/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Qt Software Information (qt-info@nokia.com) ** ** This file is part of the QtDeclarative module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the either Technology Preview License Agreement or the ** Beta Release License Agreement. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain ** additional rights. These rights are described in the Nokia Qt LGPL ** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this ** package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** If you are unsure which license is appropriate for your use, please ** contact the sales department at qt-sales@nokia.com. ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qmltransition.h" #include "qmlstategroup.h" #include "qmlstate_p.h" #include "qmlbinding.h" #include "qmlstateoperations.h" #include "qmlanimation.h" #include "qmlanimation_p.h" #include "qmlstate.h" #include QT_BEGIN_NAMESPACE DEFINE_BOOL_CONFIG_OPTION(stateChangeDebug, STATECHANGE_DEBUG); Action::Action() : restore(true), actionDone(false), fromBinding(0), toBinding(0), event(0), specifiedObject(0) { } Action::Action(QObject *target, const QString &propertyName, const QVariant &value) : restore(true), actionDone(false), toValue(value), fromBinding(0), toBinding(0), event(0), specifiedObject(target), specifiedProperty(propertyName) { property = QmlMetaProperty::createProperty(target, propertyName); if (property.isValid()) fromValue = property.read(); } ActionEvent::~ActionEvent() { } QString ActionEvent::name() const { return QString(); } void ActionEvent::execute() { } /*! \internal */ QmlStateOperation::QmlStateOperation(QObjectPrivate &dd, QObject *parent) : QObject(dd, parent) { } /*! \qmlclass State \brief The State element defines configurations of objects and properties. A state is specified as a set of batched changes from the default configuration. Note that setting the state of an object from within another state of the same object is inadvisible. Not only would this have the same effect as going directly to the second state it may cause the program to crash. \sa {states-transitions}{States and Transitions} */ /*! \internal \class QmlState \brief The QmlState class allows you to define configurations of objects and properties. \ingroup group_states QmlState allows you to specify a state as a set of batched changes from the default configuration. \sa {states-transitions}{States and Transitions} */ QML_DEFINE_TYPE(QmlState,State) QmlState::QmlState(QObject *parent) : QObject(*(new QmlStatePrivate), parent) { Q_D(QmlState); d->transitionManager.setState(this); } QmlState::~QmlState() { } /*! \qmlproperty string State::name This property holds the name of the state Each state should have a unique name. */ /*! \property QmlState::name \brief the name of the state Each state should have a unique name. */ QString QmlState::name() const { Q_D(const QmlState); return d->name; } void QmlState::setName(const QString &n) { Q_D(QmlState); d->name = n; } bool QmlState::isWhenKnown() const { Q_D(const QmlState); return d->when != 0; } /*! \qmlproperty bool State::when This property holds when the state should be applied This should be set to an expression that evaluates to true when you want the state to be applied. */ /*! \property QmlState::when \brief when the state should be applied This should be set to an expression that evaluates to true when you want the state to be applied. */ QmlBinding *QmlState::when() const { Q_D(const QmlState); return d->when; } void QmlState::setWhen(QmlBinding *when) { Q_D(QmlState); d->when = when; if (d->group) d->group->updateAutoState(); } /*! \qmlproperty string State::extends This property holds the state that this state extends The state being extended is treated as the base state in regards to the changes specified by the extending state. */ /*! \property QmlState::extends \brief the state that this state extends The state being extended is treated as the base state in regards to the changes specified by the extending state. \sa operations */ QString QmlState::extends() const { Q_D(const QmlState); return d->extends; } void QmlState::setExtends(const QString &extends) { Q_D(QmlState); d->extends = extends; } /*! \qmlproperty list State::operations This property holds the changes to apply for this state \default By default these changes are applied against the default state. If the state extends another state, then the changes are applied against the state being extended. */ /*! \property QmlState::operations \brief the changes to apply for this state By default these changes are applied against the default state. If the state extends another state, then the changes are applied against the state being extended. */ QmlList *QmlState::operations() { Q_D(QmlState); return &d->operations; } QmlState &QmlState::operator<<(QmlStateOperation *op) { Q_D(QmlState); d->operations.append(op); return *this; } void QmlStatePrivate::complete() { Q_Q(QmlState); for (int ii = 0; ii < reverting.count(); ++ii) { for (int jj = 0; jj < revertList.count(); ++jj) { if (revertList.at(jj).property == reverting.at(ii)) { revertList.removeAt(jj); break; } } } reverting.clear(); emit q->completed(); } // Generate a list of actions for this state. This includes coelescing state // actions that this state "extends" QmlStateOperation::ActionList QmlStatePrivate::generateActionList(QmlStateGroup *group) const { QmlStateOperation::ActionList applyList; if (inState) return applyList; // Prevent "extends" recursion inState = true; if (!extends.isEmpty()) { QList states = group->states(); for (int ii = 0; ii < states.count(); ++ii) if (states.at(ii)->name() == extends) applyList = static_cast(states.at(ii)->d_ptr)->generateActionList(group); } foreach(QmlStateOperation *op, operations) applyList << op->actions(); inState = false; return applyList; } QmlStateGroup *QmlState::stateGroup() const { Q_D(const QmlState); return d->group; } void QmlState::setStateGroup(QmlStateGroup *group) { Q_D(QmlState); d->group = group; } void QmlState::cancel() { Q_D(QmlState); d->transitionManager.cancel(); } void Action::deleteFromBinding() { if (fromBinding) { property.setBinding(0); delete fromBinding; fromBinding = 0; } } void QmlState::apply(QmlStateGroup *group, QmlTransition *trans, QmlState *revert) { Q_D(QmlState); cancel(); if (revert) revert->cancel(); d->revertList.clear(); d->reverting.clear(); if (revert) { QmlStatePrivate *revertPrivate = static_cast(revert->d_ptr); d->revertList = revertPrivate->revertList; revertPrivate->revertList.clear(); } // List of actions caused by this state QmlStateOperation::ActionList applyList = d->generateActionList(group); // List of actions that need to be reverted to roll back (just) this state QmlStatePrivate::SimpleActionList additionalReverts; // First add the reverse of all the applyList actions for (int ii = 0; ii < applyList.count(); ++ii) { Action &action = applyList[ii]; if (action.event) continue; action.fromBinding = action.property.binding(); bool found = false; int jj; for (jj = 0; jj < d->revertList.count(); ++jj) { if (d->revertList.at(jj).property == action.property) { found = true; break; } } if (!found) { if (!action.restore) { action.deleteFromBinding(); } else { // Only need to revert the applyList action if the previous // state doesn't have a higher priority revert already SimpleAction r(action); additionalReverts << r; } } else { if (!found || d->revertList.at(jj).binding != action.fromBinding) { action.deleteFromBinding(); } } } // Any reverts from a previous state that aren't carried forth // into this state need to be translated into apply actions for (int ii = 0; ii < d->revertList.count(); ++ii) { bool found = false; for (int jj = 0; !found && jj < applyList.count(); ++jj) { const Action &action = applyList.at(jj); if (action.property == d->revertList.at(ii).property) found = true; } if (!found) { QVariant cur = d->revertList.at(ii).property.read(); delete d->revertList.at(ii).property.setBinding(0); Action a; a.property = d->revertList.at(ii).property; a.fromValue = cur; a.toValue = d->revertList.at(ii).value; a.toBinding = d->revertList.at(ii).binding; a.specifiedObject = d->revertList.at(ii).specifiedObject; //### a.specifiedProperty = d->revertList.at(ii).specifiedProperty; applyList << a; // Store these special reverts in the reverting list d->reverting << d->revertList.at(ii).property; } } // All the local reverts now become part of the ongoing revertList d->revertList << additionalReverts; // Output for debugging if (stateChangeDebug()) { foreach(const Action &action, applyList) { qWarning() << " Action:" << action.property.object() << action.property.name() << action.toValue; } } d->transitionManager.transition(applyList, trans); } QML_DEFINE_NOCREATE_TYPE(QmlStateOperation) QmlStateOperation::ActionList QmlStateOperation::actions() { return ActionList(); } QT_END_NAMESPACE