/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the documentation of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain ** additional rights. These rights are described in the Nokia Qt LGPL ** Exception version 1.1, included in the file LGPL_EXCEPTION.txt in this ** package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ /*! \example xmlpatterns/xquery/globalVariables \title C++ Source Code Analyzer Example This example uses XQuery and the \c xmlpatterns command line utility to query C++ source code. \tableofcontents \section1 Introduction Suppose we want to analyze C++ source code to find coding standard violations and instances of bad or inefficient patterns. We can do it using the common searching and pattern matching utilities to process the C++ files (e.g., \c{grep}, \c{sed}, and \c{awk}). Now we can also use XQuery with the QtXmlPatterns module. An extension to the \c{g++} open source C++ compiler (\l{http://public.kitware.com/GCC_XML/HTML/Index.html} {GCC-XML}) generates an XML description of C++ source code declarations. This XML description can then be processed by QtXmlPatterns using XQueries to navigate the XML description of the C++ source and produce a report. Consider the problem of finding mutable global variables: \section2 Reporting Uses of Mutable Global Variables Suppose we want to introduce threading to a C++ application that was originally written without threading. In a threaded program, mutable global variables can cause bugs, because one thread might change a global variable that other threads are reading, or two threads might try to set the same global variable. So when converting our program to use threading, one of the things we must do is protect the global variables to prevent the bugs described above. How can we use XQuery and \l{http://public.kitware.com/GCC_XML/HTML/Index.html} {GCC-XML} to find the variables that need protecting? \section3 A C++ application Consider the declarations in this hypothetical C++ application: \snippet examples/xmlpatterns/xquery/globalVariables/globals.cpp 0 \section3 The XML description of the C++ application Submitting this C++ source to \l{http://public.kitware.com/GCC_XML/HTML/Index.html} {GCC-XML} produces this XML description: \quotefromfile examples/xmlpatterns/xquery/globalVariables/globals.gccxml \printuntil \section3 The XQuery for finding global variables We need an XQuery to find the global variables in the XML description. Here is our XQuery source. We walk through it in \l{XQuery Code Walk-Through}. \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \printuntil \section3 Running the XQuery To run the XQuery using the \c xmlpatterns command line utility, enter the following command: \code xmlpatterns reportGlobals.xq -param fileToOpen=globals.gccxml -output globals.html \endcode \section3 The XQuery output The \c xmlpatterns command loads and parses \c globals.gccxml, runs the XQuery \c reportGlobals.xq, and generates this report: \raw HTML
Start report: 2008-12-16T13:43:49.65Z
Global variables with complex types:
Mutable global variables with primitives types:
End report: 2008-12-16T13:43:49.65Z
\endraw \section1 XQuery Code Walk-Through The XQuery source is in \c{examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq} It begins with two variable declarations that begin the XQuery: \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \skipto declare variable \printto (: The first variable, \c{$fileToOpen}, appears in the \c xmlpatterns command shown earlier, as \c{-param fileToOpen=globals.gccxml}. This binds the variable name to the file name. This variable is then used in the declaration of the second variable, \c{$inDoc}, as the parameter to the \l{http://www.w3.org/TR/xpath-functions/#func-doc} {doc()} function. The \c{doc()} function returns the document node of \c{globals.gccxml}, which is assigned to \c{$inDoc} to be used later in the XQuery as the root node of our searches for global variables. Next skip to the end of the XQuery, where the \c{} element is constructed. The \c{} will contain a \c{} element to specify a heading for the html page, followed by some style instructions for displaying the text, and then the \c{} element. \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \skipto } element contains a call to the \c{local:report()} function, which is where the query does the "heavy lifting." Note the two \c{return} clauses separated by the \e {comma operator} about halfway down: \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \skipto declare function local:report() \printuntil }; The \c{return} clauses are like two separate queries. The comma operator separating them means that both \c{return} clauses are executed and both return their results, or, rather, both output their results. The first \c{return} clause searches for global variables with complex types, and the second searches for mutable global variables with primitive types. Here is the html generated for the \c{} element. Compare it with the XQuery code above: \quotefromfile examples/xmlpatterns/xquery/globalVariables/globals.html \skipto \printuntil The XQuery declares three more local functions that are called in turn by the \c{local:report()} function. \c{isComplexType()} returns true if the variable has a complex type. The variable can be mutable or const. \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \skipto declare function local:isComplexType \printuntil }; \c{isPrimitive()} returns true if the variable has a primitive type. The variable must be mutable. \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \skipto declare function local:isPrimitive \printuntil }; \c{location()} returns a text constructed from the variable's file and line number attributes. \quotefromfile examples/xmlpatterns/xquery/globalVariables/reportGlobals.xq \skipto declare function local:location \printuntil }; */