/* * Copyright (C) 2009 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "JIT.h" #if ENABLE(JIT) #include "JITInlineMethods.h" #include "JITStubCall.h" #include "JSArray.h" #include "JSCell.h" namespace JSC { #define RECORD_JUMP_TARGET(targetOffset) \ do { m_labels[m_bytecodeIndex + (targetOffset)].used(); } while (false) void JIT::emit_op_mov(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; if (m_codeBlock->isConstantRegisterIndex(src)) { storePtr(ImmPtr(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register))); if (dst == m_lastResultBytecodeRegister) killLastResultRegister(); } else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) { // If either the src or dst is the cached register go though // get/put registers to make sure we track this correctly. emitGetVirtualRegister(src, regT0); emitPutVirtualRegister(dst); } else { // Perform the copy via regT1; do not disturb any mapping in regT0. loadPtr(Address(callFrameRegister, src * sizeof(Register)), regT1); storePtr(regT1, Address(callFrameRegister, dst * sizeof(Register))); } } void JIT::emit_op_end(Instruction* currentInstruction) { if (m_codeBlock->needsFullScopeChain()) JITStubCall(this, JITStubs::cti_op_end).call(); ASSERT(returnValueRegister != callFrameRegister); emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); ret(); } void JIT::emit_op_jmp(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; addJump(jump(), target + 1); RECORD_JUMP_TARGET(target + 1); } void JIT::emit_op_loop(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned target = currentInstruction[1].u.operand; addJump(jump(), target + 1); } void JIT::emit_op_loop_if_less(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(ALTERNATE_JSIMMEDIATE) int32_t op2imm = getConstantOperandImmediateInt(op2); #else int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); #endif addJump(branch32(LessThan, regT0, Imm32(op2imm)), target + 3); } else if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(ALTERNATE_JSIMMEDIATE) int32_t op1imm = getConstantOperandImmediateInt(op1); #else int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); #endif addJump(branch32(GreaterThan, regT0, Imm32(op1imm)), target + 3); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(LessThan, regT0, regT1), target + 3); } } void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(ALTERNATE_JSIMMEDIATE) int32_t op2imm = getConstantOperandImmediateInt(op2); #else int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); #endif addJump(branch32(LessThanOrEqual, regT0, Imm32(op2imm)), target + 3); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(LessThanOrEqual, regT0, regT1), target + 3); } } void JIT::emit_op_new_object(Instruction* currentInstruction) { JITStubCall(this, JITStubs::cti_op_new_object).call(currentInstruction[1].u.operand); } void JIT::emit_op_instanceof(Instruction* currentInstruction) { // Load the operands (baseVal, proto, and value respectively) into registers. // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); emitGetVirtualRegister(currentInstruction[4].u.operand, regT1); emitGetVirtualRegister(currentInstruction[2].u.operand, regT2); // Check that baseVal & proto are cells. emitJumpSlowCaseIfNotJSCell(regT0); emitJumpSlowCaseIfNotJSCell(regT1); // Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsDefaultHasInstance))); // If value is not an Object, return false. Jump valueIsImmediate = emitJumpIfNotJSCell(regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)); // Check proto is object. loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); // Optimistically load the result true, and start looping. // Initially, regT1 still contains proto and regT2 still contains value. // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. move(ImmPtr(JSValue::encode(jsBoolean(true))), regT0); Label loop(this); // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype)), regT2); Jump isInstance = branchPtr(Equal, regT2, regT1); branchPtr(NotEqual, regT2, ImmPtr(JSValue::encode(jsNull())), loop); // We get here either by dropping out of the loop, or if value was not an Object. Result is false. valueIsImmediate.link(this); valueIsNotObject.link(this); move(ImmPtr(JSValue::encode(jsBoolean(false))), regT0); // isInstance jumps right down to here, to skip setting the result to false (it has already set true). isInstance.link(this); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_new_func(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_new_func); stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_call(Instruction* currentInstruction) { compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_call_eval(Instruction* currentInstruction) { compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_load_varargs(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_load_varargs); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_call_varargs(Instruction* currentInstruction) { compileOpCallVarargs(currentInstruction); } void JIT::emit_op_construct(Instruction* currentInstruction) { compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_get_global_var(Instruction* currentInstruction) { JSVariableObject* globalObject = static_cast(currentInstruction[2].u.jsCell); move(ImmPtr(globalObject), regT0); emitGetVariableObjectRegister(regT0, currentInstruction[3].u.operand, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_put_global_var(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[3].u.operand, regT1); JSVariableObject* globalObject = static_cast(currentInstruction[1].u.jsCell); move(ImmPtr(globalObject), regT0); emitPutVariableObjectRegister(regT1, regT0, currentInstruction[2].u.operand); } void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) { int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain(); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); while (skip--) loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT0); emitGetVariableObjectRegister(regT0, currentInstruction[2].u.operand, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) { int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain(); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1); emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); while (skip--) loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); emitPutVariableObjectRegister(regT0, regT1, currentInstruction[1].u.operand); } void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_tear_off_activation); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(); } void JIT::emit_op_tear_off_arguments(Instruction*) { JITStubCall(this, JITStubs::cti_op_tear_off_arguments).call(); } void JIT::emit_op_ret(Instruction* currentInstruction) { // We could JIT generate the deref, only calling out to C when the refcount hits zero. if (m_codeBlock->needsFullScopeChain()) JITStubCall(this, JITStubs::cti_op_ret_scopeChain).call(); ASSERT(callFrameRegister != regT1); ASSERT(regT1 != returnValueRegister); ASSERT(returnValueRegister != callFrameRegister); // Return the result in %eax. emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT1); ret(); } void JIT::emit_op_new_array(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_new_array); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_resolve); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_construct_verify(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); emitJumpSlowCaseIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo) + OBJECT_OFFSETOF(TypeInfo, m_type)), Imm32(ObjectType))); } void JIT::emit_op_to_primitive(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImm = emitJumpIfNotJSCell(regT0); addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); isImm.link(this); if (dst != src) emitPutVirtualRegister(dst); } void JIT::emit_op_strcat(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_strcat); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_func(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_resolve_func); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(currentInstruction[2].u.operand); } void JIT::emit_op_loop_if_true(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); addJump(emitJumpIfImmediateInteger(regT0), target + 2); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2); addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); isZero.link(this); }; void JIT::emit_op_resolve_base(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_resolve_base); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_skip(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_resolve_skip); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain())); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_global(Instruction* currentInstruction) { // Fast case void* globalObject = currentInstruction[2].u.jsCell; Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); unsigned currentIndex = m_globalResolveInfoIndex++; void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); // Check Structure of global object move(ImmPtr(globalObject), regT0); loadPtr(structureAddress, regT1); Jump noMatch = branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure))); // Structures don't match // Load cached property // Assume that the global object always uses external storage. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT0); load32(offsetAddr, regT1); loadPtr(BaseIndex(regT0, regT1, ScalePtr), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); Jump end = jump(); // Slow case noMatch.link(this); JITStubCall stubCall(this, JITStubs::cti_op_resolve_global); stubCall.addArgument(ImmPtr(globalObject)); stubCall.addArgument(ImmPtr(ident)); stubCall.addArgument(Imm32(currentIndex)); stubCall.call(currentInstruction[1].u.operand); end.link(this); } void JIT::emit_op_not(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool)), regT0); addSlowCase(branchTestPtr(NonZero, regT0, Imm32(static_cast(~JSImmediate::ExtendedPayloadBitBoolValue)))); xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue)), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_jfalse(Instruction* currentInstruction) { unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))), target + 2); Jump isNonZero = emitJumpIfImmediateInteger(regT0); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))), target + 2); addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(true))))); isNonZero.link(this); RECORD_JUMP_TARGET(target + 2); }; void JIT::emit_op_jeq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2); wasNotImmediate.link(this); RECORD_JUMP_TARGET(target + 2); }; void JIT::emit_op_jneq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2); wasNotImmediate.link(this); RECORD_JUMP_TARGET(target + 2); } void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; JSCell* ptr = currentInstruction[2].u.jsCell; unsigned target = currentInstruction[3].u.operand; emitGetVirtualRegister(src, regT0); addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(JSValue(ptr)))), target + 3); RECORD_JUMP_TARGET(target + 3); } void JIT::emit_op_jsr(Instruction* currentInstruction) { int retAddrDst = currentInstruction[1].u.operand; int target = currentInstruction[2].u.operand; DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); addJump(jump(), target + 2); m_jsrSites.append(JSRInfo(storeLocation, label())); killLastResultRegister(); RECORD_JUMP_TARGET(target + 2); } void JIT::emit_op_sret(Instruction* currentInstruction) { jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); killLastResultRegister(); } void JIT::emit_op_eq(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); set32(Equal, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitnot(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(ALTERNATE_JSIMMEDIATE) not32(regT0); emitFastArithIntToImmNoCheck(regT0, regT0); #else xorPtr(Imm32(~JSImmediate::TagTypeNumber), regT0); #endif emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_resolve_with_base); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(currentInstruction[2].u.operand); } void JIT::emit_op_new_func_exp(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_new_func_exp); stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_jtrue(Instruction* currentInstruction) { unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); addJump(emitJumpIfImmediateInteger(regT0), target + 2); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2); addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); isZero.link(this); RECORD_JUMP_TARGET(target + 2); } void JIT::emit_op_neq(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); set32(NotEqual, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitxor(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); xorPtr(regT1, regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_new_regexp(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_new_regexp); stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_bitor(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); orPtr(regT1, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_throw(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_throw); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(); ASSERT(regT0 == returnValueRegister); #ifndef NDEBUG // cti_op_throw always changes it's return address, // this point in the code should never be reached. breakpoint(); #endif } void JIT::emit_op_next_pname(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_next_pname); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.call(); Jump endOfIter = branchTestPtr(Zero, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); addJump(jump(), currentInstruction[3].u.operand + 3); endOfIter.link(this); } void JIT::emit_op_push_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_push_scope); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_pop_scope(Instruction*) { JITStubCall(this, JITStubs::cti_op_pop_scope).call(); } void JIT::emit_op_stricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpStrictEq); } void JIT::emit_op_nstricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpNStrictEq); } void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) { int srcVReg = currentInstruction[2].u.operand; emitGetVirtualRegister(srcVReg, regT0); Jump wasImmediate = emitJumpIfImmediateInteger(regT0); emitJumpSlowCaseIfNotJSCell(regT0, srcVReg); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(NumberType))); wasImmediate.link(this); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_push_new_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_push_new_scope); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_catch(Instruction* currentInstruction) { killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code. peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_jmp_scopes); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(); addJump(jump(), currentInstruction[2].u.operand + 2); RECORD_JUMP_TARGET(currentInstruction[2].u.operand + 2); } void JIT::emit_op_switch_imm(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, JITStubs::cti_op_switch_imm); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_char(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, JITStubs::cti_op_switch_char); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_string(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset)); JITStubCall stubCall(this, JITStubs::cti_op_switch_string); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_new_error(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_new_error); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(ImmPtr(JSValue::encode(m_codeBlock->getConstant(currentInstruction[3].u.operand)))); stubCall.addArgument(Imm32(m_bytecodeIndex)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_debug(Instruction* currentInstruction) { JITStubCall stubCall(this, JITStubs::cti_op_debug); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(); } void JIT::emit_op_eq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; emitGetVirtualRegister(src1, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); setTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); Jump wasNotImmediate = jump(); isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); setPtr(Equal, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); wasNotImmediate.link(this); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_neq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; emitGetVirtualRegister(src1, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); setTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); Jump wasNotImmediate = jump(); isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); setPtr(NotEqual, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); wasNotImmediate.link(this); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_enter(Instruction*) { // Even though CTI doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. size_t count = m_codeBlock->m_numVars; for (size_t j = 0; j < count; ++j) emitInitRegister(j); } void JIT::emit_op_enter_with_activation(Instruction* currentInstruction) { // Even though CTI doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. size_t count = m_codeBlock->m_numVars; for (size_t j = 0; j < count; ++j) emitInitRegister(j); JITStubCall(this, JITStubs::cti_op_push_activation).call(currentInstruction[1].u.operand); } void JIT::emit_op_create_arguments(Instruction*) { Jump argsCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister)); if (m_codeBlock->m_numParameters == 1) JITStubCall(this, JITStubs::cti_op_create_arguments_no_params).call(); else JITStubCall(this, JITStubs::cti_op_create_arguments).call(); argsCreated.link(this); } void JIT::emit_op_init_arguments(Instruction*) { storePtr(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister)); } void JIT::emit_op_convert_this(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); emitJumpSlowCaseIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); addSlowCase(branchTest32(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion))); } void JIT::emit_op_profile_will_call(Instruction* currentInstruction) { peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT1)); JITStubCall stubCall(this, JITStubs::cti_op_profile_will_call); stubCall.addArgument(currentInstruction[1].u.operand, regT1); stubCall.call(); noProfiler.link(this); } void JIT::emit_op_profile_did_call(Instruction* currentInstruction) { peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT1)); JITStubCall stubCall(this, JITStubs::cti_op_profile_did_call); stubCall.addArgument(currentInstruction[1].u.operand, regT1); stubCall.call(); noProfiler.link(this); } // Slow cases void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_convert_this); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_construct_verify(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_to_primitive); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_get_by_val(Instruction* currentInstruction, Vector::iterator& iter) { // The slow void JIT::emitSlow_that handles accesses to arrays (below) may jump back up to here. Label beginGetByValSlow(this); Jump notImm = getSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); emitFastArithIntToImmNoCheck(regT1, regT1); notImm.link(this); JITStubCall stubCall(this, JITStubs::cti_op_get_by_val); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_get_by_val)); // This is slow void JIT::emitSlow_that handles accesses to arrays above the fast cut-off. // First, check if this is an access to the vector linkSlowCase(iter); branch32(AboveOrEqual, regT1, Address(regT2, OBJECT_OFFSETOF(ArrayStorage, m_vectorLength)), beginGetByValSlow); // okay, missed the fast region, but it is still in the vector. Get the value. loadPtr(BaseIndex(regT2, regT1, ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])), regT2); // Check whether the value loaded is zero; if so we need to return undefined. branchTestPtr(Zero, regT2, beginGetByValSlow); move(regT2, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand, regT0); } void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_loop_if_less); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } else if (isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_loop_if_less); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } else { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_loop_if_less); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } } void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_loop_if_lesseq); stubCall.addArgument(regT0); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } else { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_loop_if_lesseq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } } void JIT::emitSlow_op_put_by_val(Instruction* currentInstruction, Vector::iterator& iter) { // Normal slow cases - either is not an immediate imm, or is an array. Jump notImm = getSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); emitFastArithIntToImmNoCheck(regT1, regT1); notImm.link(this); { JITStubCall stubCall(this, JITStubs::cti_op_put_by_val); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_put_by_val)); } // slow cases for immediate int accesses to arrays linkSlowCase(iter); linkSlowCase(iter); { JITStubCall stubCall(this, JITStubs::cti_op_put_by_val_array); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(); } } void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2); } void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool)), regT0); JITStubCall stubCall(this, JITStubs::cti_op_not); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand + 2); // inverted! } void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_bitnot); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_bitxor); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_bitor); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_eq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_neq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_stricteq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_nstricteq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_instanceof); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.addArgument(currentInstruction[4].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call); } void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call_eval); } void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallVarargsSlowCase(currentInstruction, iter); } void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_construct); } void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand); linkSlowCase(iter); JITStubCall stubCall(this, JITStubs::cti_op_to_jsnumber); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } } // namespace JSC #endif // ENABLE(JIT)