diff options
Diffstat (limited to 'tests/arthur/common/lookup3.cpp')
-rw-r--r-- | tests/arthur/common/lookup3.cpp | 786 |
1 files changed, 786 insertions, 0 deletions
diff --git a/tests/arthur/common/lookup3.cpp b/tests/arthur/common/lookup3.cpp new file mode 100644 index 0000000..8cdc64b --- /dev/null +++ b/tests/arthur/common/lookup3.cpp @@ -0,0 +1,786 @@ +/**************************************************************************** +** +** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). +** All rights reserved. +** Contact: Nokia Corporation (qt-info@nokia.com) +** +** This file is part of the test suite of the Qt Toolkit. +** +** $QT_BEGIN_LICENSE:LGPL$ +** No Commercial Usage +** This file contains pre-release code and may not be distributed. +** You may use this file in accordance with the terms and conditions +** contained in the Technology Preview License Agreement accompanying +** this package. +** +** GNU Lesser General Public License Usage +** Alternatively, this file may be used under the terms of the GNU Lesser +** General Public License version 2.1 as published by the Free Software +** Foundation and appearing in the file LICENSE.LGPL included in the +** packaging of this file. Please review the following information to +** ensure the GNU Lesser General Public License version 2.1 requirements +** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. +** +** In addition, as a special exception, Nokia gives you certain additional +** rights. These rights are described in the Nokia Qt LGPL Exception +** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. +** +** If you have questions regarding the use of this file, please contact +** Nokia at qt-info@nokia.com. +** +** +** +** +** +** +** +** +** $QT_END_LICENSE$ +** +****************************************************************************/ + + +/* +These functions are based on: + +------------------------------------------------------------------------------- +lookup3.c, by Bob Jenkins, May 2006, Public Domain. + +These are functions for producing 32-bit hashes for hash table lookup. +hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() +are externally useful functions. Routines to test the hash are included +if SELF_TEST is defined. You can use this free for any purpose. It's in +the public domain. It has no warranty. + +You probably want to use hashlittle(). hashlittle() and hashbig() +hash byte arrays. hashlittle() is is faster than hashbig() on +little-endian machines. Intel and AMD are little-endian machines. +On second thought, you probably want hashlittle2(), which is identical to +hashlittle() except it returns two 32-bit hashes for the price of one. +You could implement hashbig2() if you wanted but I haven't bothered here. + +If you want to find a hash of, say, exactly 7 integers, do + a = i1; b = i2; c = i3; + mix(a,b,c); + a += i4; b += i5; c += i6; + mix(a,b,c); + a += i7; + final(a,b,c); +then use c as the hash value. If you have a variable length array of +4-byte integers to hash, use hashword(). If you have a byte array (like +a character string), use hashlittle(). If you have several byte arrays, or +a mix of things, see the comments above hashlittle(). + +Why is this so big? I read 12 bytes at a time into 3 4-byte integers, +then mix those integers. This is fast (you can do a lot more thorough +mixing with 12*3 instructions on 3 integers than you can with 3 instructions +on 1 byte), but shoehorning those bytes into integers efficiently is messy. +------------------------------------------------------------------------------- +*/ + +#include <QtGlobal> + +#if Q_BYTE_ORDER == Q_BIG_ENDIAN +# define HASH_LITTLE_ENDIAN 0 +# define HASH_BIG_ENDIAN 1 +#else +# define HASH_LITTLE_ENDIAN 1 +# define HASH_BIG_ENDIAN 0 +#endif + +#define hashsize(n) ((quint32)1<<(n)) +#define hashmask(n) (hashsize(n)-1) +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +/* +------------------------------------------------------------------------------- +mix -- mix 3 32-bit values reversibly. + +This is reversible, so any information in (a,b,c) before mix() is +still in (a,b,c) after mix(). + +If four pairs of (a,b,c) inputs are run through mix(), or through +mix() in reverse, there are at least 32 bits of the output that +are sometimes the same for one pair and different for another pair. +This was tested for: +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that +satisfy this are + 4 6 8 16 19 4 + 9 15 3 18 27 15 + 14 9 3 7 17 3 +Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing +for "differ" defined as + with a one-bit base and a two-bit delta. I +used http://burtleburtle.net/bob/hash/avalanche.html to choose +the operations, constants, and arrangements of the variables. + +This does not achieve avalanche. There are input bits of (a,b,c) +that fail to affect some output bits of (a,b,c), especially of a. The +most thoroughly mixed value is c, but it doesn't really even achieve +avalanche in c. + +This allows some parallelism. Read-after-writes are good at doubling +the number of bits affected, so the goal of mixing pulls in the opposite +direction as the goal of parallelism. I did what I could. Rotates +seem to cost as much as shifts on every machine I could lay my hands +on, and rotates are much kinder to the top and bottom bits, so I used +rotates. +------------------------------------------------------------------------------- +*/ +#define mix(a,b,c) \ +{ \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ +} + +/* +------------------------------------------------------------------------------- +final -- final mixing of 3 32-bit values (a,b,c) into c + +Pairs of (a,b,c) values differing in only a few bits will usually +produce values of c that look totally different. This was tested for +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +These constants passed: + 14 11 25 16 4 14 24 + 12 14 25 16 4 14 24 +and these came close: + 4 8 15 26 3 22 24 + 10 8 15 26 3 22 24 + 11 8 15 26 3 22 24 +------------------------------------------------------------------------------- +*/ +#define final(a,b,c) \ +{ \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ +} + +/* +-------------------------------------------------------------------- + This works on all machines. To be useful, it requires + -- that the key be an array of quint32's, and + -- that the length be the number of quint32's in the key + + The function hashword() is identical to hashlittle() on little-endian + machines, and identical to hashbig() on big-endian machines, + except that the length has to be measured in quint32s rather than in + bytes. hashlittle() is more complicated than hashword() only because + hashlittle() has to dance around fitting the key bytes into registers. +-------------------------------------------------------------------- +*/ +quint32 hashword( +const quint32 *k, /* the key, an array of quint32 values */ +size_t length, /* the length of the key, in quint32s */ +quint32 initval) /* the previous hash, or an arbitrary value */ +{ + quint32 a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (((quint32)length)<<2) + initval; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 quint32's */ + switch(length) /* all the case statements fall through */ + { + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + return c; +} + + +/* +-------------------------------------------------------------------- +hashword2() -- same as hashword(), but take two seeds and return two +32-bit values. pc and pb must both be nonnull, and *pc and *pb must +both be initialized with seeds. If you pass in (*pb)==0, the output +(*pc) will be the same as the return value from hashword(). +-------------------------------------------------------------------- +*/ +void hashword2 ( +const quint32 *k, /* the key, an array of quint32 values */ +size_t length, /* the length of the key, in quint32s */ +quint32 *pc, /* IN: seed OUT: primary hash value */ +quint32 *pb) /* IN: more seed OUT: secondary hash value */ +{ + quint32 a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((quint32)(length<<2)) + *pc; + c += *pb; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 quint32's */ + switch(length) /* all the case statements fall through */ + { + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + *pc=c; *pb=b; +} + + +/* +------------------------------------------------------------------------------- +hashlittle() -- hash a variable-length key into a 32-bit value + k : the key (the unaligned variable-length array of bytes) + length : the length of the key, counting by bytes + initval : can be any 4-byte value +Returns a 32-bit value. Every bit of the key affects every bit of +the return value. Two keys differing by one or two bits will have +totally different hash values. + +The best hash table sizes are powers of 2. There is no need to do +mod a prime (mod is sooo slow!). If you need less than 32 bits, +use a bitmask. For example, if you need only 10 bits, do + h = (h & hashmask(10)); +In which case, the hash table should have hashsize(10) elements. + +If you are hashing n strings (quint8 **)k, do it like this: + for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); + +By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this +code any way you wish, private, educational, or commercial. It's free. + +Use for hash table lookup, or anything where one collision in 2^^32 is +acceptable. Do NOT use for cryptographic purposes. +------------------------------------------------------------------------------- +*/ + +quint32 hashlittle( const void *key, size_t length, quint32 initval) +{ + quint32 a,b,c; /* internal state */ + union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((quint32)length) + initval; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */ + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff; a+=k[0]; break; + case 6 : b+=k[1]&0xffff; a+=k[0]; break; + case 5 : b+=k[1]&0xff; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff; break; + case 2 : a+=k[0]&0xffff; break; + case 1 : a+=k[0]&0xff; break; + case 0 : return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + const quint8 *k8 = (const quint8 *)k; + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((quint32)k8[10])<<16; /* fall through */ + case 10: c+=((quint32)k8[9])<<8; /* fall through */ + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((quint32)k8[6])<<16; /* fall through */ + case 6 : b+=((quint32)k8[5])<<8; /* fall through */ + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((quint32)k8[2])<<16; /* fall through */ + case 2 : a+=((quint32)k8[1])<<8; /* fall through */ + case 1 : a+=k8[0]; break; + case 0 : return c; + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */ + const quint8 *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) + { + a += k[0] + (((quint32)k[1])<<16); + b += k[2] + (((quint32)k[3])<<16); + c += k[4] + (((quint32)k[5])<<16); + mix(a,b,c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const quint8 *)k; + switch(length) + { + case 12: c+=k[4]+(((quint32)k[5])<<16); + b+=k[2]+(((quint32)k[3])<<16); + a+=k[0]+(((quint32)k[1])<<16); + break; + case 11: c+=((quint32)k8[10])<<16; /* fall through */ + case 10: c+=k[4]; + b+=k[2]+(((quint32)k[3])<<16); + a+=k[0]+(((quint32)k[1])<<16); + break; + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[2]+(((quint32)k[3])<<16); + a+=k[0]+(((quint32)k[1])<<16); + break; + case 7 : b+=((quint32)k8[6])<<16; /* fall through */ + case 6 : b+=k[2]; + a+=k[0]+(((quint32)k[1])<<16); + break; + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]+(((quint32)k[1])<<16); + break; + case 3 : a+=((quint32)k8[2])<<16; /* fall through */ + case 2 : a+=k[0]; + break; + case 1 : a+=k8[0]; + break; + case 0 : return c; /* zero length requires no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const quint8 *k = (const quint8 *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + a += ((quint32)k[1])<<8; + a += ((quint32)k[2])<<16; + a += ((quint32)k[3])<<24; + b += k[4]; + b += ((quint32)k[5])<<8; + b += ((quint32)k[6])<<16; + b += ((quint32)k[7])<<24; + c += k[8]; + c += ((quint32)k[9])<<8; + c += ((quint32)k[10])<<16; + c += ((quint32)k[11])<<24; + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=((quint32)k[11])<<24; + case 11: c+=((quint32)k[10])<<16; + case 10: c+=((quint32)k[9])<<8; + case 9 : c+=k[8]; + case 8 : b+=((quint32)k[7])<<24; + case 7 : b+=((quint32)k[6])<<16; + case 6 : b+=((quint32)k[5])<<8; + case 5 : b+=k[4]; + case 4 : a+=((quint32)k[3])<<24; + case 3 : a+=((quint32)k[2])<<16; + case 2 : a+=((quint32)k[1])<<8; + case 1 : a+=k[0]; + break; + case 0 : return c; + } + } + + final(a,b,c); + return c; +} + + +/* + * hashlittle2: return 2 32-bit hash values + * + * This is identical to hashlittle(), except it returns two 32-bit hash + * values instead of just one. This is good enough for hash table + * lookup with 2^^64 buckets, or if you want a second hash if you're not + * happy with the first, or if you want a probably-unique 64-bit ID for + * the key. *pc is better mixed than *pb, so use *pc first. If you want + * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". + */ +void hashlittle2( + const void *key, /* the key to hash */ + size_t length, /* length of the key */ + quint32 *pc, /* IN: primary initval, OUT: primary hash */ + quint32 *pb) /* IN: secondary initval, OUT: secondary hash */ +{ + quint32 a,b,c; /* internal state */ + union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((quint32)length) + *pc; + c += *pb; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */ + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff; a+=k[0]; break; + case 6 : b+=k[1]&0xffff; a+=k[0]; break; + case 5 : b+=k[1]&0xff; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff; break; + case 2 : a+=k[0]&0xffff; break; + case 1 : a+=k[0]&0xff; break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + const quint8 *k8 = (const quint8 *)k; + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((quint32)k8[10])<<16; /* fall through */ + case 10: c+=((quint32)k8[9])<<8; /* fall through */ + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((quint32)k8[6])<<16; /* fall through */ + case 6 : b+=((quint32)k8[5])<<8; /* fall through */ + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((quint32)k8[2])<<16; /* fall through */ + case 2 : a+=((quint32)k8[1])<<8; /* fall through */ + case 1 : a+=k8[0]; break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */ + const quint8 *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) + { + a += k[0] + (((quint32)k[1])<<16); + b += k[2] + (((quint32)k[3])<<16); + c += k[4] + (((quint32)k[5])<<16); + mix(a,b,c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const quint8 *)k; + switch(length) + { + case 12: c+=k[4]+(((quint32)k[5])<<16); + b+=k[2]+(((quint32)k[3])<<16); + a+=k[0]+(((quint32)k[1])<<16); + break; + case 11: c+=((quint32)k8[10])<<16; /* fall through */ + case 10: c+=k[4]; + b+=k[2]+(((quint32)k[3])<<16); + a+=k[0]+(((quint32)k[1])<<16); + break; + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[2]+(((quint32)k[3])<<16); + a+=k[0]+(((quint32)k[1])<<16); + break; + case 7 : b+=((quint32)k8[6])<<16; /* fall through */ + case 6 : b+=k[2]; + a+=k[0]+(((quint32)k[1])<<16); + break; + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]+(((quint32)k[1])<<16); + break; + case 3 : a+=((quint32)k8[2])<<16; /* fall through */ + case 2 : a+=k[0]; + break; + case 1 : a+=k8[0]; + break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const quint8 *k = (const quint8 *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + a += ((quint32)k[1])<<8; + a += ((quint32)k[2])<<16; + a += ((quint32)k[3])<<24; + b += k[4]; + b += ((quint32)k[5])<<8; + b += ((quint32)k[6])<<16; + b += ((quint32)k[7])<<24; + c += k[8]; + c += ((quint32)k[9])<<8; + c += ((quint32)k[10])<<16; + c += ((quint32)k[11])<<24; + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=((quint32)k[11])<<24; + case 11: c+=((quint32)k[10])<<16; + case 10: c+=((quint32)k[9])<<8; + case 9 : c+=k[8]; + case 8 : b+=((quint32)k[7])<<24; + case 7 : b+=((quint32)k[6])<<16; + case 6 : b+=((quint32)k[5])<<8; + case 5 : b+=k[4]; + case 4 : a+=((quint32)k[3])<<24; + case 3 : a+=((quint32)k[2])<<16; + case 2 : a+=((quint32)k[1])<<8; + case 1 : a+=k[0]; + break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + } + + final(a,b,c); + *pc=c; *pb=b; +} + + + +/* + * hashbig(): + * This is the same as hashword() on big-endian machines. It is different + * from hashlittle() on all machines. hashbig() takes advantage of + * big-endian byte ordering. + */ +quint32 hashbig( const void *key, size_t length, quint32 initval) +{ + quint32 a,b,c; + union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((quint32)length) + initval; + + u.ptr = key; + if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { + const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */ + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]<<8" actually reads beyond the end of the string, but + * then shifts out the part it's not allowed to read. Because the + * string is aligned, the illegal read is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; + case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; + case 5 : b+=k[1]&0xff000000; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff00; break; + case 2 : a+=k[0]&0xffff0000; break; + case 1 : a+=k[0]&0xff000000; break; + case 0 : return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + const quint8 *k8 = (const quint8 *)k; + switch(length) /* all the case statements fall through */ + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((quint32)k8[10])<<8; /* fall through */ + case 10: c+=((quint32)k8[9])<<16; /* fall through */ + case 9 : c+=((quint32)k8[8])<<24; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((quint32)k8[6])<<8; /* fall through */ + case 6 : b+=((quint32)k8[5])<<16; /* fall through */ + case 5 : b+=((quint32)k8[4])<<24; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((quint32)k8[2])<<8; /* fall through */ + case 2 : a+=((quint32)k8[1])<<16; /* fall through */ + case 1 : a+=((quint32)k8[0])<<24; break; + case 0 : return c; + } + +#endif /* !VALGRIND */ + + } else { /* need to read the key one byte at a time */ + const quint8 *k = (const quint8 *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += ((quint32)k[0])<<24; + a += ((quint32)k[1])<<16; + a += ((quint32)k[2])<<8; + a += ((quint32)k[3]); + b += ((quint32)k[4])<<24; + b += ((quint32)k[5])<<16; + b += ((quint32)k[6])<<8; + b += ((quint32)k[7]); + c += ((quint32)k[8])<<24; + c += ((quint32)k[9])<<16; + c += ((quint32)k[10])<<8; + c += ((quint32)k[11]); + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=k[11]; + case 11: c+=((quint32)k[10])<<8; + case 10: c+=((quint32)k[9])<<16; + case 9 : c+=((quint32)k[8])<<24; + case 8 : b+=k[7]; + case 7 : b+=((quint32)k[6])<<8; + case 6 : b+=((quint32)k[5])<<16; + case 5 : b+=((quint32)k[4])<<24; + case 4 : a+=k[3]; + case 3 : a+=((quint32)k[2])<<8; + case 2 : a+=((quint32)k[1])<<16; + case 1 : a+=((quint32)k[0])<<24; + break; + case 0 : return c; + } + } + + final(a,b,c); + return c; +} |