/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include #include #ifdef QT_DEBUG #include #endif #include "qgraphicsanchorlayout_p.h" #ifndef QT_NO_GRAPHICSVIEW QT_BEGIN_NAMESPACE QGraphicsAnchorPrivate::QGraphicsAnchorPrivate(int version) : QObjectPrivate(version), layoutPrivate(0), data(0), sizePolicy(QSizePolicy::Fixed) { } QGraphicsAnchorPrivate::~QGraphicsAnchorPrivate() { // ### layoutPrivate->restoreSimplifiedGraph(QGraphicsAnchorLayoutPrivate::Orientation(data->orientation)); layoutPrivate->removeAnchor(data->from, data->to); } void QGraphicsAnchorPrivate::setSizePolicy(QSizePolicy::Policy policy) { if (sizePolicy != policy) { sizePolicy = policy; layoutPrivate->q_func()->invalidate(); } } void QGraphicsAnchorPrivate::setSpacing(qreal value) { if (data) { layoutPrivate->setAnchorSize(data, &value); } else { qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist."); } } void QGraphicsAnchorPrivate::unsetSpacing() { if (data) { layoutPrivate->setAnchorSize(data, 0); } else { qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist."); } } qreal QGraphicsAnchorPrivate::spacing() const { qreal size = 0; if (data) { layoutPrivate->anchorSize(data, 0, &size, 0); } else { qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist."); } return size; } static void internalSizeHints(QSizePolicy::Policy policy, qreal minSizeHint, qreal prefSizeHint, qreal maxSizeHint, qreal *minSize, qreal *prefSize, qreal *maxSize) { // minSize, prefSize and maxSize are initialized // with item's preferred Size: this is QSizePolicy::Fixed. // // Then we check each flag to find the resultant QSizePolicy, // according to the following table: // // constant value // QSizePolicy::Fixed 0 // QSizePolicy::Minimum GrowFlag // QSizePolicy::Maximum ShrinkFlag // QSizePolicy::Preferred GrowFlag | ShrinkFlag // QSizePolicy::Ignored GrowFlag | ShrinkFlag | IgnoreFlag if (policy & QSizePolicy::ShrinkFlag) *minSize = minSizeHint; else *minSize = prefSizeHint; if (policy & QSizePolicy::GrowFlag) *maxSize = maxSizeHint; else *maxSize = prefSizeHint; // Note that these two initializations are affected by the previous flags if (policy & QSizePolicy::IgnoreFlag) *prefSize = *minSize; else *prefSize = prefSizeHint; } bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo) { QSizePolicy::Policy policy; qreal minSizeHint; qreal prefSizeHint; qreal maxSizeHint; // It is an internal anchor if (item) { if (isLayoutAnchor) { minSize = 0; prefSize = 0; maxSize = QWIDGETSIZE_MAX; if (isCenterAnchor) maxSize /= 2; return true; } else { if (orientation == QGraphicsAnchorLayoutPrivate::Horizontal) { policy = item->sizePolicy().horizontalPolicy(); minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).width(); prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).width(); maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).width(); } else { policy = item->sizePolicy().verticalPolicy(); minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).height(); prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).height(); maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).height(); } if (isCenterAnchor) { minSizeHint /= 2; prefSizeHint /= 2; maxSizeHint /= 2; } } } else { Q_ASSERT(graphicsAnchor); policy = graphicsAnchor->sizePolicy(); minSizeHint = 0; if (hasSize) { // One can only configure the preferred size of a normal anchor. Their minimum and // maximum "size hints" are always 0 and QWIDGETSIZE_MAX, correspondingly. However, // their effective size hints might be narrowed down due to their size policies. prefSizeHint = prefSize; } else { const Qt::Orientation orient = Qt::Orientation(QGraphicsAnchorLayoutPrivate::edgeOrientation(from->m_edge) + 1); qreal s = styleInfo->defaultSpacing(orient); if (s < 0) { QSizePolicy::ControlType controlTypeFrom = from->m_item->sizePolicy().controlType(); QSizePolicy::ControlType controlTypeTo = to->m_item->sizePolicy().controlType(); s = styleInfo->perItemSpacing(controlTypeFrom, controlTypeTo, orient); // ### Currently we do not support negative anchors inside the graph. // To avoid those being created by a negative style spacing, we must // make this test. if (s < 0) s = 0; } prefSizeHint = s; } maxSizeHint = QWIDGETSIZE_MAX; } internalSizeHints(policy, minSizeHint, prefSizeHint, maxSizeHint, &minSize, &prefSize, &maxSize); // Set the anchor effective sizes to preferred. // // Note: The idea here is that all items should remain at their // preferred size unless where that's impossible. In cases where // the item is subject to restrictions (anchored to the layout // edges, for instance), the simplex solver will be run to // recalculate and override the values we set here. sizeAtMinimum = prefSize; sizeAtPreferred = prefSize; sizeAtMaximum = prefSize; return true; } void ParallelAnchorData::updateChildrenSizes() { firstEdge->sizeAtMinimum = sizeAtMinimum; firstEdge->sizeAtPreferred = sizeAtPreferred; firstEdge->sizeAtMaximum = sizeAtMaximum; const bool secondFwd = (secondEdge->from == from); if (secondFwd) { secondEdge->sizeAtMinimum = sizeAtMinimum; secondEdge->sizeAtPreferred = sizeAtPreferred; secondEdge->sizeAtMaximum = sizeAtMaximum; } else { secondEdge->sizeAtMinimum = -sizeAtMinimum; secondEdge->sizeAtPreferred = -sizeAtPreferred; secondEdge->sizeAtMaximum = -sizeAtMaximum; } firstEdge->updateChildrenSizes(); secondEdge->updateChildrenSizes(); } bool ParallelAnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo) { return refreshSizeHints_helper(styleInfo); } bool ParallelAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleInfo, bool refreshChildren) { if (refreshChildren && (!firstEdge->refreshSizeHints(styleInfo) || !secondEdge->refreshSizeHints(styleInfo))) { return false; } // Account for parallel anchors where the second edge is backwards. // We rely on the fact that a forward anchor of sizes min, pref, max is equivalent // to a backwards anchor of size (-max, -pref, -min) const bool secondFwd = (secondEdge->from == from); const qreal secondMin = secondFwd ? secondEdge->minSize : -secondEdge->maxSize; const qreal secondPref = secondFwd ? secondEdge->prefSize : -secondEdge->prefSize; const qreal secondMax = secondFwd ? secondEdge->maxSize : -secondEdge->minSize; minSize = qMax(firstEdge->minSize, secondMin); maxSize = qMin(firstEdge->maxSize, secondMax); // This condition means that the maximum size of one anchor being simplified is smaller than // the minimum size of the other anchor. The consequence is that there won't be a valid size // for this parallel setup. if (minSize > maxSize) { return false; } // The equivalent preferred Size of a parallel anchor is calculated as to // reduce the deviation from the original preferred sizes _and_ to avoid shrinking // items below their preferred sizes, unless strictly needed. // ### This logic only holds if all anchors in the layout are "well-behaved" in the // following terms: // // - There are no negative-sized anchors // - All sequential anchors are composed of children in the same direction as the // sequential anchor itself // // With these assumptions we can grow a child knowing that no hidden items will // have to shrink as the result of that. // If any of these does not hold, we have a situation where the ParallelAnchor // does not have enough information to calculate its equivalent prefSize. prefSize = qMax(firstEdge->prefSize, secondPref); prefSize = qMin(prefSize, maxSize); // See comment in AnchorData::refreshSizeHints() about sizeAt* values sizeAtMinimum = prefSize; sizeAtPreferred = prefSize; sizeAtMaximum = prefSize; return true; } /*! \internal returns the factor in the interval [-1, 1]. -1 is at Minimum 0 is at Preferred 1 is at Maximum */ static QPair getFactor(qreal value, qreal min, qreal pref, qreal max) { QGraphicsAnchorLayoutPrivate::Interval interval; qreal lower; qreal upper; if (value < pref) { interval = QGraphicsAnchorLayoutPrivate::MinToPreferred; lower = min; upper = pref; } else { interval = QGraphicsAnchorLayoutPrivate::PreferredToMax; lower = pref; upper = max; } qreal progress; if (upper == lower) { progress = 0; } else { progress = (value - lower) / (upper - lower); } return qMakePair(interval, progress); } static qreal interpolate(const QPair &factor, qreal min, qreal pref, qreal max) { qreal lower; qreal upper; switch (factor.first) { case QGraphicsAnchorLayoutPrivate::MinToPreferred: lower = min; upper = pref; break; case QGraphicsAnchorLayoutPrivate::PreferredToMax: lower = pref; upper = max; break; } return lower + factor.second * (upper - lower); } void SequentialAnchorData::updateChildrenSizes() { // ### REMOVE ME // ### check whether we are guarantee to get those or we need to warn stuff at this // point. Q_ASSERT(sizeAtMinimum > minSize || qAbs(sizeAtMinimum - minSize) < 0.00000001); Q_ASSERT(sizeAtPreferred > minSize || qAbs(sizeAtPreferred - minSize) < 0.00000001); Q_ASSERT(sizeAtMaximum > minSize || qAbs(sizeAtMaximum - minSize) < 0.00000001); // These may be false if this anchor was in parallel with the layout stucture // Q_ASSERT(sizeAtMinimum < maxSize || qAbs(sizeAtMinimum - maxSize) < 0.00000001); // Q_ASSERT(sizeAtPreferred < maxSize || qAbs(sizeAtPreferred - maxSize) < 0.00000001); // Q_ASSERT(sizeAtMaximum < maxSize || qAbs(sizeAtMaximum - maxSize) < 0.00000001); // Band here refers if the value is in the Minimum To Preferred // band (the lower band) or the Preferred To Maximum (the upper band). const QPair minFactor = getFactor(sizeAtMinimum, minSize, prefSize, maxSize); const QPair prefFactor = getFactor(sizeAtPreferred, minSize, prefSize, maxSize); const QPair maxFactor = getFactor(sizeAtMaximum, minSize, prefSize, maxSize); for (int i = 0; i < m_edges.count(); ++i) { AnchorData *e = m_edges.at(i); e->sizeAtMinimum = interpolate(minFactor, e->minSize, e->prefSize, e->maxSize); e->sizeAtPreferred = interpolate(prefFactor, e->minSize, e->prefSize, e->maxSize); e->sizeAtMaximum = interpolate(maxFactor, e->minSize, e->prefSize, e->maxSize); e->updateChildrenSizes(); } } bool SequentialAnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo) { return refreshSizeHints_helper(styleInfo); } bool SequentialAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleInfo, bool refreshChildren) { minSize = 0; prefSize = 0; maxSize = 0; for (int i = 0; i < m_edges.count(); ++i) { AnchorData *edge = m_edges.at(i); // If it's the case refresh children information first if (refreshChildren && !edge->refreshSizeHints(styleInfo)) return false; minSize += edge->minSize; prefSize += edge->prefSize; maxSize += edge->maxSize; } // See comment in AnchorData::refreshSizeHints() about sizeAt* values sizeAtMinimum = prefSize; sizeAtPreferred = prefSize; sizeAtMaximum = prefSize; return true; } #ifdef QT_DEBUG void AnchorData::dump(int indent) { if (type == Parallel) { qDebug("%*s type: parallel:", indent, ""); ParallelAnchorData *p = static_cast(this); p->firstEdge->dump(indent+2); p->secondEdge->dump(indent+2); } else if (type == Sequential) { SequentialAnchorData *s = static_cast(this); int kids = s->m_edges.count(); qDebug("%*s type: sequential(%d):", indent, "", kids); for (int i = 0; i < kids; ++i) { s->m_edges.at(i)->dump(indent+2); } } else { qDebug("%*s type: Normal:", indent, ""); } } #endif QSimplexConstraint *GraphPath::constraint(const GraphPath &path) const { // Calculate QSet cPositives; QSet cNegatives; QSet intersection; cPositives = positives + path.negatives; cNegatives = negatives + path.positives; intersection = cPositives & cNegatives; cPositives -= intersection; cNegatives -= intersection; // Fill QSimplexConstraint *c = new QSimplexConstraint; QSet::iterator i; for (i = cPositives.begin(); i != cPositives.end(); ++i) c->variables.insert(*i, 1.0); for (i = cNegatives.begin(); i != cNegatives.end(); ++i) c->variables.insert(*i, -1.0); return c; } #ifdef QT_DEBUG QString GraphPath::toString() const { QString string(QLatin1String("Path: ")); foreach(AnchorData *edge, positives) string += QString::fromAscii(" (+++) %1").arg(edge->toString()); foreach(AnchorData *edge, negatives) string += QString::fromAscii(" (---) %1").arg(edge->toString()); return string; } #endif QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate() : calculateGraphCacheDirty(true), styleInfoDirty(true) { for (int i = 0; i < NOrientations; ++i) { for (int j = 0; j < 3; ++j) { sizeHints[i][j] = -1; } interpolationProgress[i] = -1; spacings[i] = -1; graphSimplified[i] = false; graphHasConflicts[i] = false; layoutFirstVertex[i] = 0; layoutCentralVertex[i] = 0; layoutLastVertex[i] = 0; } } Qt::AnchorPoint QGraphicsAnchorLayoutPrivate::oppositeEdge(Qt::AnchorPoint edge) { switch (edge) { case Qt::AnchorLeft: edge = Qt::AnchorRight; break; case Qt::AnchorRight: edge = Qt::AnchorLeft; break; case Qt::AnchorTop: edge = Qt::AnchorBottom; break; case Qt::AnchorBottom: edge = Qt::AnchorTop; break; default: break; } return edge; } /*! * \internal * * helper function in order to avoid overflowing anchor sizes * the returned size will never be larger than FLT_MAX * */ inline static qreal checkAdd(qreal a, qreal b) { if (FLT_MAX - b < a) return FLT_MAX; return a + b; } /*! \internal Adds \a newAnchor to the graph. Returns the newAnchor itself if it could be added without further changes to the graph. If a new parallel anchor had to be created, then returns the new parallel anchor. If a parallel anchor had to be created and it results in an unfeasible setup, \a feasible is set to false, otherwise true. Note that in the case a new parallel anchor is created, it might also take over some constraints from its children anchors. */ AnchorData *QGraphicsAnchorLayoutPrivate::addAnchorMaybeParallel(AnchorData *newAnchor, bool *feasible) { Orientation orientation = Orientation(newAnchor->orientation); Graph &g = graph[orientation]; *feasible = true; // If already exists one anchor where newAnchor is supposed to be, we create a parallel // anchor. if (AnchorData *oldAnchor = g.takeEdge(newAnchor->from, newAnchor->to)) { ParallelAnchorData *parallel = new ParallelAnchorData(oldAnchor, newAnchor); // The parallel anchor will "replace" its children anchors in // every center constraint that they appear. // ### If the dependent (center) anchors had reference(s) to their constraints, we // could avoid traversing all the itemCenterConstraints. QList &constraints = itemCenterConstraints[orientation]; AnchorData *children[2] = { oldAnchor, newAnchor }; QList *childrenConstraints[2] = { ¶llel->m_firstConstraints, ¶llel->m_secondConstraints }; for (int i = 0; i < 2; ++i) { AnchorData *child = children[i]; QList *childConstraints = childrenConstraints[i]; if (!child->isCenterAnchor) continue; parallel->isCenterAnchor = true; for (int i = 0; i < constraints.count(); ++i) { QSimplexConstraint *c = constraints[i]; if (c->variables.contains(child)) { childConstraints->append(c); qreal v = c->variables.take(child); c->variables.insert(parallel, v); } } } // At this point we can identify that the parallel anchor is not feasible, e.g. one // anchor minimum size is bigger than the other anchor maximum size. *feasible = parallel->refreshSizeHints_helper(0, false); newAnchor = parallel; } g.createEdge(newAnchor->from, newAnchor->to, newAnchor); return newAnchor; } /*! \internal Takes the sequence of vertices described by (\a before, \a vertices, \a after) and removes all anchors connected to the vertices in \a vertices, returning one simplified anchor between \a before and \a after. Note that this function doesn't add the created anchor to the graph. This should be done by the caller. */ static AnchorData *createSequence(Graph *graph, AnchorVertex *before, const QVector &vertices, AnchorVertex *after) { AnchorData *data = graph->edgeData(before, vertices.first()); Q_ASSERT(data); const bool forward = (before == data->from); QVector orderedVertices; if (forward) { orderedVertices = vertices; } else { qSwap(before, after); for (int i = vertices.count() - 1; i >= 0; --i) orderedVertices.append(vertices.at(i)); } #if defined(QT_DEBUG) && 0 QString strVertices; for (int i = 0; i < orderedVertices.count(); ++i) { strVertices += QString::fromAscii("%1 - ").arg(orderedVertices.at(i)->toString()); } QString strPath = QString::fromAscii("%1 - %2%3").arg(before->toString(), strVertices, after->toString()); qDebug("simplifying [%s] to [%s - %s]", qPrintable(strPath), qPrintable(before->toString()), qPrintable(after->toString())); #endif AnchorVertex *prev = before; QVector edges; for (int i = 0; i <= orderedVertices.count(); ++i) { AnchorVertex *next = (i < orderedVertices.count()) ? orderedVertices.at(i) : after; AnchorData *ad = graph->takeEdge(prev, next); Q_ASSERT(ad); edges.append(ad); prev = next; } SequentialAnchorData *sequence = new SequentialAnchorData(orderedVertices, edges); sequence->from = before; sequence->to = after; sequence->refreshSizeHints_helper(0, false); return sequence; } /*! \internal The purpose of this function is to simplify the graph. Simplification serves two purposes: 1. Reduce the number of edges in the graph, (thus the number of variables to the equation solver is reduced, and the solver performs better). 2. Be able to do distribution of sequences of edges more intelligently (esp. with sequential anchors) It is essential that it must be possible to restore simplified anchors back to their "original" form. This is done by restoreSimplifiedAnchor(). There are two types of simplification that can be done: 1. Sequential simplification Sequential simplification means that all sequences of anchors will be merged into one single anchor. Only anhcors that points in the same direction will be merged. 2. Parallel simplification If a simplified sequential anchor is about to be inserted between two vertices in the graph and there already exist an anchor between those two vertices, a parallel anchor will be created that serves as a placeholder for the sequential anchor and the anchor that was already between the two vertices. The process of simplification can be described as: 1. Simplify all sequences of anchors into one anchor. If no further simplification was done, go to (3) - If there already exist an anchor where the sequential anchor is supposed to be inserted, take that anchor out of the graph - Then create a parallel anchor that holds the sequential anchor and the anchor just taken out of the graph. 2. Go to (1) 3. Done When creating the parallel anchors, the algorithm might identify unfeasible situations. In this case the simplification process stops and returns false. Otherwise returns true. */ bool QGraphicsAnchorLayoutPrivate::simplifyGraph(Orientation orientation) { static bool noSimplification = !qgetenv("QT_ANCHORLAYOUT_NO_SIMPLIFICATION").isEmpty(); if (noSimplification || items.isEmpty()) return true; if (graphSimplified[orientation]) return true; #if 0 qDebug("Simplifying Graph for %s", orientation == Horizontal ? "Horizontal" : "Vertical"); #endif // Vertex simplification if (!simplifyVertices(orientation)) { restoreVertices(orientation); return false; } // Anchor simplification bool dirty; bool feasible = true; do { dirty = simplifyGraphIteration(orientation, &feasible); } while (dirty && feasible); // Note that if we are not feasible, we fallback and make sure that the graph is fully restored if (!feasible) { graphSimplified[orientation] = true; restoreSimplifiedGraph(orientation); restoreVertices(orientation); return false; } graphSimplified[orientation] = true; return true; } static AnchorVertex *replaceVertex_helper(AnchorData *data, AnchorVertex *oldV, AnchorVertex *newV) { AnchorVertex *other; if (data->from == oldV) { data->from = newV; other = data->to; } else { data->to = newV; other = data->from; } return other; } bool QGraphicsAnchorLayoutPrivate::replaceVertex(Orientation orientation, AnchorVertex *oldV, AnchorVertex *newV, const QList &edges) { Graph &g = graph[orientation]; bool feasible = true; for (int i = 0; i < edges.count(); ++i) { AnchorData *ad = edges[i]; AnchorVertex *otherV = replaceVertex_helper(ad, oldV, newV); #if defined(QT_DEBUG) ad->name = QString::fromAscii("%1 --to--> %2").arg(ad->from->toString()).arg(ad->to->toString()); #endif bool newFeasible; AnchorData *newAnchor = addAnchorMaybeParallel(ad, &newFeasible); feasible &= newFeasible; if (newAnchor != ad) { // A parallel was created, we mark that in the list of anchors created by vertex // simplification. This is needed because we want to restore them in a separate step // from the restoration of anchor simplification. anchorsFromSimplifiedVertices[orientation].append(newAnchor); } g.takeEdge(oldV, otherV); } return feasible; } /*! \internal */ bool QGraphicsAnchorLayoutPrivate::simplifyVertices(Orientation orientation) { Q_Q(QGraphicsAnchorLayout); Graph &g = graph[orientation]; // We'll walk through vertices QStack stack; stack.push(layoutFirstVertex[orientation]); QSet visited; while (!stack.isEmpty()) { AnchorVertex *v = stack.pop(); visited.insert(v); // Each adjacent of 'v' is a possible vertex to be merged. So we traverse all of // them. Since once a merge is made, we might add new adjacents, and we don't want to // pass two times through one adjacent. The 'index' is used to track our position. QList adjacents = g.adjacentVertices(v); int index = 0; while (index < adjacents.count()) { AnchorVertex *next = adjacents.at(index); index++; AnchorData *data = g.edgeData(v, next); const bool bothLayoutVertices = v->m_item == q && next->m_item == q; const bool zeroSized = !data->minSize && !data->maxSize; if (!bothLayoutVertices && zeroSized) { // Create a new vertex pair, note that we keep a list of those vertices so we can // easily process them when restoring the graph. AnchorVertexPair *newV = new AnchorVertexPair(v, next, data); simplifiedVertices[orientation].append(newV); // Collect the anchors of both vertices, the new vertex pair will take their place // in those anchors const QList &vAdjacents = g.adjacentVertices(v); const QList &nextAdjacents = g.adjacentVertices(next); for (int i = 0; i < vAdjacents.count(); ++i) { AnchorVertex *adjacent = vAdjacents.at(i); if (adjacent != next) { AnchorData *ad = g.edgeData(v, adjacent); newV->m_firstAnchors.append(ad); } } for (int i = 0; i < nextAdjacents.count(); ++i) { AnchorVertex *adjacent = nextAdjacents.at(i); if (adjacent != v) { AnchorData *ad = g.edgeData(next, adjacent); newV->m_secondAnchors.append(ad); // We'll also add new vertices to the adjacent list of the new 'v', to be // created as a vertex pair and replace the current one. if (!adjacents.contains(adjacent)) adjacents.append(adjacent); } } // ### merge this loop into the ones that calculated m_firstAnchors/m_secondAnchors? // Make newV take the place of v and next bool feasible = replaceVertex(orientation, v, newV, newV->m_firstAnchors); feasible &= replaceVertex(orientation, next, newV, newV->m_secondAnchors); // Update the layout vertex information if one of the vertices is a layout vertex. AnchorVertex *layoutVertex = 0; if (v->m_item == q) layoutVertex = v; else if (next->m_item == q) layoutVertex = next; if (layoutVertex) { // Layout vertices always have m_item == q... newV->m_item = q; changeLayoutVertex(orientation, layoutVertex, newV); } g.takeEdge(v, next); // If a non-feasibility is found, we leave early and cancel the simplification if (!feasible) return false; v = newV; visited.insert(newV); } else if (!visited.contains(next) && !stack.contains(next)) { // If the adjacent is not fit for merge and it wasn't visited by the outermost // loop, we add it to the stack. stack.push(next); } } } return true; } /*! \internal One iteration of the simplification algorithm. Returns true if another iteration is needed. The algorithm walks the graph in depth-first order, and only collects vertices that has two edges connected to it. If the vertex does not have two edges or if it is a layout edge, it will take all the previously collected vertices and try to create a simplified sequential anchor representing all the previously collected vertices. Once the simplified anchor is inserted, the collected list is cleared in order to find the next sequence to simplify. Note that there are some catches to this that are not covered by the above explanation, see the function comments for more details. */ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutPrivate::Orientation orientation, bool *feasible) { Q_Q(QGraphicsAnchorLayout); Graph &g = graph[orientation]; QSet visited; QStack > stack; stack.push(qMakePair(static_cast(0), layoutFirstVertex[orientation])); QVector candidates; bool candidatesForward = true; // Walk depth-first, in the stack we store start of the candidate sequence (beforeSequence) // and the vertex to be visited. while (!stack.isEmpty()) { QPair pair = stack.pop(); AnchorVertex *beforeSequence = pair.first; AnchorVertex *v = pair.second; // The basic idea is to determine whether we found an end of sequence, // if that's the case, we stop adding vertices to the candidate list // and do a simplification step. // // A vertex can trigger an end of sequence if // (a) it is a layout vertex, we don't simplify away the layout vertices; // (b) it does not have exactly 2 adjacents; // (c) it will change the direction of the sequence; // (d) its next adjacent is already visited (a cycle in the graph); // (e) the next anchor is a center anchor. const QList &adjacents = g.adjacentVertices(v); const bool isLayoutVertex = v->m_item == q; AnchorVertex *afterSequence = v; bool endOfSequence = false; // // Identify the end cases. // // Identifies cases (a) and (b) endOfSequence = isLayoutVertex || adjacents.count() != 2; if (!endOfSequence) { // If this is the first vertice, determine what is the direction to use for this // sequence. if (candidates.isEmpty()) { const AnchorData *data = g.edgeData(beforeSequence, v); Q_ASSERT(data); candidatesForward = (beforeSequence == data->from); } // This is a tricky part. We peek at the next vertex to find out whether // // - the edge from this vertex to the next vertex has the same direction; // - we already visited the next vertex; // - the next anchor is a center. // // Those are needed to identify the remaining end of sequence cases. Note that unlike // (a) and (b), we preempt the end of sequence by looking into the next vertex. // Peek at the next vertex AnchorVertex *after; if (candidates.isEmpty()) after = (beforeSequence == adjacents.last() ? adjacents.first() : adjacents.last()); else after = (candidates.last() == adjacents.last() ? adjacents.first() : adjacents.last()); // ### At this point we assumed that candidates will not contain 'after', this may not hold // when simplifying FLOATing anchors. Q_ASSERT(!candidates.contains(after)); const AnchorData *data = g.edgeData(v, after); Q_ASSERT(data); const bool willChangeDirection = (candidatesForward != (v == data->from)); const bool cycleFound = visited.contains(after); // Now cases (c), (d) and (e)... endOfSequence = willChangeDirection || cycleFound || data->isCenterAnchor; if (endOfSequence) { if (!willChangeDirection) { // If the direction will not change, we can add the current vertex to the // candidates list and we know that 'after' can be used as afterSequence. candidates.append(v); afterSequence = after; } } else { // If it's not an end of sequence, then the vertex didn't trigger neither of the // previously four cases, so it can be added to the candidates list. candidates.append(v); } } // // Add next non-visited vertices to the stack. // for (int i = 0; i < adjacents.count(); ++i) { AnchorVertex *next = adjacents.at(i); if (visited.contains(next)) continue; // If current vertex is an end of sequence, and it'll reset the candidates list. So // the next vertices will build candidates lists with the current vertex as 'before' // vertex. If it's not an end of sequence, we keep the original 'before' vertex, // since we are keeping the candidates list. if (endOfSequence) stack.push(qMakePair(v, next)); else stack.push(qMakePair(beforeSequence, next)); } visited.insert(v); if (!endOfSequence || candidates.isEmpty()) continue; // // Create a sequence for (beforeSequence, candidates, afterSequence). // // One restriction we have is to not simplify half of an anchor and let the other half // unsimplified. So we remove center edges before and after the sequence. const AnchorData *firstAnchor = g.edgeData(beforeSequence, candidates.first()); if (firstAnchor->isCenterAnchor) { beforeSequence = candidates.first(); candidates.remove(0); // If there's not candidates to be simplified, leave. if (candidates.isEmpty()) continue; } const AnchorData *lastAnchor = g.edgeData(candidates.last(), afterSequence); if (lastAnchor->isCenterAnchor) { afterSequence = candidates.last(); candidates.remove(candidates.count() - 1); if (candidates.isEmpty()) continue; } // // Add the sequence to the graph. // AnchorData *sequence = createSequence(&g, beforeSequence, candidates, afterSequence); // If 'beforeSequence' and 'afterSequence' already had an anchor between them, we'll // create a parallel anchor between the new sequence and the old anchor. bool newFeasible; AnchorData *newAnchor = addAnchorMaybeParallel(sequence, &newFeasible); if (!newFeasible) { *feasible = false; return false; } // When a new parallel anchor is create in the graph, we finish the iteration and return // true to indicate a new iteration is needed. This happens because a parallel anchor // changes the number of adjacents one vertex has, possibly opening up oportunities for // building candidate lists (when adjacents == 2). if (newAnchor != sequence) return true; // If there was no parallel simplification, we'll keep walking the graph. So we clear the // candidates list to start again. candidates.clear(); } return false; } void QGraphicsAnchorLayoutPrivate::restoreSimplifiedAnchor(AnchorData *edge) { #if 0 static const char *anchortypes[] = {"Normal", "Sequential", "Parallel"}; qDebug("Restoring %s edge.", anchortypes[int(edge->type)]); #endif Graph &g = graph[edge->orientation]; if (edge->type == AnchorData::Normal) { g.createEdge(edge->from, edge->to, edge); } else if (edge->type == AnchorData::Sequential) { SequentialAnchorData *sequence = static_cast(edge); for (int i = 0; i < sequence->m_edges.count(); ++i) { AnchorData *data = sequence->m_edges.at(i); restoreSimplifiedAnchor(data); } delete sequence; } else if (edge->type == AnchorData::Parallel) { // Skip parallel anchors that were created by vertex simplification, they will be processed // later, when restoring vertex simplification. // ### we could improve this check bit having a bit inside 'edge' if (anchorsFromSimplifiedVertices[edge->orientation].contains(edge)) return; ParallelAnchorData* parallel = static_cast(edge); restoreSimplifiedConstraints(parallel); // ### Because of the way parallel anchors are created in the anchor simplification // algorithm, we know that one of these will be a sequence, so it'll be safe if the other // anchor create an edge between the same vertices as the parallel. Q_ASSERT(parallel->firstEdge->type == AnchorData::Sequential || parallel->secondEdge->type == AnchorData::Sequential); restoreSimplifiedAnchor(parallel->firstEdge); restoreSimplifiedAnchor(parallel->secondEdge); delete parallel; } } void QGraphicsAnchorLayoutPrivate::restoreSimplifiedConstraints(ParallelAnchorData *parallel) { if (!parallel->isCenterAnchor) return; for (int i = 0; i < parallel->m_firstConstraints.count(); ++i) { QSimplexConstraint *c = parallel->m_firstConstraints.at(i); qreal v = c->variables[parallel]; c->variables.remove(parallel); c->variables.insert(parallel->firstEdge, v); } for (int i = 0; i < parallel->m_secondConstraints.count(); ++i) { QSimplexConstraint *c = parallel->m_secondConstraints.at(i); qreal v = c->variables[parallel]; c->variables.remove(parallel); c->variables.insert(parallel->secondEdge, v); } } void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Orientation orientation) { if (!graphSimplified[orientation]) return; graphSimplified[orientation] = false; #if 0 qDebug("Restoring Simplified Graph for %s", orientation == Horizontal ? "Horizontal" : "Vertical"); #endif // Restore anchor simplification Graph &g = graph[orientation]; QList > connections = g.connections(); for (int i = 0; i < connections.count(); ++i) { AnchorVertex *v1 = connections.at(i).first; AnchorVertex *v2 = connections.at(i).second; AnchorData *edge = g.edgeData(v1, v2); // We restore only sequential anchors and parallels that were not created by // vertex simplification. if (edge->type == AnchorData::Sequential || (edge->type == AnchorData::Parallel && !anchorsFromSimplifiedVertices[orientation].contains(edge))) { g.takeEdge(v1, v2); restoreSimplifiedAnchor(edge); } } restoreVertices(orientation); } void QGraphicsAnchorLayoutPrivate::restoreVertices(Orientation orientation) { Q_Q(QGraphicsAnchorLayout); Graph &g = graph[orientation]; QList &toRestore = simplifiedVertices[orientation]; // We will restore the vertices in the inverse order of creation, this way we ensure that // the vertex being restored was not wrapped by another simplification. for (int i = toRestore.count() - 1; i >= 0; --i) { AnchorVertexPair *pair = toRestore.at(i); QList adjacents = g.adjacentVertices(pair); // Restore the removed edge, this will also restore both vertices 'first' and 'second' to // the graph structure. AnchorVertex *first = pair->m_first; AnchorVertex *second = pair->m_second; g.createEdge(first, second, pair->m_removedAnchor); // Restore the anchors for the first child vertex for (int j = 0; j < pair->m_firstAnchors.count(); ++j) { AnchorData *ad = pair->m_firstAnchors.at(j); Q_ASSERT(ad->from == pair || ad->to == pair); replaceVertex_helper(ad, pair, first); g.createEdge(ad->from, ad->to, ad); } // Restore the anchors for the second child vertex for (int j = 0; j < pair->m_secondAnchors.count(); ++j) { AnchorData *ad = pair->m_secondAnchors.at(j); Q_ASSERT(ad->from == pair || ad->to == pair); replaceVertex_helper(ad, pair, second); g.createEdge(ad->from, ad->to, ad); } for (int j = 0; j < adjacents.count(); ++j) { g.takeEdge(pair, adjacents.at(j)); } // The pair simplified a layout vertex, so place back the correct vertex in the variable // that track layout vertices if (pair->m_item == q) { AnchorVertex *layoutVertex = first->m_item == q ? first : second; Q_ASSERT(layoutVertex->m_item == q); changeLayoutVertex(orientation, pair, layoutVertex); } delete pair; } toRestore.clear(); // The restoration process for vertex simplification also restored the effect of the // parallel anchors created during vertex simplification, so we just need to restore // the constraints in case of parallels that contain center anchors. For the same // reason as above, order matters here. QList ¶llelAnchors = anchorsFromSimplifiedVertices[orientation]; for (int i = parallelAnchors.count() - 1; i >= 0; --i) { ParallelAnchorData *parallel = static_cast(parallelAnchors.at(i)); restoreSimplifiedConstraints(parallel); delete parallel; } parallelAnchors.clear(); } QGraphicsAnchorLayoutPrivate::Orientation QGraphicsAnchorLayoutPrivate::edgeOrientation(Qt::AnchorPoint edge) { return edge > Qt::AnchorRight ? Vertical : Horizontal; } /*! \internal Create internal anchors to connect the layout edges (Left to Right and Top to Bottom). These anchors doesn't have size restrictions, that will be enforced by other anchors and items in the layout. */ void QGraphicsAnchorLayoutPrivate::createLayoutEdges() { Q_Q(QGraphicsAnchorLayout); QGraphicsLayoutItem *layout = q; // Horizontal AnchorData *data = new AnchorData; addAnchor_helper(layout, Qt::AnchorLeft, layout, Qt::AnchorRight, data); data->maxSize = QWIDGETSIZE_MAX; data->skipInPreferred = 1; // Save a reference to layout vertices layoutFirstVertex[Horizontal] = internalVertex(layout, Qt::AnchorLeft); layoutCentralVertex[Horizontal] = 0; layoutLastVertex[Horizontal] = internalVertex(layout, Qt::AnchorRight); // Vertical data = new AnchorData; addAnchor_helper(layout, Qt::AnchorTop, layout, Qt::AnchorBottom, data); data->maxSize = QWIDGETSIZE_MAX; data->skipInPreferred = 1; // Save a reference to layout vertices layoutFirstVertex[Vertical] = internalVertex(layout, Qt::AnchorTop); layoutCentralVertex[Vertical] = 0; layoutLastVertex[Vertical] = internalVertex(layout, Qt::AnchorBottom); } void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges() { Q_Q(QGraphicsAnchorLayout); Q_ASSERT(!internalVertex(q, Qt::AnchorHorizontalCenter)); Q_ASSERT(!internalVertex(q, Qt::AnchorVerticalCenter)); removeAnchor_helper(internalVertex(q, Qt::AnchorLeft), internalVertex(q, Qt::AnchorRight)); removeAnchor_helper(internalVertex(q, Qt::AnchorTop), internalVertex(q, Qt::AnchorBottom)); } void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item) { Q_ASSERT(!graphSimplified[Horizontal] && !graphSimplified[Vertical]); items.append(item); // Create horizontal and vertical internal anchors for the item and // refresh its size hint / policy values. AnchorData *data = new AnchorData; addAnchor_helper(item, Qt::AnchorLeft, item, Qt::AnchorRight, data); data->refreshSizeHints(0); // 0 = effectiveSpacing, will not be used data = new AnchorData; addAnchor_helper(item, Qt::AnchorTop, item, Qt::AnchorBottom, data); data->refreshSizeHints(0); // 0 = effectiveSpacing, will not be used } /*! \internal By default, each item in the layout is represented internally as a single anchor in each direction. For instance, from Left to Right. However, to support anchorage of items to the center of items, we must split this internal anchor into two half-anchors. From Left to Center and then from Center to Right, with the restriction that these anchors must have the same time at all times. */ void QGraphicsAnchorLayoutPrivate::createCenterAnchors( QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge) { Q_Q(QGraphicsAnchorLayout); Orientation orientation; switch (centerEdge) { case Qt::AnchorHorizontalCenter: orientation = Horizontal; break; case Qt::AnchorVerticalCenter: orientation = Vertical; break; default: // Don't create center edges unless needed return; } Q_ASSERT(!graphSimplified[orientation]); // Check if vertex already exists if (internalVertex(item, centerEdge)) return; // Orientation code Qt::AnchorPoint firstEdge; Qt::AnchorPoint lastEdge; if (orientation == Horizontal) { firstEdge = Qt::AnchorLeft; lastEdge = Qt::AnchorRight; } else { firstEdge = Qt::AnchorTop; lastEdge = Qt::AnchorBottom; } AnchorVertex *first = internalVertex(item, firstEdge); AnchorVertex *last = internalVertex(item, lastEdge); Q_ASSERT(first && last); // Create new anchors QSimplexConstraint *c = new QSimplexConstraint; AnchorData *data = new AnchorData; c->variables.insert(data, 1.0); addAnchor_helper(item, firstEdge, item, centerEdge, data); data->isCenterAnchor = true; data->dependency = AnchorData::Master; data->refreshSizeHints(0); data = new AnchorData; c->variables.insert(data, -1.0); addAnchor_helper(item, centerEdge, item, lastEdge, data); data->isCenterAnchor = true; data->dependency = AnchorData::Slave; data->refreshSizeHints(0); itemCenterConstraints[orientation].append(c); // Remove old one removeAnchor_helper(first, last); if (item == q) { layoutCentralVertex[orientation] = internalVertex(q, centerEdge); } } void QGraphicsAnchorLayoutPrivate::removeCenterAnchors( QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge, bool substitute) { Q_Q(QGraphicsAnchorLayout); Orientation orientation; switch (centerEdge) { case Qt::AnchorHorizontalCenter: orientation = Horizontal; break; case Qt::AnchorVerticalCenter: orientation = Vertical; break; default: // Don't remove edges that not the center ones return; } Q_ASSERT(!graphSimplified[orientation]); // Orientation code Qt::AnchorPoint firstEdge; Qt::AnchorPoint lastEdge; if (orientation == Horizontal) { firstEdge = Qt::AnchorLeft; lastEdge = Qt::AnchorRight; } else { firstEdge = Qt::AnchorTop; lastEdge = Qt::AnchorBottom; } AnchorVertex *center = internalVertex(item, centerEdge); if (!center) return; AnchorVertex *first = internalVertex(item, firstEdge); Q_ASSERT(first); Q_ASSERT(center); Graph &g = graph[orientation]; AnchorData *oldData = g.edgeData(first, center); // Remove center constraint for (int i = itemCenterConstraints[orientation].count() - 1; i >= 0; --i) { if (itemCenterConstraints[orientation].at(i)->variables.contains(oldData)) { delete itemCenterConstraints[orientation].takeAt(i); break; } } if (substitute) { // Create the new anchor that should substitute the left-center-right anchors. AnchorData *data = new AnchorData; addAnchor_helper(item, firstEdge, item, lastEdge, data); data->refreshSizeHints(0); // Remove old anchors removeAnchor_helper(first, center); removeAnchor_helper(center, internalVertex(item, lastEdge)); } else { // this is only called from removeAnchors() // first, remove all non-internal anchors QList adjacents = g.adjacentVertices(center); for (int i = 0; i < adjacents.count(); ++i) { AnchorVertex *v = adjacents.at(i); if (v->m_item != item) { removeAnchor_helper(center, internalVertex(v->m_item, v->m_edge)); } } // when all non-internal anchors is removed it will automatically merge the // center anchor into a left-right (or top-bottom) anchor. We must also delete that. // by this time, the center vertex is deleted and merged into a non-centered internal anchor removeAnchor_helper(first, internalVertex(item, lastEdge)); } if (item == q) { layoutCentralVertex[orientation] = 0; } } void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *item, Orientation orientation) { Q_ASSERT(!graphSimplified[orientation]); // Remove the item center constraints associated to this item // ### This is a temporary solution. We should probably use a better // data structure to hold items and/or their associated constraints // so that we can remove those easily AnchorVertex *first = internalVertex(item, orientation == Horizontal ? Qt::AnchorLeft : Qt::AnchorTop); AnchorVertex *center = internalVertex(item, orientation == Horizontal ? Qt::AnchorHorizontalCenter : Qt::AnchorVerticalCenter); // Skip if no center constraints exist if (!center) return; Q_ASSERT(first); AnchorData *internalAnchor = graph[orientation].edgeData(first, center); // Look for our anchor in all item center constraints, then remove it for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) { if (itemCenterConstraints[orientation].at(i)->variables.contains(internalAnchor)) { delete itemCenterConstraints[orientation].takeAt(i); break; } } } /*! * \internal * * Helper function that is called from the anchor functions in the public API. * If \a spacing is 0, it will pick up the spacing defined by the style. */ QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::addAnchor(QGraphicsLayoutItem *firstItem, Qt::AnchorPoint firstEdge, QGraphicsLayoutItem *secondItem, Qt::AnchorPoint secondEdge, qreal *spacing) { Q_Q(QGraphicsAnchorLayout); if ((firstItem == 0) || (secondItem == 0)) { qWarning("QGraphicsAnchorLayout::addAnchor(): " "Cannot anchor NULL items"); return 0; } if (firstItem == secondItem) { qWarning("QGraphicsAnchorLayout::addAnchor(): " "Cannot anchor the item to itself"); return 0; } if (edgeOrientation(secondEdge) != edgeOrientation(firstEdge)) { qWarning("QGraphicsAnchorLayout::addAnchor(): " "Cannot anchor edges of different orientations"); return 0; } // Guarantee that the graph is no simplified when adding this anchor, // anchor manipulation always happen in the full graph restoreSimplifiedGraph(edgeOrientation(firstEdge)); // In QGraphicsAnchorLayout, items are represented in its internal // graph as four anchors that connect: // - Left -> HCenter // - HCenter-> Right // - Top -> VCenter // - VCenter -> Bottom // Ensure that the internal anchors have been created for both items. if (firstItem != q && !items.contains(firstItem)) { restoreSimplifiedGraph(edgeOrientation(firstEdge) == Horizontal ? Vertical : Horizontal); createItemEdges(firstItem); addChildLayoutItem(firstItem); } if (secondItem != q && !items.contains(secondItem)) { restoreSimplifiedGraph(edgeOrientation(firstEdge) == Horizontal ? Vertical : Horizontal); createItemEdges(secondItem); addChildLayoutItem(secondItem); } // Create center edges if needed createCenterAnchors(firstItem, firstEdge); createCenterAnchors(secondItem, secondEdge); // Use heuristics to find out what the user meant with this anchor. correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge); AnchorData *data = new AnchorData; if (!spacing) { // If firstItem or secondItem is the layout itself, the spacing will default to 0. // Otherwise, the following matrix is used (questionmark means that the spacing // is queried from the style): // from // to Left HCenter Right // Left 0 0 ? // HCenter 0 0 0 // Right ? 0 0 if (firstItem == q || secondItem == q || pickEdge(firstEdge, Horizontal) == Qt::AnchorHorizontalCenter || oppositeEdge(firstEdge) != secondEdge) { data->setPreferredSize(0); } else { data->unsetSize(); } addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data); } else if (*spacing >= 0) { data->setPreferredSize(*spacing); addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data); } else { data->setPreferredSize(-*spacing); addAnchor_helper(secondItem, secondEdge, firstItem, firstEdge, data); } return acquireGraphicsAnchor(data); } void QGraphicsAnchorLayoutPrivate::addAnchor_helper(QGraphicsLayoutItem *firstItem, Qt::AnchorPoint firstEdge, QGraphicsLayoutItem *secondItem, Qt::AnchorPoint secondEdge, AnchorData *data) { Q_Q(QGraphicsAnchorLayout); const Orientation orientation = edgeOrientation(firstEdge); // Guarantee that the graph is no simplified when adding this anchor, // anchor manipulation always happen in the full graph restoreSimplifiedGraph(orientation); // Is the Vertex (firstItem, firstEdge) already represented in our // internal structure? AnchorVertex *v1 = addInternalVertex(firstItem, firstEdge); AnchorVertex *v2 = addInternalVertex(secondItem, secondEdge); // Remove previous anchor // ### Could we update the existing edgeData rather than creating a new one? if (graph[orientation].edgeData(v1, v2)) { removeAnchor_helper(v1, v2); } // If its an internal anchor, set the associated item if (firstItem == secondItem) data->item = firstItem; data->orientation = orientation; // Create a bi-directional edge in the sense it can be transversed both // from v1 or v2. "data" however is shared between the two references // so we still know that the anchor direction is from 1 to 2. data->from = v1; data->to = v2; #ifdef QT_DEBUG data->name = QString::fromAscii("%1 --to--> %2").arg(v1->toString()).arg(v2->toString()); #endif // ### bit to track internal anchors, since inside AnchorData methods // we don't have access to the 'q' pointer. data->isLayoutAnchor = (data->item == q); graph[orientation].createEdge(v1, v2, data); } QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::getAnchor(QGraphicsLayoutItem *firstItem, Qt::AnchorPoint firstEdge, QGraphicsLayoutItem *secondItem, Qt::AnchorPoint secondEdge) { Orientation orient = edgeOrientation(firstEdge); restoreSimplifiedGraph(orient); AnchorVertex *v1 = internalVertex(firstItem, firstEdge); AnchorVertex *v2 = internalVertex(secondItem, secondEdge); QGraphicsAnchor *graphicsAnchor = 0; AnchorData *data = graph[orient].edgeData(v1, v2); if (data) graphicsAnchor = acquireGraphicsAnchor(data); return graphicsAnchor; } /*! * \internal * * Implements the high level "removeAnchor" feature. Called by * the QAnchorData destructor. */ void QGraphicsAnchorLayoutPrivate::removeAnchor(AnchorVertex *firstVertex, AnchorVertex *secondVertex) { Q_Q(QGraphicsAnchorLayout); // Actually delete the anchor removeAnchor_helper(firstVertex, secondVertex); QGraphicsLayoutItem *firstItem = firstVertex->m_item; QGraphicsLayoutItem *secondItem = secondVertex->m_item; // Checking if the item stays in the layout or not bool keepFirstItem = false; bool keepSecondItem = false; QPair v; int refcount = -1; if (firstItem != q) { for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) { v = m_vertexList.value(qMakePair(firstItem, static_cast(i))); if (v.first) { if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter) refcount = 2; else refcount = 1; if (v.second > refcount) { keepFirstItem = true; break; } } } } else keepFirstItem = true; if (secondItem != q) { for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) { v = m_vertexList.value(qMakePair(secondItem, static_cast(i))); if (v.first) { if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter) refcount = 2; else refcount = 1; if (v.second > refcount) { keepSecondItem = true; break; } } } } else keepSecondItem = true; if (!keepFirstItem) q->removeAt(items.indexOf(firstItem)); if (!keepSecondItem) q->removeAt(items.indexOf(secondItem)); // Removing anchors invalidates the layout q->invalidate(); } /* \internal Implements the low level "removeAnchor" feature. Called by private methods. */ void QGraphicsAnchorLayoutPrivate::removeAnchor_helper(AnchorVertex *v1, AnchorVertex *v2) { Q_ASSERT(v1 && v2); // Guarantee that the graph is no simplified when removing this anchor, // anchor manipulation always happen in the full graph Orientation o = edgeOrientation(v1->m_edge); restoreSimplifiedGraph(o); // Remove edge from graph graph[o].removeEdge(v1, v2); // Decrease vertices reference count (may trigger a deletion) removeInternalVertex(v1->m_item, v1->m_edge); removeInternalVertex(v2->m_item, v2->m_edge); } /*! \internal Only called from outside. (calls invalidate()) */ void QGraphicsAnchorLayoutPrivate::setAnchorSize(AnchorData *data, const qreal *anchorSize) { Q_Q(QGraphicsAnchorLayout); // ### we can avoid restoration if we really want to, but we would have to // search recursively through all composite anchors Q_ASSERT(data); restoreSimplifiedGraph(edgeOrientation(data->from->m_edge)); QGraphicsLayoutItem *firstItem = data->from->m_item; QGraphicsLayoutItem *secondItem = data->to->m_item; Qt::AnchorPoint firstEdge = data->from->m_edge; Qt::AnchorPoint secondEdge = data->to->m_edge; // Use heuristics to find out what the user meant with this anchor. correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge); if (data->from->m_item != firstItem) qSwap(data->from, data->to); if (anchorSize) { // ### The current implementation makes "setAnchorSize" behavior // dependent on the argument order for cases where we have // no heuristic. Ie. two widgets, same anchor point. // We cannot have negative sizes inside the graph. This would cause // the simplex solver to fail because all simplex variables are // positive by definition. // "negative spacing" is handled by inverting the standard item order. if (*anchorSize >= 0) { data->setPreferredSize(*anchorSize); } else { data->setPreferredSize(-*anchorSize); qSwap(data->from, data->to); } } else { data->unsetSize(); } q->invalidate(); } void QGraphicsAnchorLayoutPrivate::anchorSize(const AnchorData *data, qreal *minSize, qreal *prefSize, qreal *maxSize) const { Q_ASSERT(minSize || prefSize || maxSize); Q_ASSERT(data); QGraphicsAnchorLayoutPrivate *that = const_cast(this); that->restoreSimplifiedGraph(Orientation(data->orientation)); if (minSize) *minSize = data->minSize; if (prefSize) *prefSize = data->prefSize; if (maxSize) *maxSize = data->maxSize; } AnchorVertex *QGraphicsAnchorLayoutPrivate::addInternalVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge) { QPair pair(item, edge); QPair v = m_vertexList.value(pair); if (!v.first) { Q_ASSERT(v.second == 0); v.first = new AnchorVertex(item, edge); } v.second++; m_vertexList.insert(pair, v); return v.first; } /** * \internal * * returns the AnchorVertex that was dereferenced, also when it was removed. * returns 0 if it did not exist. */ void QGraphicsAnchorLayoutPrivate::removeInternalVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge) { QPair pair(item, edge); QPair v = m_vertexList.value(pair); if (!v.first) { qWarning("This item with this edge is not in the graph"); return; } v.second--; if (v.second == 0) { // Remove reference and delete vertex m_vertexList.remove(pair); delete v.first; } else { // Update reference count m_vertexList.insert(pair, v); if ((v.second == 2) && ((edge == Qt::AnchorHorizontalCenter) || (edge == Qt::AnchorVerticalCenter))) { removeCenterAnchors(item, edge, true); } } } void QGraphicsAnchorLayoutPrivate::removeVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge) { if (AnchorVertex *v = internalVertex(item, edge)) { Graph &g = graph[edgeOrientation(edge)]; const QList allVertices = graph[edgeOrientation(edge)].adjacentVertices(v); AnchorVertex *v2; foreach (v2, allVertices) { g.removeEdge(v, v2); removeInternalVertex(item, edge); removeInternalVertex(v2->m_item, v2->m_edge); } } } void QGraphicsAnchorLayoutPrivate::removeAnchors(QGraphicsLayoutItem *item) { Q_ASSERT(!graphSimplified[Horizontal] && !graphSimplified[Vertical]); // remove the center anchor first!! removeCenterAnchors(item, Qt::AnchorHorizontalCenter, false); removeVertex(item, Qt::AnchorLeft); removeVertex(item, Qt::AnchorRight); removeCenterAnchors(item, Qt::AnchorVerticalCenter, false); removeVertex(item, Qt::AnchorTop); removeVertex(item, Qt::AnchorBottom); } /*! \internal Use heuristics to determine the correct orientation of a given anchor. After API discussions, we decided we would like expressions like anchor(A, Left, B, Right) to mean the same as anchor(B, Right, A, Left). The problem with this is that anchors could become ambiguous, for instance, what does the anchor A, B of size X mean? "pos(B) = pos(A) + X" or "pos(A) = pos(B) + X" ? To keep the API user friendly and at the same time, keep our algorithm deterministic, we use an heuristic to determine a direction for each added anchor and then keep it. The heuristic is based on the fact that people usually avoid overlapping items, therefore: "A, RIGHT to B, LEFT" means that B is to the LEFT of A. "B, LEFT to A, RIGHT" is corrected to the above anchor. Special correction is also applied when one of the items is the layout. We handle Layout Left as if it was another items's Right and Layout Right as another item's Left. */ void QGraphicsAnchorLayoutPrivate::correctEdgeDirection(QGraphicsLayoutItem *&firstItem, Qt::AnchorPoint &firstEdge, QGraphicsLayoutItem *&secondItem, Qt::AnchorPoint &secondEdge) { Q_Q(QGraphicsAnchorLayout); if ((firstItem != q) && (secondItem != q)) { // If connection is between widgets (not the layout itself) // Ensure that "right-edges" sit to the left of "left-edges". if (firstEdge < secondEdge) { qSwap(firstItem, secondItem); qSwap(firstEdge, secondEdge); } } else if (firstItem == q) { // If connection involves the right or bottom of a layout, ensure // the layout is the second item. if ((firstEdge == Qt::AnchorRight) || (firstEdge == Qt::AnchorBottom)) { qSwap(firstItem, secondItem); qSwap(firstEdge, secondEdge); } } else if ((secondEdge != Qt::AnchorRight) && (secondEdge != Qt::AnchorBottom)) { // If connection involves the left, center or top of layout, ensure // the layout is the first item. qSwap(firstItem, secondItem); qSwap(firstEdge, secondEdge); } } QLayoutStyleInfo &QGraphicsAnchorLayoutPrivate::styleInfo() const { if (styleInfoDirty) { Q_Q(const QGraphicsAnchorLayout); //### Fix this if QGV ever gets support for Metal style or different Aqua sizes. QWidget *wid = 0; QGraphicsLayoutItem *parent = q->parentLayoutItem(); while (parent && parent->isLayout()) { parent = parent->parentLayoutItem(); } QGraphicsWidget *w = 0; if (parent) { QGraphicsItem *parentItem = parent->graphicsItem(); if (parentItem && parentItem->isWidget()) w = static_cast(parentItem); } QStyle *style = w ? w->style() : QApplication::style(); cachedStyleInfo = QLayoutStyleInfo(style, wid); cachedStyleInfo.setDefaultSpacing(Qt::Horizontal, spacings[0]); cachedStyleInfo.setDefaultSpacing(Qt::Vertical, spacings[1]); styleInfoDirty = false; } return cachedStyleInfo; } /*! \internal Called on activation. Uses Linear Programming to define minimum, preferred and maximum sizes for the layout. Also calculates the sizes that each item should assume when the layout is in one of such situations. */ void QGraphicsAnchorLayoutPrivate::calculateGraphs() { if (!calculateGraphCacheDirty) return; #if defined(QT_DEBUG) && 0 static int count = 0; count++; dumpGraph(QString::fromAscii("%1-before").arg(count)); #endif calculateGraphs(Horizontal); calculateGraphs(Vertical); #if defined(QT_DEBUG) && 0 dumpGraph(QString::fromAscii("%1-after").arg(count)); #endif calculateGraphCacheDirty = false; } // ### Maybe getGraphParts could return the variables when traversing, at least // for trunk... QList getVariables(QList constraints) { QSet variableSet; for (int i = 0; i < constraints.count(); ++i) { const QSimplexConstraint *c = constraints.at(i); foreach (QSimplexVariable *var, c->variables.keys()) { variableSet += static_cast(var); } } return variableSet.toList(); } /*! \internal Calculate graphs is the method that puts together all the helper routines so that the AnchorLayout can calculate the sizes of each item. In a nutshell it should do: 1) Refresh anchor nominal sizes, that is, the size that each anchor would have if no other restrictions applied. This is done by quering the layout style and the sizeHints of the items belonging to the layout. 2) Simplify the graph by grouping together parallel and sequential anchors into "group anchors". These have equivalent minimum, preferred and maximum sizeHints as the anchors they replace. 3) Check if we got to a trivial case. In some cases, the whole graph can be simplified into a single anchor. If so, use this information. If not, then call the Simplex solver to calculate the anchors sizes. 4) Once the root anchors had its sizes calculated, propagate that to the anchors they represent. */ void QGraphicsAnchorLayoutPrivate::calculateGraphs( QGraphicsAnchorLayoutPrivate::Orientation orientation) { #if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT) lastCalculationUsedSimplex[orientation] = false; #endif // ### This is necessary because now we do vertex simplification, we still don't know // differentiate between invalidate()s that doesn't need resimplification and those which // need. For example, when size hint of an item changes, this may cause an anchor to reach 0 or to // leave 0 and get a size. In both cases we need resimplify. // // ### one possible solution would be tracking all the 0-sized anchors, if this set change, we need // resimplify. restoreSimplifiedGraph(orientation); // Reset the nominal sizes of each anchor based on the current item sizes. This function // works with both simplified and non-simplified graphs, so it'll work when the // simplification is going to be reused. if (!refreshAllSizeHints(orientation)) { qWarning("QGraphicsAnchorLayout: anchor setup is not feasible."); graphHasConflicts[orientation] = true; return; } // Simplify the graph if (!simplifyGraph(orientation)) { qWarning("QGraphicsAnchorLayout: anchor setup is not feasible."); graphHasConflicts[orientation] = true; return; } // Traverse all graph edges and store the possible paths to each vertex findPaths(orientation); // From the paths calculated above, extract the constraints that the current // anchor setup impose, to our Linear Programming problem. constraintsFromPaths(orientation); // Split the constraints and anchors into groups that should be fed to the // simplex solver independently. Currently we find two groups: // // 1) The "trunk", that is, the set of anchors (items) that are connected // to the two opposite sides of our layout, and thus need to stretch in // order to fit in the current layout size. // // 2) The floating or semi-floating anchors (items) that are those which // are connected to only one (or none) of the layout sides, thus are not // influenced by the layout size. QList > parts = getGraphParts(orientation); // Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes // of the "trunk" set of constraints and variables. // ### does trunk always exist? empty = trunk is the layout left->center->right QList trunkConstraints = parts.at(0); QList trunkVariables = getVariables(trunkConstraints); // For minimum and maximum, use the path between the two layout sides as the // objective function. AnchorVertex *v = layoutLastVertex[orientation]; GraphPath trunkPath = graphPaths[orientation].value(v); bool feasible = calculateTrunk(orientation, trunkPath, trunkConstraints, trunkVariables); // For the other parts that not the trunk, solve only for the preferred size // that is the size they will remain at, since they are not stretched by the // layout. // Skipping the first (trunk) for (int i = 1; i < parts.count(); ++i) { if (!feasible) break; QList partConstraints = parts.at(i); QList partVariables = getVariables(partConstraints); Q_ASSERT(!partVariables.isEmpty()); feasible &= calculateNonTrunk(partConstraints, partVariables); } // Propagate the new sizes down the simplified graph, ie. tell the // group anchors to set their children anchors sizes. updateAnchorSizes(orientation); graphHasConflicts[orientation] = !feasible; // Clean up our data structures. They are not needed anymore since // distribution uses just interpolation. qDeleteAll(constraints[orientation]); constraints[orientation].clear(); graphPaths[orientation].clear(); // ### } /*! \internal Calculate the sizes for all anchors which are part of the trunk. This works on top of a (possibly) simplified graph. */ bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Orientation orientation, const GraphPath &path, const QList &constraints, const QList &variables) { bool feasible = true; bool needsSimplex = !constraints.isEmpty(); #if 0 qDebug("Simplex %s for trunk of %s", needsSimplex ? "used" : "NOT used", orientation == Horizontal ? "Horizontal" : "Vertical"); #endif if (needsSimplex) { QList sizeHintConstraints = constraintsFromSizeHints(variables); QList allConstraints = constraints + sizeHintConstraints; // Solve min and max size hints qreal min, max; feasible = solveMinMax(allConstraints, path, &min, &max); if (feasible) { solvePreferred(allConstraints, variables); // Calculate and set the preferred size for the layout, // from the edge sizes that were calculated above. qreal pref(0.0); foreach (const AnchorData *ad, path.positives) { pref += ad->sizeAtPreferred; } foreach (const AnchorData *ad, path.negatives) { pref -= ad->sizeAtPreferred; } sizeHints[orientation][Qt::MinimumSize] = min; sizeHints[orientation][Qt::PreferredSize] = pref; sizeHints[orientation][Qt::MaximumSize] = max; } qDeleteAll(sizeHintConstraints); } else { // No Simplex is necessary because the path was simplified all the way to a single // anchor. Q_ASSERT(path.positives.count() == 1); Q_ASSERT(path.negatives.count() == 0); AnchorData *ad = path.positives.toList()[0]; ad->sizeAtMinimum = ad->minSize; ad->sizeAtPreferred = ad->prefSize; ad->sizeAtMaximum = ad->maxSize; sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum; sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred; sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum; } #if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT) lastCalculationUsedSimplex[orientation] = needsSimplex; #endif return feasible; } /*! \internal */ bool QGraphicsAnchorLayoutPrivate::calculateNonTrunk(const QList &constraints, const QList &variables) { QList sizeHintConstraints = constraintsFromSizeHints(variables); bool feasible = solvePreferred(constraints + sizeHintConstraints, variables); if (feasible) { // Propagate size at preferred to other sizes. Semi-floats always will be // in their sizeAtPreferred. for (int j = 0; j < variables.count(); ++j) { AnchorData *ad = variables.at(j); Q_ASSERT(ad); ad->sizeAtMinimum = ad->sizeAtPreferred; ad->sizeAtMaximum = ad->sizeAtPreferred; } } qDeleteAll(sizeHintConstraints); return feasible; } /*! \internal Traverse the graph refreshing the size hints. Complex anchors will call the refresh method of their children anchors. Simple anchors, if are internal anchors, will query the associated item for their size hints. Returns false if some unfeasibility was found in the graph regarding the complex anchors. */ bool QGraphicsAnchorLayoutPrivate::refreshAllSizeHints(Orientation orientation) { Graph &g = graph[orientation]; QList > vertices = g.connections(); QLayoutStyleInfo styleInf = styleInfo(); for (int i = 0; i < vertices.count(); ++i) { AnchorData *data = g.edgeData(vertices.at(i).first, vertices.at(i).second);; Q_ASSERT(data->from && data->to); // During the traversal we check the feasibility of the complex anchors. if (!data->refreshSizeHints(&styleInf)) return false; } return true; } /*! \internal This method walks the graph using a breadth-first search to find paths between the root vertex and each vertex on the graph. The edges directions in each path are considered and they are stored as a positive edge (left-to-right) or negative edge (right-to-left). The list of paths is used later to generate a list of constraints. */ void QGraphicsAnchorLayoutPrivate::findPaths(Orientation orientation) { QQueue > queue; QSet visited; AnchorVertex *root = layoutFirstVertex[orientation]; graphPaths[orientation].insert(root, GraphPath()); foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) { queue.enqueue(qMakePair(root, v)); } while(!queue.isEmpty()) { QPair pair = queue.dequeue(); AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second); if (visited.contains(edge)) continue; visited.insert(edge); GraphPath current = graphPaths[orientation].value(pair.first); if (edge->from == pair.first) current.positives.insert(edge); else current.negatives.insert(edge); graphPaths[orientation].insert(pair.second, current); foreach (AnchorVertex *v, graph[orientation].adjacentVertices(pair.second)) { queue.enqueue(qMakePair(pair.second, v)); } } // We will walk through every reachable items (non-float) store them in a temporary set. // We them create a set of all items and subtract the non-floating items from the set in // order to get the floating items. The floating items is then stored in m_floatItems identifyFloatItems(visited, orientation); } /*! \internal Each vertex on the graph that has more than one path to it represents a contra int to the sizes of the items in these paths. This method walks the list of paths to each vertex, generate the constraints and store them in a list so they can be used later by the Simplex solver. */ void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Orientation orientation) { foreach (AnchorVertex *vertex, graphPaths[orientation].uniqueKeys()) { int valueCount = graphPaths[orientation].count(vertex); if (valueCount == 1) continue; QList pathsToVertex = graphPaths[orientation].values(vertex); for (int i = 1; i < valueCount; ++i) { constraints[orientation] += \ pathsToVertex[0].constraint(pathsToVertex.at(i)); } } } /*! \internal */ void QGraphicsAnchorLayoutPrivate::updateAnchorSizes(Orientation orientation) { Graph &g = graph[orientation]; const QList > &vertices = g.connections(); for (int i = 0; i < vertices.count(); ++i) { AnchorData *ad = g.edgeData(vertices.at(i).first, vertices.at(i).second); ad->updateChildrenSizes(); } } /*! \internal Create LP constraints for each anchor based on its minimum and maximum sizes, as specified in its size hints */ QList QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints( const QList &anchors) { if (anchors.isEmpty()) return QList(); // Look for the layout edge. That can be either the first half in case the // layout is split in two, or the whole layout anchor. Orientation orient = Orientation(anchors.first()->orientation); AnchorData *layoutEdge = 0; if (layoutCentralVertex[orient]) { layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutCentralVertex[orient]); } else { layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutLastVertex[orient]); // If maxSize is less then "infinite", that means there are other anchors // grouped together with this one. We can't ignore its maximum value so we // set back the variable to NULL to prevent the continue condition from being // satisfied in the loop below. if (layoutEdge->maxSize < QWIDGETSIZE_MAX) layoutEdge = 0; } // For each variable, create constraints based on size hints QList anchorConstraints; bool unboundedProblem = true; for (int i = 0; i < anchors.size(); ++i) { AnchorData *ad = anchors.at(i); // Anchors that have their size directly linked to another one don't need constraints // For exammple, the second half of an item has exactly the same size as the first half // thus constraining the latter is enough. if (ad->dependency == AnchorData::Slave) continue; if ((ad->minSize == ad->maxSize) || qFuzzyCompare(ad->minSize, ad->maxSize)) { QSimplexConstraint *c = new QSimplexConstraint; c->variables.insert(ad, 1.0); c->constant = ad->minSize; c->ratio = QSimplexConstraint::Equal; anchorConstraints += c; unboundedProblem = false; } else { QSimplexConstraint *c = new QSimplexConstraint; c->variables.insert(ad, 1.0); c->constant = ad->minSize; c->ratio = QSimplexConstraint::MoreOrEqual; anchorConstraints += c; // We avoid adding restrictions to the layout internal anchors. That's // to prevent unnecessary fair distribution from happening due to this // artificial restriction. if (ad == layoutEdge) continue; c = new QSimplexConstraint; c->variables.insert(ad, 1.0); c->constant = ad->maxSize; c->ratio = QSimplexConstraint::LessOrEqual; anchorConstraints += c; unboundedProblem = false; } } // If no upper boundary restriction was added, add one to avoid unbounded problem if (unboundedProblem) { QSimplexConstraint *c = new QSimplexConstraint; c->variables.insert(layoutEdge, 1.0); c->constant = QWIDGETSIZE_MAX; c->ratio = QSimplexConstraint::LessOrEqual; anchorConstraints += c; } return anchorConstraints; } /*! \internal */ QList< QList > QGraphicsAnchorLayoutPrivate::getGraphParts(Orientation orientation) { Q_ASSERT(layoutFirstVertex[orientation] && layoutLastVertex[orientation]); AnchorData *edgeL1 = 0; AnchorData *edgeL2 = 0; // The layout may have a single anchor between Left and Right or two half anchors // passing through the center if (layoutCentralVertex[orientation]) { edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutCentralVertex[orientation]); edgeL2 = graph[orientation].edgeData(layoutCentralVertex[orientation], layoutLastVertex[orientation]); } else { edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutLastVertex[orientation]); } QLinkedList remainingConstraints; for (int i = 0; i < constraints[orientation].count(); ++i) { remainingConstraints += constraints[orientation].at(i); } for (int i = 0; i < itemCenterConstraints[orientation].count(); ++i) { remainingConstraints += itemCenterConstraints[orientation].at(i); } QList trunkConstraints; QSet trunkVariables; trunkVariables += edgeL1; if (edgeL2) trunkVariables += edgeL2; bool dirty; do { dirty = false; QLinkedList::iterator it = remainingConstraints.begin(); while (it != remainingConstraints.end()) { QSimplexConstraint *c = *it; bool match = false; // Check if this constraint have some overlap with current // trunk variables... foreach (QSimplexVariable *ad, trunkVariables) { if (c->variables.contains(ad)) { match = true; break; } } // If so, we add it to trunk, and erase it from the // remaining constraints. if (match) { trunkConstraints += c; trunkVariables += QSet::fromList(c->variables.keys()); it = remainingConstraints.erase(it); dirty = true; } else { // Note that we don't erase the constraint if it's not // a match, since in a next iteration of a do-while we // can pass on it again and it will be a match. // // For example: if trunk share a variable with // remainingConstraints[1] and it shares with // remainingConstraints[0], we need a second iteration // of the do-while loop to match both. ++it; } } } while (dirty); QList< QList > result; result += trunkConstraints; if (!remainingConstraints.isEmpty()) { QList nonTrunkConstraints; QLinkedList::iterator it = remainingConstraints.begin(); while (it != remainingConstraints.end()) { nonTrunkConstraints += *it; ++it; } result += nonTrunkConstraints; } return result; } /*! \internal Use all visited Anchors on findPaths() so we can identify non-float Items. */ void QGraphicsAnchorLayoutPrivate::identifyFloatItems(const QSet &visited, Orientation orientation) { QSet nonFloating; foreach (const AnchorData *ad, visited) identifyNonFloatItems_helper(ad, &nonFloating); QSet allItems; foreach (QGraphicsLayoutItem *item, items) allItems.insert(item); m_floatItems[orientation] = allItems - nonFloating; } /*! \internal Given an anchor, if it is an internal anchor and Normal we must mark it's item as non-float. If the anchor is Sequential or Parallel, we must iterate on its children recursively until we reach internal anchors (items). */ void QGraphicsAnchorLayoutPrivate::identifyNonFloatItems_helper(const AnchorData *ad, QSet *nonFloatingItemsIdentifiedSoFar) { Q_Q(QGraphicsAnchorLayout); switch(ad->type) { case AnchorData::Normal: if (ad->item && ad->item != q) nonFloatingItemsIdentifiedSoFar->insert(ad->item); break; case AnchorData::Sequential: foreach (const AnchorData *d, static_cast(ad)->m_edges) identifyNonFloatItems_helper(d, nonFloatingItemsIdentifiedSoFar); break; case AnchorData::Parallel: identifyNonFloatItems_helper(static_cast(ad)->firstEdge, nonFloatingItemsIdentifiedSoFar); identifyNonFloatItems_helper(static_cast(ad)->secondEdge, nonFloatingItemsIdentifiedSoFar); break; } } /*! \internal Use the current vertices distance to calculate and set the geometry of each item. */ void QGraphicsAnchorLayoutPrivate::setItemsGeometries(const QRectF &geom) { Q_Q(QGraphicsAnchorLayout); AnchorVertex *firstH, *secondH, *firstV, *secondV; qreal top; qreal left; qreal right; q->getContentsMargins(&left, &top, &right, 0); const Qt::LayoutDirection visualDir = visualDirection(); if (visualDir == Qt::RightToLeft) qSwap(left, right); left += geom.left(); top += geom.top(); right = geom.right() - right; foreach (QGraphicsLayoutItem *item, items) { QRectF newGeom; QSizeF itemPreferredSize = item->effectiveSizeHint(Qt::PreferredSize); if (m_floatItems[Horizontal].contains(item)) { newGeom.setLeft(0); newGeom.setRight(itemPreferredSize.width()); } else { firstH = internalVertex(item, Qt::AnchorLeft); secondH = internalVertex(item, Qt::AnchorRight); if (visualDir == Qt::LeftToRight) { newGeom.setLeft(left + firstH->distance); newGeom.setRight(left + secondH->distance); } else { newGeom.setLeft(right - secondH->distance); newGeom.setRight(right - firstH->distance); } } if (m_floatItems[Vertical].contains(item)) { newGeom.setTop(0); newGeom.setBottom(itemPreferredSize.height()); } else { firstV = internalVertex(item, Qt::AnchorTop); secondV = internalVertex(item, Qt::AnchorBottom); newGeom.setTop(top + firstV->distance); newGeom.setBottom(top + secondV->distance); } item->setGeometry(newGeom); } } /*! \internal Fill the distance in the vertex and in the sub-vertices if its a combined vertex. */ static void setVertexDistance(AnchorVertex *v, qreal distance) { v->distance = distance; if (v->m_type == AnchorVertex::Pair) { AnchorVertexPair *pair = static_cast(v); setVertexDistance(pair->m_first, distance); setVertexDistance(pair->m_second, distance); } } /*! \internal Calculate the position of each vertex based on the paths to each of them as well as the current edges sizes. */ void QGraphicsAnchorLayoutPrivate::calculateVertexPositions( QGraphicsAnchorLayoutPrivate::Orientation orientation) { QQueue > queue; QSet visited; // Get root vertex AnchorVertex *root = layoutFirstVertex[orientation]; setVertexDistance(root, 0); visited.insert(root); // Add initial edges to the queue foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) { queue.enqueue(qMakePair(root, v)); } // Do initial calculation required by "interpolateEdge()" setupEdgesInterpolation(orientation); // Traverse the graph and calculate vertex positions, we need to // visit all pairs since each of them could have a sequential // anchor inside, which hides more vertices. while (!queue.isEmpty()) { QPair pair = queue.dequeue(); AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second); // Both vertices were interpolated, and the anchor itself can't have other // anchors inside (it's not a complex anchor). if (edge->type == AnchorData::Normal && visited.contains(pair.second)) continue; visited.insert(pair.second); interpolateEdge(pair.first, edge); QList adjacents = graph[orientation].adjacentVertices(pair.second); for (int i = 0; i < adjacents.count(); ++i) { if (!visited.contains(adjacents.at(i))) queue.enqueue(qMakePair(pair.second, adjacents.at(i))); } } } /*! \internal Calculate interpolation parameters based on current Layout Size. Must be called once before calling "interpolateEdgeSize()" for the edges. */ void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation( Orientation orientation) { Q_Q(QGraphicsAnchorLayout); qreal current; current = (orientation == Horizontal) ? q->contentsRect().width() : q->contentsRect().height(); QPair result; result = getFactor(current, sizeHints[orientation][Qt::MinimumSize], sizeHints[orientation][Qt::PreferredSize], sizeHints[orientation][Qt::MaximumSize]); interpolationInterval[orientation] = result.first; interpolationProgress[orientation] = result.second; } /*! \internal Calculate the current Edge size based on the current Layout size and the size the edge is supposed to have when the layout is at its: - minimum size, - preferred size, - maximum size. These three key values are calculated in advance using linear programming (more expensive) or the simplification algorithm, then subsequential resizes of the parent layout require a simple interpolation. If the edge is sequential or parallel, it's possible to have more vertices to be initalized, so it calls specialized functions that will recurse back to interpolateEdge(). */ void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base, AnchorData *edge) { const Orientation orientation = Orientation(edge->orientation); const QPair factor(interpolationInterval[orientation], interpolationProgress[orientation]); qreal edgeDistance = interpolate(factor, edge->sizeAtMinimum, edge->sizeAtPreferred, edge->sizeAtMaximum); Q_ASSERT(edge->from == base || edge->to == base); // Calculate the distance for the vertex opposite to the base if (edge->from == base) { setVertexDistance(edge->to, base->distance + edgeDistance); } else { setVertexDistance(edge->from, base->distance - edgeDistance); } // Process child anchors if (edge->type == AnchorData::Sequential) interpolateSequentialEdges(static_cast(edge)); else if (edge->type == AnchorData::Parallel) interpolateParallelEdges(static_cast(edge)); } void QGraphicsAnchorLayoutPrivate::interpolateParallelEdges(ParallelAnchorData *data) { // In parallels the boundary vertices are already calculate, we // just need to look for sequential groups inside, because only // them may have new vertices associated. // First edge if (data->firstEdge->type == AnchorData::Sequential) interpolateSequentialEdges(static_cast(data->firstEdge)); else if (data->firstEdge->type == AnchorData::Parallel) interpolateParallelEdges(static_cast(data->firstEdge)); // Second edge if (data->secondEdge->type == AnchorData::Sequential) interpolateSequentialEdges(static_cast(data->secondEdge)); else if (data->secondEdge->type == AnchorData::Parallel) interpolateParallelEdges(static_cast(data->secondEdge)); } void QGraphicsAnchorLayoutPrivate::interpolateSequentialEdges(SequentialAnchorData *data) { // This method is supposed to handle any sequential anchor, even out-of-order // ones. However, in the current QGAL implementation we should get only the // well behaved ones. Q_ASSERT(data->m_edges.first()->from == data->from); Q_ASSERT(data->m_edges.last()->to == data->to); // At this point, the two outter vertices already have their distance // calculated. // We use the first as the base to calculate the internal ones AnchorVertex *prev = data->from; for (int i = 0; i < data->m_edges.count() - 1; ++i) { AnchorData *edge = data->m_edges.at(i); interpolateEdge(prev, edge); // Use the recently calculated vertex as the base for the next one const bool edgeIsForward = (edge->from == prev); prev = edgeIsForward ? edge->to : edge->from; } // Treat the last specially, since we already calculated it's end // vertex, so it's only interesting if it's a complex one if (data->m_edges.last()->type != AnchorData::Normal) interpolateEdge(prev, data->m_edges.last()); } bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList &constraints, GraphPath path, qreal *min, qreal *max) { QSimplex simplex; bool feasible = simplex.setConstraints(constraints); if (feasible) { // Obtain the objective constraint QSimplexConstraint objective; QSet::const_iterator iter; for (iter = path.positives.constBegin(); iter != path.positives.constEnd(); ++iter) objective.variables.insert(*iter, 1.0); for (iter = path.negatives.constBegin(); iter != path.negatives.constEnd(); ++iter) objective.variables.insert(*iter, -1.0); simplex.setObjective(&objective); // Calculate minimum values *min = simplex.solveMin(); // Save sizeAtMinimum results QList variables = getVariables(constraints); for (int i = 0; i < variables.size(); ++i) { AnchorData *ad = static_cast(variables.at(i)); ad->sizeAtMinimum = ad->result; Q_ASSERT(ad->sizeAtMinimum >= ad->minSize || qAbs(ad->sizeAtMinimum - ad->minSize) < 0.00000001); } // Calculate maximum values *max = simplex.solveMax(); // Save sizeAtMaximum results for (int i = 0; i < variables.size(); ++i) { AnchorData *ad = static_cast(variables.at(i)); ad->sizeAtMaximum = ad->result; // Q_ASSERT(ad->sizeAtMaximum <= ad->maxSize || // qAbs(ad->sizeAtMaximum - ad->maxSize) < 0.00000001); } } return feasible; } bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList &constraints, const QList &variables) { QList preferredConstraints; QList preferredVariables; QSimplexConstraint objective; // Fill the objective coefficients for this variable. In the // end the objective function will be // // z = n * (A_shrink + B_shrink + ...) + (A_grower + B_grower + ...) // // where n is the number of variables that have // slacks. Note that here we use the number of variables // as coefficient, this is to mark the "shrinker slack // variable" less likely to get value than the "grower // slack variable". // This will fill the values for the structural constraints // and we now fill the values for the slack constraints (one per variable), // which have this form (the constant A_pref was set when creating the slacks): // // A + A_shrinker - A_grower = A_pref // for (int i = 0; i < variables.size(); ++i) { AnchorData *ad = variables.at(i); if (ad->skipInPreferred) continue; QSimplexVariable *grower = new QSimplexVariable; QSimplexVariable *shrinker = new QSimplexVariable; QSimplexConstraint *c = new QSimplexConstraint; c->variables.insert(ad, 1.0); c->variables.insert(shrinker, 1.0); c->variables.insert(grower, -1.0); c->constant = ad->prefSize; preferredConstraints += c; preferredVariables += grower; preferredVariables += shrinker; objective.variables.insert(grower, 1.0); objective.variables.insert(shrinker, variables.size()); } QSimplex *simplex = new QSimplex; bool feasible = simplex->setConstraints(constraints + preferredConstraints); if (feasible) { simplex->setObjective(&objective); // Calculate minimum values simplex->solveMin(); // Save sizeAtPreferred results for (int i = 0; i < variables.size(); ++i) { AnchorData *ad = variables.at(i); ad->sizeAtPreferred = ad->result; } // Make sure we delete the simplex solver -before- we delete the // constraints used by it. delete simplex; } // Delete constraints and variables we created. qDeleteAll(preferredConstraints); qDeleteAll(preferredVariables); return feasible; } /*! \internal Returns true if there are no arrangement that satisfies all constraints. Otherwise returns false. \sa addAnchor() */ bool QGraphicsAnchorLayoutPrivate::hasConflicts() const { QGraphicsAnchorLayoutPrivate *that = const_cast(this); that->calculateGraphs(); bool floatConflict = !m_floatItems[0].isEmpty() || !m_floatItems[1].isEmpty(); return graphHasConflicts[0] || graphHasConflicts[1] || floatConflict; } #ifdef QT_DEBUG void QGraphicsAnchorLayoutPrivate::dumpGraph(const QString &name) { QFile file(QString::fromAscii("anchorlayout.%1.dot").arg(name)); if (!file.open(QIODevice::WriteOnly | QIODevice::Text | QIODevice::Truncate)) qWarning("Could not write to %s", file.fileName().toLocal8Bit().constData()); QString str = QString::fromAscii("digraph anchorlayout {\nnode [shape=\"rect\"]\n%1}"); QString dotContents = graph[0].serializeToDot(); dotContents += graph[1].serializeToDot(); file.write(str.arg(dotContents).toLocal8Bit()); file.close(); } #endif QT_END_NAMESPACE #endif //QT_NO_GRAPHICSVIEW