/**************************************************************************** ** ** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qstringlist.h" #include "qregexp.h" #include "qunicodetables_p.h" #ifndef QT_NO_TEXTCODEC #include #endif #include #include "qsimd_p.h" #include #include #include "qlocale.h" #include "qlocale_p.h" #include "qstringmatcher.h" #include "qvarlengtharray.h" #include "qtools_p.h" #include "qhash.h" #include "qdebug.h" #include "qendian.h" #ifdef Q_OS_MAC #include #endif #include #if defined(Q_OS_WINCE) #include #include #endif #ifdef Q_OS_SYMBIAN #include #endif #include #include #include #include #include #ifdef truncate #undef truncate #endif #include "qchar.cpp" #include "qstringmatcher.cpp" #ifndef LLONG_MAX #define LLONG_MAX qint64_C(9223372036854775807) #endif #ifndef LLONG_MIN #define LLONG_MIN (-LLONG_MAX - qint64_C(1)) #endif #ifndef ULLONG_MAX #define ULLONG_MAX quint64_C(18446744073709551615) #endif QT_BEGIN_NAMESPACE #ifndef QT_NO_TEXTCODEC QTextCodec *QString::codecForCStrings; #endif #ifdef QT3_SUPPORT static QHash *asciiCache = 0; #endif // internal int qFindString(const QChar *haystack, int haystackLen, int from, const QChar *needle, int needleLen, Qt::CaseSensitivity cs); int qFindStringBoyerMoore(const QChar *haystack, int haystackLen, int from, const QChar *needle, int needleLen, Qt::CaseSensitivity cs); static inline int qt_last_index_of(const QChar *haystack, int haystackLen, const QChar &needle, int from, Qt::CaseSensitivity cs); static inline int qt_string_count(const QChar *haystack, int haystackLen, const QChar *needle, int needleLen, Qt::CaseSensitivity cs); static inline int qt_string_count(const QChar *haystack, int haystackLen, const QChar &needle, Qt::CaseSensitivity cs); static inline int qt_find_latin1_string(const QChar *hay, int size, const QLatin1String &needle, int from, Qt::CaseSensitivity cs); static inline bool qt_starts_with(const QChar *haystack, int haystackLen, const QChar *needle, int needleLen, Qt::CaseSensitivity cs); static inline bool qt_starts_with(const QChar *haystack, int haystackLen, const QLatin1String &needle, Qt::CaseSensitivity cs); static inline bool qt_ends_with(const QChar *haystack, int haystackLen, const QChar *needle, int needleLen, Qt::CaseSensitivity cs); static inline bool qt_ends_with(const QChar *haystack, int haystackLen, const QLatin1String &needle, Qt::CaseSensitivity cs); // Unicode case-insensitive comparison static int ucstricmp(const ushort *a, const ushort *ae, const ushort *b, const ushort *be) { if (a == b) return (ae - be); if (a == 0) return 1; if (b == 0) return -1; const ushort *e = ae; if (be - b < ae - a) e = a + (be - b); uint alast = 0; uint blast = 0; while (a < e) { // qDebug() << hex << alast << blast; // qDebug() << hex << "*a=" << *a << "alast=" << alast << "folded=" << foldCase (*a, alast); // qDebug() << hex << "*b=" << *b << "blast=" << blast << "folded=" << foldCase (*b, blast); int diff = foldCase(*a, alast) - foldCase(*b, blast); if ((diff)) return diff; ++a; ++b; } if (a == ae) { if (b == be) return 0; return -1; } return 1; } // Case-insensitive comparison between a Unicode string and a QLatin1String static int ucstricmp(const ushort *a, const ushort *ae, const uchar *b) { if (a == 0) { if (b == 0) return 0; return 1; } if (b == 0) return -1; while (a < ae && *b) { int diff = foldCase(*a) - foldCase(*b); if ((diff)) return diff; ++a; ++b; } if (a == ae) { if (!*b) return 0; return -1; } return 1; } // Unicode case-sensitive compare two same-sized strings static int ucstrncmp(const QChar *a, const QChar *b, int l) { while (l-- && *a == *b) a++,b++; if (l==-1) return 0; return a->unicode() - b->unicode(); } // Unicode case-sensitive comparison static int ucstrcmp(const QChar *a, int alen, const QChar *b, int blen) { if (a == b && alen == blen) return 0; int l = qMin(alen, blen); int cmp = ucstrncmp(a, b, l); return cmp ? cmp : (alen-blen); } // Unicode case-insensitive compare two same-sized strings static int ucstrnicmp(const ushort *a, const ushort *b, int l) { return ucstricmp(a, a + l, b, b + l); } // Benchmarking indicates that doing memcmp is much slower than // executing the comparison ourselves. // // The profiling was done on a population of calls to qMemEquals, generated // during a run of the demo browser. The profile of the data (32-bit x86 // Linux) was: // // total number of comparisons: 21353 // longest string compared: 95 // average comparison length: 14.8786 // cache-line crosses: 5661 (13.3%) // alignment histogram: // 0xXXX0 = 512 (1.2%) strings, 0 (0.0%) of which same-aligned // 0xXXX2 = 15087 (35.3%) strings, 5145 (34.1%) of which same-aligned // 0xXXX4 = 525 (1.2%) strings, 0 (0.0%) of which same-aligned // 0xXXX6 = 557 (1.3%) strings, 6 (1.1%) of which same-aligned // 0xXXX8 = 509 (1.2%) strings, 0 (0.0%) of which same-aligned // 0xXXXa = 24358 (57.0%) strings, 9901 (40.6%) of which same-aligned // 0xXXXc = 557 (1.3%) strings, 0 (0.0%) of which same-aligned // 0xXXXe = 601 (1.4%) strings, 15 (2.5%) of which same-aligned // total = 42706 (100%) strings, 15067 (35.3%) of which same-aligned // // 92% of the strings have alignment of 2 or 10, which is due to malloc on // 32-bit Linux returning values aligned to 8 bytes, and offsetof(array, QString::Data) == 18. // // The profile on 64-bit will be different since offsetof(array, QString::Data) == 26. // // The benchmark results were, for a Core-i7 @ 2.67 GHz 32-bit, compiled with -O3 -funroll-loops: // 16-bit loads only: 872,301 CPU ticks [Qt 4.5 / memcmp] // 32- and 16-bit loads: 773,362 CPU ticks [Qt 4.6] // SSE2 "movdqu" 128-bit loads: 618,736 CPU ticks // SSE3 "lddqu" 128-bit loads: 619,954 CPU ticks // SSSE3 "palignr" corrections: 852,147 CPU ticks // SSE4.2 "pcmpestrm": 738,702 CPU ticks // // The same benchmark on an Atom N450 @ 1.66 GHz, is: // 16-bit loads only: 2,185,882 CPU ticks // 32- and 16-bit loads: 1,805,060 CPU ticks // SSE2 "movdqu" 128-bit loads: 2,529,843 CPU ticks // SSE3 "lddqu" 128-bit loads: 2,514,858 CPU ticks // SSSE3 "palignr" corrections: 2,160,325 CPU ticks // SSE4.2 not available // // The conclusion we reach is that alignment the SSE2 unaligned code can gain // 20% improvement in performance in some systems, but suffers a penalty due // to the unaligned loads on others. static bool qMemEquals(const quint16 *a, const quint16 *b, int length) { if (a == b || !length) return true; register union { const quint16 *w; const quint32 *d; quintptr value; } sa, sb; sa.w = a; sb.w = b; // check alignment if ((sa.value & 2) == (sb.value & 2)) { // both addresses have the same alignment if (sa.value & 2) { // both addresses are not aligned to 4-bytes boundaries // compare the first character if (*sa.w != *sb.w) return false; --length; ++sa.w; ++sb.w; // now both addresses are 4-bytes aligned } // both addresses are 4-bytes aligned // do a fast 32-bit comparison register const quint32 *e = sa.d + (length >> 1); for ( ; sa.d != e; ++sa.d, ++sb.d) { if (*sa.d != *sb.d) return false; } // do we have a tail? return (length & 1) ? *sa.w == *sb.w : true; } else { // one of the addresses isn't 4-byte aligned but the other is register const quint16 *e = sa.w + length; for ( ; sa.w != e; ++sa.w, ++sb.w) { if (*sa.w != *sb.w) return false; } } return true; } /*! \internal Returns the index position of the first occurrence of the character \a ch in the string given by \a str and \a len, searching forward from index position \a from. Returns -1 if \a ch could not be found. */ static int findChar(const QChar *str, int len, QChar ch, int from, Qt::CaseSensitivity cs) { const ushort *s = (const ushort *)str; ushort c = ch.unicode(); if (from < 0) from = qMax(from + len, 0); if (from < len) { const ushort *n = s + from - 1; const ushort *e = s + len; if (cs == Qt::CaseSensitive) { while (++n != e) if (*n == c) return n - s; } else { c = foldCase(c); while (++n != e) if (foldCase(*n) == c) return n - s; } } return -1; } #define REHASH(a) \ if (sl_minus_1 < (int)sizeof(int) * CHAR_BIT) \ hashHaystack -= (a) << sl_minus_1; \ hashHaystack <<= 1 inline bool qIsUpper(char ch) { return ch >= 'A' && ch <= 'Z'; } inline bool qIsDigit(char ch) { return ch >= '0' && ch <= '9'; } inline char qToLower(char ch) { if (ch >= 'A' && ch <= 'Z') return ch - 'A' + 'a'; else return ch; } const QString::Null QString::null = { }; /*! \macro QT_NO_CAST_FROM_ASCII \relates QString Disables automatic conversions from 8-bit strings (char *) to unicode QStrings \sa QT_NO_CAST_TO_ASCII, QT_NO_CAST_FROM_BYTEARRAY */ /*! \macro QT_NO_CAST_TO_ASCII \relates QString disables automatic conversion from QString to 8-bit strings (char *) \sa QT_NO_CAST_FROM_ASCII, QT_NO_CAST_FROM_BYTEARRAY */ /*! \macro QT_ASCII_CAST_WARNINGS \internal \relates QString This macro can be defined to force a warning whenever a function is called that automatically converts between unicode and 8-bit encodings. Note: This only works for compilers that support warnings for deprecated API. \sa QT_NO_CAST_TO_ASCII, QT_NO_CAST_FROM_ASCII */ /*! \class QCharRef \reentrant \brief The QCharRef class is a helper class for QString. \internal \ingroup string-processing When you get an object of type QCharRef, if you can assign to it, the assignment will apply to the character in the string from which you got the reference. That is its whole purpose in life. The QCharRef becomes invalid once modifications are made to the string: if you want to keep the character, copy it into a QChar. Most of the QChar member functions also exist in QCharRef. However, they are not explicitly documented here. \sa QString::operator[]() QString::at() QChar */ /*! \class QString \reentrant \brief The QString class provides a Unicode character string. \ingroup tools \ingroup shared \ingroup string-processing QString stores a string of 16-bit \l{QChar}s, where each QChar corresponds one Unicode 4.0 character. (Unicode characters with code values above 65535 are stored using surrogate pairs, i.e., two consecutive \l{QChar}s.) \l{Unicode} is an international standard that supports most of the writing systems in use today. It is a superset of US-ASCII (ANSI X3.4-1986) and Latin-1 (ISO 8859-1), and all the US-ASCII/Latin-1 characters are available at the same code positions. Behind the scenes, QString uses \l{implicit sharing} (copy-on-write) to reduce memory usage and to avoid the needless copying of data. This also helps reduce the inherent overhead of storing 16-bit characters instead of 8-bit characters. In addition to QString, Qt also provides the QByteArray class to store raw bytes and traditional 8-bit '\\0'-terminated strings. For most purposes, QString is the class you want to use. It is used throughout the Qt API, and the Unicode support ensures that your applications will be easy to translate if you want to expand your application's market at some point. The two main cases where QByteArray is appropriate are when you need to store raw binary data, and when memory conservation is critical (e.g., with \l{Qt for Embedded Linux}). \tableofcontents \section1 Initializing a String One way to initialize a QString is simply to pass a \c{const char *} to its constructor. For example, the following code creates a QString of size 5 containing the data "Hello": \snippet doc/src/snippets/qstring/main.cpp 0 QString converts the \c{const char *} data into Unicode using the fromAscii() function. By default, fromAscii() treats character above 128 as Latin-1 characters, but this can be changed by calling QTextCodec::setCodecForCStrings(). In all of the QString functions that take \c{const char *} parameters, the \c{const char *} is interpreted as a classic C-style '\\0'-terminated string. It is legal for the \c{const char *} parameter to be 0. You can also provide string data as an array of \l{QChar}s: \snippet doc/src/snippets/qstring/main.cpp 1 QString makes a deep copy of the QChar data, so you can modify it later without experiencing side effects. (If for performance reasons you don't want to take a deep copy of the character data, use QString::fromRawData() instead.) Another approach is to set the size of the string using resize() and to initialize the data character per character. QString uses 0-based indexes, just like C++ arrays. To access the character at a particular index position, you can use \l operator[](). On non-const strings, \l operator[]() returns a reference to a character that can be used on the left side of an assignment. For example: \snippet doc/src/snippets/qstring/main.cpp 2 For read-only access, an alternative syntax is to use the at() function: \snippet doc/src/snippets/qstring/main.cpp 3 The at() function can be faster than \l operator[](), because it never causes a \l{deep copy} to occur. Alternatively, use the left(), right(), or mid() functions to extract several characters at a time. A QString can embed '\\0' characters (QChar::Null). The size() function always returns the size of the whole string, including embedded '\\0' characters. After a call to the resize() function, newly allocated characters have undefined values. To set all the characters in the string to a particular value, use the fill() function. QString provides dozens of overloads designed to simplify string usage. For example, if you want to compare a QString with a string literal, you can write code like this and it will work as expected: \snippet doc/src/snippets/qstring/main.cpp 4 You can also pass string literals to functions that take QStrings as arguments, invoking the QString(const char *) constructor. Similarly, you can pass a QString to a function that takes a \c{const char *} argument using the \l qPrintable() macro which returns the given QString as a \c{const char *}. This is equivalent to calling .toLocal8Bit().constData(). \section1 Manipulating String Data QString provides the following basic functions for modifying the character data: append(), prepend(), insert(), replace(), and remove(). For example: \snippet doc/src/snippets/qstring/main.cpp 5 If you are building a QString gradually and know in advance approximately how many characters the QString will contain, you can call reserve(), asking QString to preallocate a certain amount of memory. You can also call capacity() to find out how much memory QString actually allocated. The replace() and remove() functions' first two arguments are the position from which to start erasing and the number of characters that should be erased. If you want to replace all occurrences of a particular substring with another, use one of the two-parameter replace() overloads. A frequent requirement is to remove whitespace characters from a string ('\\n', '\\t', ' ', etc.). If you want to remove whitespace from both ends of a QString, use the trimmed() function. If you want to remove whitespace from both ends and replace multiple consecutive whitespaces with a single space character within the string, use simplified(). If you want to find all occurrences of a particular character or substring in a QString, use the indexOf() or lastIndexOf() functions. The former searches forward starting from a given index position, the latter searches backward. Both return the index position of the character or substring if they find it; otherwise, they return -1. For example, here's a typical loop that finds all occurrences of a particular substring: \snippet doc/src/snippets/qstring/main.cpp 6 QString provides many functions for converting numbers into strings and strings into numbers. See the arg() functions, the setNum() functions, the number() static functions, and the toInt(), toDouble(), and similar functions. To get an upper- or lowercase version of a string use toUpper() or toLower(). Lists of strings are handled by the QStringList class. You can split a string into a list of strings using the split() function, and join a list of strings into a single string with an optional separator using QStringList::join(). You can obtain a list of strings from a string list that contain a particular substring or that match a particular QRegExp using the QStringList::filter() function. \section1 Querying String Data If you want to see if a QString starts or ends with a particular substring use startsWith() or endsWith(). If you simply want to check whether a QString contains a particular character or substring, use the contains() function. If you want to find out how many times a particular character or substring occurs in the string, use count(). QStrings can be compared using overloaded operators such as \l operator<(), \l operator<=(), \l operator==(), \l operator>=(), and so on. Note that the comparison is based exclusively on the numeric Unicode values of the characters. It is very fast, but is not what a human would expect; the QString::localeAwareCompare() function is a better choice for sorting user-interface strings. To obtain a pointer to the actual character data, call data() or constData(). These functions return a pointer to the beginning of the QChar data. The pointer is guaranteed to remain valid until a non-const function is called on the QString. \section1 Converting Between 8-Bit Strings and Unicode Strings QString provides the following four functions that return a \c{const char *} version of the string as QByteArray: toAscii(), toLatin1(), toUtf8(), and toLocal8Bit(). \list \o toAscii() returns an 8-bit string encoded using the codec specified by QTextCodec::codecForCStrings (by default, that is Latin 1). \o toLatin1() returns a Latin-1 (ISO 8859-1) encoded 8-bit string. \o toUtf8() returns a UTF-8 encoded 8-bit string. UTF-8 is a superset of US-ASCII (ANSI X3.4-1986) that supports the entire Unicode character set through multibyte sequences. \o toLocal8Bit() returns an 8-bit string using the system's local encoding. \endlist To convert from one of these encodings, QString provides fromAscii(), fromLatin1(), fromUtf8(), and fromLocal8Bit(). Other encodings are supported through the QTextCodec class. As mentioned above, QString provides a lot of functions and operators that make it easy to interoperate with \c{const char *} strings. But this functionality is a double-edged sword: It makes QString more convenient to use if all strings are US-ASCII or Latin-1, but there is always the risk that an implicit conversion from or to \c{const char *} is done using the wrong 8-bit encoding. To minimize these risks, you can turn off these implicit conversions by defining the following two preprocessor symbols: \list \o \c QT_NO_CAST_FROM_ASCII disables automatic conversions from C string literals and pointers to Unicode. \o \c QT_NO_CAST_TO_ASCII disables automatic conversion from QString to C strings. \endlist One way to define these preprocessor symbols globally for your application is to add the following entry to your \l{qmake Project Files}{qmake project file}: \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 0 You then need to explicitly call fromAscii(), fromLatin1(), fromUtf8(), or fromLocal8Bit() to construct a QString from an 8-bit string, or use the lightweight QLatin1String class, for example: \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 1 Similarly, you must call toAscii(), toLatin1(), toUtf8(), or toLocal8Bit() explicitly to convert the QString to an 8-bit string. (Other encodings are supported through the QTextCodec class.) \table 100 % \row \o \section1 Note for C Programmers Due to C++'s type system and the fact that QString is \l{implicitly shared}, QStrings may be treated like \c{int}s or other basic types. For example: \snippet doc/src/snippets/qstring/main.cpp 7 The \c result variable, is a normal variable allocated on the stack. When \c return is called, and because we're returning by value, the copy constructor is called and a copy of the string is returned. No actual copying takes place thanks to the implicit sharing. \endtable \section1 Distinction Between Null and Empty Strings For historical reasons, QString distinguishes between a null string and an empty string. A \e null string is a string that is initialized using QString's default constructor or by passing (const char *)0 to the constructor. An \e empty string is any string with size 0. A null string is always empty, but an empty string isn't necessarily null: \snippet doc/src/snippets/qstring/main.cpp 8 All functions except isNull() treat null strings the same as empty strings. For example, toAscii().constData() returns a pointer to a '\\0' character for a null string (\e not a null pointer), and QString() compares equal to QString(""). We recommend that you always use the isEmpty() function and avoid isNull(). \section1 Argument Formats In member functions where an argument \e format can be specified (e.g., arg(), number()), the argument \e format can be one of the following: \table \header \o Format \o Meaning \row \o \c e \o format as [-]9.9e[+|-]999 \row \o \c E \o format as [-]9.9E[+|-]999 \row \o \c f \o format as [-]9.9 \row \o \c g \o use \c e or \c f format, whichever is the most concise \row \o \c G \o use \c E or \c f format, whichever is the most concise \endtable A \e precision is also specified with the argument \e format. For the 'e', 'E', and 'f' formats, the \e precision represents the number of digits \e after the decimal point. For the 'g' and 'G' formats, the \e precision represents the maximum number of significant digits (trailing zeroes are omitted). \section1 More Efficient String Construction Using the QString \c{'+'} operator, it is easy to construct a complex string from multiple substrings. You will often write code like this: \snippet doc/src/snippets/qstring/stringbuilder.cpp 0 There is nothing wrong with either of these string constructions, but there are a few hidden inefficiencies. Beginning with Qt 4.6, you can eliminate them. First, multiple uses of the \c{'+'} operator usually means multiple memory allocations. When concatenating \e{n} substrings, where \e{n > 2}, there can be as many as \e{n - 1} calls to the memory allocator. Second, QLatin1String does not store its length internally but calls qstrlen() when it needs to know its length. In 4.6, an internal template class \c{QStringBuilder} has been added along with a few helper functions. This class is marked internal and does not appear in the documentation, because you aren't meant to instantiate it in your code. Its use will be automatic, as described below. The class is found in \c {src/corelib/tools/qstringbuilder.cpp} if you want to have a look at it. \c{QStringBuilder} uses expression templates and reimplements the \c{'%'} operator so that when you use \c{'%'} for string concatenation instead of \c{'+'}, multiple substring concatenations will be postponed until the final result is about to be assigned to a QString. At this point, the amount of memory required for the final result is known. The memory allocator is then called \e{once} to get the required space, and the substrings are copied into it one by one. \c{QLatin1Literal} is a second internal class that can replace QLatin1String, which can't be changed for compatibility reasons. \c{QLatin1Literal} stores its length, thereby saving time when \c{QStringBuilder} computes the amount of memory required for the final string. Additional efficiency is gained by inlining and reduced reference counting (the QString created from a \c{QStringBuilder} typically has a ref count of 1, whereas QString::append() needs an extra test). There are three ways you can access this improved method of string construction. The straightforward way is to include \c{QStringBuilder} wherever you want to use it, and use the \c{'%'} operator instead of \c{'+'} when concatenating strings: \snippet doc/src/snippets/qstring/stringbuilder.cpp 5 A more global approach is to include this define: \snippet doc/src/snippets/qstring/stringbuilder.cpp 3 and use \c{'%'} instead of \c{'+'} for string concatenation everywhere. The third approach, which is the most convenient but not entirely source compatible, is to include two defines: \snippet doc/src/snippets/qstring/stringbuilder.cpp 4 and the \c{'+'} will automatically be performed as the \c{QStringBuilder} \c{'%'} everywhere. \sa fromRawData(), QChar, QLatin1String, QByteArray, QStringRef */ /*! \enum QString::SplitBehavior This enum specifies how the split() function should behave with respect to empty strings. \value KeepEmptyParts If a field is empty, keep it in the result. \value SkipEmptyParts If a field is empty, don't include it in the result. \sa split() */ QString::Data QString::shared_null = { Q_BASIC_ATOMIC_INITIALIZER(1), 0, 0, shared_null.array, 0, 0, 0, 0, 0, 0, {0} }; QString::Data QString::shared_empty = { Q_BASIC_ATOMIC_INITIALIZER(1), 0, 0, shared_empty.array, 0, 0, 0, 0, 0, 0, {0} }; int QString::grow(int size) { return qAllocMore(size * sizeof(QChar), sizeof(Data)) / sizeof(QChar); } /*! \typedef QString::ConstIterator Qt-style synonym for QString::const_iterator. */ /*! \typedef QString::Iterator Qt-style synonym for QString::iterator. */ /*! \typedef QString::const_iterator The QString::const_iterator typedef provides an STL-style const iterator for QString. \sa QString::iterator */ /*! \typedef QString::iterator The QString::iterator typedef provides an STL-style non-const iterator for QString. \sa QString::const_iterator */ /*! \fn QString::iterator QString::begin() Returns an \l{STL-style iterator} pointing to the first character in the string. \sa constBegin(), end() */ /*! \fn QString::const_iterator QString::begin() const \overload begin() */ /*! \fn QString::const_iterator QString::constBegin() const Returns a const \l{STL-style iterator} pointing to the first character in the string. \sa begin(), constEnd() */ /*! \fn QString::iterator QString::end() Returns an \l{STL-style iterator} pointing to the imaginary character after the last character in the string. \sa begin(), constEnd() */ /*! \fn QString::const_iterator QString::end() const \overload end() */ /*! \fn QString::const_iterator QString::constEnd() const Returns a const \l{STL-style iterator} pointing to the imaginary item after the last item in the list. \sa constBegin(), end() */ /*! \fn QString::QString() Constructs a null string. Null strings are also empty. \sa isEmpty() */ /*! \fn QString::QString(const char *str) Constructs a string initialized with the 8-bit string \a str. The given const char pointer is converted to Unicode using the fromAscii() function. You can disable this constructor by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. \sa fromAscii(), fromLatin1(), fromLocal8Bit(), fromUtf8() */ /*! \fn QString QString::fromStdString(const std::string &str) Returns a copy of the \a str string. The given string is converted to Unicode using the fromAscii() function. This constructor is only available if Qt is configured with STL compatibility enabled. \sa fromAscii(), fromLatin1(), fromLocal8Bit(), fromUtf8() */ /*! \fn QString QString::fromStdWString(const std::wstring &str) Returns a copy of the \a str string. The given string is assumed to be encoded in utf16 if the size of wchar_t is 2 bytes (e.g. on windows) and ucs4 if the size of wchar_t is 4 bytes (most Unix systems). This method is only available if Qt is configured with STL compatibility enabled. \sa fromUtf16(), fromLatin1(), fromLocal8Bit(), fromUtf8(), fromUcs4() */ /*! \since 4.2 Returns a copy of the \a string, where the encoding of \a string depends on the size of wchar. If wchar is 4 bytes, the \a string is interpreted as ucs-4, if wchar is 2 bytes it is interpreted as ucs-2. If \a size is -1 (default), the \a string has to be 0 terminated. \sa fromUtf16(), fromLatin1(), fromLocal8Bit(), fromUtf8(), fromUcs4(), fromStdWString() */ QString QString::fromWCharArray(const wchar_t *string, int size) { if (sizeof(wchar_t) == sizeof(QChar)) { return fromUtf16((const ushort *)string, size); } else { return fromUcs4((uint *)string, size); } } /*! \fn std::wstring QString::toStdWString() const Returns a std::wstring object with the data contained in this QString. The std::wstring is encoded in utf16 on platforms where wchar_t is 2 bytes wide (e.g. windows) and in ucs4 on platforms where wchar_t is 4 bytes wide (most Unix systems). This operator is mostly useful to pass a QString to a function that accepts a std::wstring object. This operator is only available if Qt is configured with STL compatibility enabled. \sa utf16(), toAscii(), toLatin1(), toUtf8(), toLocal8Bit() */ template int toUcs4_helper(const unsigned short *uc, int length, T *out) { int i = 0; for (; i < length; ++i) { uint u = uc[i]; if (QChar::isHighSurrogate(u) && i < length-1) { ushort low = uc[i+1]; if (QChar::isLowSurrogate(low)) { ++i; u = QChar::surrogateToUcs4(u, low); } } *out = T(u); ++out; } return i; } /*! \since 4.2 Fills the \a array with the data contained in this QString object. The array is encoded in utf16 on platforms where wchar_t is 2 bytes wide (e.g. windows) and in ucs4 on platforms where wchar_t is 4 bytes wide (most Unix systems). \a array has to be allocated by the caller and contain enough space to hold the complete string (allocating the array with the same length as the string is always sufficient). returns the actual length of the string in \a array. \note This function does not append a null character to the array. \sa utf16(), toUcs4(), toAscii(), toLatin1(), toUtf8(), toLocal8Bit(), toStdWString() */ int QString::toWCharArray(wchar_t *array) const { if (sizeof(wchar_t) == sizeof(QChar)) { memcpy(array, utf16(), sizeof(wchar_t)*length()); return length(); } else { return toUcs4_helper(utf16(), length(), array); } } /*! \fn QString::QString(const QString &other) Constructs a copy of \a other. This operation takes \l{constant time}, because QString is \l{implicitly shared}. This makes returning a QString from a function very fast. If a shared instance is modified, it will be copied (copy-on-write), and that takes \l{linear time}. \sa operator=() */ /*! Constructs a string initialized with the first \a size characters of the QChar array \a unicode. QString makes a deep copy of the string data. The unicode data is copied as is and the Byte Order Mark is preserved if present. */ QString::QString(const QChar *unicode, int size) { if (!unicode) { d = &shared_null; d->ref.ref(); } else if (size <= 0) { d = &shared_empty; d->ref.ref(); } else { d = (Data*) qMalloc(sizeof(Data)+size*sizeof(QChar)); Q_CHECK_PTR(d); d->ref = 1; d->alloc = d->size = size; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; d->data = d->array; memcpy(d->array, unicode, size * sizeof(QChar)); d->array[size] = '\0'; } } /*! \since 4.7 Constructs a string initialized with the characters of the QChar array \a unicode, which must be terminated with a 0. QString makes a deep copy of the string data. The unicode data is copied as is and the Byte Order Mark is preserved if present. */ QString::QString(const QChar *unicode) { if (!unicode) { d = &shared_null; d->ref.ref(); } else { int size = 0; while (unicode[size] != 0) ++size; if (!size) { d = &shared_empty; d->ref.ref(); } else { d = (Data*) qMalloc(sizeof(Data)+size*sizeof(QChar)); Q_CHECK_PTR(d); d->ref = 1; d->alloc = d->size = size; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; d->data = d->array; memcpy(d->array, unicode, size * sizeof(QChar)); d->array[size] = '\0'; } } } /*! Constructs a string of the given \a size with every character set to \a ch. \sa fill() */ QString::QString(int size, QChar ch) { if (size <= 0) { d = &shared_empty; d->ref.ref(); } else { d = (Data*) qMalloc(sizeof(Data)+size*sizeof(QChar)); Q_CHECK_PTR(d); d->ref = 1; d->alloc = d->size = size; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; d->data = d->array; d->array[size] = '\0'; ushort *i = d->array + size; ushort *b = d->array; const ushort value = ch.unicode(); while (i != b) *--i = value; } } /*! \fn QString::QString(int size, Qt::Initialization) \internal Constructs a string of the given \a size without initializing the characters. This is only used in \c QStringBuilder::toString(). */ QString::QString(int size, Qt::Initialization) { d = (Data*) qMalloc(sizeof(Data)+size*sizeof(QChar)); Q_CHECK_PTR(d); d->ref = 1; d->alloc = d->size = size; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; d->data = d->array; d->array[size] = '\0'; } /*! \fn QString::QString(const QLatin1String &str) Constructs a copy of the Latin-1 string \a str. \sa fromLatin1() */ /*! Constructs a string of size 1 containing the character \a ch. */ QString::QString(QChar ch) { void *buf = qMalloc(sizeof(Data) + sizeof(QChar)); Q_CHECK_PTR(buf); d = reinterpret_cast(buf); d->ref = 1; d->alloc = d->size = 1; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; d->data = d->array; d->array[0] = ch.unicode(); d->array[1] = '\0'; } /*! \fn QString::QString(const QByteArray &ba) Constructs a string initialized with the byte array \a ba. The given byte array is converted to Unicode using fromAscii(). Stops copying at the first 0 character, otherwise copies the entire byte array. You can disable this constructor by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. \sa fromAscii(), fromLatin1(), fromLocal8Bit(), fromUtf8() */ /*! \fn QString::QString(const Null &) \internal */ /*! \fn QString &QString::operator=(const Null &) \internal */ /*! \fn QString::~QString() Destroys the string. */ /*! \fn void QString::swap(QString &other) \since 4.8 Swaps string \a other with this string. This operation is very fast and never fails. */ /*! \fn void QString::detach() \internal */ /*! \fn bool QString::isDetached() const \internal */ /*! \fn bool QString::isSharedWith(const QString &other) const \internal */ // ### Qt 5: rename freeData() to avoid confusion. See task 197625. void QString::free(Data *d) { #ifdef QT3_SUPPORT if (d->asciiCache) { Q_ASSERT(asciiCache); asciiCache->remove(d); } #endif qFree(d); } /*! Sets the size of the string to \a size characters. If \a size is greater than the current size, the string is extended to make it \a size characters long with the extra characters added to the end. The new characters are uninitialized. If \a size is less than the current size, characters are removed from the end. Example: \snippet doc/src/snippets/qstring/main.cpp 45 If you want to append a certain number of identical characters to the string, use \l operator+=() as follows rather than resize(): \snippet doc/src/snippets/qstring/main.cpp 46 If you want to expand the string so that it reaches a certain width and fill the new positions with a particular character, use the leftJustified() function: If \a size is negative, it is equivalent to passing zero. \snippet doc/src/snippets/qstring/main.cpp 47 \sa truncate(), reserve() */ void QString::resize(int size) { if (size < 0) size = 0; if (size == 0 && !d->capacity) { Data *x = &shared_empty; x->ref.ref(); if (!d->ref.deref()) QString::free(d); d = x; } else { if (d->ref != 1 || size > d->alloc || (!d->capacity && size < d->size && size < d->alloc >> 1)) realloc(grow(size)); if (d->alloc >= size) { d->size = size; if (d->data == d->array) { d->array[size] = '\0'; } } } } /*! \fn int QString::capacity() const Returns the maximum number of characters that can be stored in the string without forcing a reallocation. The sole purpose of this function is to provide a means of fine tuning QString's memory usage. In general, you will rarely ever need to call this function. If you want to know how many characters are in the string, call size(). \sa reserve(), squeeze() */ /*! \fn void QString::reserve(int size) Attempts to allocate memory for at least \a size characters. If you know in advance how large the string will be, you can call this function, and if you resize the string often you are likely to get better performance. If \a size is an underestimate, the worst that will happen is that the QString will be a bit slower. The sole purpose of this function is to provide a means of fine tuning QString's memory usage. In general, you will rarely ever need to call this function. If you want to change the size of the string, call resize(). This function is useful for code that needs to build up a long string and wants to avoid repeated reallocation. In this example, we want to add to the string until some condition is true, and we're fairly sure that size is large enough to make a call to reserve() worthwhile: \snippet doc/src/snippets/qstring/main.cpp 44 \sa squeeze(), capacity() */ /*! \fn void QString::squeeze() Releases any memory not required to store the character data. The sole purpose of this function is to provide a means of fine tuning QString's memory usage. In general, you will rarely ever need to call this function. \sa reserve(), capacity() */ // ### Qt 5: rename reallocData() to avoid confusion. 197625 void QString::realloc(int alloc) { if (d->ref != 1 || d->data != d->array) { Data *x = static_cast(qMalloc(sizeof(Data) + alloc * sizeof(QChar))); Q_CHECK_PTR(x); x->size = qMin(alloc, d->size); ::memcpy(x->array, d->data, x->size * sizeof(QChar)); x->array[x->size] = 0; x->asciiCache = 0; x->ref = 1; x->alloc = alloc; x->clean = d->clean; x->simpletext = d->simpletext; x->righttoleft = d->righttoleft; x->capacity = d->capacity; x->data = x->array; if (!d->ref.deref()) QString::free(d); d = x; } else { #ifdef QT3_SUPPORT if (d->asciiCache) { Q_ASSERT(asciiCache); asciiCache->remove(d); } #endif Data *p = static_cast(qRealloc(d, sizeof(Data) + alloc * sizeof(QChar))); Q_CHECK_PTR(p); d = p; d->alloc = alloc; d->data = d->array; } } void QString::realloc() { realloc(d->size); } void QString::expand(int i) { int sz = d->size; resize(qMax(i + 1, sz)); if (d->size - 1 > sz) { ushort *n = d->data + d->size - 1; ushort *e = d->data + sz; while (n != e) * --n = ' '; } } /*! \fn void QString::clear() Clears the contents of the string and makes it empty. \sa resize(), isEmpty() */ /*! \fn QString &QString::operator=(const QString &other) Assigns \a other to this string and returns a reference to this string. */ QString &QString::operator=(const QString &other) { other.d->ref.ref(); if (!d->ref.deref()) QString::free(d); d = other.d; return *this; } /*! \fn QString &QString::operator=(const QLatin1String &str) \overload operator=() Assigns the Latin-1 string \a str to this string. */ /*! \fn QString &QString::operator=(const QByteArray &ba) \overload operator=() Assigns \a ba to this string. The byte array is converted to Unicode using the fromAscii() function. This function stops conversion at the first NUL character found, or the end of the \a ba byte array. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::operator=(const char *str) \overload operator=() Assigns \a str to this string. The const char pointer is converted to Unicode using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::operator=(char ch) \overload operator=() Assigns character \a ch to this string. The character is converted to Unicode using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \overload operator=() Sets the string to contain the single character \a ch. */ QString &QString::operator=(QChar ch) { return operator=(QString(ch)); } /*! \fn QString& QString::insert(int position, const QString &str) Inserts the string \a str at the given index \a position and returns a reference to this string. Example: \snippet doc/src/snippets/qstring/main.cpp 26 If the given \a position is greater than size(), the array is first extended using resize(). \sa append(), prepend(), replace(), remove() */ /*! \fn QString &QString::insert(int position, const QLatin1String &str) \overload insert() Inserts the Latin-1 string \a str at the given index \a position. */ QString &QString::insert(int i, const QLatin1String &str) { const uchar *s = (const uchar *)str.latin1(); if (i < 0 || !s || !(*s)) return *this; int len = qstrlen(str.latin1()); expand(qMax(d->size, i) + len - 1); ::memmove(d->data + i + len, d->data + i, (d->size - i - len) * sizeof(QChar)); for (int j = 0; j < len; ++j) d->data[i + j] = s[j]; return *this; } /*! \fn QString& QString::insert(int position, const QChar *unicode, int size) \overload insert() Inserts the first \a size characters of the QChar array \a unicode at the given index \a position in the string. */ QString& QString::insert(int i, const QChar *unicode, int size) { if (i < 0 || size <= 0) return *this; const ushort *s = (const ushort *)unicode; if (s >= d->data && s < d->data + d->alloc) { // Part of me - take a copy ushort *tmp = static_cast(qMalloc(size * sizeof(QChar))); Q_CHECK_PTR(tmp); memcpy(tmp, s, size * sizeof(QChar)); insert(i, reinterpret_cast(tmp), size); qFree(tmp); return *this; } expand(qMax(d->size, i) + size - 1); ::memmove(d->data + i + size, d->data + i, (d->size - i - size) * sizeof(QChar)); memcpy(d->data + i, s, size * sizeof(QChar)); return *this; } /*! \fn QString& QString::insert(int position, QChar ch) \overload insert() Inserts \a ch at the given index \a position in the string. */ QString& QString::insert(int i, QChar ch) { if (i < 0) i += d->size; if (i < 0) return *this; expand(qMax(i, d->size)); ::memmove(d->data + i + 1, d->data + i, (d->size - i) * sizeof(QChar)); d->data[i] = ch.unicode(); return *this; } /*! Appends the string \a str onto the end of this string. Example: \snippet doc/src/snippets/qstring/main.cpp 9 This is the same as using the insert() function: \snippet doc/src/snippets/qstring/main.cpp 10 The append() function is typically very fast (\l{constant time}), because QString preallocates extra space at the end of the string data so it can grow without reallocating the entire string each time. \sa operator+=(), prepend(), insert() */ QString &QString::append(const QString &str) { if (str.d != &shared_null) { if (d == &shared_null) { operator=(str); } else { if (d->ref != 1 || d->size + str.d->size > d->alloc) realloc(grow(d->size + str.d->size)); memcpy(d->data + d->size, str.d->data, str.d->size * sizeof(QChar)); d->size += str.d->size; d->data[d->size] = '\0'; } } return *this; } /*! \overload append() Appends the Latin-1 string \a str to this string. */ QString &QString::append(const QLatin1String &str) { const uchar *s = (const uchar *)str.latin1(); if (s) { int len = qstrlen((char *)s); if (d->ref != 1 || d->size + len > d->alloc) realloc(grow(d->size + len)); ushort *i = d->data + d->size; while ((*i++ = *s++)) ; d->size += len; } return *this; } /*! \fn QString &QString::append(const QByteArray &ba) \overload append() Appends the byte array \a ba to this string. The given byte array is converted to Unicode using the fromAscii() function. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::append(const char *str) \overload append() Appends the string \a str to this string. The given const char pointer is converted to Unicode using the fromAscii() function. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \overload append() Appends the character \a ch to this string. */ QString &QString::append(QChar ch) { if (d->ref != 1 || d->size + 1 > d->alloc) realloc(grow(d->size + 1)); d->data[d->size++] = ch.unicode(); d->data[d->size] = '\0'; return *this; } /*! \fn QString &QString::prepend(const QString &str) Prepends the string \a str to the beginning of this string and returns a reference to this string. Example: \snippet doc/src/snippets/qstring/main.cpp 36 \sa append(), insert() */ /*! \fn QString &QString::prepend(const QLatin1String &str) \overload prepend() Prepends the Latin-1 string \a str to this string. */ /*! \fn QString &QString::prepend(const QByteArray &ba) \overload prepend() Prepends the byte array \a ba to this string. The byte array is converted to Unicode using the fromAscii() function. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::prepend(const char *str) \overload prepend() Prepends the string \a str to this string. The const char pointer is converted to Unicode using the fromAscii() function. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::prepend(QChar ch) \overload prepend() Prepends the character \a ch to this string. */ /*! \fn QString &QString::remove(int position, int n) Removes \a n characters from the string, starting at the given \a position index, and returns a reference to the string. If the specified \a position index is within the string, but \a position + \a n is beyond the end of the string, the string is truncated at the specified \a position. \snippet doc/src/snippets/qstring/main.cpp 37 \sa insert(), replace() */ QString &QString::remove(int pos, int len) { if (pos < 0) // count from end of string pos += d->size; if (pos < 0 || pos >= d->size) { // range problems } else if (len >= d->size - pos) { resize(pos); // truncate } else if (len > 0) { detach(); memmove(d->data + pos, d->data + pos + len, (d->size - pos - len + 1) * sizeof(ushort)); d->size -= len; } return *this; } /*! Removes every occurrence of the given \a str string in this string, and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. This is the same as \c replace(str, "", cs). \sa replace() */ QString &QString::remove(const QString &str, Qt::CaseSensitivity cs) { if (str.d->size) { int i = 0; while ((i = indexOf(str, i, cs)) != -1) remove(i, str.d->size); } return *this; } /*! Removes every occurrence of the character \a ch in this string, and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 38 This is the same as \c replace(ch, "", cs). \sa replace() */ QString &QString::remove(QChar ch, Qt::CaseSensitivity cs) { int i = 0; ushort c = ch.unicode(); if (cs == Qt::CaseSensitive) { while (i < d->size) if (d->data[i] == ch) remove(i, 1); else i++; } else { c = foldCase(c); while (i < d->size) if (foldCase(d->data[i]) == c) remove(i, 1); else i++; } return *this; } /*! \fn QString &QString::remove(const QRegExp &rx) Removes every occurrence of the regular expression \a rx in the string, and returns a reference to the string. For example: \snippet doc/src/snippets/qstring/main.cpp 39 \sa indexOf(), lastIndexOf(), replace() */ /*! \fn QString &QString::replace(int position, int n, const QString &after) Replaces \a n characters beginning at index \a position with the string \a after and returns a reference to this string. Example: \snippet doc/src/snippets/qstring/main.cpp 40 \sa insert(), remove() */ QString &QString::replace(int pos, int len, const QString &after) { QString copy = after; return replace(pos, len, copy.constData(), copy.length()); } /*! \fn QString &QString::replace(int position, int n, const QChar *unicode, int size) \overload replace() Replaces \a n characters beginning at index \a position with the first \a size characters of the QChar array \a unicode and returns a reference to this string. */ QString &QString::replace(int pos, int len, const QChar *unicode, int size) { if (pos < 0 || pos > d->size) return *this; if (pos + len > d->size) len = d->size - pos; uint index = pos; replace_helper(&index, 1, len, unicode, size); return *this; } /*! \fn QString &QString::replace(int position, int n, QChar after) \overload replace() Replaces \a n characters beginning at index \a position with the character \a after and returns a reference to this string. */ QString &QString::replace(int pos, int len, QChar after) { return replace(pos, len, &after, 1); } /*! \overload replace() Replaces every occurrence of the string \a before with the string \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 41 \note The replacement text is not rescanned after it is inserted. Example: \snippet doc/src/snippets/qstring/main.cpp 86 */ QString &QString::replace(const QString &before, const QString &after, Qt::CaseSensitivity cs) { return replace(before.constData(), before.size(), after.constData(), after.size(), cs); } /*! \internal */ void QString::replace_helper(uint *indices, int nIndices, int blen, const QChar *after, int alen) { // copy *after in case it lies inside our own d->data area // (which we could possibly invalidate via a realloc or corrupt via memcpy operations.) QChar *afterBuffer = const_cast(after); if (after >= reinterpret_cast(d->data) && after < reinterpret_cast(d->data) + d->size) { afterBuffer = static_cast(qMalloc(alen*sizeof(QChar))); Q_CHECK_PTR(afterBuffer); ::memcpy(afterBuffer, after, alen*sizeof(QChar)); } QT_TRY { if (blen == alen) { // replace in place detach(); for (int i = 0; i < nIndices; ++i) memcpy(d->data + indices[i], afterBuffer, alen * sizeof(QChar)); } else if (alen < blen) { // replace from front detach(); uint to = indices[0]; if (alen) memcpy(d->data+to, after, alen*sizeof(QChar)); to += alen; uint movestart = indices[0] + blen; for (int i = 1; i < nIndices; ++i) { int msize = indices[i] - movestart; if (msize > 0) { memmove(d->data + to, d->data + movestart, msize * sizeof(QChar)); to += msize; } if (alen) { memcpy(d->data + to, afterBuffer, alen*sizeof(QChar)); to += alen; } movestart = indices[i] + blen; } int msize = d->size - movestart; if (msize > 0) memmove(d->data + to, d->data + movestart, msize * sizeof(QChar)); resize(d->size - nIndices*(blen-alen)); } else { // replace from back int adjust = nIndices*(alen-blen); int newLen = d->size + adjust; int moveend = d->size; resize(newLen); while (nIndices) { --nIndices; int movestart = indices[nIndices] + blen; int insertstart = indices[nIndices] + nIndices*(alen-blen); int moveto = insertstart + alen; memmove(d->data + moveto, d->data + movestart, (moveend - movestart)*sizeof(QChar)); memcpy(d->data + insertstart, afterBuffer, alen*sizeof(QChar)); moveend = movestart-blen; } } } QT_CATCH(const std::bad_alloc &) { if (afterBuffer != after) qFree(afterBuffer); QT_RETHROW; } if (afterBuffer != after) qFree(afterBuffer); } /*! \since 4.5 \overload replace() Replaces each occurrence in this string of the first \a blen characters of \a before with the first \a alen characters of \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. */ QString &QString::replace(const QChar *before, int blen, const QChar *after, int alen, Qt::CaseSensitivity cs) { if (d->size == 0) { if (blen) return *this; } else { if (cs == Qt::CaseSensitive && before == after && blen == alen) return *this; } if (alen == 0 && blen == 0) return *this; QStringMatcher matcher(before, blen, cs); int index = 0; while (1) { uint indices[1024]; uint pos = 0; while (pos < 1023) { index = matcher.indexIn(*this, index); if (index == -1) break; indices[pos++] = index; index += blen; // avoid infinite loop if (!blen) index++; } if (!pos) break; replace_helper(indices, pos, blen, after, alen); if (index == -1) break; // index has to be adjusted in case we get back into the loop above. index += pos*(alen-blen); } return *this; } /*! \overload replace() Replaces every occurrence of the character \a ch in the string with \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. */ QString& QString::replace(QChar ch, const QString &after, Qt::CaseSensitivity cs) { if (after.d->size == 0) return remove(ch, cs); if (after.d->size == 1) return replace(ch, after.d->data[0], cs); if (d->size == 0) return *this; ushort cc = (cs == Qt::CaseSensitive ? ch.unicode() : ch.toCaseFolded().unicode()); int index = 0; while (1) { uint indices[1024]; uint pos = 0; if (cs == Qt::CaseSensitive) { while (pos < 1023 && index < d->size) { if (d->data[index] == cc) indices[pos++] = index; index++; } } else { while (pos < 1023 && index < d->size) { if (QChar::toCaseFolded(d->data[index]) == cc) indices[pos++] = index; index++; } } if (!pos) break; replace_helper(indices, pos, 1, after.constData(), after.d->size); if (index == -1) break; // index has to be adjusted in case we get back into the loop above. index += pos*(after.d->size - 1); } return *this; } /*! \overload replace() Replaces every occurrence of the character \a before with the character \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. */ QString& QString::replace(QChar before, QChar after, Qt::CaseSensitivity cs) { ushort a = after.unicode(); ushort b = before.unicode(); if (d->size) { detach(); ushort *i = d->data; const ushort *e = i + d->size; if (cs == Qt::CaseSensitive) { for (; i != e; ++i) if (*i == b) *i = a; } else { b = foldCase(b); for (; i != e; ++i) if (foldCase(*i) == b) *i = a; } } return *this; } /*! \since 4.5 \overload replace() Replaces every occurrence of the string \a before with the string \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \note The text is not rescanned after a replacement. */ QString &QString::replace(const QLatin1String &before, const QLatin1String &after, Qt::CaseSensitivity cs) { int alen = qstrlen(after.latin1()); QVarLengthArray a(alen); for (int i = 0; i < alen; ++i) a[i] = (uchar)after.latin1()[i]; int blen = qstrlen(before.latin1()); QVarLengthArray b(blen); for (int i = 0; i < blen; ++i) b[i] = (uchar)before.latin1()[i]; return replace((const QChar *)b.data(), blen, (const QChar *)a.data(), alen, cs); } /*! \since 4.5 \overload replace() Replaces every occurrence of the string \a before with the string \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \note The text is not rescanned after a replacement. */ QString &QString::replace(const QLatin1String &before, const QString &after, Qt::CaseSensitivity cs) { int blen = qstrlen(before.latin1()); QVarLengthArray b(blen); for (int i = 0; i < blen; ++i) b[i] = (uchar)before.latin1()[i]; return replace((const QChar *)b.data(), blen, after.constData(), after.d->size, cs); } /*! \since 4.5 \overload replace() Replaces every occurrence of the string \a before with the string \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \note The text is not rescanned after a replacement. */ QString &QString::replace(const QString &before, const QLatin1String &after, Qt::CaseSensitivity cs) { int alen = qstrlen(after.latin1()); QVarLengthArray a(alen); for (int i = 0; i < alen; ++i) a[i] = (uchar)after.latin1()[i]; return replace(before.constData(), before.d->size, (const QChar *)a.data(), alen, cs); } /*! \since 4.5 \overload replace() Replaces every occurrence of the character \a c with the string \a after and returns a reference to this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \note The text is not rescanned after a replacement. */ QString &QString::replace(QChar c, const QLatin1String &after, Qt::CaseSensitivity cs) { int alen = qstrlen(after.latin1()); QVarLengthArray a(alen); for (int i = 0; i < alen; ++i) a[i] = (uchar)after.latin1()[i]; return replace(&c, 1, (const QChar *)a.data(), alen, cs); } /*! Returns true if string \a other is equal to this string; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with localeAwareCompare(). */ bool QString::operator==(const QString &other) const { if (d->size != other.d->size) return false; return qMemEquals(d->data, other.d->data, d->size); } /*! \overload operator==() */ bool QString::operator==(const QLatin1String &other) const { const ushort *uc = d->data; const ushort *e = uc + d->size; const uchar *c = (uchar *)other.latin1(); if (!c) return isEmpty(); while (*c) { if (uc == e || *uc != *c) return false; ++uc; ++c; } return (uc == e); } /*! \fn bool QString::operator==(const QByteArray &other) const \overload operator==() The \a other byte array is converted to a QString using the fromAscii() function. This function stops conversion at the first NUL character found, or the end of the byte array. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator==(const char *other) const \overload operator==() The \a other const char pointer is converted to a QString using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! Returns true if this string is lexically less than string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ bool QString::operator<(const QString &other) const { return ucstrcmp(constData(), length(), other.constData(), other.length()) < 0; } /*! \overload operator<() */ bool QString::operator<(const QLatin1String &other) const { const ushort *uc = d->data; const ushort *e = uc + d->size; const uchar *c = (uchar *) other.latin1(); if (!c || *c == 0) return false; while (*c) { if (uc == e || *uc != *c) break; ++uc; ++c; } return (uc == e ? *c : *uc < *c); } /*! \fn bool QString::operator<(const QByteArray &other) const \overload operator<() The \a other byte array is converted to a QString using the fromAscii() function. If any NUL characters ('\0') are embedded in the byte array, they will be included in the transformation. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator<(const char *other) const \overload operator<() The \a other const char pointer is converted to a QString using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator<=(const QString &other) const Returns true if this string is lexically less than or equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with localeAwareCompare(). */ /*! \fn bool QString::operator<=(const QLatin1String &other) const \overload operator<=() */ /*! \fn bool QString::operator<=(const QByteArray &other) const \overload operator<=() The \a other byte array is converted to a QString using the fromAscii() function. If any NUL characters ('\0') are embedded in the byte array, they will be included in the transformation. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator<=(const char *other) const \overload operator<=() The \a other const char pointer is converted to a QString using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator>(const QString &other) const Returns true if this string is lexically greater than string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with localeAwareCompare(). */ /*! \overload operator>() */ bool QString::operator>(const QLatin1String &other) const { const ushort *uc = d->data;; const ushort *e = uc + d->size; const uchar *c = (uchar *) other.latin1(); if (!c || *c == '\0') return !isEmpty(); while (*c) { if (uc == e || *uc != *c) break; ++uc; ++c; } return (uc == e ? false : *uc > *c); } /*! \fn bool QString::operator>(const QByteArray &other) const \overload operator>() The \a other byte array is converted to a QString using the fromAscii() function. If any NUL characters ('\0') are embedded in the byte array, they will be included in the transformation. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator>(const char *other) const \overload operator>() The \a other const char pointer is converted to a QString using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator>=(const QString &other) const Returns true if this string is lexically greater than or equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with localeAwareCompare(). */ /*! \fn bool QString::operator>=(const QLatin1String &other) const \overload operator>=() */ /*! \fn bool QString::operator>=(const QByteArray &other) const \overload operator>=() The \a other byte array is converted to a QString using the fromAscii() function. If any NUL characters ('\0') are embedded in the byte array, they will be included in the transformation. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator>=(const char *other) const \overload operator>=() The \a other const char pointer is converted to a QString using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator!=(const QString &other) const Returns true if this string is not equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with localeAwareCompare(). */ /*! \fn bool QString::operator!=(const QLatin1String &other) const \overload operator!=() */ /*! \fn bool QString::operator!=(const QByteArray &other) const \overload operator!=() The \a other byte array is converted to a QString using the fromAscii() function. If any NUL characters ('\0') are embedded in the byte array, they will be included in the transformation. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QString::operator!=(const char *other) const \overload operator!=() The \a other const char pointer is converted to a QString using the fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! Returns the index position of the first occurrence of the string \a str in this string, searching forward from index position \a from. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 24 If \a from is -1, the search starts at the last character; if it is -2, at the next to last character and so on. \sa lastIndexOf(), contains(), count() */ int QString::indexOf(const QString &str, int from, Qt::CaseSensitivity cs) const { return qFindString(unicode(), length(), from, str.unicode(), str.length(), cs); } /*! \since 4.5 Returns the index position of the first occurrence of the string \a str in this string, searching forward from index position \a from. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 24 If \a from is -1, the search starts at the last character; if it is -2, at the next to last character and so on. \sa lastIndexOf(), contains(), count() */ int QString::indexOf(const QLatin1String &str, int from, Qt::CaseSensitivity cs) const { return qt_find_latin1_string(unicode(), size(), str, from, cs); } int qFindString( const QChar *haystack0, int haystackLen, int from, const QChar *needle0, int needleLen, Qt::CaseSensitivity cs) { const int l = haystackLen; const int sl = needleLen; if (from < 0) from += l; if (uint(sl + from) > (uint)l) return -1; if (!sl) return from; if (!l) return -1; if (sl == 1) return findChar(haystack0, haystackLen, needle0[0], from, cs); /* We use the Boyer-Moore algorithm in cases where the overhead for the skip table should pay off, otherwise we use a simple hash function. */ if (l > 500 && sl > 5) return qFindStringBoyerMoore(haystack0, haystackLen, from, needle0, needleLen, cs); /* We use some hashing for efficiency's sake. Instead of comparing strings, we compare the hash value of str with that of a part of this QString. Only if that matches, we call ucstrncmp() or ucstrnicmp(). */ const ushort *needle = (const ushort *)needle0; const ushort *haystack = (const ushort *)haystack0 + from; const ushort *end = (const ushort *)haystack0 + (l-sl); const int sl_minus_1 = sl-1; int hashNeedle = 0, hashHaystack = 0, idx; if (cs == Qt::CaseSensitive) { for (idx = 0; idx < sl; ++idx) { hashNeedle = ((hashNeedle<<1) + needle[idx]); hashHaystack = ((hashHaystack<<1) + haystack[idx]); } hashHaystack -= haystack[sl_minus_1]; while (haystack <= end) { hashHaystack += haystack[sl_minus_1]; if (hashHaystack == hashNeedle && ucstrncmp((const QChar *)needle, (const QChar *)haystack, sl) == 0) return haystack - (const ushort *)haystack0; REHASH(*haystack); ++haystack; } } else { const ushort *haystack_start = (const ushort *)haystack0; for (idx = 0; idx < sl; ++idx) { hashNeedle = (hashNeedle<<1) + foldCase(needle + idx, needle); hashHaystack = (hashHaystack<<1) + foldCase(haystack + idx, haystack_start); } hashHaystack -= foldCase(haystack + sl_minus_1, haystack_start); while (haystack <= end) { hashHaystack += foldCase(haystack + sl_minus_1, haystack_start); if (hashHaystack == hashNeedle && ucstrnicmp(needle, haystack, sl) == 0) return haystack - (const ushort *)haystack0; REHASH(foldCase(haystack, haystack_start)); ++haystack; } } return -1; } /*! \overload indexOf() Returns the index position of the first occurrence of the character \a ch in the string, searching forward from index position \a from. Returns -1 if \a ch could not be found. */ int QString::indexOf(QChar ch, int from, Qt::CaseSensitivity cs) const { return findChar(unicode(), length(), ch, from, cs); } /*! \since 4.8 \overload indexOf() Returns the index position of the first occurrence of the string reference \a str in this string, searching forward from index position \a from. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. */ int QString::indexOf(const QStringRef &str, int from, Qt::CaseSensitivity cs) const { return qFindString(unicode(), length(), from, str.unicode(), str.length(), cs); } static int lastIndexOfHelper(const ushort *haystack, int from, const ushort *needle, int sl, Qt::CaseSensitivity cs) { /* See indexOf() for explanations. */ const ushort *end = haystack; haystack += from; const int sl_minus_1 = sl-1; const ushort *n = needle+sl_minus_1; const ushort *h = haystack+sl_minus_1; int hashNeedle = 0, hashHaystack = 0, idx; if (cs == Qt::CaseSensitive) { for (idx = 0; idx < sl; ++idx) { hashNeedle = ((hashNeedle<<1) + *(n-idx)); hashHaystack = ((hashHaystack<<1) + *(h-idx)); } hashHaystack -= *haystack; while (haystack >= end) { hashHaystack += *haystack; if (hashHaystack == hashNeedle && ucstrncmp((const QChar *)needle, (const QChar *)haystack, sl) == 0) return haystack - end; --haystack; REHASH(haystack[sl]); } } else { for (idx = 0; idx < sl; ++idx) { hashNeedle = ((hashNeedle<<1) + foldCase(n-idx, needle)); hashHaystack = ((hashHaystack<<1) + foldCase(h-idx, end)); } hashHaystack -= foldCase(haystack, end); while (haystack >= end) { hashHaystack += foldCase(haystack, end); if (hashHaystack == hashNeedle && ucstrnicmp(needle, haystack, sl) == 0) return haystack - end; --haystack; REHASH(foldCase(haystack + sl, end)); } } return -1; } /*! Returns the index position of the last occurrence of the string \a str in this string, searching backward from index position \a from. If \a from is -1 (default), the search starts at the last character; if \a from is -2, at the next to last character and so on. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 29 \sa indexOf(), contains(), count() */ int QString::lastIndexOf(const QString &str, int from, Qt::CaseSensitivity cs) const { const int sl = str.d->size; if (sl == 1) return lastIndexOf(QChar(str.d->data[0]), from, cs); const int l = d->size; if (from < 0) from += l; int delta = l-sl; if (from == l && sl == 0) return from; if (from < 0 || from >= l || delta < 0) return -1; if (from > delta) from = delta; return lastIndexOfHelper(d->data, from, str.d->data, str.d->size, cs); } /*! \since 4.5 \overload lastIndexOf() Returns the index position of the last occurrence of the string \a str in this string, searching backward from index position \a from. If \a from is -1 (default), the search starts at the last character; if \a from is -2, at the next to last character and so on. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 29 \sa indexOf(), contains(), count() */ int QString::lastIndexOf(const QLatin1String &str, int from, Qt::CaseSensitivity cs) const { const int sl = qstrlen(str.latin1()); if (sl == 1) return lastIndexOf(QLatin1Char(str.latin1()[0]), from, cs); const int l = d->size; if (from < 0) from += l; int delta = l-sl; if (from == l && sl == 0) return from; if (from < 0 || from >= l || delta < 0) return -1; if (from > delta) from = delta; QVarLengthArray s(sl); for (int i = 0; i < sl; ++i) s[i] = str.latin1()[i]; return lastIndexOfHelper(d->data, from, s.data(), sl, cs); } /*! \overload lastIndexOf() Returns the index position of the last occurrence of the character \a ch, searching backward from position \a from. */ int QString::lastIndexOf(QChar ch, int from, Qt::CaseSensitivity cs) const { return qt_last_index_of(unicode(), size(), ch, from, cs); } /*! \since 4.8 \overload lastIndexOf() Returns the index position of the last occurrence of the string reference \a str in this string, searching backward from index position \a from. If \a from is -1 (default), the search starts at the last character; if \a from is -2, at the next to last character and so on. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa indexOf(), contains(), count() */ int QString::lastIndexOf(const QStringRef &str, int from, Qt::CaseSensitivity cs) const { const int sl = str.size(); if (sl == 1) return lastIndexOf(str.at(0), from, cs); const int l = d->size; if (from < 0) from += l; int delta = l - sl; if (from == l && sl == 0) return from; if (from < 0 || from >= l || delta < 0) return -1; if (from > delta) from = delta; return lastIndexOfHelper(d->data, from, reinterpret_cast(str.unicode()), str.size(), cs); } #ifndef QT_NO_REGEXP struct QStringCapture { int pos; int len; int no; }; /*! \overload replace() Replaces every occurrence of the regular expression \a rx in the string with \a after. Returns a reference to the string. For example: \snippet doc/src/snippets/qstring/main.cpp 42 For regular expressions containing \l{capturing parentheses}, occurrences of \bold{\\1}, \bold{\\2}, ..., in \a after are replaced with \a{rx}.cap(1), cap(2), ... \snippet doc/src/snippets/qstring/main.cpp 43 \sa indexOf(), lastIndexOf(), remove(), QRegExp::cap() */ QString& QString::replace(const QRegExp &rx, const QString &after) { QRegExp rx2(rx); if (isEmpty() && rx2.indexIn(*this) == -1) return *this; realloc(); int index = 0; int numCaptures = rx2.captureCount(); int al = after.length(); QRegExp::CaretMode caretMode = QRegExp::CaretAtZero; if (numCaptures > 0) { const QChar *uc = after.unicode(); int numBackRefs = 0; for (int i = 0; i < al - 1; i++) { if (uc[i] == QLatin1Char('\\')) { int no = uc[i + 1].digitValue(); if (no > 0 && no <= numCaptures) numBackRefs++; } } /* This is the harder case where we have back-references. */ if (numBackRefs > 0) { QVarLengthArray captures(numBackRefs); int j = 0; for (int i = 0; i < al - 1; i++) { if (uc[i] == QLatin1Char('\\')) { int no = uc[i + 1].digitValue(); if (no > 0 && no <= numCaptures) { QStringCapture capture; capture.pos = i; capture.len = 2; if (i < al - 2) { int secondDigit = uc[i + 2].digitValue(); if (secondDigit != -1 && ((no * 10) + secondDigit) <= numCaptures) { no = (no * 10) + secondDigit; ++capture.len; } } capture.no = no; captures[j++] = capture; } } } while (index <= length()) { index = rx2.indexIn(*this, index, caretMode); if (index == -1) break; QString after2(after); for (j = numBackRefs - 1; j >= 0; j--) { const QStringCapture &capture = captures[j]; after2.replace(capture.pos, capture.len, rx2.cap(capture.no)); } replace(index, rx2.matchedLength(), after2); index += after2.length(); // avoid infinite loop on 0-length matches (e.g., QRegExp("[a-z]*")) if (rx2.matchedLength() == 0) ++index; caretMode = QRegExp::CaretWontMatch; } return *this; } } /* This is the simple and optimized case where we don't have back-references. */ while (index != -1) { struct { int pos; int length; } replacements[2048]; int pos = 0; int adjust = 0; while (pos < 2047) { index = rx2.indexIn(*this, index, caretMode); if (index == -1) break; int ml = rx2.matchedLength(); replacements[pos].pos = index; replacements[pos++].length = ml; index += ml; adjust += al - ml; // avoid infinite loop if (!ml) index++; } if (!pos) break; replacements[pos].pos = d->size; int newlen = d->size + adjust; // to continue searching at the right position after we did // the first round of replacements if (index != -1) index += adjust; QString newstring; newstring.reserve(newlen + 1); QChar *newuc = newstring.data(); QChar *uc = newuc; int copystart = 0; int i = 0; while (i < pos) { int copyend = replacements[i].pos; int size = copyend - copystart; memcpy(uc, d->data + copystart, size * sizeof(QChar)); uc += size; memcpy(uc, after.d->data, al * sizeof(QChar)); uc += al; copystart = copyend + replacements[i].length; i++; } memcpy(uc, d->data + copystart, (d->size - copystart) * sizeof(QChar)); newstring.resize(newlen); *this = newstring; caretMode = QRegExp::CaretWontMatch; } return *this; } #endif /*! Returns the number of (potentially overlapping) occurrences of the string \a str in this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa contains(), indexOf() */ int QString::count(const QString &str, Qt::CaseSensitivity cs) const { return qt_string_count(unicode(), size(), str.unicode(), str.size(), cs); } /*! \overload count() Returns the number of occurrences of character \a ch in the string. */ int QString::count(QChar ch, Qt::CaseSensitivity cs) const { return qt_string_count(unicode(), size(), ch, cs); } /*! \since 4.8 \overload count() Returns the number of (potentially overlapping) occurrences of the string reference \a str in this string. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa contains(), indexOf() */ int QString::count(const QStringRef &str, Qt::CaseSensitivity cs) const { return qt_string_count(unicode(), size(), str.unicode(), str.size(), cs); } /*! \fn bool QString::contains(const QString &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const Returns true if this string contains an occurrence of the string \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. Example: \snippet doc/src/snippets/qstring/main.cpp 17 \sa indexOf(), count() */ /*! \fn bool QString::contains(QChar ch, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \overload contains() Returns true if this string contains an occurrence of the character \a ch; otherwise returns false. */ /*! \fn bool QString::contains(const QStringRef &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \since 4.8 Returns true if this string contains an occurrence of the string reference \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa indexOf(), count() */ /*! \fn bool QString::contains(const QRegExp &rx) const \overload contains() Returns true if the regular expression \a rx matches somewhere in this string; otherwise returns false. */ /*! \fn bool QString::contains(QRegExp &rx) const \overload contains() \since 4.5 Returns true if the regular expression \a rx matches somewhere in this string; otherwise returns false. If there is a match, the \a rx regular expression will contain the matched captures (see QRegExp::matchedLength, QRegExp::cap). */ #ifndef QT_NO_REGEXP /*! \overload indexOf() Returns the index position of the first match of the regular expression \a rx in the string, searching forward from index position \a from. Returns -1 if \a rx didn't match anywhere. Example: \snippet doc/src/snippets/qstring/main.cpp 25 */ int QString::indexOf(const QRegExp& rx, int from) const { QRegExp rx2(rx); return rx2.indexIn(*this, from); } /*! \overload indexOf() \since 4.5 Returns the index position of the first match of the regular expression \a rx in the string, searching forward from index position \a from. Returns -1 if \a rx didn't match anywhere. If there is a match, the \a rx regular expression will contain the matched captures (see QRegExp::matchedLength, QRegExp::cap). Example: \snippet doc/src/snippets/qstring/main.cpp 25 */ int QString::indexOf(QRegExp& rx, int from) const { return rx.indexIn(*this, from); } /*! \overload lastIndexOf() Returns the index position of the last match of the regular expression \a rx in the string, searching backward from index position \a from. Returns -1 if \a rx didn't match anywhere. Example: \snippet doc/src/snippets/qstring/main.cpp 30 */ int QString::lastIndexOf(const QRegExp& rx, int from) const { QRegExp rx2(rx); return rx2.lastIndexIn(*this, from); } /*! \overload lastIndexOf() \since 4.5 Returns the index position of the last match of the regular expression \a rx in the string, searching backward from index position \a from. Returns -1 if \a rx didn't match anywhere. If there is a match, the \a rx regular expression will contain the matched captures (see QRegExp::matchedLength, QRegExp::cap). Example: \snippet doc/src/snippets/qstring/main.cpp 30 */ int QString::lastIndexOf(QRegExp& rx, int from) const { return rx.lastIndexIn(*this, from); } /*! \overload count() Returns the number of times the regular expression \a rx matches in the string. This function counts overlapping matches, so in the example below, there are four instances of "ana" or "ama": \snippet doc/src/snippets/qstring/main.cpp 18 */ int QString::count(const QRegExp& rx) const { QRegExp rx2(rx); int count = 0; int index = -1; int len = length(); while (index < len - 1) { // count overlapping matches index = rx2.indexIn(*this, index + 1); if (index == -1) break; count++; } return count; } #endif // QT_NO_REGEXP /*! \fn int QString::count() const \overload count() Same as size(). */ /*! \enum QString::SectionFlag This enum specifies flags that can be used to affect various aspects of the section() function's behavior with respect to separators and empty fields. \value SectionDefault Empty fields are counted, leading and trailing separators are not included, and the separator is compared case sensitively. \value SectionSkipEmpty Treat empty fields as if they don't exist, i.e. they are not considered as far as \e start and \e end are concerned. \value SectionIncludeLeadingSep Include the leading separator (if any) in the result string. \value SectionIncludeTrailingSep Include the trailing separator (if any) in the result string. \value SectionCaseInsensitiveSeps Compare the separator case-insensitively. \sa section() */ /*! \fn QString QString::section(QChar sep, int start, int end = -1, SectionFlags flags) const This function returns a section of the string. This string is treated as a sequence of fields separated by the character, \a sep. The returned string consists of the fields from position \a start to position \a end inclusive. If \a end is not specified, all fields from position \a start to the end of the string are included. Fields are numbered 0, 1, 2, etc., counting from the left, and -1, -2, etc., counting from right to left. The \a flags argument can be used to affect some aspects of the function's behavior, e.g. whether to be case sensitive, whether to skip empty fields and how to deal with leading and trailing separators; see \l{SectionFlags}. \snippet doc/src/snippets/qstring/main.cpp 52 If \a start or \a end is negative, we count fields from the right of the string, the right-most field being -1, the one from right-most field being -2, and so on. \snippet doc/src/snippets/qstring/main.cpp 53 \sa split() */ /*! \overload section() \snippet doc/src/snippets/qstring/main.cpp 51 \snippet doc/src/snippets/qstring/main.cpp 54 \sa split() */ QString QString::section(const QString &sep, int start, int end, SectionFlags flags) const { QStringList sections = split(sep, KeepEmptyParts, (flags & SectionCaseInsensitiveSeps) ? Qt::CaseInsensitive : Qt::CaseSensitive); if (sections.isEmpty()) return QString(); if (!(flags & SectionSkipEmpty)) { if (start < 0) start += sections.count(); if (end < 0) end += sections.count(); } else { int skip = 0; for (int k=0; k= start) { if(x == start) first_i = i; if(x == end) last_i = i; if(x > start) ret += sep; ret += section; } if (!empty || !(flags & SectionSkipEmpty)) x++; } if((flags & SectionIncludeLeadingSep) && first_i) ret.prepend(sep); if((flags & SectionIncludeTrailingSep) && last_i < sections.size()-1) ret += sep; return ret; } #ifndef QT_NO_REGEXP class qt_section_chunk { public: qt_section_chunk(int l, QString s) { length = l; string = s; } int length; QString string; }; /*! \overload section() This string is treated as a sequence of fields separated by the regular expression, \a reg. \snippet doc/src/snippets/qstring/main.cpp 55 \warning Using this QRegExp version is much more expensive than the overloaded string and character versions. \sa split() simplified() */ QString QString::section(const QRegExp ®, int start, int end, SectionFlags flags) const { const QChar *uc = unicode(); if(!uc) return QString(); QRegExp sep(reg); sep.setCaseSensitivity((flags & SectionCaseInsensitiveSeps) ? Qt::CaseInsensitive : Qt::CaseSensitive); QList sections; int n = length(), m = 0, last_m = 0, last_len = 0; while ((m = sep.indexIn(*this, m)) != -1) { sections.append(qt_section_chunk(last_len, QString(uc + last_m, m - last_m))); last_m = m; last_len = sep.matchedLength(); m += qMax(sep.matchedLength(), 1); } sections.append(qt_section_chunk(last_len, QString(uc + last_m, n - last_m))); if(start < 0) start += sections.count(); if(end < 0) end += sections.count(); QString ret; int x = 0; int first_i = start, last_i = end; for (int i = 0; x <= end && i < sections.size(); ++i) { const qt_section_chunk §ion = sections.at(i); const bool empty = (section.length == section.string.length()); if (x >= start) { if(x == start) first_i = i; if(x == end) last_i = i; if(x != start) ret += section.string; else ret += section.string.mid(section.length); } if (!empty || !(flags & SectionSkipEmpty)) x++; } if((flags & SectionIncludeLeadingSep) && first_i < sections.size()) { const qt_section_chunk §ion = sections.at(first_i); ret.prepend(section.string.left(section.length)); } if((flags & SectionIncludeTrailingSep) && last_i+1 <= sections.size()-1) { const qt_section_chunk §ion = sections.at(last_i+1); ret += section.string.left(section.length); } return ret; } #endif /*! Returns a substring that contains the \a n leftmost characters of the string. The entire string is returned if \a n is greater than size() or less than zero. \snippet doc/src/snippets/qstring/main.cpp 31 \sa right(), mid(), startsWith() */ QString QString::left(int n) const { if (n >= d->size || n < 0) return *this; return QString((const QChar*) d->data, n); } /*! Returns a substring that contains the \a n rightmost characters of the string. The entire string is returned if \a n is greater than size() or less than zero. \snippet doc/src/snippets/qstring/main.cpp 48 \sa left(), mid(), endsWith() */ QString QString::right(int n) const { if (n >= d->size || n < 0) return *this; return QString((const QChar*) d->data + d->size - n, n); } /*! Returns a string that contains \a n characters of this string, starting at the specified \a position index. Returns a null string if the \a position index exceeds the length of the string. If there are less than \a n characters available in the string starting at the given \a position, or if \a n is -1 (default), the function returns all characters that are available from the specified \a position. Example: \snippet doc/src/snippets/qstring/main.cpp 34 \sa left(), right() */ QString QString::mid(int position, int n) const { if (d == &shared_null || position >= d->size) return QString(); if (n < 0) n = d->size - position; if (position < 0) { n += position; position = 0; } if (n + position > d->size) n = d->size - position; if (position == 0 && n == d->size) return *this; return QString((const QChar*) d->data + position, n); } /*! Returns true if the string starts with \a s; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \snippet doc/src/snippets/qstring/main.cpp 65 \sa endsWith() */ bool QString::startsWith(const QString& s, Qt::CaseSensitivity cs) const { return qt_starts_with(isNull() ? 0 : unicode(), size(), s.isNull() ? 0 : s.unicode(), s.size(), cs); } /*! \overload startsWith() */ bool QString::startsWith(const QLatin1String& s, Qt::CaseSensitivity cs) const { return qt_starts_with(isNull() ? 0 : unicode(), size(), s, cs); } /*! \overload startsWith() Returns true if the string starts with \a c; otherwise returns false. */ bool QString::startsWith(const QChar &c, Qt::CaseSensitivity cs) const { return d->size && (cs == Qt::CaseSensitive ? d->data[0] == c : foldCase(d->data[0]) == foldCase(c.unicode())); } /*! \since 4.8 \overload Returns true if the string starts with the string reference \a s; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa endsWith() */ bool QString::startsWith(const QStringRef &s, Qt::CaseSensitivity cs) const { return qt_starts_with(isNull() ? 0 : unicode(), size(), s.isNull() ? 0 : s.unicode(), s.size(), cs); } /*! Returns true if the string ends with \a s; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \snippet doc/src/snippets/qstring/main.cpp 20 \sa startsWith() */ bool QString::endsWith(const QString& s, Qt::CaseSensitivity cs) const { return qt_ends_with(isNull() ? 0 : unicode(), size(), s.isNull() ? 0 : s.unicode(), s.size(), cs); } /*! \since 4.8 \overload endsWith() Returns true if the string ends with the string reference \a s; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa startsWith() */ bool QString::endsWith(const QStringRef &s, Qt::CaseSensitivity cs) const { return qt_ends_with(isNull() ? 0 : unicode(), size(), s.isNull() ? 0 : s.unicode(), s.size(), cs); } /*! \overload endsWith() */ bool QString::endsWith(const QLatin1String& s, Qt::CaseSensitivity cs) const { return qt_ends_with(isNull() ? 0 : unicode(), size(), s, cs); } /*! Returns true if the string ends with \a c; otherwise returns false. \overload endsWith() */ bool QString::endsWith(const QChar &c, Qt::CaseSensitivity cs) const { return d->size && (cs == Qt::CaseSensitive ? d->data[d->size - 1] == c : foldCase(d->data[d->size - 1]) == foldCase(c.unicode())); } /*! \fn const char *QString::ascii() const \nonreentrant Use toAscii() instead. */ /*! \fn const char *QString::latin1() const \nonreentrant Use toLatin1() instead. */ /*! \fn const char *QString::utf8() const \nonreentrant Use toUtf8() instead. */ /*! \fn const char *QString::local8Bit() const \nonreentrant Use toLocal8Bit() instead. */ static QByteArray toLatin1_helper(const QChar *data, int length) { QByteArray ba; if (length) { ba.resize(length); const ushort *src = reinterpret_cast(data); uchar *dst = (uchar*) ba.data(); #if defined(QT_ALWAYS_HAVE_SSE2) if (length >= 16) { const int chunkCount = length >> 4; // divided by 16 const __m128i questionMark = _mm_set1_epi16('?'); // SSE has no compare instruction for unsigned comparison. // The variables must be shiffted + 0x8000 to be compared const __m128i signedBitOffset = _mm_set1_epi16(0x8000); const __m128i thresholdMask = _mm_set1_epi16(0xff + 0x8000); for (int i = 0; i < chunkCount; ++i) { __m128i chunk1 = _mm_loadu_si128((__m128i*)src); // load src += 8; { // each 16 bit is equal to 0xFF if the source is outside latin 1 (>0xff) const __m128i signedChunk = _mm_add_epi16(chunk1, signedBitOffset); const __m128i offLimitMask = _mm_cmpgt_epi16(signedChunk, thresholdMask); // offLimitQuestionMark contains '?' for each 16 bits that was off-limit // the 16 bits that were correct contains zeros const __m128i offLimitQuestionMark = _mm_and_si128(offLimitMask, questionMark); // correctBytes contains the bytes that were in limit // the 16 bits that were off limits contains zeros const __m128i correctBytes = _mm_andnot_si128(offLimitMask, chunk1); // merge offLimitQuestionMark and correctBytes to have the result chunk1 = _mm_or_si128(correctBytes, offLimitQuestionMark); } __m128i chunk2 = _mm_loadu_si128((__m128i*)src); // load src += 8; { // exactly the same operations as for the previous chunk of data const __m128i signedChunk = _mm_add_epi16(chunk2, signedBitOffset); const __m128i offLimitMask = _mm_cmpgt_epi16(signedChunk, thresholdMask); const __m128i offLimitQuestionMark = _mm_and_si128(offLimitMask, questionMark); const __m128i correctBytes = _mm_andnot_si128(offLimitMask, chunk2); chunk2 = _mm_or_si128(correctBytes, offLimitQuestionMark); } // pack the two vector to 16 x 8bits elements const __m128i result = _mm_packus_epi16(chunk1, chunk2); _mm_storeu_si128((__m128i*)dst, result); // store dst += 16; } length = length % 16; } #elif defined(QT_ALWAYS_HAVE_NEON) // Refer to the documentation of the SSE2 implementation // this use eactly the same method as for SSE except: // 1) neon has unsigned comparison // 2) packing is done to 64 bits (8 x 8bits component). if (length >= 16) { const int chunkCount = length >> 3; // divided by 8 const uint16x8_t questionMark = vdupq_n_u16('?'); // set const uint16x8_t thresholdMask = vdupq_n_u16(0xff); // set for (int i = 0; i < chunkCount; ++i) { uint16x8_t chunk = vld1q_u16((uint16_t *)src); // load src += 8; const uint16x8_t offLimitMask = vcgtq_u16(chunk, thresholdMask); // chunk > thresholdMask const uint16x8_t offLimitQuestionMark = vandq_u16(offLimitMask, questionMark); // offLimitMask & questionMark const uint16x8_t correctBytes = vbicq_u16(chunk, offLimitMask); // !offLimitMask & chunk chunk = vorrq_u16(correctBytes, offLimitQuestionMark); // correctBytes | offLimitQuestionMark const uint8x8_t result = vmovn_u16(chunk); // narrowing move->packing vst1_u8(dst, result); // store dst += 8; } length = length % 8; } #endif while (length--) { *dst++ = (*src>0xff) ? '?' : (uchar) *src; ++src; } } return ba; } /*! Returns a Latin-1 representation of the string as a QByteArray. The returned byte array is undefined if the string contains non-Latin1 characters. Those characters may be suppressed or replaced with a question mark. \sa fromLatin1(), toAscii(), toUtf8(), toLocal8Bit(), QTextCodec */ QByteArray QString::toLatin1() const { return toLatin1_helper(unicode(), length()); } // ### Qt 5: Change the return type of at least toAscii(), // toLatin1() and unicode() such that the use of Q_COMPILER_MANGLES_RETURN_TYPE // isn't necessary in the header. See task 177402. /*! Returns an 8-bit representation of the string as a QByteArray. If a codec has been set using QTextCodec::setCodecForCStrings(), it is used to convert Unicode to 8-bit char; otherwise this function does the same as toLatin1(). Note that, despite the name, this function does not necessarily return an US-ASCII (ANSI X3.4-1986) string and its result may not be US-ASCII compatible. \sa fromAscii(), toLatin1(), toUtf8(), toLocal8Bit(), QTextCodec */ QByteArray QString::toAscii() const { #ifndef QT_NO_TEXTCODEC if (codecForCStrings) return codecForCStrings->fromUnicode(*this); #endif // QT_NO_TEXTCODEC return toLatin1(); } #if !defined(Q_WS_MAC) && defined(Q_OS_UNIX) static QByteArray toLocal8Bit_helper(const QChar *data, int length) { #ifndef QT_NO_TEXTCODEC if (QTextCodec::codecForLocale()) return QTextCodec::codecForLocale()->fromUnicode(data, length); #endif // QT_NO_TEXTCODEC return toLatin1_helper(data, length); } #endif /*! Returns the local 8-bit representation of the string as a QByteArray. The returned byte array is undefined if the string contains characters not supported by the local 8-bit encoding. QTextCodec::codecForLocale() is used to perform the conversion from Unicode. If the locale encoding could not be determined, this function does the same as toLatin1(). If this string contains any characters that cannot be encoded in the locale, the returned byte array is undefined. Those characters may be suppressed or replaced by another. \sa fromLocal8Bit(), toAscii(), toLatin1(), toUtf8(), QTextCodec */ QByteArray QString::toLocal8Bit() const { #ifndef QT_NO_TEXTCODEC if (QTextCodec::codecForLocale()) return QTextCodec::codecForLocale()->fromUnicode(*this); #endif // QT_NO_TEXTCODEC return toLatin1(); } /*! Returns a UTF-8 representation of the string as a QByteArray. UTF-8 is a Unicode codec and can represent all characters in a Unicode string like QString. However, in the Unicode range, there are certain codepoints that are not considered characters. The Unicode standard reserves the last two codepoints in each Unicode Plane (U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, U+2FFFE, etc.), as well as 16 codepoints in the range U+FDD0..U+FDDF, inclusive, as non-characters. If any of those appear in the string, they may be discarded and will not appear in the UTF-8 representation, or they may be replaced by one or more replacement characters. \sa fromUtf8(), toAscii(), toLatin1(), toLocal8Bit(), QTextCodec */ QByteArray QString::toUtf8() const { if (isNull()) return QByteArray(); return QUtf8::convertFromUnicode(constData(), length(), 0); } /*! \since 4.2 Returns a UCS-4/UTF-32 representation of the string as a QVector. UCS-4 is a Unicode codec and is lossless. All characters from this string can be encoded in UCS-4. The vector is not null terminated. \sa fromUtf8(), toAscii(), toLatin1(), toLocal8Bit(), QTextCodec, fromUcs4(), toWCharArray() */ QVector QString::toUcs4() const { QVector v(length()); uint *a = v.data(); int len = toUcs4_helper(utf16(), length(), a); v.resize(len); return v; } QString::Data *QString::fromLatin1_helper(const char *str, int size) { Data *d; if (!str) { d = &shared_null; d->ref.ref(); } else if (size == 0 || (!*str && size < 0)) { d = &shared_empty; d->ref.ref(); } else { if (size < 0) size = qstrlen(str); d = static_cast(qMalloc(sizeof(Data) + size * sizeof(QChar))); Q_CHECK_PTR(d); d->ref = 1; d->alloc = d->size = size; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; d->data = d->array; d->array[size] = '\0'; ushort *dst = d->data; /* SIMD: * Unpacking with SSE has been shown to improve performance on recent CPUs * The same method gives no improvement with NEON. */ #if defined(QT_ALWAYS_HAVE_SSE2) if (size >= 16) { int chunkCount = size >> 4; // divided by 16 const __m128i nullMask = _mm_set1_epi32(0); for (int i = 0; i < chunkCount; ++i) { const __m128i chunk = _mm_loadu_si128((__m128i*)str); // load str += 16; // unpack the first 8 bytes, padding with zeros const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask); _mm_storeu_si128((__m128i*)dst, firstHalf); // store dst += 8; // unpack the last 8 bytes, padding with zeros const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask); _mm_storeu_si128((__m128i*)dst, secondHalf); // store dst += 8; } size = size % 16; } #endif while (size--) *dst++ = (uchar)*str++; } return d; } QString::Data *QString::fromAscii_helper(const char *str, int size) { #ifndef QT_NO_TEXTCODEC if (codecForCStrings) { Data *d; if (!str) { d = &shared_null; d->ref.ref(); } else if (size == 0 || (!*str && size < 0)) { d = &shared_empty; d->ref.ref(); } else { if (size < 0) size = qstrlen(str); QString s = codecForCStrings->toUnicode(str, size); d = s.d; d->ref.ref(); } return d; } #endif return fromLatin1_helper(str, size); } /*! Returns a QString initialized with the first \a size characters of the Latin-1 string \a str. If \a size is -1 (default), it is taken to be qstrlen(\a str). \sa toLatin1(), fromAscii(), fromUtf8(), fromLocal8Bit() */ QString QString::fromLatin1(const char *str, int size) { return QString(fromLatin1_helper(str, size), 0); } #ifdef QT3_SUPPORT /*! \internal */ const char *QString::ascii_helper() const { if (!asciiCache) asciiCache = new QHash(); d->asciiCache = true; QByteArray ascii = toAscii(); QByteArray old = asciiCache->value(d); if (old == ascii) return old.constData(); asciiCache->insert(d, ascii); return ascii.constData(); } /*! \internal */ const char *QString::latin1_helper() const { if (!asciiCache) asciiCache = new QHash(); d->asciiCache = true; QByteArray ascii = toLatin1(); QByteArray old = asciiCache->value(d); if (old == ascii) return old.constData(); asciiCache->insert(d, ascii); return ascii.constData(); } #endif /*! Returns a QString initialized with the first \a size characters of the 8-bit string \a str. If \a size is -1 (default), it is taken to be qstrlen(\a str). QTextCodec::codecForLocale() is used to perform the conversion from Unicode. \sa toLocal8Bit(), fromAscii(), fromLatin1(), fromUtf8() */ QString QString::fromLocal8Bit(const char *str, int size) { if (!str) return QString(); if (size == 0 || (!*str && size < 0)) return QLatin1String(""); #if !defined(QT_NO_TEXTCODEC) if (size < 0) size = qstrlen(str); QTextCodec *codec = QTextCodec::codecForLocale(); if (codec) return codec->toUnicode(str, size); #endif // !QT_NO_TEXTCODEC return fromLatin1(str, size); } /*! Returns a QString initialized with the first \a size characters from the string \a str. If \a size is -1 (default), it is taken to be qstrlen(\a str). Note that, despite the name, this function actually uses the codec defined by QTextCodec::setCodecForCStrings() to convert \a str to Unicode. Depending on the codec, it may not accept valid US-ASCII (ANSI X3.4-1986) input. If no codec has been set, this function does the same as fromLatin1(). \sa toAscii(), fromLatin1(), fromUtf8(), fromLocal8Bit() */ QString QString::fromAscii(const char *str, int size) { return QString(fromAscii_helper(str, size), 0); } /*! Returns a QString initialized with the first \a size bytes of the UTF-8 string \a str. If \a size is -1 (default), it is taken to be qstrlen(\a str). UTF-8 is a Unicode codec and can represent all characters in a Unicode string like QString. However, invalid sequences are possible with UTF-8 and, if any such are found, they will be replaced with one or more "replacement characters", or suppressed. These include non-Unicode sequences, non-characters, overlong sequences or surrogate codepoints encoded into UTF-8. Non-characters are codepoints that the Unicode standard reserves and must not be used in text interchange. They are the last two codepoints in each Unicode Plane (U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, U+2FFFE, etc.), as well as 16 codepoints in the range U+FDD0..U+FDDF, inclusive. \sa toUtf8(), fromAscii(), fromLatin1(), fromLocal8Bit() */ QString QString::fromUtf8(const char *str, int size) { if (!str) return QString(); if (size < 0) size = qstrlen(str); return QUtf8::convertToUnicode(str, size, 0); } /*! Returns a QString initialized with the first \a size characters of the Unicode string \a unicode (ISO-10646-UTF-16 encoded). If \a size is -1 (default), \a unicode must be terminated with a 0. This function checks for a Byte Order Mark (BOM). If it is missing, host byte order is assumed. This function is slow compared to the other Unicode conversions. Use QString(const QChar *, int) or QString(const QChar *) if possible. QString makes a deep copy of the Unicode data. \sa utf16(), setUtf16() */ QString QString::fromUtf16(const ushort *unicode, int size) { if (!unicode) return QString(); if (size < 0) { size = 0; while (unicode[size] != 0) ++size; } return QUtf16::convertToUnicode((const char *)unicode, size*2, 0); } /*! \since 4.2 Returns a QString initialized with the first \a size characters of the Unicode string \a unicode (ISO-10646-UCS-4 encoded). If \a size is -1 (default), \a unicode must be terminated with a 0. \sa toUcs4(), fromUtf16(), utf16(), setUtf16(), fromWCharArray() */ QString QString::fromUcs4(const uint *unicode, int size) { if (!unicode) return QString(); if (size < 0) { size = 0; while (unicode[size] != 0) ++size; } return QUtf32::convertToUnicode((const char *)unicode, size*4, 0); } /*! Resizes the string to \a size characters and copies \a unicode into the string. If \a unicode is 0, nothing is copied, but the string is still resized to \a size. \sa unicode(), setUtf16() */ QString& QString::setUnicode(const QChar *unicode, int size) { resize(size); if (unicode && size) memcpy(d->data, unicode, size * sizeof(QChar)); return *this; } /*! \fn QString &QString::setUtf16(const ushort *unicode, int size) Resizes the string to \a size characters and copies \a unicode into the string. If \a unicode is 0, nothing is copied, but the string is still resized to \a size. Note that unlike fromUtf16(), this function does not consider BOMs and possibly differing byte ordering. \sa utf16(), setUnicode() */ /*! Returns a string that has whitespace removed from the start and the end, and that has each sequence of internal whitespace replaced with a single space. Whitespace means any character for which QChar::isSpace() returns true. This includes the ASCII characters '\\t', '\\n', '\\v', '\\f', '\\r', and ' '. Example: \snippet doc/src/snippets/qstring/main.cpp 57 \sa trimmed() */ QString QString::simplified() const { if (d->size == 0) return *this; const QChar * const start = reinterpret_cast(d->data); const QChar *from = start; const QChar *fromEnd = start + d->size; forever { QChar ch = *from; if (!ch.isSpace()) break; if (++from == fromEnd) { // All-whitespace string shared_empty.ref.ref(); return QString(&shared_empty, 0); } } // This loop needs no underflow check, as we already determined that // the string contains non-whitespace. If the string has exactly one // non-whitespace, it will be checked twice - we can live with that. while (fromEnd[-1].isSpace()) fromEnd--; // The rest of the function depends on the fact that we already know // that the last character in the source is no whitespace. const QChar *copyFrom = from; int copyCount; forever { if (++from == fromEnd) { // Only leading and/or trailing whitespace, if any at all return mid(copyFrom - start, from - copyFrom); } QChar ch = *from; if (!ch.isSpace()) continue; if (ch != QLatin1Char(' ')) { copyCount = from - copyFrom; break; } ch = *++from; if (ch.isSpace()) { copyCount = from - copyFrom - 1; break; } } // 'from' now points at the non-trailing whitespace which made the // string not simplified in the first place. 'copyCount' is the number // of already simplified characters - at least one, obviously - // without a trailing space. QString result((fromEnd - from) + copyCount, Qt::Uninitialized); QChar *to = reinterpret_cast(result.d->data); ::memcpy(to, copyFrom, copyCount * 2); to += copyCount; fromEnd--; QChar ch; forever { *to++ = QLatin1Char(' '); do { ch = *++from; } while (ch.isSpace()); if (from == fromEnd) break; do { *to++ = ch; ch = *++from; if (from == fromEnd) goto done; } while (!ch.isSpace()); } done: *to++ = ch; result.truncate(to - reinterpret_cast(result.d->data)); return result; } /*! Returns a string that has whitespace removed from the start and the end. Whitespace means any character for which QChar::isSpace() returns true. This includes the ASCII characters '\\t', '\\n', '\\v', '\\f', '\\r', and ' '. Example: \snippet doc/src/snippets/qstring/main.cpp 82 Unlike simplified(), trimmed() leaves internal whitespace alone. \sa simplified() */ QString QString::trimmed() const { if (d->size == 0) return *this; const QChar *s = (const QChar*)d->data; if (!s->isSpace() && !s[d->size-1].isSpace()) return *this; int start = 0; int end = d->size - 1; while (start<=end && s[start].isSpace()) // skip white space from start start++; if (start <= end) { // only white space while (end && s[end].isSpace()) // skip white space from end end--; } int l = end - start + 1; if (l <= 0) { shared_empty.ref.ref(); return QString(&shared_empty, 0); } return QString(s + start, l); } /*! \fn const QChar QString::at(int position) const Returns the character at the given index \a position in the string. The \a position must be a valid index position in the string (i.e., 0 <= \a position < size()). \sa operator[]() */ /*! \fn QCharRef QString::operator[](int position) Returns the character at the specified \a position in the string as a modifiable reference. Example: \snippet doc/src/snippets/qstring/main.cpp 85 The return value is of type QCharRef, a helper class for QString. When you get an object of type QCharRef, you can use it as if it were a QChar &. If you assign to it, the assignment will apply to the character in the QString from which you got the reference. \sa at() */ /*! \fn const QChar QString::operator[](int position) const \overload operator[]() */ /*! \fn QCharRef QString::operator[](uint position) \overload operator[]() Returns the character at the specified \a position in the string as a modifiable reference. Equivalent to \c at(position). */ /*! \fn const QChar QString::operator[](uint position) const \overload operator[]() */ /*! \fn void QString::truncate(int position) Truncates the string at the given \a position index. If the specified \a position index is beyond the end of the string, nothing happens. Example: \snippet doc/src/snippets/qstring/main.cpp 83 If \a position is negative, it is equivalent to passing zero. \sa chop(), resize(), left() */ void QString::truncate(int pos) { if (pos < d->size) resize(pos); } /*! Removes \a n characters from the end of the string. If \a n is greater than size(), the result is an empty string. Example: \snippet doc/src/snippets/qstring/main.cpp 15 If you want to remove characters from the \e beginning of the string, use remove() instead. \sa truncate(), resize(), remove() */ void QString::chop(int n) { if (n > 0) resize(d->size - n); } /*! Sets every character in the string to character \a ch. If \a size is different from -1 (default), the string is resized to \a size beforehand. Example: \snippet doc/src/snippets/qstring/main.cpp 21 \sa resize() */ QString& QString::fill(QChar ch, int size) { resize(size < 0 ? d->size : size); if (d->size) { QChar *i = (QChar*)d->data + d->size; QChar *b = (QChar*)d->data; while (i != b) *--i = ch; } return *this; } /*! \fn int QString::length() const Returns the number of characters in this string. Equivalent to size(). \sa resize() */ /*! \fn int QString::size() const Returns the number of characters in this string. The last character in the string is at position size() - 1. In addition, QString ensures that the character at position size() is always '\\0', so that you can use the return value of data() and constData() as arguments to functions that expect '\\0'-terminated strings. Example: \snippet doc/src/snippets/qstring/main.cpp 58 \sa isEmpty(), resize() */ /*! \fn bool QString::isNull() const Returns true if this string is null; otherwise returns false. Example: \snippet doc/src/snippets/qstring/main.cpp 28 Qt makes a distinction between null strings and empty strings for historical reasons. For most applications, what matters is whether or not a string contains any data, and this can be determined using the isEmpty() function. \sa isEmpty() */ /*! \fn bool QString::isEmpty() const Returns true if the string has no characters; otherwise returns false. Example: \snippet doc/src/snippets/qstring/main.cpp 27 \sa size() */ /*! \fn QString &QString::operator+=(const QString &other) Appends the string \a other onto the end of this string and returns a reference to this string. Example: \snippet doc/src/snippets/qstring/main.cpp 84 This operation is typically very fast (\l{constant time}), because QString preallocates extra space at the end of the string data so it can grow without reallocating the entire string each time. \sa append(), prepend() */ /*! \fn QString &QString::operator+=(const QLatin1String &str) \overload operator+=() Appends the Latin-1 string \a str to this string. */ /*! \fn QString &QString::operator+=(const QByteArray &ba) \overload operator+=() Appends the byte array \a ba to this string. The byte array is converted to Unicode using the fromAscii() function. If any NUL characters ('\0') are embedded in the \a ba byte array, they will be included in the transformation. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::operator+=(const char *str) \overload operator+=() Appends the string \a str to this string. The const char pointer is converted to Unicode using the fromAscii() function. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::operator+=(const QStringRef &str) \overload operator+=() Appends the string section referenced by \a str to this string. */ /*! \fn QString &QString::operator+=(char ch) \overload operator+=() Appends the character \a ch to this string. The character is converted to Unicode using the fromAscii() function. You can disable this function by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn QString &QString::operator+=(QChar ch) \overload operator+=() Appends the character \a ch to the string. */ /*! \fn QString &QString::operator+=(QChar::SpecialCharacter c) \overload operator+=() \internal */ /*! \fn bool operator==(const char *s1, const QString &s2) \overload operator==() \relates QString Returns true if \a s1 is equal to \a s2; otherwise returns false. Note that no string is equal to \a s1 being 0. Equivalent to \c {s1 != 0 && compare(s1, s2) == 0}. \sa QString::compare() */ /*! \fn bool operator!=(const char *s1, const QString &s2) \relates QString Returns true if \a s1 is not equal to \a s2; otherwise returns false. For \a s1 != 0, this is equivalent to \c {compare(} \a s1, \a s2 \c {) != 0}. Note that no string is equal to \a s1 being 0. \sa QString::compare() */ /*! \fn bool operator<(const char *s1, const QString &s2) \relates QString Returns true if \a s1 is lexically less than \a s2; otherwise returns false. For \a s1 != 0, this is equivalent to \c {compare(s1, s2) < 0}. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. \sa QString::compare() */ /*! \fn bool operator<=(const char *s1, const QString &s2) \relates QString Returns true if \a s1 is lexically less than or equal to \a s2; otherwise returns false. For \a s1 != 0, this is equivalent to \c {compare(s1, s2) <= 0}. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). \sa QString::compare() */ /*! \fn bool operator>(const char *s1, const QString &s2) \relates QString Returns true if \a s1 is lexically greater than \a s2; otherwise returns false. Equivalent to \c {compare(s1, s2) > 0}. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. \sa QString::compare() */ /*! \fn bool operator>=(const char *s1, const QString &s2) \relates QString Returns true if \a s1 is lexically greater than or equal to \a s2; otherwise returns false. For \a s1 != 0, this is equivalent to \c {compare(s1, s2) >= 0}. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ /*! \fn const QString operator+(const QString &s1, const QString &s2) \relates QString Returns a string which is the result of concatenating \a s1 and \a s2. */ /*! \fn const QString operator+(const QString &s1, const char *s2) \relates QString Returns a string which is the result of concatenating \a s1 and \a s2 (\a s2 is converted to Unicode using the QString::fromAscii() function). \sa QString::fromAscii() */ /*! \fn const QString operator+(const char *s1, const QString &s2) \relates QString Returns a string which is the result of concatenating \a s1 and \a s2 (\a s1 is converted to Unicode using the QString::fromAscii() function). \sa QString::fromAscii() */ /*! \fn const QString operator+(const QString &s, char ch) \relates QString Returns a string which is the result of concatenating the string \a s and the character \a ch. */ /*! \fn const QString operator+(char ch, const QString &s) \relates QString Returns a string which is the result of concatenating the character \a ch and the string \a s. */ /*! \fn int QString::compare(const QString &s1, const QString &s2, Qt::CaseSensitivity cs) \since 4.2 Compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. Case sensitive comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-visible strings with localeAwareCompare(). \snippet doc/src/snippets/qstring/main.cpp 16 \sa operator==(), operator<(), operator>() */ /*! \fn int QString::compare(const QString & s1, const QString & s2) \overload compare() Performs a case sensitive compare of \a s1 and \a s2. */ /*! \fn int QString::compare(const QString &s1, const QLatin1String &s2, Qt::CaseSensitivity cs) \since 4.2 \overload compare() Performs a comparison of \a s1 and \a s2, using the case sensitivity setting \a cs. */ /*! \fn int QString::compare(const QLatin1String &s1, const QString &s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) \since 4.2 \overload compare() Performs a comparison of \a s1 and \a s2, using the case sensitivity setting \a cs. */ /*! \overload compare() Lexically compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the other string. Equivalent to \c {compare(*this, other)}. */ int QString::compare(const QString &other) const { return ucstrcmp(constData(), length(), other.constData(), other.length()); } /*! \overload compare() \since 4.2 Same as compare(*this, \a other, \a cs). */ int QString::compare(const QString &other, Qt::CaseSensitivity cs) const { if (cs == Qt::CaseSensitive) return ucstrcmp(constData(), length(), other.constData(), other.length()); return ucstricmp(d->data, d->data + d->size, other.d->data, other.d->data + other.d->size); } /*! \internal \since 4.5 */ int QString::compare_helper(const QChar *data1, int length1, const QChar *data2, int length2, Qt::CaseSensitivity cs) { if (cs == Qt::CaseSensitive) return ucstrcmp(data1, length1, data2, length2); register const ushort *s1 = reinterpret_cast(data1); register const ushort *s2 = reinterpret_cast(data2); return ucstricmp(s1, s1 + length1, s2, s2 + length2); } /*! \overload compare() \since 4.2 Same as compare(*this, \a other, \a cs). */ int QString::compare(const QLatin1String &other, Qt::CaseSensitivity cs) const { return compare_helper(unicode(), length(), other, cs); } /*! \fn int QString::compare(const QStringRef &ref, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \overload compare() Compares the string reference, \a ref, with the string and returns an integer less than, equal to, or greater than zero if the string is less than, equal to, or greater than \a ref. */ /*! \fn int QString::compare(const QString &s1, const QStringRef &s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) \overload compare() */ /*! \internal \since 4.5 */ int QString::compare_helper(const QChar *data1, int length1, QLatin1String s2, Qt::CaseSensitivity cs) { const ushort *uc = reinterpret_cast(data1); const ushort *e = uc + length1; const uchar *c = (uchar *)s2.latin1(); if (!c) return length1; if (cs == Qt::CaseSensitive) { while (uc < e && *c && *uc == *c) uc++, c++; if (uc == e) return -*c; return *uc - *c; } else { return ucstricmp(uc, e, c); } } /*! \fn int QString::localeAwareCompare(const QString & s1, const QString & s2) Compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. On Mac OS X since Qt 4.3, this function compares according the "Order for sorted lists" setting in the International prefereces panel. \sa compare(), QTextCodec::locale() */ /*! \fn int QString::localeAwareCompare(const QStringRef &other) const \since 4.5 \overload localeAwareCompare() Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. Same as \c {localeAwareCompare(*this, other)}. */ /*! \fn int QString::localeAwareCompare(const QString &s1, const QStringRef &s2) \since 4.5 \overload localeAwareCompare() Compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. */ #if !defined(CSTR_LESS_THAN) #define CSTR_LESS_THAN 1 #define CSTR_EQUAL 2 #define CSTR_GREATER_THAN 3 #endif /*! \overload localeAwareCompare() Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. Same as \c {localeAwareCompare(*this, other)}. */ int QString::localeAwareCompare(const QString &other) const { return localeAwareCompare_helper(constData(), length(), other.constData(), other.length()); } #if defined(Q_OS_WIN32) || defined(Q_OS_WINCE) QT_END_NAMESPACE #include "qt_windows.h" QT_BEGIN_NAMESPACE #endif /*! \internal \since 4.5 */ int QString::localeAwareCompare_helper(const QChar *data1, int length1, const QChar *data2, int length2) { // do the right thing for null and empty if (length1 == 0 || length2 == 0) return ucstrcmp(data1, length1, data2, length2); #if defined(Q_OS_WIN32) || defined(Q_OS_WINCE) int res = CompareString(GetUserDefaultLCID(), 0, (wchar_t*)data1, length1, (wchar_t*)data2, length2); switch (res) { case CSTR_LESS_THAN: return -1; case CSTR_GREATER_THAN: return 1; default: return 0; } #elif defined (Q_OS_MAC) // Use CFStringCompare for comparing strings on Mac. This makes Qt order // strings the same way as native applications do, and also respects // the "Order for sorted lists" setting in the International preferences // panel. const CFStringRef thisString = CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault, reinterpret_cast(data1), length1, kCFAllocatorNull); const CFStringRef otherString = CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault, reinterpret_cast(data2), length2, kCFAllocatorNull); const int result = CFStringCompare(thisString, otherString, kCFCompareLocalized); CFRelease(thisString); CFRelease(otherString); return result; #elif defined(Q_OS_SYMBIAN) TPtrC p1 = TPtrC16(reinterpret_cast(data1), length1); TPtrC p2 = TPtrC16(reinterpret_cast(data2), length2); return p1.CompareC(p2); #elif defined(Q_OS_UNIX) // declared in int delta = strcoll(toLocal8Bit_helper(data1, length1), toLocal8Bit_helper(data2, length2)); if (delta == 0) delta = ucstrcmp(data1, length1, data2, length2); return delta; #else return ucstrcmp(data1, length1, data2, length2); #endif } /*! \fn const QChar *QString::unicode() const Returns a '\\0'-terminated Unicode representation of the string. The result remains valid until the string is modified. \sa utf16() */ /*! \fn const ushort *QString::utf16() const Returns the QString as a '\\0\'-terminated array of unsigned shorts. The result remains valid until the string is modified. The returned string is in host byte order. \sa unicode() */ const ushort *QString::utf16() const { if (d->data != d->array) { QString *that = const_cast(this); that->realloc(); // ensure '\\0'-termination for ::fromRawData strings return that->d->data; } return d->array; } /*! Returns a string of size \a width that contains this string padded by the \a fill character. If \a truncate is false and the size() of the string is more than \a width, then the returned string is a copy of the string. \snippet doc/src/snippets/qstring/main.cpp 32 If \a truncate is true and the size() of the string is more than \a width, then any characters in a copy of the string after position \a width are removed, and the copy is returned. \snippet doc/src/snippets/qstring/main.cpp 33 \sa rightJustified() */ QString QString::leftJustified(int width, QChar fill, bool truncate) const { QString result; int len = length(); int padlen = width - len; if (padlen > 0) { result.resize(len+padlen); if (len) memcpy(result.d->data, d->data, sizeof(QChar)*len); QChar *uc = (QChar*)result.d->data + len; while (padlen--) * uc++ = fill; } else { if (truncate) result = left(width); else result = *this; } return result; } /*! Returns a string of size() \a width that contains the \a fill character followed by the string. For example: \snippet doc/src/snippets/qstring/main.cpp 49 If \a truncate is false and the size() of the string is more than \a width, then the returned string is a copy of the string. If \a truncate is true and the size() of the string is more than \a width, then the resulting string is truncated at position \a width. \snippet doc/src/snippets/qstring/main.cpp 50 \sa leftJustified() */ QString QString::rightJustified(int width, QChar fill, bool truncate) const { QString result; int len = length(); int padlen = width - len; if (padlen > 0) { result.resize(len+padlen); QChar *uc = (QChar*)result.d->data; while (padlen--) * uc++ = fill; if (len) memcpy(uc, d->data, sizeof(QChar)*len); } else { if (truncate) result = left(width); else result = *this; } return result; } /*! Returns a lowercase copy of the string. \snippet doc/src/snippets/qstring/main.cpp 75 \sa toUpper() */ QString QString::toLower() const { const ushort *p = d->data; if (!p) return *this; if (!d->size) return *this; const ushort *e = d->data + d->size; // this avoids one out of bounds check in the loop if (QChar(*p).isLowSurrogate()) ++p; while (p != e) { uint c = *p; if (QChar(c).isLowSurrogate() && QChar(*(p - 1)).isHighSurrogate()) c = QChar::surrogateToUcs4(*(p - 1), c); const QUnicodeTables::Properties *prop = qGetProp(c); if (prop->lowerCaseDiff || prop->lowerCaseSpecial) { QString s(d->size, Qt::Uninitialized); memcpy(s.d->data, d->data, (p - d->data)*sizeof(ushort)); ushort *pp = s.d->data + (p - d->data); while (p < e) { uint c = *p; if (QChar(c).isLowSurrogate() && QChar(*(p - 1)).isHighSurrogate()) c = QChar::surrogateToUcs4(*(p - 1), c); prop = qGetProp(c); if (prop->lowerCaseSpecial) { int pos = pp - s.d->data; s.resize(s.d->size + SPECIAL_CASE_MAX_LEN); pp = s.d->data + pos; const ushort *specialCase = specialCaseMap + prop->lowerCaseDiff; while (*specialCase) *pp++ = *specialCase++; } else { *pp++ = *p + prop->lowerCaseDiff; } ++p; } s.truncate(pp - s.d->data); return s; } ++p; } return *this; } /*! Returns the case folded equivalent of the string. For most Unicode characters this is the same as toLower(). */ QString QString::toCaseFolded() const { if (!d->size) return *this; const ushort *p = d->data; if (!p) return *this; const ushort *e = d->data + d->size; uint last = 0; while (p < e) { ushort folded = foldCase(*p, last); if (folded != *p) { QString s(*this); s.detach(); ushort *pp = s.d->data + (p - d->data); const ushort *ppe = s.d->data + s.d->size; last = pp > s.d->data ? *(pp - 1) : 0; while (pp < ppe) { *pp = foldCase(*pp, last); ++pp; } return s; } p++; } return *this; } /*! Returns an uppercase copy of the string. \snippet doc/src/snippets/qstring/main.cpp 81 \sa toLower() */ QString QString::toUpper() const { const ushort *p = d->data; if (!p) return *this; if (!d->size) return *this; const ushort *e = d->data + d->size; // this avoids one out of bounds check in the loop if (QChar(*p).isLowSurrogate()) ++p; while (p != e) { uint c = *p; if (QChar(c).isLowSurrogate() && QChar(*(p - 1)).isHighSurrogate()) c = QChar::surrogateToUcs4(*(p - 1), c); const QUnicodeTables::Properties *prop = qGetProp(c); if (prop->upperCaseDiff || prop->upperCaseSpecial) { QString s(d->size, Qt::Uninitialized); memcpy(s.d->data, d->data, (p - d->data)*sizeof(ushort)); ushort *pp = s.d->data + (p - d->data); while (p < e) { uint c = *p; if (QChar(c).isLowSurrogate() && QChar(*(p - 1)).isHighSurrogate()) c = QChar::surrogateToUcs4(*(p - 1), c); prop = qGetProp(c); if (prop->upperCaseSpecial) { int pos = pp - s.d->data; s.resize(s.d->size + SPECIAL_CASE_MAX_LEN); pp = s.d->data + pos; const ushort *specialCase = specialCaseMap + prop->upperCaseDiff; while (*specialCase) *pp++ = *specialCase++; } else { *pp++ = *p + prop->upperCaseDiff; } ++p; } s.truncate(pp - s.d->data); return s; } ++p; } return *this; } // ### Qt 5: Consider whether this function shouldn't be removed See task 202871. /*! Safely builds a formatted string from the format string \a cformat and an arbitrary list of arguments. The %lc escape sequence expects a unicode character of type ushort (as returned by QChar::unicode()). The %ls escape sequence expects a pointer to a zero-terminated array of unicode characters of type ushort (as returned by QString::utf16()). \note This function expects a UTF-8 string for %s and Latin-1 for the format string. The format string supports most of the conversion specifiers provided by printf() in the standard C++ library. It doesn't honor the length modifiers (e.g. \c h for \c short, \c ll for \c{long long}). If you need those, use the standard snprintf() function instead: \snippet doc/src/snippets/qstring/main.cpp 63 \warning We do not recommend using QString::sprintf() in new Qt code. Instead, consider using QTextStream or arg(), both of which support Unicode strings seamlessly and are type-safe. Here's an example that uses QTextStream: \snippet doc/src/snippets/qstring/main.cpp 64 For \l {QObject::tr()}{translations}, especially if the strings contains more than one escape sequence, you should consider using the arg() function instead. This allows the order of the replacements to be controlled by the translator. \sa arg() */ QString &QString::sprintf(const char *cformat, ...) { va_list ap; va_start(ap, cformat); QString &s = vsprintf(cformat, ap); va_end(ap); return s; } /*! Equivalent method to sprintf(), but takes a va_list \a ap instead a list of variable arguments. See the sprintf() documentation for an explanation of \a cformat. This method does not call the va_end macro, the caller is responsible to call va_end on \a ap. \sa sprintf() */ QString &QString::vsprintf(const char* cformat, va_list ap) { QLocale locale(QLocale::C); if (!cformat || !*cformat) { // Qt 1.x compat *this = fromLatin1(""); return *this; } // Parse cformat QString result; const char *c = cformat; for (;;) { // Copy non-escape chars to result #ifndef QT_NO_TEXTCODEC int i = 0; while (*(c + i) != '\0' && *(c + i) != '%') ++i; if (codecForCStrings) result.append(codecForCStrings->toUnicode(c, i)); else result.append(fromLatin1(c, i)); c += i; #else while (*c != '\0' && *c != '%') result.append(QLatin1Char(*c++)); #endif if (*c == '\0') break; // Found '%' const char *escape_start = c; ++c; if (*c == '\0') { result.append(QLatin1Char('%')); // a % at the end of the string - treat as non-escape text break; } if (*c == '%') { result.append(QLatin1Char('%')); // %% ++c; continue; } // Parse flag characters uint flags = 0; bool no_more_flags = false; do { switch (*c) { case '#': flags |= QLocalePrivate::Alternate; break; case '0': flags |= QLocalePrivate::ZeroPadded; break; case '-': flags |= QLocalePrivate::LeftAdjusted; break; case ' ': flags |= QLocalePrivate::BlankBeforePositive; break; case '+': flags |= QLocalePrivate::AlwaysShowSign; break; case '\'': flags |= QLocalePrivate::ThousandsGroup; break; default: no_more_flags = true; break; } if (!no_more_flags) ++c; } while (!no_more_flags); if (*c == '\0') { result.append(QLatin1String(escape_start)); // incomplete escape, treat as non-escape text break; } // Parse field width int width = -1; // -1 means unspecified if (qIsDigit(*c)) { QString width_str; while (*c != '\0' && qIsDigit(*c)) width_str.append(QLatin1Char(*c++)); // can't be negative - started with a digit // contains at least one digit width = width_str.toInt(); } else if (*c == '*') { width = va_arg(ap, int); if (width < 0) width = -1; // treat all negative numbers as unspecified ++c; } if (*c == '\0') { result.append(QLatin1String(escape_start)); // incomplete escape, treat as non-escape text break; } // Parse precision int precision = -1; // -1 means unspecified if (*c == '.') { ++c; if (qIsDigit(*c)) { QString precision_str; while (*c != '\0' && qIsDigit(*c)) precision_str.append(QLatin1Char(*c++)); // can't be negative - started with a digit // contains at least one digit precision = precision_str.toInt(); } else if (*c == '*') { precision = va_arg(ap, int); if (precision < 0) precision = -1; // treat all negative numbers as unspecified ++c; } } if (*c == '\0') { result.append(QLatin1String(escape_start)); // incomplete escape, treat as non-escape text break; } // Parse the length modifier enum LengthMod { lm_none, lm_hh, lm_h, lm_l, lm_ll, lm_L, lm_j, lm_z, lm_t }; LengthMod length_mod = lm_none; switch (*c) { case 'h': ++c; if (*c == 'h') { length_mod = lm_hh; ++c; } else length_mod = lm_h; break; case 'l': ++c; if (*c == 'l') { length_mod = lm_ll; ++c; } else length_mod = lm_l; break; case 'L': ++c; length_mod = lm_L; break; case 'j': ++c; length_mod = lm_j; break; case 'z': case 'Z': ++c; length_mod = lm_z; break; case 't': ++c; length_mod = lm_t; break; default: break; } if (*c == '\0') { result.append(QLatin1String(escape_start)); // incomplete escape, treat as non-escape text break; } // Parse the conversion specifier and do the conversion QString subst; switch (*c) { case 'd': case 'i': { qint64 i; switch (length_mod) { case lm_none: i = va_arg(ap, int); break; case lm_hh: i = va_arg(ap, int); break; case lm_h: i = va_arg(ap, int); break; case lm_l: i = va_arg(ap, long int); break; case lm_ll: i = va_arg(ap, qint64); break; case lm_j: i = va_arg(ap, long int); break; case lm_z: i = va_arg(ap, size_t); break; case lm_t: i = va_arg(ap, int); break; default: i = 0; break; } subst = locale.d()->longLongToString(i, precision, 10, width, flags); ++c; break; } case 'o': case 'u': case 'x': case 'X': { quint64 u; switch (length_mod) { case lm_none: u = va_arg(ap, uint); break; case lm_hh: u = va_arg(ap, uint); break; case lm_h: u = va_arg(ap, uint); break; case lm_l: u = va_arg(ap, ulong); break; case lm_ll: u = va_arg(ap, quint64); break; case lm_z: u = va_arg(ap, size_t); break; default: u = 0; break; } if (qIsUpper(*c)) flags |= QLocalePrivate::CapitalEorX; int base = 10; switch (qToLower(*c)) { case 'o': base = 8; break; case 'u': base = 10; break; case 'x': base = 16; break; default: break; } subst = locale.d()->unsLongLongToString(u, precision, base, width, flags); ++c; break; } case 'E': case 'e': case 'F': case 'f': case 'G': case 'g': case 'A': case 'a': { double d; if (length_mod == lm_L) d = va_arg(ap, long double); // not supported - converted to a double else d = va_arg(ap, double); if (qIsUpper(*c)) flags |= QLocalePrivate::CapitalEorX; QLocalePrivate::DoubleForm form = QLocalePrivate::DFDecimal; switch (qToLower(*c)) { case 'e': form = QLocalePrivate::DFExponent; break; case 'a': // not supported - decimal form used instead case 'f': form = QLocalePrivate::DFDecimal; break; case 'g': form = QLocalePrivate::DFSignificantDigits; break; default: break; } subst = locale.d()->doubleToString(d, precision, form, width, flags); ++c; break; } case 'c': { if (length_mod == lm_l) subst = QChar((ushort) va_arg(ap, int)); else subst = QLatin1Char((uchar) va_arg(ap, int)); ++c; break; } case 's': { if (length_mod == lm_l) { const ushort *buff = va_arg(ap, const ushort*); const ushort *ch = buff; while (*ch != 0) ++ch; subst.setUtf16(buff, ch - buff); } else subst = QString::fromUtf8(va_arg(ap, const char*)); if (precision != -1) subst.truncate(precision); ++c; break; } case 'p': { void *arg = va_arg(ap, void*); #ifdef Q_OS_WIN64 quint64 i = reinterpret_cast(arg); #else quint64 i = reinterpret_cast(arg); #endif flags |= QLocalePrivate::Alternate; subst = locale.d()->unsLongLongToString(i, precision, 16, width, flags); ++c; break; } case 'n': switch (length_mod) { case lm_hh: { signed char *n = va_arg(ap, signed char*); *n = result.length(); break; } case lm_h: { short int *n = va_arg(ap, short int*); *n = result.length(); break; } case lm_l: { long int *n = va_arg(ap, long int*); *n = result.length(); break; } case lm_ll: { qint64 *n = va_arg(ap, qint64*); volatile uint tmp = result.length(); // egcs-2.91.66 gets internal *n = tmp; // compiler error without volatile break; } default: { int *n = va_arg(ap, int*); *n = result.length(); break; } } ++c; break; default: // bad escape, treat as non-escape text for (const char *cc = escape_start; cc != c; ++cc) result.append(QLatin1Char(*cc)); continue; } if (flags & QLocalePrivate::LeftAdjusted) result.append(subst.leftJustified(width)); else result.append(subst.rightJustified(width)); } *this = result; return *this; } /*! Returns the string converted to a \c{long long} using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 74 \sa number(), toULongLong(), toInt() */ qint64 QString::toLongLong(bool *ok, int base) const { #if defined(QT_CHECK_RANGE) if (base != 0 && (base < 2 || base > 36)) { qWarning("QString::toLongLong: Invalid base (%d)", base); base = 10; } #endif bool my_ok; QLocale def_locale; qint64 result = def_locale.d()->stringToLongLong(*this, base, &my_ok, QLocalePrivate::FailOnGroupSeparators); if (my_ok) { if (ok != 0) *ok = true; return result; } QLocale c_locale(QLocale::C); return c_locale.d()->stringToLongLong(*this, base, ok, QLocalePrivate::FailOnGroupSeparators); } /*! Returns the string converted to an \c{unsigned long long} using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 79 \sa number(), toLongLong() */ quint64 QString::toULongLong(bool *ok, int base) const { #if defined(QT_CHECK_RANGE) if (base != 0 && (base < 2 || base > 36)) { qWarning("QString::toULongLong: Invalid base (%d)", base); base = 10; } #endif bool my_ok; QLocale def_locale; quint64 result = def_locale.d()->stringToUnsLongLong(*this, base, &my_ok, QLocalePrivate::FailOnGroupSeparators); if (my_ok) { if (ok != 0) *ok = true; return result; } QLocale c_locale(QLocale::C); return c_locale.d()->stringToUnsLongLong(*this, base, ok, QLocalePrivate::FailOnGroupSeparators); } /*! \fn long QString::toLong(bool *ok, int base) const Returns the string converted to a \c long using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 73 \sa number(), toULong(), toInt() */ long QString::toLong(bool *ok, int base) const { qint64 v = toLongLong(ok, base); if (v < LONG_MIN || v > LONG_MAX) { if (ok) *ok = false; v = 0; } return (long)v; } /*! \fn ulong QString::toULong(bool *ok, int base) const Returns the string converted to an \c{unsigned long} using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 78 \sa number() */ ulong QString::toULong(bool *ok, int base) const { quint64 v = toULongLong(ok, base); if (v > ULONG_MAX) { if (ok) *ok = false; v = 0; } return (ulong)v; } /*! Returns the string converted to an \c int using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 72 \sa number(), toUInt(), toDouble() */ int QString::toInt(bool *ok, int base) const { qint64 v = toLongLong(ok, base); if (v < INT_MIN || v > INT_MAX) { if (ok) *ok = false; v = 0; } return v; } /*! Returns the string converted to an \c{unsigned int} using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 77 \sa number(), toInt() */ uint QString::toUInt(bool *ok, int base) const { quint64 v = toULongLong(ok, base); if (v > UINT_MAX) { if (ok) *ok = false; v = 0; } return (uint)v; } /*! Returns the string converted to a \c short using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 76 \sa number(), toUShort(), toInt() */ short QString::toShort(bool *ok, int base) const { long v = toLongLong(ok, base); if (v < SHRT_MIN || v > SHRT_MAX) { if (ok) *ok = false; v = 0; } return (short)v; } /*! Returns the string converted to an \c{unsigned short} using base \a base, which is 10 by default and must be between 2 and 36, or 0. Returns 0 if the conversion fails. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. If \a base is 0, the C language convention is used: If the string begins with "0x", base 16 is used; if the string begins with "0", base 8 is used; otherwise, base 10 is used. Example: \snippet doc/src/snippets/qstring/main.cpp 80 \sa number(), toShort() */ ushort QString::toUShort(bool *ok, int base) const { ulong v = toULongLong(ok, base); if (v > USHRT_MAX) { if (ok) *ok = false; v = 0; } return (ushort)v; } /*! Returns the string converted to a \c double value. Returns 0.0 if the conversion fails. If a conversion error occurs, \c{*}\a{ok} is set to false; otherwise \c{*}\a{ok} is set to true. \snippet doc/src/snippets/qstring/main.cpp 66 Various string formats for floating point numbers can be converted to double values: \snippet doc/src/snippets/qstring/main.cpp 67 This function tries to interpret the string according to the current locale. The current locale is determined from the system at application startup and can be changed by calling QLocale::setDefault(). If the string cannot be interpreted according to the current locale, this function falls back on the "C" locale. \snippet doc/src/snippets/qstring/main.cpp 69 \snippet doc/src/snippets/qstring/main.cpp 70 Due to the ambiguity between the decimal point and thousands group separator in various locales, this function does not handle thousands group separators. If you need to convert such numbers, see QLocale::toDouble(). \snippet doc/src/snippets/qstring/main.cpp 68 \sa number() QLocale::setDefault() QLocale::toDouble() trimmed() */ double QString::toDouble(bool *ok) const { bool my_ok; QLocale def_locale; double result = def_locale.d()->stringToDouble(*this, &my_ok, QLocalePrivate::FailOnGroupSeparators); if (my_ok) { if (ok != 0) *ok = true; return result; } QLocale c_locale(QLocale::C); return c_locale.d()->stringToDouble(*this, ok, QLocalePrivate::FailOnGroupSeparators); } /*! Returns the string converted to a \c float value. If a conversion error occurs, *\a{ok} is set to false; otherwise *\a{ok} is set to true. Returns 0.0 if the conversion fails. Example: \snippet doc/src/snippets/qstring/main.cpp 71 \sa number(), toDouble(), toInt() */ #define QT_MAX_FLOAT 3.4028234663852886e+38 float QString::toFloat(bool *ok) const { bool myOk; double d = toDouble(&myOk); if (!myOk || d > QT_MAX_FLOAT || d < -QT_MAX_FLOAT) { if (ok != 0) *ok = false; return 0.0; } if (ok != 0) *ok = true; return (float) d; } /*! \fn QString &QString::setNum(int n, int base) Sets the string to the printed value of \a n in the specified \a base, and returns a reference to the string. The base is 10 by default and must be between 2 and 36. For bases other than 10, \a n is treated as an unsigned integer. \snippet doc/src/snippets/qstring/main.cpp 56 The formatting always uses QLocale::C, i.e., English/UnitedStates. To get a localized string representation of a number, use QLocale::toString() with the appropriate locale. */ /*! \fn QString &QString::setNum(uint n, int base) \overload */ /*! \fn QString &QString::setNum(long n, int base) \overload */ /*! \fn QString &QString::setNum(ulong n, int base) \overload */ /*! \overload */ QString &QString::setNum(qlonglong n, int base) { #if defined(QT_CHECK_RANGE) if (base < 2 || base > 36) { qWarning("QString::setNum: Invalid base (%d)", base); base = 10; } #endif QLocale locale(QLocale::C); *this = locale.d()->longLongToString(n, -1, base); return *this; } /*! \overload */ QString &QString::setNum(qulonglong n, int base) { #if defined(QT_CHECK_RANGE) if (base < 2 || base > 36) { qWarning("QString::setNum: Invalid base (%d)", base); base = 10; } #endif QLocale locale(QLocale::C); *this = locale.d()->unsLongLongToString(n, -1, base); return *this; } /*! \fn QString &QString::setNum(short n, int base) \overload */ /*! \fn QString &QString::setNum(ushort n, int base) \overload */ /*! \fn QString &QString::setNum(double n, char format, int precision) \overload Sets the string to the printed value of \a n, formatted according to the given \a format and \a precision, and returns a reference to the string. The \a format can be 'f', 'F', 'e', 'E', 'g' or 'G' (see the arg() function documentation for an explanation of the formats). Unlike QLocale::toString(), this function doesn't honor the user's locale settings. */ QString &QString::setNum(double n, char f, int prec) { QLocalePrivate::DoubleForm form = QLocalePrivate::DFDecimal; uint flags = 0; if (qIsUpper(f)) flags = QLocalePrivate::CapitalEorX; f = qToLower(f); switch (f) { case 'f': form = QLocalePrivate::DFDecimal; break; case 'e': form = QLocalePrivate::DFExponent; break; case 'g': form = QLocalePrivate::DFSignificantDigits; break; default: #if defined(QT_CHECK_RANGE) qWarning("QString::setNum: Invalid format char '%c'", f); #endif break; } QLocale locale(QLocale::C); *this = locale.d()->doubleToString(n, prec, form, -1, flags); return *this; } /*! \fn QString &QString::setNum(float n, char format, int precision) \overload Sets the string to the printed value of \a n, formatted according to the given \a format and \a precision, and returns a reference to the string. */ /*! \fn QString QString::number(long n, int base) Returns a string equivalent of the number \a n according to the specified \a base. The base is 10 by default and must be between 2 and 36. For bases other than 10, \a n is treated as an unsigned integer. \snippet doc/src/snippets/qstring/main.cpp 35 \sa setNum() */ QString QString::number(long n, int base) { QString s; s.setNum(n, base); return s; } /*! \fn QString QString::number(ulong n, int base) \overload */ QString QString::number(ulong n, int base) { QString s; s.setNum(n, base); return s; } /*! \overload */ QString QString::number(int n, int base) { QString s; s.setNum(n, base); return s; } /*! \overload */ QString QString::number(uint n, int base) { QString s; s.setNum(n, base); return s; } /*! \overload */ QString QString::number(qlonglong n, int base) { QString s; s.setNum(n, base); return s; } /*! \overload */ QString QString::number(qulonglong n, int base) { QString s; s.setNum(n, base); return s; } /*! \fn QString QString::number(double n, char format, int precision) Returns a string equivalent of the number \a n, formatted according to the specified \a format and \a precision. See \l{Argument Formats} for details. Unlike QLocale::toString(), this function does not honor the user's locale settings. \sa setNum(), QLocale::toString() */ QString QString::number(double n, char f, int prec) { QString s; s.setNum(n, f, prec); return s; } /*! Splits the string into substrings wherever \a sep occurs, and returns the list of those strings. If \a sep does not match anywhere in the string, split() returns a single-element list containing this string. \a cs specifies whether \a sep should be matched case sensitively or case insensitively. If \a behavior is QString::SkipEmptyParts, empty entries don't appear in the result. By default, empty entries are kept. Example: \snippet doc/src/snippets/qstring/main.cpp 62 \sa QStringList::join(), section() */ QStringList QString::split(const QString &sep, SplitBehavior behavior, Qt::CaseSensitivity cs) const { QStringList list; int start = 0; int extra = 0; int end; while ((end = indexOf(sep, start + extra, cs)) != -1) { if (start != end || behavior == KeepEmptyParts) list.append(mid(start, end - start)); start = end + sep.size(); extra = (sep.size() == 0 ? 1 : 0); } if (start != size() || behavior == KeepEmptyParts) list.append(mid(start)); return list; } /*! \overload */ QStringList QString::split(const QChar &sep, SplitBehavior behavior, Qt::CaseSensitivity cs) const { QStringList list; int start = 0; int end; while ((end = indexOf(sep, start, cs)) != -1) { if (start != end || behavior == KeepEmptyParts) list.append(mid(start, end - start)); start = end + 1; } if (start != size() || behavior == KeepEmptyParts) list.append(mid(start)); return list; } #ifndef QT_NO_REGEXP /*! \overload Splits the string into substrings wherever the regular expression \a rx matches, and returns the list of those strings. If \a rx does not match anywhere in the string, split() returns a single-element list containing this string. Here's an example where we extract the words in a sentence using one or more whitespace characters as the separator: \snippet doc/src/snippets/qstring/main.cpp 59 Here's a similar example, but this time we use any sequence of non-word characters as the separator: \snippet doc/src/snippets/qstring/main.cpp 60 Here's a third example where we use a zero-length assertion, \bold{\\b} (word boundary), to split the string into an alternating sequence of non-word and word tokens: \snippet doc/src/snippets/qstring/main.cpp 61 \sa QStringList::join(), section() */ QStringList QString::split(const QRegExp &rx, SplitBehavior behavior) const { QRegExp rx2(rx); QStringList list; int start = 0; int extra = 0; int end; while ((end = rx2.indexIn(*this, start + extra)) != -1) { int matchedLen = rx2.matchedLength(); if (start != end || behavior == KeepEmptyParts) list.append(mid(start, end - start)); start = end + matchedLen; extra = (matchedLen == 0) ? 1 : 0; } if (start != size() || behavior == KeepEmptyParts) list.append(mid(start)); return list; } #endif /*! \enum QString::NormalizationForm This enum describes the various normalized forms of Unicode text. \value NormalizationForm_D Canonical Decomposition \value NormalizationForm_C Canonical Decomposition followed by Canonical Composition \value NormalizationForm_KD Compatibility Decomposition \value NormalizationForm_KC Compatibility Decomposition followed by Canonical Composition \sa normalized(), {http://www.unicode.org/reports/tr15/}{Unicode Standard Annex #15} */ /*! \fn QString QString::normalized(NormalizationForm mode) const Returns the string in the given Unicode normalization \a mode. */ QString QString::normalized(QString::NormalizationForm mode) const { return normalized(mode, UNICODE_DATA_VERSION); } /*! \since 4.5 Returns a copy of this string repeated the specified number of \a times. If \a times is less than 1, an empty string is returned. Example: \code QString str("ab"); str.repeated(4); // returns "abababab" \endcode */ QString QString::repeated(int times) const { if (d->size == 0) return *this; if (times <= 1) { if (times == 1) return *this; return QString(); } const int resultSize = times * d->size; QString result; result.reserve(resultSize); if (result.d->alloc != resultSize) return QString(); // not enough memory memcpy(result.d->data, d->data, d->size * sizeof(ushort)); int sizeSoFar = d->size; ushort *end = result.d->data + sizeSoFar; const int halfResultSize = resultSize >> 1; while (sizeSoFar <= halfResultSize) { memcpy(end, result.d->data, sizeSoFar * sizeof(ushort)); end += sizeSoFar; sizeSoFar <<= 1; } memcpy(end, result.d->data, (resultSize - sizeSoFar) * sizeof(ushort)); result.d->data[resultSize] = '\0'; result.d->size = resultSize; return result; } void qt_string_normalize(QString *data, QString::NormalizationForm mode, QChar::UnicodeVersion version, int from); /*! \overload \fn QString QString::normalized(NormalizationForm mode, QChar::UnicodeVersion version) const Returns the string in the given Unicode normalization \a mode, according to the given \a version of the Unicode standard. */ QString QString::normalized(QString::NormalizationForm mode, QChar::UnicodeVersion version) const { QString copy = *this; qt_string_normalize(©, mode, version, 0); return copy; } void qt_string_normalize(QString *data, QString::NormalizationForm mode, QChar::UnicodeVersion version, int from) { bool simple = true; const QChar *p = data->constData(); int len = data->length(); for (int i = from; i < len; ++i) { if (p[i].unicode() >= 0x80) { simple = false; break; } } if (simple) return; if (version == QChar::Unicode_Unassigned) { version = UNICODE_DATA_VERSION; } else if (version != UNICODE_DATA_VERSION) { const QString &s = *data; QChar *d = 0; for (int i = 0; i < NumNormalizationCorrections; ++i) { const NormalizationCorrection &n = uc_normalization_corrections[i]; if (n.version > version) { int pos = from; if (QChar::requiresSurrogates(n.ucs4)) { ushort ucs4High = QChar::highSurrogate(n.ucs4); ushort ucs4Low = QChar::lowSurrogate(n.ucs4); ushort oldHigh = QChar::highSurrogate(n.old_mapping); ushort oldLow = QChar::lowSurrogate(n.old_mapping); while (pos < s.length() - 1) { if (s.at(pos).unicode() == ucs4High && s.at(pos + 1).unicode() == ucs4Low) { if (!d) d = data->data(); d[pos] = QChar(oldHigh); d[++pos] = QChar(oldLow); } ++pos; } } else { while (pos < s.length()) { if (s.at(pos).unicode() == n.ucs4) { if (!d) d = data->data(); d[pos] = QChar(n.old_mapping); } ++pos; } } } } } decomposeHelper(data, mode < QString::NormalizationForm_KD, version, from); canonicalOrderHelper(data, version, from); if (mode == QString::NormalizationForm_D || mode == QString::NormalizationForm_KD) return; composeHelper(data, from); } struct ArgEscapeData { int min_escape; // lowest escape sequence number int occurrences; // number of occurrences of the lowest escape sequence number int locale_occurrences; // number of occurrences of the lowest escape sequence number that // contain 'L' int escape_len; // total length of escape sequences which will be replaced }; static ArgEscapeData findArgEscapes(const QString &s) { const QChar *uc_begin = s.unicode(); const QChar *uc_end = uc_begin + s.length(); ArgEscapeData d; d.min_escape = INT_MAX; d.occurrences = 0; d.escape_len = 0; d.locale_occurrences = 0; const QChar *c = uc_begin; while (c != uc_end) { while (c != uc_end && c->unicode() != '%') ++c; if (c == uc_end) break; const QChar *escape_start = c; if (++c == uc_end) break; bool locale_arg = false; if (c->unicode() == 'L') { locale_arg = true; if (++c == uc_end) break; } if (c->digitValue() == -1) continue; int escape = c->digitValue(); ++c; if (c != uc_end && c->digitValue() != -1) { escape = (10 * escape) + c->digitValue(); ++c; } if (escape > d.min_escape) continue; if (escape < d.min_escape) { d.min_escape = escape; d.occurrences = 0; d.escape_len = 0; d.locale_occurrences = 0; } ++d.occurrences; if (locale_arg) ++d.locale_occurrences; d.escape_len += c - escape_start; } return d; } static QString replaceArgEscapes(const QString &s, const ArgEscapeData &d, int field_width, const QString &arg, const QString &larg, const QChar &fillChar = QLatin1Char(' ')) { const QChar *uc_begin = s.unicode(); const QChar *uc_end = uc_begin + s.length(); int abs_field_width = qAbs(field_width); int result_len = s.length() - d.escape_len + (d.occurrences - d.locale_occurrences) *qMax(abs_field_width, arg.length()) + d.locale_occurrences *qMax(abs_field_width, larg.length()); QString result(result_len, Qt::Uninitialized); QChar *result_buff = (QChar*) result.unicode(); QChar *rc = result_buff; const QChar *c = uc_begin; int repl_cnt = 0; while (c != uc_end) { /* We don't have to check if we run off the end of the string with c, because as long as d.occurrences > 0 we KNOW there are valid escape sequences. */ const QChar *text_start = c; while (c->unicode() != '%') ++c; const QChar *escape_start = c++; bool locale_arg = false; if (c->unicode() == 'L') { locale_arg = true; ++c; } int escape = c->digitValue(); if (escape != -1) { if (c + 1 != uc_end && (c + 1)->digitValue() != -1) { escape = (10 * escape) + (c + 1)->digitValue(); ++c; } } if (escape != d.min_escape) { memcpy(rc, text_start, (c - text_start)*sizeof(QChar)); rc += c - text_start; } else { ++c; memcpy(rc, text_start, (escape_start - text_start)*sizeof(QChar)); rc += escape_start - text_start; uint pad_chars; if (locale_arg) pad_chars = qMax(abs_field_width, larg.length()) - larg.length(); else pad_chars = qMax(abs_field_width, arg.length()) - arg.length(); if (field_width > 0) { // left padded for (uint i = 0; i < pad_chars; ++i) (rc++)->unicode() = fillChar.unicode(); } if (locale_arg) { memcpy(rc, larg.unicode(), larg.length()*sizeof(QChar)); rc += larg.length(); } else { memcpy(rc, arg.unicode(), arg.length()*sizeof(QChar)); rc += arg.length(); } if (field_width < 0) { // right padded for (uint i = 0; i < pad_chars; ++i) (rc++)->unicode() = fillChar.unicode(); } if (++repl_cnt == d.occurrences) { memcpy(rc, c, (uc_end - c)*sizeof(QChar)); rc += uc_end - c; Q_ASSERT(rc - result_buff == result_len); c = uc_end; } } } Q_ASSERT(rc == result_buff + result_len); return result; } /*! Returns a copy of this string with the lowest numbered place marker replaced by string \a a, i.e., \c %1, \c %2, ..., \c %99. \a fieldWidth specifies the minimum amount of space that argument \a a shall occupy. If \a a requires less space than \a fieldWidth, it is padded to \a fieldWidth with character \a fillChar. A positive \a fieldWidth produces right-aligned text. A negative \a fieldWidth produces left-aligned text. This example shows how we might create a \c status string for reporting progress while processing a list of files: \snippet doc/src/snippets/qstring/main.cpp 11 First, \c arg(i) replaces \c %1. Then \c arg(total) replaces \c %2. Finally, \c arg(fileName) replaces \c %3. One advantage of using arg() over sprintf() is that the order of the numbered place markers can change, if the application's strings are translated into other languages, but each arg() will still replace the lowest numbered unreplaced place marker, no matter where it appears. Also, if place marker \c %i appears more than once in the string, the arg() replaces all of them. If there is no unreplaced place marker remaining, a warning message is output and the result is undefined. Place marker numbers must be in the range 1 to 99. */ QString QString::arg(const QString &a, int fieldWidth, const QChar &fillChar) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning("QString::arg: Argument missing: %s, %s", toLocal8Bit().data(), a.toLocal8Bit().data()); return *this; } return replaceArgEscapes(*this, d, fieldWidth, a, a, fillChar); } /*! \fn QString QString::arg(const QString& a1, const QString& a2) const \overload arg() This is the same as \c {str.arg(a1).arg(a2)}, except that the strings \a a1 and \a a2 are replaced in one pass. This can make a difference if \a a1 contains e.g. \c{%1}: \snippet doc/src/snippets/qstring/main.cpp 13 */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3) const \overload arg() This is the same as calling \c str.arg(a1).arg(a2).arg(a3), except that the strings \a a1, \a a2 and \a a3 are replaced in one pass. */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3, const QString& a4) const \overload arg() This is the same as calling \c {str.arg(a1).arg(a2).arg(a3).arg(a4)}, except that the strings \a a1, \a a2, \a a3 and \a a4 are replaced in one pass. */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3, const QString& a4, const QString& a5) const \overload arg() This is the same as calling \c {str.arg(a1).arg(a2).arg(a3).arg(a4).arg(a5)}, except that the strings \a a1, \a a2, \a a3, \a a4, and \a a5 are replaced in one pass. */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3, const QString& a4, const QString& a5, const QString& a6) const \overload arg() This is the same as calling \c {str.arg(a1).arg(a2).arg(a3).arg(a4).arg(a5).arg(a6))}, except that the strings \a a1, \a a2, \a a3, \a a4, \a a5, and \a a6 are replaced in one pass. */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3, const QString& a4, const QString& a5, const QString& a6, const QString& a7) const \overload arg() This is the same as calling \c {str.arg(a1).arg(a2).arg(a3).arg(a4).arg(a5).arg(a6).arg(a7)}, except that the strings \a a1, \a a2, \a a3, \a a4, \a a5, \a a6, and \a a7 are replaced in one pass. */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3, const QString& a4, const QString& a5, const QString& a6, const QString& a7, const QString& a8) const \overload arg() This is the same as calling \c {str.arg(a1).arg(a2).arg(a3).arg(a4).arg(a5).arg(a6).arg(a7).arg(a8)}, except that the strings \a a1, \a a2, \a a3, \a a4, \a a5, \a a6, \a a7, and \a a8 are replaced in one pass. */ /*! \fn QString QString::arg(const QString& a1, const QString& a2, const QString& a3, const QString& a4, const QString& a5, const QString& a6, const QString& a7, const QString& a8, const QString& a9) const \overload arg() This is the same as calling \c {str.arg(a1).arg(a2).arg(a3).arg(a4).arg(a5).arg(a6).arg(a7).arg(a8).arg(a9)}, except that the strings \a a1, \a a2, \a a3, \a a4, \a a5, \a a6, \a a7, \a a8, and \a a9 are replaced in one pass. */ /*! \fn QString QString::arg(int a, int fieldWidth, int base, const QChar &fillChar) const \overload arg() The \a a argument is expressed in base \a base, which is 10 by default and must be between 2 and 36. For bases other than 10, \a a is treated as an unsigned integer. \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The '%' can be followed by an 'L', in which case the sequence is replaced with a localized representation of \a a. The conversion uses the default locale, set by QLocale::setDefault(). If no default locale was specified, the "C" locale is used. The 'L' flag is ignored if \a base is not 10. \snippet doc/src/snippets/qstring/main.cpp 12 \snippet doc/src/snippets/qstring/main.cpp 14 If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ /*! \fn QString QString::arg(uint a, int fieldWidth, int base, const QChar &fillChar) const \overload arg() The \a base argument specifies the base to use when converting the integer \a a into a string. The base must be between 2 and 36. If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ /*! \fn QString QString::arg(long a, int fieldWidth, int base, const QChar &fillChar) const \overload arg() \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The \a a argument is expressed in the given \a base, which is 10 by default and must be between 2 and 36. The '%' can be followed by an 'L', in which case the sequence is replaced with a localized representation of \a a. The conversion uses the default locale. The default locale is determined from the system's locale settings at application startup. It can be changed using QLocale::setDefault(). The 'L' flag is ignored if \a base is not 10. \snippet doc/src/snippets/qstring/main.cpp 12 \snippet doc/src/snippets/qstring/main.cpp 14 If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ /*! \fn QString QString::arg(ulong a, int fieldWidth, int base, const QChar &fillChar) const \overload arg() \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The \a base argument specifies the base to use when converting the integer \a a to a string. The base must be between 2 and 36, with 8 giving octal, 10 decimal, and 16 hexadecimal numbers. If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ /*! \overload arg() \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The \a base argument specifies the base to use when converting the integer \a a into a string. The base must be between 2 and 36, with 8 giving octal, 10 decimal, and 16 hexadecimal numbers. If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ QString QString::arg(qlonglong a, int fieldWidth, int base, const QChar &fillChar) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning() << "QString::arg: Argument missing:" << *this << ',' << a; return *this; } unsigned flags = QLocalePrivate::NoFlags; if (fillChar == QLatin1Char('0')) flags = QLocalePrivate::ZeroPadded; QString arg; if (d.occurrences > d.locale_occurrences) arg = QLocale::c().d()->longLongToString(a, -1, base, fieldWidth, flags); QString locale_arg; if (d.locale_occurrences > 0) { QLocale locale; if (!locale.numberOptions() & QLocale::OmitGroupSeparator) flags |= QLocalePrivate::ThousandsGroup; locale_arg = locale.d()->longLongToString(a, -1, base, fieldWidth, flags); } return replaceArgEscapes(*this, d, fieldWidth, arg, locale_arg, fillChar); } /*! \overload arg() \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The \a base argument specifies the base to use when converting the integer \a a into a string. \a base must be between 2 and 36, with 8 giving octal, 10 decimal, and 16 hexadecimal numbers. If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ QString QString::arg(qulonglong a, int fieldWidth, int base, const QChar &fillChar) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning() << "QString::arg: Argument missing:" << *this << ',' << a; return *this; } unsigned flags = QLocalePrivate::NoFlags; if (fillChar == QLatin1Char('0')) flags = QLocalePrivate::ZeroPadded; QString arg; if (d.occurrences > d.locale_occurrences) arg = QLocale::c().d()->unsLongLongToString(a, -1, base, fieldWidth, flags); QString locale_arg; if (d.locale_occurrences > 0) { QLocale locale; if (!locale.numberOptions() & QLocale::OmitGroupSeparator) flags |= QLocalePrivate::ThousandsGroup; locale_arg = locale.d()->unsLongLongToString(a, -1, base, fieldWidth, flags); } return replaceArgEscapes(*this, d, fieldWidth, arg, locale_arg, fillChar); } /*! \overload arg() \fn QString QString::arg(short a, int fieldWidth, int base, const QChar &fillChar) const \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The \a base argument specifies the base to use when converting the integer \a a into a string. The base must be between 2 and 36, with 8 giving octal, 10 decimal, and 16 hexadecimal numbers. If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ /*! \fn QString QString::arg(ushort a, int fieldWidth, int base, const QChar &fillChar) const \overload arg() \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. The \a base argument specifies the base to use when converting the integer \a a into a string. The base must be between 2 and 36, with 8 giving octal, 10 decimal, and 16 hexadecimal numbers. If \a fillChar is '0' (the number 0, ASCII 48), the locale's zero is used. For negative numbers, zero padding might appear before the minus sign. */ /*! \overload arg() */ QString QString::arg(QChar a, int fieldWidth, const QChar &fillChar) const { QString c; c += a; return arg(c, fieldWidth, fillChar); } /*! \overload arg() The \a a argument is interpreted as a Latin-1 character. */ QString QString::arg(char a, int fieldWidth, const QChar &fillChar) const { QString c; c += QLatin1Char(a); return arg(c, fieldWidth, fillChar); } /*! \fn QString QString::arg(double a, int fieldWidth, char format, int precision, const QChar &fillChar) const \overload arg() Argument \a a is formatted according to the specified \a format and \a precision. See \l{Argument Formats} for details. \a fieldWidth specifies the minimum amount of space that \a a is padded to and filled with the character \a fillChar. A positive value produces right-aligned text; a negative value produces left-aligned text. \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 2 The '%' can be followed by an 'L', in which case the sequence is replaced with a localized representation of \a a. The conversion uses the default locale, set by QLocale::setDefaultLocale(). If no default locale was specified, the "C" locale is used. If \a fillChar is '0' (the number 0, ASCII 48), this function will use the locale's zero to pad. For negative numbers, the zero padding will probably appear before the minus sign. \sa QLocale::toString() */ QString QString::arg(double a, int fieldWidth, char fmt, int prec, const QChar &fillChar) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning("QString::arg: Argument missing: %s, %g", toLocal8Bit().data(), a); return *this; } unsigned flags = QLocalePrivate::NoFlags; if (fillChar == QLatin1Char('0')) flags = QLocalePrivate::ZeroPadded; if (qIsUpper(fmt)) flags |= QLocalePrivate::CapitalEorX; fmt = qToLower(fmt); QLocalePrivate::DoubleForm form = QLocalePrivate::DFDecimal; switch (fmt) { case 'f': form = QLocalePrivate::DFDecimal; break; case 'e': form = QLocalePrivate::DFExponent; break; case 'g': form = QLocalePrivate::DFSignificantDigits; break; default: #if defined(QT_CHECK_RANGE) qWarning("QString::arg: Invalid format char '%c'", fmt); #endif break; } QString arg; if (d.occurrences > d.locale_occurrences) arg = QLocale::c().d()->doubleToString(a, prec, form, fieldWidth, flags); QString locale_arg; if (d.locale_occurrences > 0) { QLocale locale; if (!locale.numberOptions() & QLocale::OmitGroupSeparator) flags |= QLocalePrivate::ThousandsGroup; locale_arg = locale.d()->doubleToString(a, prec, form, fieldWidth, flags); } return replaceArgEscapes(*this, d, fieldWidth, arg, locale_arg, fillChar); } static int getEscape(const QChar *uc, int *pos, int len, int maxNumber = 999) { int i = *pos; ++i; if (i < len && uc[i] == QLatin1Char('L')) ++i; if (i < len) { int escape = uc[i].unicode() - '0'; if (uint(escape) >= 10U) return -1; ++i; while (i < len) { int digit = uc[i].unicode() - '0'; if (uint(digit) >= 10U) break; escape = (escape * 10) + digit; ++i; } if (escape <= maxNumber) { *pos = i; return escape; } } return -1; } QString QString::multiArg(int numArgs, const QString **args) const { QString result; QMap numbersUsed; const QChar *uc = (const QChar *) d->data; const int len = d->size; const int end = len - 1; int lastNumber = -1; int i = 0; // populate the numbersUsed map with the %n's that actually occur in the string while (i < end) { if (uc[i] == QLatin1Char('%')) { int number = getEscape(uc, &i, len); if (number != -1) { numbersUsed.insert(number, -1); continue; } } ++i; } // assign an argument number to each of the %n's QMap::iterator j = numbersUsed.begin(); QMap::iterator jend = numbersUsed.end(); int arg = 0; while (j != jend && arg < numArgs) { *j = arg++; lastNumber = j.key(); ++j; } // sanity if (numArgs > arg) { qWarning("QString::arg: %d argument(s) missing in %s", numArgs - arg, toLocal8Bit().data()); numArgs = arg; } i = 0; while (i < len) { if (uc[i] == QLatin1Char('%') && i != end) { int number = getEscape(uc, &i, len, lastNumber); int arg = numbersUsed[number]; if (number != -1 && arg != -1) { result += *args[arg]; continue; } } result += uc[i++]; } return result; } static bool isStringRightToLeft(const ushort *p, const ushort *end) { bool righttoleft = false; while (p < end) { switch(QChar::direction(*p)) { case QChar::DirL: goto end; case QChar::DirR: case QChar::DirAL: righttoleft = true; goto end; default: break; } ++p; } end: return righttoleft; } /*! \internal */ void QString::updateProperties() const { ushort *p = d->data; ushort *end = p + d->size; d->simpletext = true; while (p < end) { ushort uc = *p; // sort out regions of complex text formatting if (uc > 0x058f && (uc < 0x1100 || uc > 0xfb0f)) { d->simpletext = false; } p++; } d->righttoleft = isStringRightToLeft(d->data, d->data + d->size); d->clean = true; } bool QString::isRightToLeft() const { return isStringRightToLeft(d->data, d->data + d->size); } /*! \fn bool QString::isSimpleText() const \internal */ /*! \fn bool QString::isRightToLeft() const Returns true if the string is read right to left. */ /*! \fn QChar *QString::data() Returns a pointer to the data stored in the QString. The pointer can be used to access and modify the characters that compose the string. For convenience, the data is '\\0'-terminated. Example: \snippet doc/src/snippets/qstring/main.cpp 19 Note that the pointer remains valid only as long as the string is not modified by other means. For read-only access, constData() is faster because it never causes a \l{deep copy} to occur. \sa constData(), operator[]() */ /*! \fn const QChar *QString::data() const \overload */ /*! \fn const QChar *QString::constData() const Returns a pointer to the data stored in the QString. The pointer can be used to access the characters that compose the string. For convenience, the data is '\\0'-terminated. Note that the pointer remains valid only as long as the string is not modified. \sa data(), operator[]() */ /*! \fn void QString::push_front(const QString &other) This function is provided for STL compatibility, prepending the given \a other string to the beginning of this string. It is equivalent to \c prepend(other). \sa prepend() */ /*! \fn void QString::push_front(QChar ch) \overload Prepends the given \a ch character to the beginning of this string. */ /*! \fn void QString::push_back(const QString &other) This function is provided for STL compatibility, appending the given \a other string onto the end of this string. It is equivalent to \c append(other). \sa append() */ /*! \fn void QString::push_back(QChar ch) \overload Appends the given \a ch character onto the end of this string. */ /*! \fn std::string QString::toStdString() const Returns a std::string object with the data contained in this QString. The Unicode data is converted into 8-bit characters using the toAscii() function. This operator is mostly useful to pass a QString to a function that accepts a std::string object. If the QString contains Unicode characters that the QTextCodec::codecForCStrings() codec cannot handle, using this operator can lead to loss of information. This operator is only available if Qt is configured with STL compatibility enabled. \sa toAscii(), toLatin1(), toUtf8(), toLocal8Bit() */ /*! Constructs a QString that uses the first \a size Unicode characters in the array \a unicode. The data in \a unicode is \e not copied. The caller must be able to guarantee that \a unicode will not be deleted or modified as long as the QString (or an unmodified copy of it) exists. Any attempts to modify the QString or copies of it will cause it to create a deep copy of the data, ensuring that the raw data isn't modified. Here's an example of how we can use a QRegExp on raw data in memory without requiring to copy the data into a QString: \snippet doc/src/snippets/qstring/main.cpp 22 \snippet doc/src/snippets/qstring/main.cpp 23 \warning A string created with fromRawData() is \e not '\\0'-terminated, unless the raw data contains a '\\0' character at position \a size. This means unicode() will \e not return a '\\0'-terminated string (although utf16() does, at the cost of copying the raw data). \sa fromUtf16(), setRawData() */ QString QString::fromRawData(const QChar *unicode, int size) { Data *x = static_cast(qMalloc(sizeof(Data))); Q_CHECK_PTR(x); if (unicode) { x->data = (ushort *)unicode; } else { x->data = x->array; size = 0; } x->ref = 1; x->alloc = x->size = size; *x->array = '\0'; x->clean = x->asciiCache = x->simpletext = x->righttoleft = x->capacity = 0; return QString(x, 0); } /*! \since 4.7 Resets the QString to use the first \a size Unicode characters in the array \a unicode. The data in \a unicode is \e not copied. The caller must be able to guarantee that \a unicode will not be deleted or modified as long as the QString (or an unmodified copy of it) exists. This function can be used instead of fromRawData() to re-use existings QString objects to save memory re-allocations. \sa fromRawData() */ QString &QString::setRawData(const QChar *unicode, int size) { if (d->ref != 1 || (d->data == d->array && d->alloc)) { *this = fromRawData(unicode, size); } else { #ifdef QT3_SUPPORT if (d->asciiCache) { Q_ASSERT(asciiCache); asciiCache->remove(d); } #endif if (unicode) { d->data = (ushort *)unicode; } else { d->data = d->array; size = 0; } d->alloc = d->size = size; *d->array = '\0'; d->clean = d->asciiCache = d->simpletext = d->righttoleft = d->capacity = 0; } return *this; } /*! \class QLatin1String \brief The QLatin1String class provides a thin wrapper around an US-ASCII/Latin-1 encoded string literal. \ingroup string-processing \reentrant Many of QString's member functions are overloaded to accept \c{const char *} instead of QString. This includes the copy constructor, the assignment operator, the comparison operators, and various other functions such as \link QString::insert() insert() \endlink, \link QString::replace() replace()\endlink, and \link QString::indexOf() indexOf()\endlink. These functions are usually optimized to avoid constructing a QString object for the \c{const char *} data. For example, assuming \c str is a QString, \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 3 is much faster than \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 4 because it doesn't construct four temporary QString objects and make a deep copy of the character data. Applications that define \c QT_NO_CAST_FROM_ASCII (as explained in the QString documentation) don't have access to QString's \c{const char *} API. To provide an efficient way of specifying constant Latin-1 strings, Qt provides the QLatin1String, which is just a very thin wrapper around a \c{const char *}. Using QLatin1String, the example code above becomes \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 5 This is a bit longer to type, but it provides exactly the same benefits as the first version of the code, and is faster than converting the Latin-1 strings using QString::fromLatin1(). Thanks to the QString(const QLatin1String &) constructor, QLatin1String can be used everywhere a QString is expected. For example: \snippet doc/src/snippets/code/src_corelib_tools_qstring.cpp 6 \sa QString, QLatin1Char */ /*! \fn QLatin1String::QLatin1String(const char *str) Constructs a QLatin1String object that stores \a str. Note that if \a str is 0, an empty string is created; this case is handled by QString. The string data is \e not copied. The caller must be able to guarantee that \a str will not be deleted or modified as long as the QLatin1String object exists. \sa latin1() */ /*! \since 4.1 \fn QLatin1String &QLatin1String::operator=(const QLatin1String &other) Constructs a copy of \a other. */ /*! \fn const char *QLatin1String::latin1() const Returns the Latin-1 string stored in this object. */ /*! \fn bool QLatin1String::operator==(const QString &other) const Returns true if this string is equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). */ /*! \fn bool QLatin1String::operator==(const char *other) const \since 4.3 \overload The \a other const char pointer is converted to a QString using the QString::fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QLatin1String::operator!=(const QString &other) const Returns true if this string is not equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). */ /*! \fn bool QLatin1String::operator!=(const char *other) const \since 4.3 \overload operator!=() The \a other const char pointer is converted to a QString using the QString::fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QLatin1String::operator>(const QString &other) const Returns true if this string is lexically greater than string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). */ /*! \fn bool QLatin1String::operator>(const char *other) const \since 4.3 \overload The \a other const char pointer is converted to a QString using the QString::fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QLatin1String::operator<(const QString &other) const Returns true if this string is lexically less than the \a other string; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ /*! \fn bool QLatin1String::operator<(const char *other) const \since 4.3 \overload The \a other const char pointer is converted to a QString using the QString::fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QLatin1String::operator>=(const QString &other) const Returns true if this string is lexically greater than or equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). */ /*! \fn bool QLatin1String::operator>=(const char *other) const \since 4.3 \overload The \a other const char pointer is converted to a QString using the QString::fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /*! \fn bool QLatin1String::operator<=(const QString &other) const Returns true if this string is lexically less than or equal to string \a other; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). */ /*! \fn bool QLatin1String::operator<=(const char *other) const \since 4.3 \overload The \a other const char pointer is converted to a QString using the QString::fromAscii() function. You can disable this operator by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful if you want to ensure that all user-visible strings go through QObject::tr(), for example. */ /* \fn bool operator==(const QLatin1String &s1, const QLatin1String &s2) \relates QLatin1String Returns true if string \a s1 is lexically equal to string \a s2; otherwise returns false. */ /* \fn bool operator!=(const QLatin1String &s1, const QLatin1String &s2) \relates QLatin1String Returns true if string \a s1 is lexically unequal to string \a s2; otherwise returns false. */ /* \fn bool operator<(const QLatin1String &s1, const QLatin1String &s2) \relates QLatin1String Returns true if string \a s1 is lexically smaller than string \a s2; otherwise returns false. */ /* \fn bool operator<=(const QLatin1String &s1, const QLatin1String &s2) \relates QLatin1String Returns true if string \a s1 is lexically smaller than or equal to string \a s2; otherwise returns false. */ /* \fn bool operator>(const QLatin1String &s1, const QLatin1String &s2) \relates QLatin1String Returns true if string \a s1 is lexically greater than string \a s2; otherwise returns false. */ /* \fn bool operator>=(const QLatin1String &s1, const QLatin1String &s2) \relates QLatin1String Returns true if string \a s1 is lexically greater than or equal to string \a s2; otherwise returns false. */ #if !defined(QT_NO_DATASTREAM) || (defined(QT_BOOTSTRAPPED) && !defined(QT_BUILD_QMAKE)) /*! \fn QDataStream &operator<<(QDataStream &stream, const QString &string) \relates QString Writes the given \a string to the specified \a stream. \sa {Serializing Qt Data Types} */ QDataStream &operator<<(QDataStream &out, const QString &str) { if (out.version() == 1) { out << str.toLatin1(); } else { if (!str.isNull() || out.version() < 3) { if ((out.byteOrder() == QDataStream::BigEndian) == (QSysInfo::ByteOrder == QSysInfo::BigEndian)) { out.writeBytes(reinterpret_cast(str.unicode()), sizeof(QChar) * str.length()); } else { QVarLengthArray buffer(str.length()); const ushort *data = reinterpret_cast(str.constData()); for (int i = 0; i < str.length(); i++) { buffer[i] = qbswap(*data); ++data; } out.writeBytes(reinterpret_cast(buffer.data()), sizeof(ushort) * buffer.size()); } } else { // write null marker out << (quint32)0xffffffff; } } return out; } /*! \fn QDataStream &operator>>(QDataStream &stream, QString &string) \relates QString Reads a string from the specified \a stream into the given \a string. \sa {Serializing Qt Data Types} */ QDataStream &operator>>(QDataStream &in, QString &str) { #ifdef QT_QSTRING_UCS_4 #if defined(Q_CC_GNU) #warning "operator>> not working properly" #endif #endif if (in.version() == 1) { QByteArray l; in >> l; str = QString::fromLatin1(l); } else { quint32 bytes = 0; in >> bytes; // read size of string if (bytes == 0xffffffff) { // null string str.clear(); } else if (bytes > 0) { // not empty if (bytes & 0x1) { str.clear(); in.setStatus(QDataStream::ReadCorruptData); return in; } const quint32 Step = 1024 * 1024; quint32 len = bytes / 2; quint32 allocated = 0; while (allocated < len) { int blockSize = qMin(Step, len - allocated); str.resize(allocated + blockSize); if (in.readRawData(reinterpret_cast(str.data()) + allocated * 2, blockSize * 2) != blockSize * 2) { str.clear(); in.setStatus(QDataStream::ReadPastEnd); return in; } allocated += blockSize; } if ((in.byteOrder() == QDataStream::BigEndian) != (QSysInfo::ByteOrder == QSysInfo::BigEndian)) { ushort *data = reinterpret_cast(str.data()); while (len--) { *data = qbswap(*data); ++data; } } } else { str = QLatin1String(""); } } return in; } #endif // QT_NO_DATASTREAM /*! \fn void QString::setLength(int nl) Use resize() instead. */ /*! \fn QString QString::copy() const Use simple assignment instead. QString is implicitly shared so if a copy is modified only the copy is changed. */ /*! \fn QString &QString::remove(QChar c, bool cs) Use the remove(QChar, Qt::CaseSensitive) overload instead. */ /*! \fn QString &QString::remove(const QString &s, bool cs) Use the remove(QString, Qt::CaseSensitive) overload instead. */ /*! \fn QString &QString::replace(QChar c, const QString &after, bool cs) Use the replace(QChar, QString, Qt::CaseSensitive) overload instead. */ /*! \fn QString &QString::replace(const QString &before, const QString &after, bool cs) Use the replace(QString, QString, Qt::CaseSensitive) overload instead. */ /*! \fn QString &QString::replace(char c, const QString &after, bool cs) Use the replace(QChar, QString, Qt::CaseSensitive) overload instead. */ /*! \fn QString &QString::replace(char c, const QString &after, Qt::CaseSensitivity cs) Use the replace(QChar, QString, Qt::CaseSensitive) overload instead. */ /*! \fn int QString::find(QChar c, int i = 0, bool cs = true) const Use indexOf() instead. */ /*! \fn int QString::find(const QString &s, int i = 0, bool cs = true) const Use indexOf() instead. */ /*! \fn int QString::findRev(QChar c, int i = -1, bool cs = true) const Use lastIndexOf() instead. */ /*! \fn int QString::findRev(const QString &s, int i = -1, bool cs = true) const Use lastIndexOf() instead. */ /*! \fn int QString::find(const QRegExp &rx, int i=0) const Use indexOf() instead. */ /*! \fn int QString::find(QRegExp &rx, int i=0) const \internal \since 4.5 Use indexOf() instead. */ /*! \fn int QString::findRev(const QRegExp &rx, int i=-1) const Use lastIndexOf() instead. */ /*! \fn int QString::findRev(QRegExp &rx, int i=0) const \internal \since 4.5 Use lastIndexOf() instead. */ /*! \fn QBool QString::contains(QChar c, bool cs) const Use the contains(QChar, Qt::CaseSensitive) overload instead. */ /*! \fn QBool QString::contains(const QString &s, bool cs) const Use the contains(QString, Qt::CaseSensitive) overload instead. */ /*! \fn bool QString::startsWith(const QString &s, bool cs) const Use the startsWith(QString, Qt::CaseSensitive) overload instead. */ /*! \fn bool QString::endsWith(const QString &s, bool cs) const Use the endsWith(QString, Qt::CaseSensitive) overload instead. */ /*! \fn QString QString::leftJustify(int width, QChar fill = QLatin1Char(' '), bool trunc=false) const Use leftJustified() instead. */ /*! \fn QString QString::rightJustify(int width, QChar fill = QLatin1Char(' '), bool trunc=false) const Use rightJustified() instead. */ /*! \fn QString QString::lower() const Use toLower() instead. */ /*! \fn QString QString::upper() const Use toUpper() instead. */ /*! \fn QString QString::stripWhiteSpace() const Use trimmed() instead. */ /*! \fn QString QString::simplifyWhiteSpace() const Use simplified() instead. */ /*! \fn QString &QString::setUnicodeCodes(const ushort *unicode_as_ushorts, int size) Use setUtf16() instead. */ /*! \fn ushort *QString::ucs2() const Use utf16() instead. */ /*! \fn QString QString::fromUcs2(const ushort *unicode, int size = -1) Use fromUtf16() instead. */ /*! \fn QString &QString::setAscii(const char *str, int len = -1) Use fromAscii() instead. */ /*! \fn QString &QString::setLatin1(const char *str, int len = -1) Use fromLatin1() instead. */ /*! \fn QChar QString::constref(uint i) const Use at() instead. */ /*! \fn QChar &QString::ref(uint i); Use operator[]() instead. */ /*! \fn QString::operator const char *() const Use toAscii().constData() instead. */ /*! \class QConstString \brief The QConstString class is a wrapper for constant Unicode string data. \compat In Qt 4, QConstString is replaced by QString::fromRawData(), a static function that constructs a QString object based on Unicode string data. Because QString::fromRawData() has slightly more stringent constraints than QConstString had in Qt 3, the new QConstString class takes a deep copy of the string data. \sa QString::fromRawData() */ /*! \fn QConstString::QConstString(const QChar *unicode, int size) Use QString(\a unicode, \a size) or QString::fromRawData(\a unicode, \a size) instead. */ /*! \fn const QString &QConstString::string() const Returns \c *this. Not necessary in Qt 4. */ /*! \class QStringRef \since 4.3 \brief The QStringRef class provides a thin wrapper around QString substrings. \reentrant \ingroup tools \ingroup string-processing QStringRef provides a read-only subset of the QString API. A string reference explicitly references a portion of a string() with a given size(), starting at a specific position(). Calling toString() returns a copy of the data as a real QString instance. This class is designed to improve the performance of substring handling when manipulating substrings obtained from existing QString instances. QStringRef avoids the memory allocation and reference counting overhead of a standard QString by simply referencing a part of the original string. This can prove to be advantageous in low level code, such as that used in a parser, at the expense of potentially more complex code. For most users, there are no semantic benefits to using QStringRef instead of QString since QStringRef requires attention to be paid to memory management issues, potentially making code more complex to write and maintain. \warning A QStringRef is only valid as long as the referenced string exists. If the original string is deleted, the string reference points to an invalid memory location. We suggest that you only use this class in stable code where profiling has clearly identified that performance improvements can be made by replacing standard string operations with the optimized substring handling provided by this class. \sa {Implicitly Shared Classes} */ /*! \fn QStringRef::QStringRef() Constructs an empty string reference. */ /*! \fn QStringRef::QStringRef(const QString *string, int position, int length) Constructs a string reference to the range of characters in the given \a string specified by the starting \a position and \a length in characters. \warning This function exists to improve performance as much as possible, and performs no bounds checking. For program correctness, \a position and \a length must describe a valid substring of \a string. This means that the starting \a position must be positive or 0 and smaller than \a string's length, and \a length must be positive or 0 but smaller than the string's length minus the starting \a position; i.e, 0 <= position < string->length() and 0 <= length <= string->length() - position must both be satisfied. */ /*! \fn QStringRef::QStringRef(const QString *string) Constructs a string reference to the given \a string. */ /*! \fn QStringRef::QStringRef(const QStringRef &other) Constructs a copy of the \a other string reference. */ /*! \fn QStringRef::~QStringRef() Destroys the string reference. Since this class is only used to refer to string data, and does not take ownership of it, no memory is freed when instances are destroyed. */ /*! \fn int QStringRef::position() const Returns the starting position in the referenced string that is referred to by the string reference. \sa size(), string() */ /*! \fn int QStringRef::size() const Returns the number of characters referred to by the string reference. Equivalent to length() and count(). \sa position(), string() */ /*! \fn int QStringRef::count() const Returns the number of characters referred to by the string reference. Equivalent to size() and length(). \sa position(), string() */ /*! \fn int QStringRef::length() const Returns the number of characters referred to by the string reference. Equivalent to size() and count(). \sa position(), string() */ /*! \fn bool QStringRef::isEmpty() const Returns true if the string reference has no characters; otherwise returns false. A string reference is empty if its size is zero. \sa size() */ /*! \fn bool QStringRef::isNull() const Returns true if string() returns a null pointer or a pointer to a null string; otherwise returns true. \sa size() */ /*! \fn const QString *QStringRef::string() const Returns a pointer to the string referred to by the string reference, or 0 if it does not reference a string. \sa unicode() */ /*! \fn const QChar *QStringRef::unicode() const Returns a Unicode representation of the string reference. Since the data stems directly from the referenced string, it is not null-terminated unless the string reference includes the string's null terminator. \sa string() */ /*! \fn const QChar *QStringRef::data() const Same as unicode(). */ /*! \fn const QChar *QStringRef::constData() const Same as unicode(). */ /*! Returns a copy of the string reference as a QString object. If the string reference is not a complete reference of the string (meaning that position() is 0 and size() equals string()->size()), this function will allocate a new string to return. \sa string() */ QString QStringRef::toString() const { if (!m_string) return QString(); if (m_size && m_position == 0 && m_size == m_string->size()) return *m_string; return QString(m_string->unicode() + m_position, m_size); } /*! \relates QStringRef Returns true if string reference \a s1 is lexically equal to string reference \a s2; otherwise returns false. */ bool operator==(const QStringRef &s1,const QStringRef &s2) { return (s1.size() == s2.size() && qMemEquals((const ushort *)s1.unicode(), (const ushort *)s2.unicode(), s1.size())); } /*! \relates QStringRef Returns true if string \a s1 is lexically equal to string reference \a s2; otherwise returns false. */ bool operator==(const QString &s1,const QStringRef &s2) { return (s1.size() == s2.size() && qMemEquals((const ushort *)s1.unicode(), (const ushort *)s2.unicode(), s1.size())); } /*! \relates QStringRef Returns true if string \a s1 is lexically equal to string reference \a s2; otherwise returns false. */ bool operator==(const QLatin1String &s1, const QStringRef &s2) { const ushort *uc = reinterpret_cast(s2.unicode()); const ushort *e = uc + s2.size(); const uchar *c = reinterpret_cast(s1.latin1()); if (!c) return s2.isEmpty(); while (*c) { if (uc == e || *uc != *c) return false; ++uc; ++c; } return (uc == e); } /*! \relates QStringRef Returns true if string reference \a s1 is lexically less than string reference \a s2; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ bool operator<(const QStringRef &s1,const QStringRef &s2) { return ucstrcmp(s1.constData(), s1.length(), s2.constData(), s2.length()) < 0; } /*!\fn bool operator<=(const QStringRef &s1,const QStringRef &s2) \relates QStringRef Returns true if string reference \a s1 is lexically less than or equal to string reference \a s2; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ /*!\fn bool operator>=(const QStringRef &s1,const QStringRef &s2) \relates QStringRef Returns true if string reference \a s1 is lexically greater than or equal to string reference \a s2; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ /*!\fn bool operator>(const QStringRef &s1,const QStringRef &s2) \relates QStringRef Returns true if string reference \a s1 is lexically greater than string reference \a s2; otherwise returns false. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings using the QString::localeAwareCompare() function. */ /*! \fn const QChar QStringRef::at(int position) const Returns the character at the given index \a position in the string reference. The \a position must be a valid index position in the string (i.e., 0 <= \a position < size()). */ /*! \fn void QStringRef::clear() Clears the contents of the string reference by making it null and empty. \sa isEmpty(), isNull() */ /*! \fn QStringRef &QStringRef::operator=(const QStringRef &other) Assigns the \a other string reference to this string reference, and returns the result. */ /*! \fn QStringRef &QStringRef::operator=(const QString *string) Constructs a string reference to the given \a string and assigns it to this string reference, returning the result. */ /*! \typedef QString::DataPtr \internal */ /*! \fn DataPtr & QString::data_ptr() \internal */ /*! Appends the string reference to \a string, and returns a new reference to the combined string data. */ QStringRef QStringRef::appendTo(QString *string) const { if (!string) return QStringRef(); int pos = string->size(); string->insert(pos, unicode(), size()); return QStringRef(string, pos, size()); } /*! \fn int QStringRef::compare(const QStringRef &s1, const QString &s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) \since 4.5 Compares the string \a s1 with the string \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. */ /*! \fn int QStringRef::compare(const QStringRef &s1, const QStringRef &s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) \since 4.5 \overload Compares the string \a s1 with the string \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. */ /*! \fn int QStringRef::compare(const QStringRef &s1, QLatin1String s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) \since 4.5 \overload Compares the string \a s1 with the string \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. */ /*! \overload \fn int QStringRef::compare(const QString &other, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \since 4.5 Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. Equivalent to \c {compare(*this, other, cs)}. \sa QString::compare() */ /*! \overload \fn int QStringRef::compare(const QStringRef &other, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \since 4.5 Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. Equivalent to \c {compare(*this, other, cs)}. \sa QString::compare() */ /*! \overload \fn int QStringRef::compare(QLatin1String other, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \since 4.5 Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. If \a cs is Qt::CaseSensitive, the comparison is case sensitive; otherwise the comparison is case insensitive. Equivalent to \c {compare(*this, other, cs)}. \sa QString::compare() */ /*! \fn int QStringRef::localeAwareCompare(const QStringRef &s1, const QString & s2) \since 4.5 Compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. On Mac OS X, this function compares according the "Order for sorted lists" setting in the International prefereces panel. \sa compare(), QTextCodec::locale() */ /*! \fn int QStringRef::localeAwareCompare(const QStringRef &s1, const QStringRef & s2) \since 4.5 \overload Compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. */ /*! \fn int QStringRef::localeAwareCompare(const QString &other) const \since 4.5 \overload Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. */ /*! \fn int QStringRef::localeAwareCompare(const QStringRef &other) const \since 4.5 \overload Compares this string with the \a other string and returns an integer less than, equal to, or greater than zero if this string is less than, equal to, or greater than the \a other string. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. */ /*! \fn QString &QString::append(const QStringRef &reference) \since 4.4 Appends the given string \a reference to this string and returns the result. */ QString &QString::append(const QStringRef &str) { if (str.string() == this) { str.appendTo(this); } else if (str.string()) { int oldSize = size(); resize(oldSize + str.size()); memcpy(data() + oldSize, str.unicode(), str.size() * sizeof(QChar)); } return *this; } /*! \since 4.4 Returns a substring reference to the \a n leftmost characters of the string. If \a n is greater than size() or less than zero, a reference to the entire string is returned. \snippet doc/src/snippets/qstring/main.cpp leftRef \sa left(), rightRef(), midRef(), startsWith() */ QStringRef QString::leftRef(int n) const { if (n >= d->size || n < 0) n = d->size; return QStringRef(this, 0, n); } /*! \since 4.4 Returns a substring reference to the \a n rightmost characters of the string. If \a n is greater than size() or less than zero, a reference to the entire string is returned. \snippet doc/src/snippets/qstring/main.cpp rightRef \sa right(), leftRef(), midRef(), endsWith() */ QStringRef QString::rightRef(int n) const { if (n >= d->size || n < 0) n = d->size; return QStringRef(this, d->size - n, n); } /*! \since 4.4 Returns a substring reference to \a n characters of this string, starting at the specified \a position. If the \a position exceeds the length of the string, an empty reference is returned. If there are less than \a n characters available in the string, starting at the given \a position, or if \a n is -1 (default), the function returns all characters from the specified \a position onwards. Example: \snippet doc/src/snippets/qstring/main.cpp midRef \sa mid(), leftRef(), rightRef() */ QStringRef QString::midRef(int position, int n) const { if (d == &shared_null || position >= d->size) return QStringRef(); if (n < 0) n = d->size - position; if (position < 0) { n += position; position = 0; } if (n + position > d->size) n = d->size - position; return QStringRef(this, position, n); } /*! \since 4.8 Returns the index position of the first occurrence of the string \a str in this string reference, searching forward from index position \a from. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. If \a from is -1, the search starts at the last character; if it is -2, at the next to last character and so on. \sa QString::indexOf(), lastIndexOf(), contains(), count() */ int QStringRef::indexOf(const QString &str, int from, Qt::CaseSensitivity cs) const { return qFindString(unicode(), length(), from, str.unicode(), str.length(), cs); } /*! \since 4.8 \overload indexOf() Returns the index position of the first occurrence of the character \a ch in the string reference, searching forward from index position \a from. Returns -1 if \a ch could not be found. \sa QString::indexOf(), lastIndexOf(), contains(), count() */ int QStringRef::indexOf(QChar ch, int from, Qt::CaseSensitivity cs) const { return findChar(unicode(), length(), ch, from, cs); } /*! \since 4.8 Returns the index position of the first occurrence of the string \a str in this string reference, searching forward from index position \a from. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. If \a from is -1, the search starts at the last character; if it is -2, at the next to last character and so on. \sa QString::indexOf(), lastIndexOf(), contains(), count() */ int QStringRef::indexOf(QLatin1String str, int from, Qt::CaseSensitivity cs) const { return qt_find_latin1_string(unicode(), size(), str, from, cs); } /*! \since 4.8 \overload indexOf() Returns the index position of the first occurrence of the string reference \a str in this string reference, searching forward from index position \a from. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::indexOf(), lastIndexOf(), contains(), count() */ int QStringRef::indexOf(const QStringRef &str, int from, Qt::CaseSensitivity cs) const { return qFindString(unicode(), size(), from, str.unicode(), str.size(), cs); } /*! \since 4.8 Returns the index position of the last occurrence of the string \a str in this string reference, searching backward from index position \a from. If \a from is -1 (default), the search starts at the last character; if \a from is -2, at the next to last character and so on. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::lastIndexOf(), indexOf(), contains(), count() */ int QStringRef::lastIndexOf(const QString &str, int from, Qt::CaseSensitivity cs) const { const int sl = str.size(); if (sl == 1) return lastIndexOf(str.at(0), from, cs); const int l = size();; if (from < 0) from += l; int delta = l - sl; if (from == l && sl == 0) return from; if (from < 0 || from >= l || delta < 0) return -1; if (from > delta) from = delta; return lastIndexOfHelper(reinterpret_cast(unicode()), from, reinterpret_cast(str.unicode()), str.size(), cs); } /*! \since 4.8 \overload lastIndexOf() Returns the index position of the last occurrence of the character \a ch, searching backward from position \a from. \sa QString::lastIndexOf(), indexOf(), contains(), count() */ int QStringRef::lastIndexOf(QChar ch, int from, Qt::CaseSensitivity cs) const { return qt_last_index_of(unicode(), size(), ch, from, cs); } /*! \since 4.8 \overload lastIndexOf() Returns the index position of the last occurrence of the string \a str in this string reference, searching backward from index position \a from. If \a from is -1 (default), the search starts at the last character; if \a from is -2, at the next to last character and so on. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::lastIndexOf(), indexOf(), contains(), count() */ int QStringRef::lastIndexOf(QLatin1String str, int from, Qt::CaseSensitivity cs) const { const int sl = qstrlen(str.latin1()); if (sl == 1) return lastIndexOf(QLatin1Char(str.latin1()[0]), from, cs); const int l = size(); if (from < 0) from += l; int delta = l - sl; if (from == l && sl == 0) return from; if (from < 0 || from >= l || delta < 0) return -1; if (from > delta) from = delta; QVarLengthArray s(sl); for (int i = 0; i < sl; ++i) s[i] = str.latin1()[i]; return lastIndexOfHelper(reinterpret_cast(unicode()), from, s.data(), sl, cs); } /*! \since 4.8 \overload lastIndexOf() Returns the index position of the last occurrence of the string reference \a str in this string reference, searching backward from index position \a from. If \a from is -1 (default), the search starts at the last character; if \a from is -2, at the next to last character and so on. Returns -1 if \a str is not found. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::lastIndexOf(), indexOf(), contains(), count() */ int QStringRef::lastIndexOf(const QStringRef &str, int from, Qt::CaseSensitivity cs) const { const int sl = str.size(); if (sl == 1) return lastIndexOf(str.at(0), from, cs); const int l = size(); if (from < 0) from += l; int delta = l - sl; if (from == l && sl == 0) return from; if (from < 0 || from >= l || delta < 0) return -1; if (from > delta) from = delta; return lastIndexOfHelper(reinterpret_cast(unicode()), from, reinterpret_cast(str.unicode()), str.size(), cs); } /*! \since 4.8 Returns the number of (potentially overlapping) occurrences of the string \a str in this string reference. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::count(), contains(), indexOf() */ int QStringRef::count(const QString &str, Qt::CaseSensitivity cs) const { return qt_string_count(unicode(), size(), str.unicode(), str.size(), cs); } /*! \since 4.8 \overload count() Returns the number of occurrences of the character \a ch in the string reference. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::count(), contains(), indexOf() */ int QStringRef::count(QChar ch, Qt::CaseSensitivity cs) const { return qt_string_count(unicode(), size(), ch, cs); } /*! \since 4.8 \overload count() Returns the number of (potentially overlapping) occurrences of the string reference \a str in this string reference. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::count(), contains(), indexOf() */ int QStringRef::count(const QStringRef &str, Qt::CaseSensitivity cs) const { return qt_string_count(unicode(), size(), str.unicode(), str.size(), cs); } /*! \since 4.8 Returns true if the string reference starts with \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::startsWith(), endsWith() */ bool QStringRef::startsWith(const QString &str, Qt::CaseSensitivity cs) const { return qt_starts_with(isNull() ? 0 : unicode(), size(), str.isNull() ? 0 : str.unicode(), str.size(), cs); } /*! \since 4.8 \overload startsWith() \sa QString::startsWith(), endsWith() */ bool QStringRef::startsWith(QLatin1String str, Qt::CaseSensitivity cs) const { return qt_starts_with(isNull() ? 0 : unicode(), size(), str, cs); } /*! \since 4.8 \overload startsWith() \sa QString::startsWith(), endsWith() */ bool QStringRef::startsWith(const QStringRef &str, Qt::CaseSensitivity cs) const { return qt_starts_with(isNull() ? 0 : unicode(), size(), str.isNull() ? 0 : str.unicode(), str.size(), cs); } /*! \since 4.8 \overload startsWith() Returns true if the string reference starts with \a ch; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::startsWith(), endsWith() */ bool QStringRef::startsWith(QChar ch, Qt::CaseSensitivity cs) const { if (!isEmpty()) { const ushort *data = reinterpret_cast(unicode()); return (cs == Qt::CaseSensitive ? data[0] == ch : foldCase(data[0]) == foldCase(ch.unicode())); } else { return false; } } /*! \since 4.8 Returns true if the string reference ends with \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::endsWith(), startsWith() */ bool QStringRef::endsWith(const QString &str, Qt::CaseSensitivity cs) const { return qt_ends_with(isNull() ? 0 : unicode(), size(), str.isNull() ? 0 : str.unicode(), str.size(), cs); } /*! \since 4.8 \overload endsWith() Returns true if the string reference ends with \a ch; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa QString::endsWith(), endsWith() */ bool QStringRef::endsWith(QChar ch, Qt::CaseSensitivity cs) const { if (!isEmpty()) { const ushort *data = reinterpret_cast(unicode()); const int size = length(); return (cs == Qt::CaseSensitive ? data[size - 1] == ch : foldCase(data[size - 1]) == foldCase(ch.unicode())); } else { return false; } } /*! \since 4.8 \overload endsWith() \sa QString::endsWith(), endsWith() */ bool QStringRef::endsWith(QLatin1String str, Qt::CaseSensitivity cs) const { return qt_ends_with(isNull() ? 0 : unicode(), size(), str, cs); } /*! \since 4.8 \overload endsWith() \sa QString::endsWith(), endsWith() */ bool QStringRef::endsWith(const QStringRef &str, Qt::CaseSensitivity cs) const { return qt_ends_with(isNull() ? 0 : unicode(), size(), str.isNull() ? 0 : str.unicode(), str.size(), cs); } /*! \fn bool QStringRef::contains(const QString &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \since 4.8 Returns true if this string reference contains an occurrence of the string \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa indexOf(), count() */ /*! \fn bool QStringRef::contains(QChar ch, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \overload contains() \since 4.8 Returns true if this string contains an occurrence of the character \a ch; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. */ /*! \fn bool QStringRef::contains(const QStringRef &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const \overload contains() \since 4.8 Returns true if this string reference contains an occurrence of the string reference \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa indexOf(), count() */ /*! \fn bool QStringRef::contains(QLatin1String str, Qt::CaseSensitivity cs) const \since 4,8 \overload contains() Returns true if this string reference contains an occurrence of the string \a str; otherwise returns false. If \a cs is Qt::CaseSensitive (default), the search is case sensitive; otherwise the search is case insensitive. \sa indexOf(), count() */ static inline int qt_last_index_of(const QChar *haystack, int haystackLen, const QChar &needle, int from, Qt::CaseSensitivity cs) { ushort c = needle.unicode(); if (from < 0) from += haystackLen; if (from < 0 || from >= haystackLen) return -1; if (from >= 0) { const ushort *b = reinterpret_cast(haystack); const ushort *n = b + from; if (cs == Qt::CaseSensitive) { for (; n >= b; --n) if (*n == c) return n - b; } else { c = foldCase(c); for (; n >= b; --n) if (foldCase(*n) == c) return n - b; } } return -1; } static inline int qt_string_count(const QChar *haystack, int haystackLen, const QChar *needle, int needleLen, Qt::CaseSensitivity cs) { int num = 0; int i = -1; if (haystackLen > 500 && needleLen > 5) { QStringMatcher matcher(needle, needleLen, cs); while ((i = matcher.indexIn(haystack, haystackLen, i + 1)) != -1) ++num; } else { while ((i = qFindString(haystack, haystackLen, i + 1, needle, needleLen, cs)) != -1) ++num; } return num; } static inline int qt_string_count(const QChar *unicode, int size, const QChar &ch, Qt::CaseSensitivity cs) { ushort c = ch.unicode(); int num = 0; const ushort *b = reinterpret_cast(unicode); const ushort *i = b + size; if (cs == Qt::CaseSensitive) { while (i != b) if (*--i == c) ++num; } else { c = foldCase(c); while (i != b) if (foldCase(*(--i)) == c) ++num; } return num; } static inline int qt_find_latin1_string(const QChar *haystack, int size, const QLatin1String &needle, int from, Qt::CaseSensitivity cs) { const char *latin1 = needle.latin1(); int len = qstrlen(latin1); QVarLengthArray s(len); for (int i = 0; i < len; ++i) s[i] = latin1[i]; return qFindString(haystack, size, from, reinterpret_cast(s.constData()), len, cs); } static inline bool qt_starts_with(const QChar *haystack, int haystackLen, const QChar *needle, int needleLen, Qt::CaseSensitivity cs) { if (!haystack) return !needle; if (haystackLen == 0) return needleLen == 0; if (needleLen > haystackLen) return false; const ushort *h = reinterpret_cast(haystack); const ushort *n = reinterpret_cast(needle); if (cs == Qt::CaseSensitive) { return qMemEquals(h, n, needleLen); } else { uint last = 0; uint olast = 0; for (int i = 0; i < needleLen; ++i) if (foldCase(h[i], last) != foldCase(n[i], olast)) return false; } return true; } static inline bool qt_starts_with(const QChar *haystack, int haystackLen, const QLatin1String &needle, Qt::CaseSensitivity cs) { if (!haystack) return !needle.latin1(); if (haystackLen == 0) return !needle.latin1() || *needle.latin1() == 0; const int slen = qstrlen(needle.latin1()); if (slen > haystackLen) return false; const ushort *data = reinterpret_cast(haystack); const uchar *latin = reinterpret_cast(needle.latin1()); if (cs == Qt::CaseSensitive) { for (int i = 0; i < slen; ++i) if (data[i] != latin[i]) return false; } else { for (int i = 0; i < slen; ++i) if (foldCase(data[i]) != foldCase((ushort)latin[i])) return false; } return true; } static inline bool qt_ends_with(const QChar *haystack, int haystackLen, const QChar *needle, int needleLen, Qt::CaseSensitivity cs) { if (!haystack) return !needle; if (haystackLen == 0) return needleLen == 0; const int pos = haystackLen - needleLen; if (pos < 0) return false; const ushort *h = reinterpret_cast(haystack); const ushort *n = reinterpret_cast(needle); if (cs == Qt::CaseSensitive) { return qMemEquals(h + pos, n, needleLen); } else { uint last = 0; uint olast = 0; for (int i = 0; i < needleLen; i++) if (foldCase(h[pos+i], last) != foldCase(n[i], olast)) return false; } return true; } static inline bool qt_ends_with(const QChar *haystack, int haystackLen, const QLatin1String &needle, Qt::CaseSensitivity cs) { if (!haystack) return !needle.latin1(); if (haystackLen == 0) return !needle.latin1() || *needle.latin1() == 0; const int slen = qstrlen(needle.latin1()); int pos = haystackLen - slen; if (pos < 0) return false; const uchar *latin = reinterpret_cast(needle.latin1()); const ushort *data = reinterpret_cast(haystack); if (cs == Qt::CaseSensitive) { for (int i = 0; i < slen; i++) if (data[pos+i] != latin[i]) return false; } else { for (int i = 0; i < slen; i++) if (foldCase(data[pos+i]) != foldCase((ushort)latin[i])) return false; } return true; } /*! \since 4.8 Returns a Latin-1 representation of the string as a QByteArray. The returned byte array is undefined if the string contains non-Latin1 characters. Those characters may be suppressed or replaced with a question mark. \sa toAscii(), toUtf8(), toLocal8Bit(), QTextCodec */ QByteArray QStringRef::toLatin1() const { return toLatin1_helper(unicode(), length()); } /*! \since 4.8 Returns an 8-bit representation of the string as a QByteArray. If a codec has been set using QTextCodec::setCodecForCStrings(), it is used to convert Unicode to 8-bit char; otherwise this function does the same as toLatin1(). Note that, despite the name, this function does not necessarily return an US-ASCII (ANSI X3.4-1986) string and its result may not be US-ASCII compatible. \sa toLatin1(), toUtf8(), toLocal8Bit(), QTextCodec */ QByteArray QStringRef::toAscii() const { #ifndef QT_NO_TEXTCODEC if (QString::codecForCStrings) return QString::codecForCStrings->fromUnicode(unicode(), length()); #endif // QT_NO_TEXTCODEC return toLatin1(); } /*! \since 4.8 Returns the local 8-bit representation of the string as a QByteArray. The returned byte array is undefined if the string contains characters not supported by the local 8-bit encoding. QTextCodec::codecForLocale() is used to perform the conversion from Unicode. If the locale encoding could not be determined, this function does the same as toLatin1(). If this string contains any characters that cannot be encoded in the locale, the returned byte array is undefined. Those characters may be suppressed or replaced by another. \sa toAscii(), toLatin1(), toUtf8(), QTextCodec */ QByteArray QStringRef::toLocal8Bit() const { #ifndef QT_NO_TEXTCODEC if (QTextCodec::codecForLocale()) return QTextCodec::codecForLocale()->fromUnicode(unicode(), length()); #endif // QT_NO_TEXTCODEC return toLatin1(); } /*! \since 4.8 Returns a UTF-8 representation of the string as a QByteArray. UTF-8 is a Unicode codec and can represent all characters in a Unicode string like QString. However, in the Unicode range, there are certain codepoints that are not considered characters. The Unicode standard reserves the last two codepoints in each Unicode Plane (U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, U+2FFFE, etc.), as well as 16 codepoints in the range U+FDD0..U+FDDF, inclusive, as non-characters. If any of those appear in the string, they may be discarded and will not appear in the UTF-8 representation, or they may be replaced by one or more replacement characters. \sa toAscii(), toLatin1(), toLocal8Bit(), QTextCodec */ QByteArray QStringRef::toUtf8() const { if (isNull()) return QByteArray(); return QUtf8::convertFromUnicode(constData(), length(), 0); } /*! \since 4.8 Returns a UCS-4/UTF-32 representation of the string as a QVector. UCS-4 is a Unicode codec and is lossless. All characters from this string can be encoded in UCS-4. \sa fromUtf8(), toAscii(), toLatin1(), toLocal8Bit(), QTextCodec, fromUcs4(), toWCharArray() */ QVector QStringRef::toUcs4() const { QVector v(length()); uint *a = v.data(); int len = toUcs4_helper(reinterpret_cast(unicode()), length(), a); v.resize(len); return v; } QT_END_NAMESPACE