+ -copy comments Copy only comment markers. This setting copies
+ comments from the source file, but discards
+ any other inessential (for image display) data.
+ -copy all Copy all extra markers. This setting preserves
+ miscellaneous markers found in the source file, such
+ as JFIF thumbnails, Exif data, and Photoshop settings.
+ In some files these extra markers can be sizable.
+The default behavior is -copy comments. (Note: in IJG releases v6 and v6a,
+jpegtran always did the equivalent of -copy none.)
+
+Additional switches recognized by jpegtran are:
+ -outfile filename
+ -maxmemory N
+ -verbose
+ -debug
+These work the same as in cjpeg or djpeg.
+
+
+THE COMMENT UTILITIES
+
+The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.
+Although the standard doesn't actually define what COM blocks are for, they
+are widely used to hold user-supplied text strings. This lets you add
+annotations, titles, index terms, etc to your JPEG files, and later retrieve
+them as text. COM blocks do not interfere with the image stored in the JPEG
+file. The maximum size of a COM block is 64K, but you can have as many of
+them as you like in one JPEG file.
+
+We provide two utility programs to display COM block contents and add COM
+blocks to a JPEG file.
+
+rdjpgcom searches a JPEG file and prints the contents of any COM blocks on
+standard output. The command line syntax is
+ rdjpgcom [-raw] [-verbose] [inputfilename]
+The switch "-raw" (or just "-r") causes rdjpgcom to also output non-printable
+characters in comments, which are normally escaped for security reasons.
+The switch "-verbose" (or just "-v") causes rdjpgcom to also display the JPEG
+image dimensions. If you omit the input file name from the command line,
+the JPEG file is read from standard input. (This may not work on some
+operating systems, if binary data can't be read from stdin.)
+
+wrjpgcom adds a COM block, containing text you provide, to a JPEG file.
+Ordinarily, the COM block is added after any existing COM blocks, but you
+can delete the old COM blocks if you wish. wrjpgcom produces a new JPEG
+file; it does not modify the input file. DO NOT try to overwrite the input
+file by directing wrjpgcom's output back into it; on most systems this will
+just destroy your file.
+
+The command line syntax for wrjpgcom is similar to cjpeg's. On Unix-like
+systems, it is
+ wrjpgcom [switches] [inputfilename]
+The output file is written to standard output. The input file comes from
+the named file, or from standard input if no input file is named.
+
+On most non-Unix systems, the syntax is
+ wrjpgcom [switches] inputfilename outputfilename
+where both input and output file names must be given explicitly.
+
+wrjpgcom understands three switches:
+ -replace Delete any existing COM blocks from the file.
+ -comment "Comment text" Supply new COM text on command line.
+ -cfile name Read text for new COM block from named file.
+(Switch names can be abbreviated.) If you have only one line of comment text
+to add, you can provide it on the command line with -comment. The comment
+text must be surrounded with quotes so that it is treated as a single
+argument. Longer comments can be read from a text file.
+
+If you give neither -comment nor -cfile, then wrjpgcom will read the comment
+text from standard input. (In this case an input image file name MUST be
+supplied, so that the source JPEG file comes from somewhere else.) You can
+enter multiple lines, up to 64KB worth. Type an end-of-file indicator
+(usually control-D or control-Z) to terminate the comment text entry.
+
+wrjpgcom will not add a COM block if the provided comment string is empty.
+Therefore -replace -comment "" can be used to delete all COM blocks from a
+file.
+
+These utility programs do not depend on the IJG JPEG library. In
+particular, the source code for rdjpgcom is intended as an illustration of
+the minimum amount of code required to parse a JPEG file header correctly.
diff --git a/src/3rdparty/libjpeg/wizard.txt b/src/3rdparty/libjpeg/wizard.txt
new file mode 100644
index 0000000..54170b2
--- /dev/null
+++ b/src/3rdparty/libjpeg/wizard.txt
@@ -0,0 +1,211 @@
+Advanced usage instructions for the Independent JPEG Group's JPEG software
+==========================================================================
+
+This file describes cjpeg's "switches for wizards".
+
+The "wizard" switches are intended for experimentation with JPEG by persons
+who are reasonably knowledgeable about the JPEG standard. If you don't know
+what you are doing, DON'T USE THESE SWITCHES. You'll likely produce files
+with worse image quality and/or poorer compression than you'd get from the
+default settings. Furthermore, these switches must be used with caution
+when making files intended for general use, because not all JPEG decoders
+will support unusual JPEG parameter settings.
+
+
+Quantization Table Adjustment
+-----------------------------
+
+Ordinarily, cjpeg starts with a default set of tables (the same ones given
+as examples in the JPEG standard) and scales them up or down according to
+the -quality setting. The details of the scaling algorithm can be found in
+jcparam.c. At very low quality settings, some quantization table entries
+can get scaled up to values exceeding 255. Although 2-byte quantization
+values are supported by the IJG software, this feature is not in baseline
+JPEG and is not supported by all implementations. If you need to ensure
+wide compatibility of low-quality files, you can constrain the scaled
+quantization values to no more than 255 by giving the -baseline switch.
+Note that use of -baseline will result in poorer quality for the same file
+size, since more bits than necessary are expended on higher AC coefficients.
+
+You can substitute a different set of quantization values by using the
+-qtables switch:
+
+ -qtables file Use the quantization tables given in the named file.
+
+The specified file should be a text file containing decimal quantization
+values. The file should contain one to four tables, each of 64 elements.
+The tables are implicitly numbered 0,1,etc. in order of appearance. Table
+entries appear in normal array order (NOT in the zigzag order in which they
+will be stored in the JPEG file).
+
+Quantization table files are free format, in that arbitrary whitespace can
+appear between numbers. Also, comments can be included: a comment starts
+with '#' and extends to the end of the line. Here is an example file that
+duplicates the default quantization tables:
+
+ # Quantization tables given in JPEG spec, section K.1
+
+ # This is table 0 (the luminance table):
+ 16 11 10 16 24 40 51 61
+ 12 12 14 19 26 58 60 55
+ 14 13 16 24 40 57 69 56
+ 14 17 22 29 51 87 80 62
+ 18 22 37 56 68 109 103 77
+ 24 35 55 64 81 104 113 92
+ 49 64 78 87 103 121 120 101
+ 72 92 95 98 112 100 103 99
+
+ # This is table 1 (the chrominance table):
+ 17 18 24 47 99 99 99 99
+ 18 21 26 66 99 99 99 99
+ 24 26 56 99 99 99 99 99
+ 47 66 99 99 99 99 99 99
+ 99 99 99 99 99 99 99 99
+ 99 99 99 99 99 99 99 99
+ 99 99 99 99 99 99 99 99
+ 99 99 99 99 99 99 99 99
+
+If the -qtables switch is used without -quality, then the specified tables
+are used exactly as-is. If both -qtables and -quality are used, then the
+tables taken from the file are scaled in the same fashion that the default
+tables would be scaled for that quality setting. If -baseline appears, then
+the quantization values are constrained to the range 1-255.
+
+By default, cjpeg will use quantization table 0 for luminance components and
+table 1 for chrominance components. To override this choice, use the -qslots
+switch:
+
+ -qslots N[,...] Select which quantization table to use for
+ each color component.
+
+The -qslots switch specifies a quantization table number for each color
+component, in the order in which the components appear in the JPEG SOF marker.
+For example, to create a separate table for each of Y,Cb,Cr, you could
+provide a -qtables file that defines three quantization tables and say
+"-qslots 0,1,2". If -qslots gives fewer table numbers than there are color
+components, then the last table number is repeated as necessary.
+
+
+Sampling Factor Adjustment
+--------------------------
+
+By default, cjpeg uses 2:1 horizontal and vertical downsampling when
+compressing YCbCr data, and no downsampling for all other color spaces.
+You can override this default with the -sample switch:
+
+ -sample HxV[,...] Set JPEG sampling factors for each color
+ component.
+
+The -sample switch specifies the JPEG sampling factors for each color
+component, in the order in which they appear in the JPEG SOF marker.
+If you specify fewer HxV pairs than there are components, the remaining
+components are set to 1x1 sampling. For example, the default YCbCr setting
+is equivalent to "-sample 2x2,1x1,1x1", which can be abbreviated to
+"-sample 2x2".
+
+There are still some JPEG decoders in existence that support only 2x1
+sampling (also called 4:2:2 sampling). Compatibility with such decoders can
+be achieved by specifying "-sample 2x1". This is not recommended unless
+really necessary, since it increases file size and encoding/decoding time
+with very little quality gain.
+
+
+Multiple Scan / Progression Control
+-----------------------------------
+
+By default, cjpeg emits a single-scan sequential JPEG file. The
+-progressive switch generates a progressive JPEG file using a default series
+of progression parameters. You can create multiple-scan sequential JPEG
+files or progressive JPEG files with custom progression parameters by using
+the -scans switch:
+
+ -scans file Use the scan sequence given in the named file.
+
+The specified file should be a text file containing a "scan script".
+The script specifies the contents and ordering of the scans to be emitted.
+Each entry in the script defines one scan. A scan definition specifies
+the components to be included in the scan, and for progressive JPEG it also
+specifies the progression parameters Ss,Se,Ah,Al for the scan. Scan
+definitions are separated by semicolons (';'). A semicolon after the last
+scan definition is optional.
+
+Each scan definition contains one to four component indexes, optionally
+followed by a colon (':') and the four progressive-JPEG parameters. The
+component indexes denote which color component(s) are to be transmitted in
+the scan. Components are numbered in the order in which they appear in the
+JPEG SOF marker, with the first component being numbered 0. (Note that these
+indexes are not the "component ID" codes assigned to the components, just
+positional indexes.)
+
+The progression parameters for each scan are:
+ Ss Zigzag index of first coefficient included in scan
+ Se Zigzag index of last coefficient included in scan
+ Ah Zero for first scan of a coefficient, else Al of prior scan
+ Al Successive approximation low bit position for scan
+If the progression parameters are omitted, the values 0,63,0,0 are used,
+producing a sequential JPEG file. cjpeg automatically determines whether
+the script represents a progressive or sequential file, by observing whether
+Ss and Se values other than 0 and 63 appear. (The -progressive switch is
+not needed to specify this; in fact, it is ignored when -scans appears.)
+The scan script must meet the JPEG restrictions on progression sequences.
+(cjpeg checks that the spec's requirements are obeyed.)
+
+Scan script files are free format, in that arbitrary whitespace can appear
+between numbers and around punctuation. Also, comments can be included: a
+comment starts with '#' and extends to the end of the line. For additional
+legibility, commas or dashes can be placed between values. (Actually, any
+single punctuation character other than ':' or ';' can be inserted.) For
+example, the following two scan definitions are equivalent:
+ 0 1 2: 0 63 0 0;
+ 0,1,2 : 0-63, 0,0 ;
+
+Here is an example of a scan script that generates a partially interleaved
+sequential JPEG file:
+
+ 0; # Y only in first scan
+ 1 2; # Cb and Cr in second scan
+
+Here is an example of a progressive scan script using only spectral selection
+(no successive approximation):
+
+ # Interleaved DC scan for Y,Cb,Cr:
+ 0,1,2: 0-0, 0, 0 ;
+ # AC scans:
+ 0: 1-2, 0, 0 ; # First two Y AC coefficients
+ 0: 3-5, 0, 0 ; # Three more
+ 1: 1-63, 0, 0 ; # All AC coefficients for Cb
+ 2: 1-63, 0, 0 ; # All AC coefficients for Cr
+ 0: 6-9, 0, 0 ; # More Y coefficients
+ 0: 10-63, 0, 0 ; # Remaining Y coefficients
+
+Here is an example of a successive-approximation script. This is equivalent
+to the default script used by "cjpeg -progressive" for YCbCr images:
+
+ # Initial DC scan for Y,Cb,Cr (lowest bit not sent)
+ 0,1,2: 0-0, 0, 1 ;
+ # First AC scan: send first 5 Y AC coefficients, minus 2 lowest bits:
+ 0: 1-5, 0, 2 ;
+ # Send all Cr,Cb AC coefficients, minus lowest bit:
+ # (chroma data is usually too small to be worth subdividing further;
+ # but note we send Cr first since eye is least sensitive to Cb)
+ 2: 1-63, 0, 1 ;
+ 1: 1-63, 0, 1 ;
+ # Send remaining Y AC coefficients, minus 2 lowest bits:
+ 0: 6-63, 0, 2 ;
+ # Send next-to-lowest bit of all Y AC coefficients:
+ 0: 1-63, 2, 1 ;
+ # At this point we've sent all but the lowest bit of all coefficients.
+ # Send lowest bit of DC coefficients
+ 0,1,2: 0-0, 1, 0 ;
+ # Send lowest bit of AC coefficients
+ 2: 1-63, 1, 0 ;
+ 1: 1-63, 1, 0 ;
+ # Y AC lowest bit scan is last; it's usually the largest scan
+ 0: 1-63, 1, 0 ;
+
+It may be worth pointing out that this script is tuned for quality settings
+of around 50 to 75. For lower quality settings, you'd probably want to use
+a script with fewer stages of successive approximation (otherwise the
+initial scans will be really bad). For higher quality settings, you might
+want to use more stages of successive approximation (so that the initial
+scans are not too large).
diff --git a/src/3rdparty/libjpeg/wrjpgcom.1 b/src/3rdparty/libjpeg/wrjpgcom.1
new file mode 100644
index 0000000..d419a99
--- /dev/null
+++ b/src/3rdparty/libjpeg/wrjpgcom.1
@@ -0,0 +1,103 @@
+.TH WRJPGCOM 1 "15 June 1995"
+.SH NAME
+wrjpgcom \- insert text comments into a JPEG file
+.SH SYNOPSIS
+.B wrjpgcom
+[
+.B \-replace
+]
+[
+.BI \-comment " text"
+]
+[
+.BI \-cfile " name"
+]
+[
+.I filename
+]
+.LP
+.SH DESCRIPTION
+.LP
+.B wrjpgcom
+reads the named JPEG/JFIF file, or the standard input if no file is named,
+and generates a new JPEG/JFIF file on standard output. A comment block is
+added to the file.
+.PP
+The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.
+Although the standard doesn't actually define what COM blocks are for, they
+are widely used to hold user-supplied text strings. This lets you add
+annotations, titles, index terms, etc to your JPEG files, and later retrieve
+them as text. COM blocks do not interfere with the image stored in the JPEG
+file. The maximum size of a COM block is 64K, but you can have as many of
+them as you like in one JPEG file.
+.PP
+.B wrjpgcom
+adds a COM block, containing text you provide, to a JPEG file.
+Ordinarily, the COM block is added after any existing COM blocks; but you
+can delete the old COM blocks if you wish.
+.SH OPTIONS
+Switch names may be abbreviated, and are not case sensitive.
+.TP
+.B \-replace
+Delete any existing COM blocks from the file.
+.TP
+.BI \-comment " text"
+Supply text for new COM block on command line.
+.TP
+.BI \-cfile " name"
+Read text for new COM block from named file.
+.PP
+If you have only one line of comment text to add, you can provide it on the
+command line with
+.BR \-comment .
+The comment text must be surrounded with quotes so that it is treated as a
+single argument. Longer comments can be read from a text file.
+.PP
+If you give neither
+.B \-comment
+nor
+.BR \-cfile ,
+then
+.B wrjpgcom
+will read the comment text from standard input. (In this case an input image
+file name MUST be supplied, so that the source JPEG file comes from somewhere
+else.) You can enter multiple lines, up to 64KB worth. Type an end-of-file
+indicator (usually control-D) to terminate the comment text entry.
+.PP
+.B wrjpgcom
+will not add a COM block if the provided comment string is empty. Therefore
+\fB\-replace \-comment ""\fR can be used to delete all COM blocks from a file.
+.SH EXAMPLES
+.LP
+Add a short comment to in.jpg, producing out.jpg:
+.IP
+.B wrjpgcom \-c
+\fI"View of my back yard" in.jpg
+.B >
+.I out.jpg
+.PP
+Attach a long comment previously stored in comment.txt:
+.IP
+.B wrjpgcom
+.I in.jpg
+.B <
+.I comment.txt
+.B >
+.I out.jpg
+.PP
+or equivalently
+.IP
+.B wrjpgcom
+.B -cfile
+.I comment.txt
+.B <
+.I in.jpg
+.B >
+.I out.jpg
+.SH SEE ALSO
+.BR cjpeg (1),
+.BR djpeg (1),
+.BR jpegtran (1),
+.BR rdjpgcom (1)
+.SH AUTHOR
+Independent JPEG Group