/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the demonstration applications of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain ** additional rights. These rights are described in the Nokia Qt LGPL ** Exception version 1.1, included in the file LGPL_EXCEPTION.txt in this ** package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ varying vec3 position, normal; varying vec4 specular, ambient, diffuse, lightDirection; uniform sampler2D tex; uniform samplerCube env; uniform mat4 view; // Arrays don't work here on glsl < 120, apparently. //const float coeffs[6] = float[6](1.0/2.0, 1.0/2.1, 1.0/2.2, 1.0/2.3, 1.0/2.4, 1.0/2.5); float coeffs(int i) { return 1.0 / (2.0 + 0.1 * float(i)); } void main() { vec3 N = normalize(normal); vec3 I = -normalize(position); float IdotN = dot(I, N); float scales[6]; vec3 C[6]; for (int i = 0; i < 6; ++i) { scales[i] = (IdotN - sqrt(1.0 - coeffs(i) + coeffs(i) * (IdotN * IdotN))); C[i] = textureCube(env, (-I + coeffs(i) * N) * mat3(view[0].xyz, view[1].xyz, view[2].xyz)).xyz; } gl_FragColor = 0.25 * vec4(C[5].x + 2.0*C[0].x + C[1].x, C[1].y + 2.0*C[2].y + C[3].y, C[3].z + 2.0*C[4].z + C[5].z, 4.0); }