From 30fffab792fbce4c2d415140e7cf15416f739e60 Mon Sep 17 00:00:00 2001 From: Aleksandar Sasha Babic Date: Fri, 25 Sep 2009 10:36:39 +0200 Subject: Adding test for line endings Some network tests depend on reading file and comparing it with data fetched from network. On Windows, if not set properly, git will append CRLF when checking out. This makes tests to fail as sizes and binary content are not as expected. Reviewed-by: Janne Anttila --- tests/auto/networkselftest/networkselftest.pro | 15 + tests/auto/networkselftest/rfc3252.txt | 899 +++++++++++++++++++++ tests/auto/networkselftest/tst_networkselftest.cpp | 34 + 3 files changed, 948 insertions(+) create mode 100644 tests/auto/networkselftest/rfc3252.txt diff --git a/tests/auto/networkselftest/networkselftest.pro b/tests/auto/networkselftest/networkselftest.pro index ac610de..b0d537a 100644 --- a/tests/auto/networkselftest/networkselftest.pro +++ b/tests/auto/networkselftest/networkselftest.pro @@ -3,3 +3,18 @@ load(qttest_p4) SOURCES += tst_networkselftest.cpp QT = core network +wince*: { + addFiles.sources = rfc3252.txt + addFiles.path = . + DEPLOYMENT = addFiles + DEFINES += SRCDIR=\\\"\\\" +} else:symbian* { + addFiles.sources = rfc3252.txt + addFiles.path = . + DEPLOYMENT = addFiles +} else:vxworks*: { + DEFINES += SRCDIR=\\\"\\\" +} else { + DEFINES += SRCDIR=\\\"$$PWD/\\\" +} + diff --git a/tests/auto/networkselftest/rfc3252.txt b/tests/auto/networkselftest/rfc3252.txt new file mode 100644 index 0000000..b80c61b --- /dev/null +++ b/tests/auto/networkselftest/rfc3252.txt @@ -0,0 +1,899 @@ + + + + + + +Network Working Group H. Kennedy +Request for Comments: 3252 Mimezine +Category: Informational 1 April 2002 + + + Binary Lexical Octet Ad-hoc Transport + +Status of this Memo + + This memo provides information for the Internet community. It does + not specify an Internet standard of any kind. Distribution of this + memo is unlimited. + +Copyright Notice + + Copyright (C) The Internet Society (2002). All Rights Reserved. + +Abstract + + This document defines a reformulation of IP and two transport layer + protocols (TCP and UDP) as XML applications. + +1. Introduction + +1.1. Overview + + This document describes the Binary Lexical Octet Ad-hoc Transport + (BLOAT): a reformulation of a widely-deployed network-layer protocol + (IP [RFC791]), and two associated transport layer protocols (TCP + [RFC793] and UDP [RFC768]) as XML [XML] applications. It also + describes methods for transporting BLOAT over Ethernet and IEEE 802 + networks as well as encapsulating BLOAT in IP for gatewaying BLOAT + across the public Internet. + +1.2. Motivation + + The wild popularity of XML as a basis for application-level protocols + such as the Blocks Extensible Exchange Protocol [RFC3080], the Simple + Object Access Protocol [SOAP], and Jabber [JABBER] prompted + investigation into the possibility of extending the use of XML in the + protocol stack. Using XML at both the transport and network layer in + addition to the application layer would provide for an amazing amount + of power and flexibility while removing dependencies on proprietary + and hard-to-understand binary protocols. This protocol unification + would also allow applications to use a single XML parser for all + aspects of their operation, eliminating developer time spent figuring + out the intricacies of each new protocol, and moving the hard work of + + + + +Kennedy Informational [Page 1] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + parsing to the XML toolset. The use of XML also mitigates concerns + over "network vs. host" byte ordering which is at the root of many + network application bugs. + +1.3. Relation to Existing Protocols + + The reformulations specified in this RFC follow as closely as + possible the spirit of the RFCs on which they are based, and so MAY + contain elements or attributes that would not be needed in a pure + reworking (e.g. length attributes, which are implicit in XML.) + + The layering of network and transport protocols are maintained in + this RFC despite the optimizations that could be made if the line + were somewhat blurred (i.e. merging TCP and IP into a single, larger + element in the DTD) in order to foster future use of this protocol as + a basis for reformulating other protocols (such as ICMP.) + + Other than the encoding, the behavioral aspects of each of the + existing protocols remain unchanged. Routing, address spaces, TCP + congestion control, etc. behave as specified in the extant standards. + Adapting to new standards and experimental algorithm heuristics for + improving performance will become much easier once the move to BLOAT + has been completed. + +1.4. Requirement Levels + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as described in BCP 14, RFC 2119 + [RFC2119]. + +2. IPoXML + + This protocol MUST be implemented to be compliant with this RFC. + IPoXML is the root protocol REQUIRED for effective use of TCPoXML + (section 3.) and higher-level application protocols. + + The DTD for this document type can be found in section 7.1. + + The routing of IPoXML can be easily implemented on hosts with an XML + parser, as the regular structure lends itself handily to parsing and + validation of the document/datagram and then processing the + destination address, TTL, and checksum before sending it on to its + next-hop. + + The reformulation of IPv4 was chosen over IPv6 [RFC2460] due to the + wider deployment of IPv4 and the fact that implementing IPv6 as XML + would have exceeded the 1500 byte Ethernet MTU. + + + +Kennedy Informational [Page 2] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + All BLOAT implementations MUST use - and specify - the UTF-8 encoding + of RFC 2279 [RFC2279]. All BLOAT document/datagrams MUST be well- + formed and include the XMLDecl. + +2.1. IP Description + + A number of items have changed (for the better) from the original IP + specification. Bit-masks, where present have been converted into + human-readable values. IP addresses are listed in their dotted- + decimal notation [RFC1123]. Length and checksum values are present + as decimal integers. + + To calculate the length and checksum fields of the IP element, a + canonicalized form of the element MUST be used. The canonical form + SHALL have no whitespace (including newline characters) between + elements and only one space character between attributes. There + SHALL NOT be a space following the last attribute in an element. + + An iterative method SHOULD be used to calculate checksums, as the + length field will vary based on the size of the checksum. + + The payload element bears special attention. Due to the character + set restrictions of XML, the payload of IP datagrams (which MAY + contain arbitrary data) MUST be encoded for transport. This RFC + REQUIRES the contents of the payload to be encoded in the base-64 + encoding of RFC 2045 [RFC2045], but removes the requirement that the + encoded output MUST be wrapped on 76-character lines. + + + + + + + + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 3] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + +2.2. Example Datagram + + The following is an example IPoXML datagram with an empty payload: + + + + +
+ + + + + + + + + + + + + + + +
+ + +
+ +3. TCPoXML + + This protocol MUST be implemented to be compliant with this RFC. The + DTD for this document type can be found in section 7.2. + +3.1. TCP Description + + A number of items have changed from the original TCP specification. + Bit-masks, where present have been converted into human-readable + values. Length and checksum and port values are present as decimal + integers. + + To calculate the length and checksum fields of the TCP element, a + canonicalized form of the element MUST be used as in section 2.1. + + An iterative method SHOULD be used to calculate checksums as in + section 2.1. + + The payload element MUST be encoded as in section 2.1. + + + +Kennedy Informational [Page 4] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + The TCP offset element was expanded to a maximum of 255 from 16 to + allow for the increased size of the header in XML. + + TCPoXML datagrams encapsulated by IPoXML MAY omit the header + as well as the declaration. + +3.2. Example Datagram + + The following is an example TCPoXML datagram with an empty payload: + + + + + + + + + + + + + + + + + + + + + + + + +4. UDPoXML + + This protocol MUST be implemented to be compliant with this RFC. The + DTD for this document type can be found in section 7.3. + +4.1. UDP Description + + A number of items have changed from the original UDP specification. + Bit-masks, where present have been converted into human-readable + values. Length and checksum and port values are present as decimal + integers. + + + + + + + +Kennedy Informational [Page 5] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + To calculate the length and checksum fields of the UDP element, a + canonicalized form of the element MUST be used as in section 2.1. An + iterative method SHOULD be used to calculate checksums as in section + 2.1. + + The payload element MUST be encoded as in section 2.1. + + UDPoXML datagrams encapsulated by IPoXML MAY omit the header + as well as the declaration. + +4.2. Example Datagram + + The following is an example UDPoXML datagram with an empty payload: + + + + + + + + + + + + + + +5. Network Transport + + This document provides for the transmission of BLOAT datagrams over + two common families of physical layer transport. Future RFCs will + address additional transports as routing vendors catch up to the + specification, and we begin to see BLOAT routed across the Internet + backbone. + +5.1. Ethernet + + BLOAT is encapsulated in Ethernet datagrams as in [RFC894] with the + exception that the type field of the Ethernet frame MUST contain the + value 0xBEEF. The first 5 octets of the Ethernet frame payload will + be 0x3c 3f 78 6d 6c (" + --> + + + + +Kennedy Informational [Page 7] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 9] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + + + + + + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 10] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + + + + + + + + + + + +7.2. TCPoXML DTD + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 11] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 12] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + + + + + + + + + + + + + + + + + + +7.3. UDPoXML DTD + + + + + + + + + + + + + + + +Kennedy Informational [Page 13] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + +8. Security Considerations + + XML, as a subset of SGML, has the same security considerations as + specified in SGML Media Types [RFC1874]. Security considerations + that apply to IP, TCP and UDP also likely apply to BLOAT as it does + not attempt to correct for issues not related to message format. + +9. References + + [JABBER] Miller, J., "Jabber", draft-miller-jabber-00.txt, + February 2002. (Work in Progress) + + [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, + August 1980. + + [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, + September 1981. + + [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC + 793, September 1981. + + [RFC894] Hornig, C., "Standard for the Transmission of IP + Datagrams over Ethernet Networks.", RFC 894, April 1984. + + [RFC1042] Postel, J. and J. Reynolds, "Standard for the + Transmission of IP Datagrams Over IEEE 802 Networks", STD + 43, RFC 1042, February 1988. + + [RFC1123] Braden, R., "Requirements for Internet Hosts - + Application and Support", RFC 1123, October 1989. + + [RFC1874] Levinson, E., "SGML Media Types", RFC 1874, December + 1995. + + [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003, + October 1996. + + [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail + Extensions (MIME) Part One: Format of Internet Message + Bodies", RFC 2045, November 1996. + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, March 1997. + + [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO + 10646", RFC 2279, January 1998. + + + + + +Kennedy Informational [Page 14] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + + [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 + (IPv6) Specification", RFC 2460, December 1998. + + [RFC3080] Rose, M., "The Blocks Extensible Exchange Protocol Core", + RFC 3080, March 2001. + + [SOAP] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., + Mendelsohn, N., Nielsen, H. F., Thatte, S. Winer, D., + "Simple Object Access Protocol (SOAP) 1.1" World Wide Web + Consortium Note, May 2000 http://www.w3.org/TR/SOAP/ + + [XML] Bray, T., Paoli, J., Sperberg-McQueen, C. M., "Extensible + Markup Language (XML)" World Wide Web Consortium + Recommendation REC- xml-19980210. + http://www.w3.org/TR/1998/REC-xml-19980210 + +10. Author's Address + + Hugh Kennedy + Mimezine + 1060 West Addison + Chicago, IL 60613 + USA + + EMail: kennedyh@engin.umich.edu + + + + + + + + + + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 15] + +RFC 3252 Binary Lexical Octet Ad-hoc Transport 1 April 2002 + + +11. Full Copyright Statement + + Copyright (C) The Internet Society (2002). All Rights Reserved. + + This document and translations of it may be copied and furnished to + others, and derivative works that comment on or otherwise explain it + or assist in its implementation may be prepared, copied, published + and distributed, in whole or in part, without restriction of any + kind, provided that the above copyright notice and this paragraph are + included on all such copies and derivative works. However, this + document itself may not be modified in any way, such as by removing + the copyright notice or references to the Internet Society or other + Internet organizations, except as needed for the purpose of + developing Internet standards in which case the procedures for + copyrights defined in the Internet Standards process must be + followed, or as required to translate it into languages other than + English. + + The limited permissions granted above are perpetual and will not be + revoked by the Internet Society or its successors or assigns. + + This document and the information contained herein is provided on an + "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING + TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING + BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION + HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF + MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +Acknowledgement + + Funding for the RFC Editor function is currently provided by the + Internet Society. + + + + + + + + + + + + + + + + + + + +Kennedy Informational [Page 16] + diff --git a/tests/auto/networkselftest/tst_networkselftest.cpp b/tests/auto/networkselftest/tst_networkselftest.cpp index 00ccadb..4e60101 100644 --- a/tests/auto/networkselftest/tst_networkselftest.cpp +++ b/tests/auto/networkselftest/tst_networkselftest.cpp @@ -41,6 +41,14 @@ #include #include + +#ifdef Q_OS_SYMBIAN +// In Symbian OS test data is located in applications private dir +// Current path (C:\private\) contains only ascii chars +//#define SRCDIR QDir::currentPath() +#define SRCDIR "." +#endif + #include "../network-settings.h" class tst_NetworkSelfTest: public QObject @@ -57,6 +65,7 @@ private slots: void serverReachability(); void remotePortsOpen_data(); void remotePortsOpen(); + void fileLineEndingTest(); // specific protocol tests void ftpServer(); @@ -392,6 +401,31 @@ void tst_NetworkSelfTest::remotePortsOpen() QVERIFY(socket.state() == QAbstractSocket::ConnectedState); } + +void tst_NetworkSelfTest::fileLineEndingTest() +{ + QString referenceName = SRCDIR "/rfc3252.txt"; + long long expectedReferenceSize = 25962; + + QString lineEndingType("LF"); + + QFile reference(referenceName); + QVERIFY(reference.open(QIODevice::ReadOnly)); + QByteArray byteLine = reference.readLine(); + if(byteLine.endsWith("\r\n")) + lineEndingType = "CRLF"; + else if(byteLine.endsWith("\r")) + lineEndingType = "CR"; + + QString referenceAsTextData; + QFile referenceAsText(referenceName); + QVERIFY(referenceAsText.open(QIODevice::ReadOnly)); + referenceAsTextData = referenceAsText.readAll(); + + QVERIFY2(expectedReferenceSize == referenceAsTextData.length(), QString("Reference file %1 has %2 as line ending and file size not matching - Git checkout issue !?!").arg(referenceName, lineEndingType).toLocal8Bit()); + QVERIFY2(!lineEndingType.compare("LF"), QString("Reference file %1 has %2 as line ending - Git checkout issue !?!").arg(referenceName, lineEndingType).toLocal8Bit()); +} + static QList ftpChat() { return QList() << Chat::expect("220") -- cgit v0.12