/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the either Technology Preview License Agreement or the ** Beta Release License Agreement. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain ** additional rights. These rights are described in the Nokia Qt LGPL ** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this ** package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** If you are unsure which license is appropriate for your use, please ** contact the sales department at http://qt.nokia.com/contact. ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qimage.h" #include "qdatastream.h" #include "qbuffer.h" #include "qmap.h" #include "qmatrix.h" #include "qtransform.h" #include "qimagereader.h" #include "qimagewriter.h" #include "qstringlist.h" #include "qvariant.h" #include "qimagepixmapcleanuphooks_p.h" #include #include #include #include #include #include #include #include #include #ifdef QT_RASTER_IMAGEENGINE #include #else #include #endif #include QT_BEGIN_NAMESPACE static inline bool checkPixelSize(const QImage::Format format) { switch (format) { case QImage::Format_ARGB8565_Premultiplied: return (sizeof(qargb8565) == 3); case QImage::Format_RGB666: return (sizeof(qrgb666) == 3); case QImage::Format_ARGB6666_Premultiplied: return (sizeof(qargb6666) == 3); case QImage::Format_RGB555: return (sizeof(qrgb555) == 2); case QImage::Format_ARGB8555_Premultiplied: return (sizeof(qargb8555) == 3); case QImage::Format_RGB888: return (sizeof(qrgb888) == 3); case QImage::Format_RGB444: return (sizeof(qrgb444) == 2); case QImage::Format_ARGB4444_Premultiplied: return (sizeof(qargb4444) == 2); default: return true; } } #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) #pragma message disable narrowptr #endif #define QIMAGE_SANITYCHECK_MEMORY(image) \ if ((image).isNull()) { \ qWarning("QImage: out of memory, returning null image"); \ return QImage(); \ } static QImage rotated90(const QImage &src); static QImage rotated180(const QImage &src); static QImage rotated270(const QImage &src); // ### Qt 5: remove Q_GUI_EXPORT qint64 qt_image_id(const QImage &image) { return image.cacheKey(); } const QVector *qt_image_colortable(const QImage &image) { return &image.d->colortable; } extern int qt_defaultDpiX(); extern int qt_defaultDpiY(); QBasicAtomicInt qimage_serial_number = Q_BASIC_ATOMIC_INITIALIZER(1); QImageData::QImageData() : ref(0), width(0), height(0), depth(0), nbytes(0), data(0), #ifdef QT3_SUPPORT jumptable(0), #endif format(QImage::Format_ARGB32), bytes_per_line(0), ser_no(qimage_serial_number.fetchAndAddRelaxed(1)), detach_no(0), dpmx(qt_defaultDpiX() * 100 / qreal(2.54)), dpmy(qt_defaultDpiY() * 100 / qreal(2.54)), offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false), is_cached(false), paintEngine(0) { } static int depthForFormat(QImage::Format format) { int depth = 0; switch(format) { case QImage::Format_Invalid: case QImage::NImageFormats: Q_ASSERT(false); case QImage::Format_Mono: case QImage::Format_MonoLSB: depth = 1; break; case QImage::Format_Indexed8: depth = 8; break; case QImage::Format_RGB32: case QImage::Format_ARGB32: case QImage::Format_ARGB32_Premultiplied: depth = 32; break; case QImage::Format_RGB555: case QImage::Format_RGB16: case QImage::Format_RGB444: case QImage::Format_ARGB4444_Premultiplied: depth = 16; break; case QImage::Format_RGB666: case QImage::Format_ARGB6666_Premultiplied: case QImage::Format_ARGB8565_Premultiplied: case QImage::Format_ARGB8555_Premultiplied: case QImage::Format_RGB888: depth = 24; break; } return depth; } QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors) { if (!size.isValid() || numColors < 0 || format == QImage::Format_Invalid) return 0; // invalid parameter(s) if (!checkPixelSize(format)) { qWarning("QImageData::create(): Invalid pixel size for format %i", format); return 0; } uint width = size.width(); uint height = size.height(); uint depth = depthForFormat(format); switch (format) { case QImage::Format_Mono: case QImage::Format_MonoLSB: numColors = 2; break; case QImage::Format_Indexed8: numColors = qBound(0, numColors, 256); break; default: numColors = 0; break; } const int bytes_per_line = ((width * depth + 31) >> 5) << 2; // bytes per scanline (must be multiple of 8) // sanity check for potential overflows if (INT_MAX/depth < width || bytes_per_line <= 0 || height <= 0 || INT_MAX/uint(bytes_per_line) < height || INT_MAX/sizeof(uchar *) < uint(height)) return 0; QImageData *d = new QImageData; d->colortable.resize(numColors); if (depth == 1) { d->colortable[0] = QColor(Qt::black).rgba(); d->colortable[1] = QColor(Qt::white).rgba(); } else { for (int i = 0; i < numColors; ++i) d->colortable[i] = 0; } d->width = width; d->height = height; d->depth = depth; d->format = format; d->has_alpha_clut = false; d->is_cached = false; d->bytes_per_line = bytes_per_line; d->nbytes = d->bytes_per_line*height; d->data = (uchar *)malloc(d->nbytes); if (!d->data) { delete d; return 0; } d->ref.ref(); return d; } QImageData::~QImageData() { if (is_cached) QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no)); delete paintEngine; if (data && own_data) free(data); #ifdef QT3_SUPPORT if (jumptable) free(jumptable); jumptable = 0; #endif data = 0; } bool QImageData::checkForAlphaPixels() const { bool has_alpha_pixels = false; switch (format) { case QImage::Format_Indexed8: has_alpha_pixels = has_alpha_clut; break; case QImage::Format_ARGB32: case QImage::Format_ARGB32_Premultiplied: { uchar *bits = data; for (int y=0; y, and the QRgb typedef is equivalent to an unsigned int containing an ARGB quadruplet on the format 0xAARRGGBB. 32-bit images have no color table; instead, each pixel contains an QRgb value. There are three different types of 32-bit images storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB values respectively. In the premultiplied format the red, green, and blue channels are multiplied by the alpha component divided by 255. An image's format can be retrieved using the format() function. Use the convertToFormat() functions to convert an image into another format. The allGray() and isGrayscale() functions tell whether a color image can safely be converted to a grayscale image. \section1 Image Transformations QImage supports a number of functions for creating a new image that is a transformed version of the original: The createAlphaMask() function builds and returns a 1-bpp mask from the alpha buffer in this image, and the createHeuristicMask() function creates and returns a 1-bpp heuristic mask for this image. The latter function works by selecting a color from one of the corners, then chipping away pixels of that color starting at all the edges. The mirrored() function returns a mirror of the image in the desired direction, the scaled() returns a copy of the image scaled to a rectangle of the desired measures, and the rgbSwapped() function constructs a BGR image from a RGB image. The scaledToWidth() and scaledToHeight() functions return scaled copies of the image. The transformed() function returns a copy of the image that is transformed with the given transformation matrix and transformation mode: Internally, the transformation matrix is adjusted to compensate for unwanted translation, i.e. transformed() returns the smallest image containing all transformed points of the original image. The static trueMatrix() function returns the actual matrix used for transforming the image. There are also functions for changing attributes of an image in-place: \table \header \o Function \o Description \row \o setDotsPerMeterX() \o Defines the aspect ratio by setting the number of pixels that fit horizontally in a physical meter. \row \o setDotsPerMeterY() \o Defines the aspect ratio by setting the number of pixels that fit vertically in a physical meter. \row \o fill() \o Fills the entire image with the given pixel value. \row \o invertPixels() \o Inverts all pixel values in the image using the given InvertMode value. \row \o setColorTable() \o Sets the color table used to translate color indexes. Only monochrome and 8-bit formats. \row \o setNumColors() \o Resizes the color table. Only monochrome and 8-bit formats. \endtable \section1 Legal Information For smooth scaling, the transformed() functions use code based on smooth scaling algorithm by Daniel M. Duley. \legalese Copyright (C) 2004, 2005 Daniel M. Duley Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \endlegalese \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example}, {Image Viewer Example}, {Scribble Example}, {Pixelator Example} */ /*! \enum QImage::Endian \compat This enum type is used to describe the endianness of the CPU and graphics hardware. It is provided here for compatibility with earlier versions of Qt. Use the \l Format enum instead. The \l Format enum specify the endianess for monchrome formats, but for other formats the endianess is not relevant. \value IgnoreEndian Endianness does not matter. Useful for some operations that are independent of endianness. \value BigEndian Most significant bit first or network byte order, as on SPARC, PowerPC, and Motorola CPUs. \value LittleEndian Least significant bit first or little endian byte order, as on Intel x86. */ /*! \enum QImage::InvertMode This enum type is used to describe how pixel values should be inverted in the invertPixels() function. \value InvertRgb Invert only the RGB values and leave the alpha channel unchanged. \value InvertRgba Invert all channels, including the alpha channel. \sa invertPixels() */ /*! \enum QImage::Format The following image formats are available in all versions of Qt: \value Format_Invalid The image is invalid. \value Format_Mono The image is stored using 1-bit per pixel. Bytes are packed with the most significant bit (MSB) first. \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are packed with the less significant bit (LSB) first. \value Format_Indexed8 The image is stored using 8-bit indexes into a colormap. \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB). \value Format_ARGB32 The image is stored using a 32-bit ARGB format (0xAARRGGBB). \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit ARGB format (0xAARRGGBB), i.e. the red, green, and blue channels are multiplied by the alpha component divided by 255. (If RR, GG, or BB has a higher value than the alpha channel, the results are undefined.) Certain operations (such as image composition using alpha blending) are faster using premultiplied ARGB32 than with plain ARGB32. \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5). \value Format_ARGB8565_Premultiplied The image is stored using a premultiplied 24-bit ARGB format (8-5-6-5). \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6). The unused most significant bits is always zero. \value Format_ARGB6666_Premultiplied The image is stored using a premultiplied 24-bit ARGB format (6-6-6-6). \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5). The unused most significant bit is always zero. \value Format_ARGB8555_Premultiplied The image is stored using a premultiplied 24-bit ARGB format (8-5-5-5). \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8). \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4). The unused bits are always zero. \value Format_ARGB4444_Premultiplied The image is stored using a premultiplied 16-bit ARGB format (4-4-4-4). \sa format(), convertToFormat() */ /***************************************************************************** QImage member functions *****************************************************************************/ // table to flip bits static const uchar bitflip[256] = { /* open OUT, "| fmt"; for $i (0..255) { print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) | (($i >> 3) & 0x04) | (($i >> 1) & 0x08) | (($i << 7) & 0x80) | (($i << 5) & 0x40) | (($i << 3) & 0x20) | (($i << 1) & 0x10), ", "; } close OUT; */ 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 }; const uchar *qt_get_bitflip_array() // called from QPixmap code { return bitflip; } #if defined(QT3_SUPPORT) static QImage::Format formatFor(int depth, QImage::Endian bitOrder) { QImage::Format format; if (depth == 1) { format = bitOrder == QImage::BigEndian ? QImage::Format_Mono : QImage::Format_MonoLSB; } else if (depth == 8) { format = QImage::Format_Indexed8; } else if (depth == 32) { format = QImage::Format_RGB32; } else if (depth == 24) { format = QImage::Format_RGB888; } else if (depth == 16) { format = QImage::Format_RGB16; } else { qWarning("QImage: Depth %d not supported", depth); format = QImage::Format_Invalid; } return format; } #endif /*! Constructs a null image. \sa isNull() */ QImage::QImage() : QPaintDevice() { d = 0; } /*! Constructs an image with the given \a width, \a height and \a format. \warning This will create a QImage with uninitialized data. Call fill() to fill the image with an appropriate pixel value before drawing onto it with QPainter. */ QImage::QImage(int width, int height, Format format) : QPaintDevice() { d = QImageData::create(QSize(width, height), format, 0); } /*! Constructs an image with the given \a size and \a format. \warning This will create a QImage with uninitialized data. Call fill() to fill the image with an appropriate pixel value before drawing onto it with QPainter. */ QImage::QImage(const QSize &size, Format format) : QPaintDevice() { d = QImageData::create(size, format, 0); } QImageData *QImageData::create(uchar *data, int width, int height, int bpl, QImage::Format format, bool readOnly) { QImageData *d = 0; if (format == QImage::Format_Invalid) return d; if (!checkPixelSize(format)) { qWarning("QImageData::create(): Invalid pixel size for format %i", format); return 0; } const int depth = depthForFormat(format); const int calc_bytes_per_line = ((width * depth + 31)/32) * 4; const int min_bytes_per_line = (width * depth + 7)/8; if (bpl <= 0) bpl = calc_bytes_per_line; if (width <= 0 || height <= 0 || !data || INT_MAX/sizeof(uchar *) < uint(height) || INT_MAX/uint(depth) < uint(width) || bpl <= 0 || height <= 0 || bpl < min_bytes_per_line || INT_MAX/uint(bpl) < uint(height)) return d; // invalid parameter(s) d = new QImageData; d->ref.ref(); d->own_data = false; d->ro_data = readOnly; d->data = data; d->width = width; d->height = height; d->depth = depth; d->format = format; d->bytes_per_line = bpl; d->nbytes = d->bytes_per_line * height; return d; } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing memory buffer, \a data. The \a width and \a height must be specified in pixels, \a data must be 32-bit aligned, and each scanline of data in the image must also be 32-bit aligned. The buffer must remain valid throughout the life of the QImage. The image does not delete the buffer at destruction. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setNumColors() or setColorTable() before the image is used. */ QImage::QImage(uchar* data, int width, int height, Format format) : QPaintDevice() { d = QImageData::create(data, width, height, 0, format, false); } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing read-only memory buffer, \a data. The \a width and \a height must be specified in pixels, \a data must be 32-bit aligned, and each scanline of data in the image must also be 32-bit aligned. The buffer must remain valid throughout the life of the QImage and all copies that have not been modified or otherwise detached from the original buffer. The image does not delete the buffer at destruction. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setNumColors() or setColorTable() before the image is used. Unlike the similar QImage constructor that takes a non-const data buffer, this version will never alter the contents of the buffer. For example, calling QImage::bits() will return a deep copy of the image, rather than the buffer passed to the constructor. This allows for the efficiency of constructing a QImage from raw data, without the possibility of the raw data being changed. */ QImage::QImage(const uchar* data, int width, int height, Format format) : QPaintDevice() { d = QImageData::create(const_cast(data), width, height, 0, format, true); } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing memory buffer, \a data. The \a width and \a height must be specified in pixels. \a bytesPerLine specifies the number of bytes per line (stride). The buffer must remain valid throughout the life of the QImage. The image does not delete the buffer at destruction. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setNumColors() or setColorTable() before the image is used. */ QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format) :QPaintDevice() { d = QImageData::create(data, width, height, bytesPerLine, format, false); } /*! Constructs an image with the given \a width, \a height and \a format, that uses an existing memory buffer, \a data. The \a width and \a height must be specified in pixels. \a bytesPerLine specifies the number of bytes per line (stride). The buffer must remain valid throughout the life of the QImage. The image does not delete the buffer at destruction. If \a format is an indexed color format, the image color table is initially empty and must be sufficiently expanded with setNumColors() or setColorTable() before the image is used. Unlike the similar QImage constructor that takes a non-const data buffer, this version will never alter the contents of the buffer. For example, calling QImage::bits() will return a deep copy of the image, rather than the buffer passed to the constructor. This allows for the efficiency of constructing a QImage from raw data, without the possibility of the raw data being changed. */ QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format) :QPaintDevice() { d = QImageData::create(const_cast(data), width, height, bytesPerLine, format, true); } /*! Constructs an image and tries to load the image from the file with the given \a fileName. The loader attempts to read the image using the specified \a format. If the \a format is not specified (which is the default), the loader probes the file for a header to guess the file format. If the loading of the image failed, this object is a null image. The file name can either refer to an actual file on disk or to one of the application's embedded resources. See the \l{resources.html}{Resource System} overview for details on how to embed images and other resource files in the application's executable. \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ QImage::QImage(const QString &fileName, const char *format) : QPaintDevice() { d = 0; load(fileName, format); } /*! Constructs an image and tries to load the image from the file with the given \a fileName. The loader attempts to read the image using the specified \a format. If the \a format is not specified (which is the default), the loader probes the file for a header to guess the file format. If the loading of the image failed, this object is a null image. The file name can either refer to an actual file on disk or to one of the application's embedded resources. See the \l{resources.html}{Resource System} overview for details on how to embed images and other resource files in the application's executable. You can disable this constructor by defining \c QT_NO_CAST_FROM_ASCII when you compile your applications. This can be useful, for example, if you want to ensure that all user-visible strings go through QObject::tr(). \sa QString::fromAscii(), isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ #ifndef QT_NO_CAST_FROM_ASCII QImage::QImage(const char *fileName, const char *format) : QPaintDevice() { // ### Qt 5: if you remove the QImage(const QByteArray &) QT3_SUPPORT // constructor, remove this constructor as well. The constructor here // exists so that QImage("foo.png") compiles without ambiguity. d = 0; load(QString::fromAscii(fileName), format); } #endif #ifndef QT_NO_IMAGEFORMAT_XPM extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image); /*! Constructs an image from the given \a xpm image. Make sure that the image is a valid XPM image. Errors are silently ignored. Note that it's possible to squeeze the XPM variable a little bit by using an unusual declaration: \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 2 The extra \c const makes the entire definition read-only, which is slightly more efficient (e.g., when the code is in a shared library) and able to be stored in ROM with the application. */ QImage::QImage(const char * const xpm[]) : QPaintDevice() { d = 0; if (!xpm) return; if (!qt_read_xpm_image_or_array(0, xpm, *this)) // Issue: Warning because the constructor may be ambigious qWarning("QImage::QImage(), XPM is not supported"); } #endif // QT_NO_IMAGEFORMAT_XPM /*! \fn QImage::QImage(const QByteArray &data) Use the static fromData() function instead. \oldcode QByteArray data; ... QImage image(data); \newcode QByteArray data; ... QImage image = QImage::fromData(data); \endcode */ /*! Constructs a shallow copy of the given \a image. For more information about shallow copies, see the \l {Implicit Data Sharing} documentation. \sa copy() */ QImage::QImage(const QImage &image) : QPaintDevice() { d = image.d; if (d) d->ref.ref(); } #ifdef QT3_SUPPORT /*! \fn QImage::QImage(int width, int height, int depth, int numColors, Endian bitOrder) Constructs an image with the given \a width, \a height, \a depth, \a numColors colors and \a bitOrder. Use the constructor that accepts a width, a height and a format (i.e. specifying the depth and bit order), in combination with the setNumColors() function, instead. \oldcode QImage image(width, height, depth, numColors); \newcode QImage image(width, height, format); // For 8 bit images the default number of colors is 256. If // another number of colors is required it can be specified // using the setNumColors() function. image.setNumColors(numColors); \endcode */ QImage::QImage(int w, int h, int depth, int numColors, Endian bitOrder) : QPaintDevice() { d = QImageData::create(QSize(w, h), formatFor(depth, bitOrder), numColors); } /*! Constructs an image with the given \a size, \a depth, \a numColors and \a bitOrder. Use the constructor that accepts a size and a format (i.e. specifying the depth and bit order), in combination with the setNumColors() function, instead. \oldcode QSize mySize(width, height); QImage image(mySize, depth, numColors); \newcode QSize mySize(width, height); QImage image(mySize, format); // For 8 bit images the default number of colors is 256. If // another number of colors is required it can be specified // using the setNumColors() function. image.setNumColors(numColors); \endcode */ QImage::QImage(const QSize& size, int depth, int numColors, Endian bitOrder) : QPaintDevice() { d = QImageData::create(size, formatFor(depth, bitOrder), numColors); } /*! \fn QImage::QImage(uchar* data, int width, int height, int depth, const QRgb* colortable, int numColors, Endian bitOrder) Constructs an image with the given \a width, \a height, depth, \a colortable, \a numColors and \a bitOrder, that uses an existing memory buffer, \a data. Use the constructor that accepts a uchar pointer, a width, a height and a format (i.e. specifying the depth and bit order), in combination with the setColorTable() function, instead. \oldcode uchar *myData; QRgb *myColorTable; QImage image(myData, width, height, depth, myColorTable, numColors, IgnoreEndian); \newcode uchar *myData; QVector myColorTable; QImage image(myData, width, height, format); image.setColorTable(myColorTable); \endcode */ QImage::QImage(uchar* data, int w, int h, int depth, const QRgb* colortable, int numColors, Endian bitOrder) : QPaintDevice() { d = 0; Format f = formatFor(depth, bitOrder); if (f == Format_Invalid) return; const int bytes_per_line = ((w*depth+31)/32)*4; // bytes per scanline if (w <= 0 || h <= 0 || numColors < 0 || !data || INT_MAX/sizeof(uchar *) < uint(h) || INT_MAX/uint(depth) < uint(w) || bytes_per_line <= 0 || INT_MAX/uint(bytes_per_line) < uint(h)) return; // invalid parameter(s) d = new QImageData; d->ref.ref(); d->own_data = false; d->data = data; d->width = w; d->height = h; d->depth = depth; d->format = f; if (depth == 32) numColors = 0; d->bytes_per_line = bytes_per_line; d->nbytes = d->bytes_per_line * h; if (colortable) { d->colortable.resize(numColors); for (int i = 0; i < numColors; ++i) d->colortable[i] = colortable[i]; } else if (numColors) { setNumColors(numColors); } } #ifdef Q_WS_QWS /*! \fn QImage::QImage(uchar* data, int width, int height, int depth, int bytesPerLine, const QRgb* colortable, int numColors, Endian bitOrder) Constructs an image with the given \a width, \a height, \a depth, \a bytesPerLine, \a colortable, \a numColors and \a bitOrder, that uses an existing memory buffer, \a data. The image does not delete the buffer at destruction. \warning This constructor is only available in Qt for Embedded Linux. The data has to be 32-bit aligned, and each scanline of data in the image must also be 32-bit aligned, so it's no longer possible to specify a custom \a bytesPerLine value. */ QImage::QImage(uchar* data, int w, int h, int depth, int bpl, const QRgb* colortable, int numColors, Endian bitOrder) : QPaintDevice() { d = 0; Format f = formatFor(depth, bitOrder); if (f == Format_Invalid) return; if (!data || w <= 0 || h <= 0 || depth <= 0 || numColors < 0 || INT_MAX/sizeof(uchar *) < uint(h) || INT_MAX/uint(depth) < uint(w) || bpl <= 0 || INT_MAX/uint(bpl) < uint(h)) return; // invalid parameter(s) d = new QImageData; d->ref.ref(); d->own_data = false; d->data = data; d->width = w; d->height = h; d->depth = depth; d->format = f; if (depth == 32) numColors = 0; d->bytes_per_line = bpl; d->nbytes = d->bytes_per_line * h; if (colortable) { d->colortable.resize(numColors); for (int i = 0; i < numColors; ++i) d->colortable[i] = colortable[i]; } else if (numColors) { setNumColors(numColors); } } #endif // Q_WS_QWS #endif // QT3_SUPPORT /*! Destroys the image and cleans up. */ QImage::~QImage() { if (d && !d->ref.deref()) delete d; } /*! Assigns a shallow copy of the given \a image to this image and returns a reference to this image. For more information about shallow copies, see the \l {Implicit Data Sharing} documentation. \sa copy(), QImage() */ QImage &QImage::operator=(const QImage &image) { if (image.d) image.d->ref.ref(); if (d && !d->ref.deref()) delete d; d = image.d; return *this; } /*! \internal */ int QImage::devType() const { return QInternal::Image; } /*! Returns the image as a QVariant. */ QImage::operator QVariant() const { return QVariant(QVariant::Image, this); } /*! \internal If multiple images share common data, this image makes a copy of the data and detaches itself from the sharing mechanism, making sure that this image is the only one referring to the data. Nothing is done if there is just a single reference. \sa copy(), isDetached(), {Implicit Data Sharing} */ void QImage::detach() { if (d) { if (d->is_cached && d->ref == 1) QImagePixmapCleanupHooks::executeImageHooks(cacheKey()); if (d->ref != 1 || d->ro_data) *this = copy(); if (d) ++d->detach_no; } } /*! \fn QImage QImage::copy(int x, int y, int width, int height) const \overload The returned image is copied from the position (\a x, \a y) in this image, and will always have the given \a width and \a height. In areas beyond this image, pixels are set to 0. */ /*! \fn QImage QImage::copy(const QRect& rectangle) const Returns a sub-area of the image as a new image. The returned image is copied from the position (\a {rectangle}.x(), \a{rectangle}.y()) in this image, and will always have the size of the given \a rectangle. In areas beyond this image, pixels are set to 0. For 32-bit RGB images, this means black; for 32-bit ARGB images, this means transparent black; for 8-bit images, this means the color with index 0 in the color table which can be anything; for 1-bit images, this means Qt::color0. If the given \a rectangle is a null rectangle the entire image is copied. \sa QImage() */ QImage QImage::copy(const QRect& r) const { if (!d) return QImage(); if (r.isNull()) { QImage image(d->width, d->height, d->format); if (image.isNull()) return image; // Qt for Embedded Linux can create images with non-default bpl // make sure we don't crash. if (image.d->nbytes != d->nbytes) { int bpl = image.bytesPerLine(); for (int i = 0; i < height(); i++) memcpy(image.scanLine(i), scanLine(i), bpl); } else memcpy(image.bits(), bits(), d->nbytes); image.d->colortable = d->colortable; image.d->dpmx = d->dpmx; image.d->dpmy = d->dpmy; image.d->offset = d->offset; image.d->has_alpha_clut = d->has_alpha_clut; #ifndef QT_NO_IMAGE_TEXT image.d->text = d->text; #endif return image; } int x = r.x(); int y = r.y(); int w = r.width(); int h = r.height(); int dx = 0; int dy = 0; if (w <= 0 || h <= 0) return QImage(); QImage image(w, h, d->format); if (image.isNull()) return image; if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) { // bitBlt will not cover entire image - clear it. image.fill(0); if (x < 0) { dx = -x; x = 0; } if (y < 0) { dy = -y; y = 0; } } image.d->colortable = d->colortable; int pixels_to_copy = qMax(w - dx, 0); if (x > d->width) pixels_to_copy = 0; else if (pixels_to_copy > d->width - x) pixels_to_copy = d->width - x; int lines_to_copy = qMax(h - dy, 0); if (y > d->height) lines_to_copy = 0; else if (lines_to_copy > d->height - y) lines_to_copy = d->height - y; bool byteAligned = true; if (d->format == Format_Mono || d->format == Format_MonoLSB) byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7); if (byteAligned) { const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line; uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line; const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3; for (int i = 0; i < lines_to_copy; ++i) { memcpy(dest, src, bytes_to_copy); src += d->bytes_per_line; dest += image.d->bytes_per_line; } } else if (d->format == Format_Mono) { const uchar *src = d->data + y * d->bytes_per_line; uchar *dest = image.d->data + dy * image.d->bytes_per_line; for (int i = 0; i < lines_to_copy; ++i) { for (int j = 0; j < pixels_to_copy; ++j) { if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7))) dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7)); else dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7)); } src += d->bytes_per_line; dest += image.d->bytes_per_line; } } else { // Format_MonoLSB Q_ASSERT(d->format == Format_MonoLSB); const uchar *src = d->data + y * d->bytes_per_line; uchar *dest = image.d->data + dy * image.d->bytes_per_line; for (int i = 0; i < lines_to_copy; ++i) { for (int j = 0; j < pixels_to_copy; ++j) { if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7))) dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7)); else dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7)); } src += d->bytes_per_line; dest += image.d->bytes_per_line; } } image.d->dpmx = dotsPerMeterX(); image.d->dpmy = dotsPerMeterY(); image.d->offset = offset(); image.d->has_alpha_clut = d->has_alpha_clut; #ifndef QT_NO_IMAGE_TEXT image.d->text = d->text; #endif return image; } /*! \fn bool QImage::isNull() const Returns true if it is a null image, otherwise returns false. A null image has all parameters set to zero and no allocated data. */ bool QImage::isNull() const { return !d; } /*! \fn int QImage::width() const Returns the width of the image. \sa {QImage#Image Information}{Image Information} */ int QImage::width() const { return d ? d->width : 0; } /*! \fn int QImage::height() const Returns the height of the image. \sa {QImage#Image Information}{Image Information} */ int QImage::height() const { return d ? d->height : 0; } /*! \fn QSize QImage::size() const Returns the size of the image, i.e. its width() and height(). \sa {QImage#Image Information}{Image Information} */ QSize QImage::size() const { return d ? QSize(d->width, d->height) : QSize(0, 0); } /*! \fn QRect QImage::rect() const Returns the enclosing rectangle (0, 0, width(), height()) of the image. \sa {QImage#Image Information}{Image Information} */ QRect QImage::rect() const { return d ? QRect(0, 0, d->width, d->height) : QRect(); } /*! Returns the depth of the image. The image depth is the number of bits used to encode a single pixel, also called bits per pixel (bpp). The supported depths are 1, 8, 16, 24 and 32. \sa convertToFormat(), {QImage#Image Formats}{Image Formats}, {QImage#Image Information}{Image Information} */ int QImage::depth() const { return d ? d->depth : 0; } /*! \fn int QImage::numColors() const Returns the size of the color table for the image. Notice that numColors() returns 0 for 32-bpp images because these images do not use color tables, but instead encode pixel values as ARGB quadruplets. \sa setNumColors(), {QImage#Image Information}{Image Information} */ int QImage::numColors() const { return d ? d->colortable.size() : 0; } #ifdef QT3_SUPPORT /*! \fn QImage::Endian QImage::bitOrder() const Returns the bit order for the image. If it is a 1-bpp image, this function returns either QImage::BigEndian or QImage::LittleEndian. Otherwise, this function returns QImage::IgnoreEndian. Use the format() function instead for the monochrome formats. For non-monochrome formats the bit order is irrelevant. */ /*! Returns a pointer to the scanline pointer table. This is the beginning of the data block for the image. Use the bits() or scanLine() function instead. */ uchar **QImage::jumpTable() { if (!d) return 0; detach(); // in case detach() ran out of memory.. if (!d) return 0; if (!d->jumptable) { d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *)); uchar *data = d->data; int height = d->height; uchar **p = d->jumptable; while (height--) { *p++ = data; data += d->bytes_per_line; } } return d->jumptable; } /*! \overload */ const uchar * const *QImage::jumpTable() const { if (!d) return 0; if (!d->jumptable) { d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *)); uchar *data = d->data; int height = d->height; uchar **p = d->jumptable; while (height--) { *p++ = data; data += d->bytes_per_line; } } return d->jumptable; } #endif /*! Sets the color table used to translate color indexes to QRgb values, to the specified \a colors. When the image is used, the color table must be large enough to have entries for all the pixel/index values present in the image, otherwise the results are undefined. \sa colorTable(), setColor(), {QImage#Image Transformations}{Image Transformations} */ void QImage::setColorTable(const QVector colors) { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; d->colortable = colors; d->has_alpha_clut = false; for (int i = 0; i < d->colortable.size(); ++i) { if (qAlpha(d->colortable.at(i)) != 255) { d->has_alpha_clut = true; break; } } } /*! Returns a list of the colors contained in the image's color table, or an empty list if the image does not have a color table \sa setColorTable(), numColors(), color() */ QVector QImage::colorTable() const { return d ? d->colortable : QVector(); } /*! Returns the number of bytes occupied by the image data. \sa bytesPerLine(), bits(), {QImage#Image Information}{Image Information} */ int QImage::numBytes() const { return d ? d->nbytes : 0; } /*! Returns the number of bytes per image scanline. This is equivalent to numBytes()/ height(). \sa scanLine() */ int QImage::bytesPerLine() const { return (d && d->height) ? d->nbytes / d->height : 0; } /*! Returns the color in the color table at index \a i. The first color is at index 0. The colors in an image's color table are specified as ARGB quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and qBlue() functions to get the color value components. \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ QRgb QImage::color(int i) const { Q_ASSERT(i < numColors()); return d ? d->colortable.at(i) : QRgb(uint(-1)); } /*! \fn void QImage::setColor(int index, QRgb colorValue) Sets the color at the given \a index in the color table, to the given to \a colorValue. The color value is an ARGB quadruplet. If \a index is outside the current size of the color table, it is expanded with setNumColors(). \sa color(), numColors(), setColorTable(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ void QImage::setColor(int i, QRgb c) { if (!d) return; if (i < 0 || d->depth > 8 || i >= 1<depth) { qWarning("QImage::setColor: Index out of bound %d", i); return; } detach(); // In case detach() run out of memory if (!d) return; if (i >= d->colortable.size()) setNumColors(i+1); d->colortable[i] = c; d->has_alpha_clut |= (qAlpha(c) != 255); } /*! Returns a pointer to the pixel data at the scanline with index \a i. The first scanline is at index 0. The scanline data is aligned on a 32-bit boundary. \warning If you are accessing 32-bpp image data, cast the returned pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to read/write the pixel value. You cannot use the \c{uchar*} pointer directly, because the pixel format depends on the byte order on the underlying platform. Use qRed(), qGreen(), qBlue(), and qAlpha() to access the pixels. \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ uchar *QImage::scanLine(int i) { if (!d) return 0; detach(); // In case detach() ran out of memory if (!d) return 0; return d->data + i * d->bytes_per_line; } /*! \overload */ const uchar *QImage::scanLine(int i) const { if (!d) return 0; Q_ASSERT(i >= 0 && i < height()); return d->data + i * d->bytes_per_line; } /*! Returns a pointer to the first pixel data. This is equivalent to scanLine(0). Note that QImage uses \l{Implicit Data Sharing} {implicit data sharing}. This function performs a deep copy of the shared pixel data, thus ensuring that this QImage is the only one using the current return value. \sa scanLine(), numBytes() */ uchar *QImage::bits() { if (!d) return 0; detach(); // In case detach ran out of memory... if (!d) return 0; return d->data; } /*! \overload Note that QImage uses \l{Implicit Data Sharing} {implicit data sharing}, but this function does \e not perform a deep copy of the shared pixel data, because the returned data is const. */ const uchar *QImage::bits() const { return d ? d->data : 0; } /*! \fn void QImage::reset() Resets all image parameters and deallocates the image data. Assign a null image instead. \oldcode QImage image; image.reset(); \newcode QImage image; image = QImage(); \endcode */ /*! \fn void QImage::fill(uint pixelValue) Fills the entire image with the given \a pixelValue. If the depth of this image is 1, only the lowest bit is used. If you say fill(0), fill(2), etc., the image is filled with 0s. If you say fill(1), fill(3), etc., the image is filled with 1s. If the depth is 8, the lowest 8 bits are used and if the depth is 16 the lowest 16 bits are used. Note: QImage::pixel() returns the color of the pixel at the given coordinates while QColor::pixel() returns the pixel value of the underlying window system (essentially an index value), so normally you will want to use QImage::pixel() to use a color from an existing image or QColor::rgb() to use a specific color. \sa depth(), {QImage#Image Transformations}{Image Transformations} */ void QImage::fill(uint pixel) { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; if (d->depth == 1 || d->depth == 8) { int w = d->width; if (d->depth == 1) { if (pixel & 1) pixel = 0xffffffff; else pixel = 0; w = (w + 7) / 8; } else { pixel &= 0xff; } qt_rectfill(d->data, pixel, 0, 0, w, d->height, d->bytes_per_line); return; } else if (d->depth == 16) { qt_rectfill(reinterpret_cast(d->data), pixel, 0, 0, d->width, d->height, d->bytes_per_line); return; } else if (d->depth == 24) { qt_rectfill(reinterpret_cast(d->data), pixel, 0, 0, d->width, d->height, d->bytes_per_line); return; } if (d->format == Format_RGB32) pixel |= 0xff000000; qt_rectfill(reinterpret_cast(d->data), pixel, 0, 0, d->width, d->height, d->bytes_per_line); } /*! Inverts all pixel values in the image. The given invert \a mode only have a meaning when the image's depth is 32. The default \a mode is InvertRgb, which leaves the alpha channel unchanged. If the \a mode is InvertRgba, the alpha bits are also inverted. Inverting an 8-bit image means to replace all pixels using color index \e i with a pixel using color index 255 minus \e i. The same is the case for a 1-bit image. Note that the color table is \e not changed. \sa {QImage#Image Transformations}{Image Transformations} */ void QImage::invertPixels(InvertMode mode) { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; if (depth() != 32) { // number of used bytes pr line int bpl = (d->width * d->depth + 7) / 8; int pad = d->bytes_per_line - bpl; uchar *sl = d->data; for (int y=0; yheight; ++y) { for (int x=0; xdata; quint32 *end = (quint32*)(d->data + d->nbytes); uint xorbits = (mode == InvertRgba) ? 0xffffffff : 0x00ffffff; while (p < end) *p++ ^= xorbits; } } /*! \fn void QImage::invertPixels(bool invertAlpha) Use the invertPixels() function that takes a QImage::InvertMode parameter instead. */ /*! \fn QImage::Endian QImage::systemByteOrder() Determines the host computer byte order. Returns QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first). This function is no longer relevant for QImage. Use QSysInfo instead. */ // Windows defines these #if defined(write) # undef write #endif #if defined(close) # undef close #endif #if defined(read) # undef read #endif /*! Resizes the color table to contain \a numColors entries. If the color table is expanded, all the extra colors will be set to transparent (i.e qRgba(0, 0, 0, 0)). When the image is used, the color table must be large enough to have entries for all the pixel/index values present in the image, otherwise the results are undefined. \sa numColors(), colorTable(), setColor(), {QImage#Image Transformations}{Image Transformations} */ void QImage::setNumColors(int numColors) { if (!d) { qWarning("QImage::setNumColors: null image"); return; } detach(); // In case detach() ran out of memory if (!d) return; if (numColors == d->colortable.size()) return; if (numColors <= 0) { // use no color table d->colortable = QVector(); return; } int nc = d->colortable.size(); d->colortable.resize(numColors); for (int i = nc; i < numColors; ++i) d->colortable[i] = 0; } /*! Returns the format of the image. \sa {QImage#Image Formats}{Image Formats} */ QImage::Format QImage::format() const { return d ? d->format : Format_Invalid; } #ifdef QT3_SUPPORT /*! Returns true if alpha buffer mode is enabled; otherwise returns false. Use the hasAlphaChannel() function instead. */ bool QImage::hasAlphaBuffer() const { if (!d) return false; switch (d->format) { case Format_ARGB32: case Format_ARGB32_Premultiplied: case Format_ARGB8565_Premultiplied: case Format_ARGB8555_Premultiplied: case Format_ARGB6666_Premultiplied: case Format_ARGB4444_Premultiplied: return true; default: return false; } } /*! Enables alpha buffer mode if \a enable is true, otherwise disables it. The alpha buffer is used to set a mask when a QImage is translated to a QPixmap. If a monochrome or indexed 8-bit image has alpha channels in their color tables they will automatically detect that they have an alpha channel, so this function is not required. To force alpha channels on 32-bit images, use the convertToFormat() function. */ void QImage::setAlphaBuffer(bool enable) { if (!d || d->format == Format_Mono || d->format == Format_MonoLSB || d->format == Format_Indexed8) return; if (enable && (d->format == Format_ARGB32 || d->format == Format_ARGB32_Premultiplied || d->format == Format_ARGB8565_Premultiplied || d->format == Format_ARGB6666_Premultiplied || d->format == Format_ARGB8555_Premultiplied || d->format == Format_ARGB4444_Premultiplied)) { return; } if (!enable && (d->format == Format_RGB32 || d->format == Format_RGB555 || d->format == Format_RGB666 || d->format == Format_RGB888 || d->format == Format_RGB444)) { return; } detach(); d->format = (enable ? Format_ARGB32 : Format_RGB32); } /*! \fn bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder) Sets the image \a width, \a height, \a depth, its number of colors (in \a numColors), and bit order. Returns true if successful, or false if the parameters are incorrect or if memory cannot be allocated. The \a width and \a height is limited to 32767. \a depth must be 1, 8, or 32. If \a depth is 1, \a bitOrder must be set to either QImage::LittleEndian or QImage::BigEndian. For other depths \a bitOrder must be QImage::IgnoreEndian. This function allocates a color table and a buffer for the image data. The image data is not initialized. The image buffer is allocated as a single block that consists of a table of scanLine() pointers (jumpTable()) and the image data (bits()). Use a QImage constructor instead. */ bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder) { if (d && !d->ref.deref()) delete d; d = QImageData::create(QSize(width, height), formatFor(depth, bitOrder), numColors); return true; } /*! \fn bool QImage::create(const QSize& size, int depth, int numColors, Endian bitOrder) \overload The width and height are specified in the \a size argument. Use a QImage constructor instead. */ bool QImage::create(const QSize& size, int depth, int numColors, QImage::Endian bitOrder) { if (d && !d->ref.deref()) delete d; d = QImageData::create(size, formatFor(depth, bitOrder), numColors); return true; } #endif // QT3_SUPPORT /***************************************************************************** Internal routines for converting image depth. *****************************************************************************/ typedef void (*Image_Converter)(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags); static void convert_ARGB_to_ARGB_PM(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_ARGB32); Q_ASSERT(dest->format == QImage::Format_ARGB32_Premultiplied); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); const int src_pad = (src->bytes_per_line >> 2) - src->width; const int dest_pad = (dest->bytes_per_line >> 2) - dest->width; const QRgb *src_data = (QRgb *) src->data; QRgb *dest_data = (QRgb *) dest->data; for (int i = 0; i < src->height; ++i) { const QRgb *end = src_data + src->width; while (src_data < end) { *dest_data = PREMUL(*src_data); ++src_data; ++dest_data; } src_data += src_pad; dest_data += dest_pad; } } static void convert_ARGB_PM_to_ARGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied); Q_ASSERT(dest->format == QImage::Format_ARGB32); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); const int src_pad = (src->bytes_per_line >> 2) - src->width; const int dest_pad = (dest->bytes_per_line >> 2) - dest->width; const QRgb *src_data = (QRgb *) src->data; QRgb *dest_data = (QRgb *) dest->data; for (int i = 0; i < src->height; ++i) { const QRgb *end = src_data + src->width; while (src_data < end) { *dest_data = INV_PREMUL(*src_data); ++src_data; ++dest_data; } src_data += src_pad; dest_data += dest_pad; } } static void convert_ARGB_PM_to_RGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied); Q_ASSERT(dest->format == QImage::Format_RGB32); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); const int src_pad = (src->bytes_per_line >> 2) - src->width; const int dest_pad = (dest->bytes_per_line >> 2) - dest->width; const QRgb *src_data = (QRgb *) src->data; QRgb *dest_data = (QRgb *) dest->data; for (int i = 0; i < src->height; ++i) { const QRgb *end = src_data + src->width; while (src_data < end) { *dest_data = 0xff000000 | INV_PREMUL(*src_data); ++src_data; ++dest_data; } src_data += src_pad; dest_data += dest_pad; } } static void swap_bit_order(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB); Q_ASSERT(dest->format == QImage::Format_Mono || dest->format == QImage::Format_MonoLSB); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); Q_ASSERT(src->nbytes == dest->nbytes); Q_ASSERT(src->bytes_per_line == dest->bytes_per_line); dest->colortable = src->colortable; const uchar *src_data = src->data; const uchar *end = src->data + src->nbytes; uchar *dest_data = dest->data; while (src_data < end) { *dest_data = bitflip[*src_data]; ++src_data; ++dest_data; } } static void mask_alpha_converter(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); const int src_pad = (src->bytes_per_line >> 2) - src->width; const int dest_pad = (dest->bytes_per_line >> 2) - dest->width; const uint *src_data = (const uint *)src->data; uint *dest_data = (uint *)dest->data; for (int i = 0; i < src->height; ++i) { const uint *end = src_data + src->width; while (src_data < end) { *dest_data = *src_data | 0xff000000; ++src_data; ++dest_data; } src_data += src_pad; dest_data += dest_pad; } } static QVector fix_color_table(const QVector &ctbl, QImage::Format format) { QVector colorTable = ctbl; if (format == QImage::Format_RGB32) { // check if the color table has alpha for (int i = 0; i < colorTable.size(); ++i) if (qAlpha(colorTable.at(i) != 0xff)) colorTable[i] = colorTable.at(i) | 0xff000000; } else if (format == QImage::Format_ARGB32_Premultiplied) { // check if the color table has alpha for (int i = 0; i < colorTable.size(); ++i) colorTable[i] = PREMUL(colorTable.at(i)); } return colorTable; } // // dither_to_1: Uses selected dithering algorithm. // static void dither_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags, bool fromalpha) { Q_ASSERT(src->width == dst->width); Q_ASSERT(src->height == dst->height); Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB); dst->colortable.clear(); dst->colortable.append(0xffffffff); dst->colortable.append(0xff000000); enum { Threshold, Ordered, Diffuse } dithermode; if (fromalpha) { if ((flags & Qt::AlphaDither_Mask) == Qt::DiffuseAlphaDither) dithermode = Diffuse; else if ((flags & Qt::AlphaDither_Mask) == Qt::OrderedAlphaDither) dithermode = Ordered; else dithermode = Threshold; } else { if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither) dithermode = Threshold; else if ((flags & Qt::Dither_Mask) == Qt::OrderedDither) dithermode = Ordered; else dithermode = Diffuse; } int w = src->width; int h = src->height; int d = src->depth; uchar gray[256]; // gray map for 8 bit images bool use_gray = (d == 8); if (use_gray) { // make gray map if (fromalpha) { // Alpha 0x00 -> 0 pixels (white) // Alpha 0xFF -> 1 pixels (black) for (int i = 0; i < src->colortable.size(); i++) gray[i] = (255 - (src->colortable.at(i) >> 24)); } else { // Pixel 0x00 -> 1 pixels (black) // Pixel 0xFF -> 0 pixels (white) for (int i = 0; i < src->colortable.size(); i++) gray[i] = qGray(src->colortable.at(i)); } } uchar *dst_data = dst->data; int dst_bpl = dst->bytes_per_line; const uchar *src_data = src->data; int src_bpl = src->bytes_per_line; switch (dithermode) { case Diffuse: { int *line1 = new int[w]; int *line2 = new int[w]; int bmwidth = (w+7)/8; int *b1, *b2; int wbytes = w * (d/8); register const uchar *p = src->data; const uchar *end = p + wbytes; b2 = line2; if (use_gray) { // 8 bit image while (p < end) *b2++ = gray[*p++]; } else { // 32 bit image if (fromalpha) { while (p < end) { *b2++ = 255 - (*(uint*)p >> 24); p += 4; } } else { while (p < end) { *b2++ = qGray(*(uint*)p); p += 4; } } } for (int y=0; ydata + (y+1)*src->bytes_per_line; end = p + wbytes; b2 = line2; if (use_gray) { // 8 bit image while (p < end) *b2++ = gray[*p++]; } else { // 24 bit image if (fromalpha) { while (p < end) { *b2++ = 255 - (*(uint*)p >> 24); p += 4; } } else { while (p < end) { *b2++ = qGray(*(uint*)p); p += 4; } } } } int err; uchar *p = dst->data + y*dst->bytes_per_line; memset(p, 0, bmwidth); b1 = line1; b2 = line2; int bit = 7; for (int x=1; x<=w; x++) { if (*b1 < 128) { // black pixel err = *b1++; *p |= 1 << bit; } else { // white pixel err = *b1++ - 255; } if (bit == 0) { p++; bit = 7; } else { bit--; } if (x < w) *b1 += (err*7)>>4; // spread error to right pixel if (not_last_line) { b2[0] += (err*5)>>4; // pixel below if (x > 1) b2[-1] += (err*3)>>4; // pixel below left if (x < w) b2[1] += err>>4; // pixel below right } b2++; } } delete [] line1; delete [] line2; } break; case Ordered: { memset(dst->data, 0, dst->nbytes); if (d == 32) { for (int i=0; i> 24) >= qt_bayer_matrix[j++&15][i&15]) *m |= 1 << bit; if (bit == 0) { m++; bit = 7; } else { bit--; } } } else { while (p < end) { if ((uint)qGray(*p++) < qt_bayer_matrix[j++&15][i&15]) *m |= 1 << bit; if (bit == 0) { m++; bit = 7; } else { bit--; } } } dst_data += dst_bpl; src_data += src_bpl; } } else /* (d == 8) */ { for (int i=0; idata, 0, dst->nbytes); if (d == 32) { for (int i=0; i> 24) >= 128) *m |= 1 << bit; // Set mask "on" if (bit == 0) { m++; bit = 7; } else { bit--; } } } else { while (p < end) { if (qGray(*p++) < 128) *m |= 1 << bit; // Set pixel "black" if (bit == 0) { m++; bit = 7; } else { bit--; } } } dst_data += dst_bpl; src_data += src_bpl; } } else if (d == 8) { for (int i=0; iformat == QImage::Format_MonoLSB) { // need to swap bit order uchar *sl = dst->data; int bpl = (dst->width + 7) * dst->depth / 8; int pad = dst->bytes_per_line - bpl; for (int y=0; yheight; ++y) { for (int x=0; xwidth, src->height), QImage::Format_ARGB32); convert_ARGB_PM_to_ARGB(tmp, src, flags); dither_to_Mono(dst, tmp, flags, false); delete tmp; } // // convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit // image with a colormap. If the 32 bit image has more than 256 colors, // we convert the red,green and blue bytes into a single byte encoded // as 6 shades of each of red, green and blue. // // if dithering is needed, only 1 color at most is available for alpha. // struct QRgbMap { inline QRgbMap() : used(0) { } uchar pix; uchar used; QRgb rgb; }; static void convert_RGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags) { Q_ASSERT(src->format == QImage::Format_RGB32 || src->format == QImage::Format_ARGB32); Q_ASSERT(dst->format == QImage::Format_Indexed8); Q_ASSERT(src->width == dst->width); Q_ASSERT(src->height == dst->height); bool do_quant = (flags & Qt::DitherMode_Mask) == Qt::PreferDither || src->format == QImage::Format_ARGB32; uint alpha_mask = src->format == QImage::Format_RGB32 ? 0xff000000 : 0; const int tablesize = 997; // prime QRgbMap table[tablesize]; int pix=0; if (!dst->colortable.isEmpty()) { QVector ctbl = dst->colortable; dst->colortable.resize(256); // Preload palette into table. // Almost same code as pixel insertion below for (int i = 0; i < dst->colortable.size(); ++i) { // Find in table... QRgb p = ctbl.at(i) | alpha_mask; int hash = p % tablesize; for (;;) { if (table[hash].used) { if (table[hash].rgb == p) { // Found previous insertion - use it break; } else { // Keep searching... if (++hash == tablesize) hash = 0; } } else { // Cannot be in table Q_ASSERT (pix != 256); // too many colors // Insert into table at this unused position dst->colortable[pix] = p; table[hash].pix = pix++; table[hash].rgb = p; table[hash].used = 1; break; } } } } if ((flags & Qt::DitherMode_Mask) != Qt::PreferDither) { dst->colortable.resize(256); const uchar *src_data = src->data; uchar *dest_data = dst->data; for (int y = 0; y < src->height; y++) { // check if <= 256 colors const QRgb *s = (const QRgb *)src_data; uchar *b = dest_data; for (int x = 0; x < src->width; ++x) { QRgb p = s[x] | alpha_mask; int hash = p % tablesize; for (;;) { if (table[hash].used) { if (table[hash].rgb == (p)) { // Found previous insertion - use it break; } else { // Keep searching... if (++hash == tablesize) hash = 0; } } else { // Cannot be in table if (pix == 256) { // too many colors do_quant = true; // Break right out x = src->width; y = src->height; } else { // Insert into table at this unused position dst->colortable[pix] = p; table[hash].pix = pix++; table[hash].rgb = p; table[hash].used = 1; } break; } } *b++ = table[hash].pix; // May occur once incorrectly } src_data += src->bytes_per_line; dest_data += dst->bytes_per_line; } } int numColors = do_quant ? 256 : pix; dst->colortable.resize(numColors); if (do_quant) { // quantization needed #define MAX_R 5 #define MAX_G 5 #define MAX_B 5 #define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b)) for (int rc=0; rc<=MAX_R; rc++) // build 6x6x6 color cube for (int gc=0; gc<=MAX_G; gc++) for (int bc=0; bc<=MAX_B; bc++) dst->colortable[INDEXOF(rc,gc,bc)] = 0xff000000 | qRgb(rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B); const uchar *src_data = src->data; uchar *dest_data = dst->data; if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither) { for (int y = 0; y < src->height; y++) { const QRgb *p = (const QRgb *)src_data; const QRgb *end = p + src->width; uchar *b = dest_data; while (p < end) { #define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255)) *b++ = INDEXOF( DITHER(qRed(*p), MAX_R), DITHER(qGreen(*p), MAX_G), DITHER(qBlue(*p), MAX_B) ); #undef DITHER p++; } src_data += src->bytes_per_line; dest_data += dst->bytes_per_line; } } else if ((flags & Qt::Dither_Mask) == Qt::DiffuseDither) { int* line1[3]; int* line2[3]; int* pv[3]; line1[0] = new int[src->width]; line2[0] = new int[src->width]; line1[1] = new int[src->width]; line2[1] = new int[src->width]; line1[2] = new int[src->width]; line2[2] = new int[src->width]; pv[0] = new int[src->width]; pv[1] = new int[src->width]; pv[2] = new int[src->width]; int endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian); for (int y = 0; y < src->height; y++) { const uchar* q = src_data; const uchar* q2 = y < src->height - 1 ? q + src->bytes_per_line : src->data; uchar *b = dest_data; for (int chan = 0; chan < 3; chan++) { int *l1 = (y&1) ? line2[chan] : line1[chan]; int *l2 = (y&1) ? line1[chan] : line2[chan]; if (y == 0) { for (int i = 0; i < src->width; i++) l1[i] = q[i*4+chan+endian]; } if (y+1 < src->height) { for (int i = 0; i < src->width; i++) l2[i] = q2[i*4+chan+endian]; } // Bi-directional error diffusion if (y&1) { for (int x = 0; x < src->width; x++) { int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0); int err = l1[x] - pix * 255 / 5; pv[chan][x] = pix; // Spread the error around... if (x + 1< src->width) { l1[x+1] += (err*7)>>4; l2[x+1] += err>>4; } l2[x]+=(err*5)>>4; if (x>1) l2[x-1]+=(err*3)>>4; } } else { for (int x = src->width; x-- > 0;) { int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0); int err = l1[x] - pix * 255 / 5; pv[chan][x] = pix; // Spread the error around... if (x > 0) { l1[x-1] += (err*7)>>4; l2[x-1] += err>>4; } l2[x]+=(err*5)>>4; if (x + 1 < src->width) l2[x+1]+=(err*3)>>4; } } } if (endian) { for (int x = 0; x < src->width; x++) { *b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]); } } else { for (int x = 0; x < src->width; x++) { *b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]); } } src_data += src->bytes_per_line; dest_data += dst->bytes_per_line; } delete [] line1[0]; delete [] line2[0]; delete [] line1[1]; delete [] line2[1]; delete [] line1[2]; delete [] line2[2]; delete [] pv[0]; delete [] pv[1]; delete [] pv[2]; } else { // OrderedDither for (int y = 0; y < src->height; y++) { const QRgb *p = (const QRgb *)src_data; const QRgb *end = p + src->width; uchar *b = dest_data; int x = 0; while (p < end) { uint d = qt_bayer_matrix[y & 15][x & 15] << 8; #define DITHER(p, d, m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) >> 16)) *b++ = INDEXOF( DITHER(qRed(*p), d, MAX_R), DITHER(qGreen(*p), d, MAX_G), DITHER(qBlue(*p), d, MAX_B) ); #undef DITHER p++; x++; } src_data += src->bytes_per_line; dest_data += dst->bytes_per_line; } } if (src->format != QImage::Format_RGB32 && src->format != QImage::Format_RGB16) { const int trans = 216; Q_ASSERT(dst->colortable.size() > trans); dst->colortable[trans] = 0; QImageData *mask = QImageData::create(QSize(src->width, src->height), QImage::Format_Mono); dither_to_Mono(mask, src, flags, true); uchar *dst_data = dst->data; const uchar *mask_data = mask->data; for (int y = 0; y < src->height; y++) { for (int x = 0; x < src->width ; x++) { if (!(mask_data[x>>3] & (0x80 >> (x & 7)))) dst_data[x] = trans; } mask_data += mask->bytes_per_line; dst_data += dst->bytes_per_line; } dst->has_alpha_clut = true; delete mask; } #undef MAX_R #undef MAX_G #undef MAX_B #undef INDEXOF } } static void convert_ARGB_PM_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags) { QImageData *tmp = QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32); convert_ARGB_PM_to_ARGB(tmp, src, flags); convert_RGB_to_Indexed8(dst, tmp, flags); delete tmp; } static void convert_ARGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags) { convert_RGB_to_Indexed8(dst, src, flags); } static void convert_Indexed8_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_Indexed8); Q_ASSERT(dest->format == QImage::Format_RGB32 || dest->format == QImage::Format_ARGB32 || dest->format == QImage::Format_ARGB32_Premultiplied); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); QVector colorTable = fix_color_table(src->colortable, dest->format); int w = src->width; const uchar *src_data = src->data; uchar *dest_data = dest->data; for (int y = 0; y < src->height; y++) { uint *p = (uint *)dest_data; const uchar *b = src_data; uint *end = p + w; while (p < end) *p++ = colorTable.at(*b++); src_data += src->bytes_per_line; dest_data += dest->bytes_per_line; } } static void convert_Mono_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB); Q_ASSERT(dest->format == QImage::Format_RGB32 || dest->format == QImage::Format_ARGB32 || dest->format == QImage::Format_ARGB32_Premultiplied); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); QVector colorTable = fix_color_table(src->colortable, dest->format); // Default to black / white colors if (colorTable.size() < 2) { if (colorTable.size() == 0) colorTable << 0xff000000; colorTable << 0xffffffff; } const uchar *src_data = src->data; uchar *dest_data = dest->data; if (src->format == QImage::Format_Mono) { for (int y = 0; y < dest->height; y++) { register uint *p = (uint *)dest_data; for (int x = 0; x < dest->width; x++) *p++ = colorTable.at((src_data[x>>3] >> (7 - (x & 7))) & 1); src_data += src->bytes_per_line; dest_data += dest->bytes_per_line; } } else { for (int y = 0; y < dest->height; y++) { register uint *p = (uint *)dest_data; for (int x = 0; x < dest->width; x++) *p++ = colorTable.at((src_data[x>>3] >> (x & 7)) & 1); src_data += src->bytes_per_line; dest_data += dest->bytes_per_line; } } } static void convert_Mono_to_Indexed8(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags) { Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB); Q_ASSERT(dest->format == QImage::Format_Indexed8); Q_ASSERT(src->width == dest->width); Q_ASSERT(src->height == dest->height); QVector ctbl = src->colortable; if (ctbl.size() > 2) { ctbl.resize(2); } else if (ctbl.size() < 2) { if (ctbl.size() == 0) ctbl << 0xff000000; ctbl << 0xffffffff; } dest->colortable = ctbl; dest->has_alpha_clut = src->has_alpha_clut; const uchar *src_data = src->data; uchar *dest_data = dest->data; if (src->format == QImage::Format_Mono) { for (int y = 0; y < dest->height; y++) { register uchar *p = dest_data; for (int x = 0; x < dest->width; x++) *p++ = (src_data[x>>3] >> (7 - (x & 7))) & 1; src_data += src->bytes_per_line; dest_data += dest->bytes_per_line; } } else { for (int y = 0; y < dest->height; y++) { register uchar *p = dest_data; for (int x = 0; x < dest->width; x++) *p++ = (src_data[x>>3] >> (x & 7)) & 1; src_data += src->bytes_per_line; dest_data += dest->bytes_per_line; } } } #define CONVERT_DECL(DST, SRC) \ static void convert_##SRC##_to_##DST(QImageData *dest, \ const QImageData *src, \ Qt::ImageConversionFlags) \ { \ qt_rectconvert(reinterpret_cast(dest->data), \ reinterpret_cast(src->data), \ 0, 0, src->width, src->height, \ dest->bytes_per_line, src->bytes_per_line); \ } CONVERT_DECL(quint32, quint16) CONVERT_DECL(quint16, quint32) CONVERT_DECL(quint32, qargb8565) CONVERT_DECL(qargb8565, quint32) CONVERT_DECL(quint32, qrgb555) CONVERT_DECL(qrgb666, quint32) CONVERT_DECL(quint32, qrgb666) CONVERT_DECL(qargb6666, quint32) CONVERT_DECL(quint32, qargb6666) CONVERT_DECL(qrgb555, quint32) #if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16)) CONVERT_DECL(quint16, qrgb555) CONVERT_DECL(qrgb555, quint16) #endif CONVERT_DECL(quint32, qrgb888) CONVERT_DECL(qrgb888, quint32) CONVERT_DECL(quint32, qargb8555) CONVERT_DECL(qargb8555, quint32) CONVERT_DECL(quint32, qrgb444) CONVERT_DECL(qrgb444, quint32) CONVERT_DECL(quint32, qargb4444) CONVERT_DECL(qargb4444, quint32) #undef CONVERT_DECL #define CONVERT_PTR(DST, SRC) convert_##SRC##_to_##DST /* Format_Invalid, Format_Mono, Format_MonoLSB, Format_Indexed8, Format_RGB32, Format_ARGB32, Format_ARGB32_Premultiplied, Format_RGB16, Format_ARGB8565_Premultiplied, Format_RGB666, Format_ARGB6666_Premultiplied, Format_RGB555, Format_ARGB8555_Premultiplied, Format_RGB888 Format_RGB444 Format_ARGB4444_Premultiplied */ // first index source, second dest static const Image_Converter converter_map[QImage::NImageFormats][QImage::NImageFormats] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, swap_bit_order, convert_Mono_to_Indexed8, convert_Mono_to_X32, convert_Mono_to_X32, convert_Mono_to_X32, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_Mono { 0, swap_bit_order, 0, convert_Mono_to_Indexed8, convert_Mono_to_X32, convert_Mono_to_X32, convert_Mono_to_X32, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_MonoLSB { 0, convert_X_to_Mono, convert_X_to_Mono, 0, convert_Indexed8_to_X32, convert_Indexed8_to_X32, convert_Indexed8_to_X32, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_Indexed8 { 0, convert_X_to_Mono, convert_X_to_Mono, convert_RGB_to_Indexed8, 0, mask_alpha_converter, mask_alpha_converter, CONVERT_PTR(quint16, quint32), CONVERT_PTR(qargb8565, quint32), CONVERT_PTR(qrgb666, quint32), CONVERT_PTR(qargb6666, quint32), CONVERT_PTR(qrgb555, quint32), CONVERT_PTR(qargb8555, quint32), CONVERT_PTR(qrgb888, quint32), CONVERT_PTR(qrgb444, quint32), CONVERT_PTR(qargb4444, quint32) }, // Format_RGB32 { 0, convert_X_to_Mono, convert_X_to_Mono, convert_ARGB_to_Indexed8, mask_alpha_converter, 0, convert_ARGB_to_ARGB_PM, CONVERT_PTR(quint16, quint32), CONVERT_PTR(qargb8565, quint32), CONVERT_PTR(qrgb666, quint32), CONVERT_PTR(qargb6666, quint32), CONVERT_PTR(qrgb555, quint32), CONVERT_PTR(qargb8555, quint32), CONVERT_PTR(qrgb888, quint32), CONVERT_PTR(qrgb444, quint32), CONVERT_PTR(qargb4444, quint32) }, // Format_ARGB32 { 0, convert_ARGB_PM_to_Mono, convert_ARGB_PM_to_Mono, convert_ARGB_PM_to_Indexed8, convert_ARGB_PM_to_RGB, convert_ARGB_PM_to_ARGB, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_ARGB32_Premultiplied { 0, 0, 0, 0, CONVERT_PTR(quint32, quint16), CONVERT_PTR(quint32, quint16), CONVERT_PTR(quint32, quint16), 0, 0, 0, 0, #if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16)) CONVERT_PTR(qrgb555, quint16), #else 0, #endif 0, 0, 0, 0 }, // Format_RGB16 { 0, 0, 0, 0, CONVERT_PTR(quint32, qargb8565), CONVERT_PTR(quint32, qargb8565), CONVERT_PTR(quint32, qargb8565), 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_ARGB8565_Premultiplied { 0, 0, 0, 0, CONVERT_PTR(quint32, qrgb666), CONVERT_PTR(quint32, qrgb666), CONVERT_PTR(quint32, qrgb666), 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_RGB666 { 0, 0, 0, 0, CONVERT_PTR(quint32, qargb6666), CONVERT_PTR(quint32, qargb6666), CONVERT_PTR(quint32, qargb6666), 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_ARGB6666_Premultiplied { 0, 0, 0, 0, CONVERT_PTR(quint32, qrgb555), CONVERT_PTR(quint32, qrgb555), CONVERT_PTR(quint32, qrgb555), #if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16)) CONVERT_PTR(quint16, qrgb555), #else 0, #endif 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_RGB555 { 0, 0, 0, 0, CONVERT_PTR(quint32, qargb8555), CONVERT_PTR(quint32, qargb8555), CONVERT_PTR(quint32, qargb8555), 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_ARGB8555_Premultiplied { 0, 0, 0, 0, CONVERT_PTR(quint32, qrgb888), CONVERT_PTR(quint32, qrgb888), CONVERT_PTR(quint32, qrgb888), 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_RGB888 { 0, 0, 0, 0, CONVERT_PTR(quint32, qrgb444), CONVERT_PTR(quint32, qrgb444), CONVERT_PTR(quint32, qrgb444), 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Format_RGB444 { 0, 0, 0, 0, CONVERT_PTR(quint32, qargb4444), CONVERT_PTR(quint32, qargb4444), CONVERT_PTR(quint32, qargb4444), 0, 0, 0, 0, 0, 0, 0, 0, 0 } // Format_ARGB4444_Premultiplied }; /*! Returns a copy of the image in the given \a format. The specified image conversion \a flags control how the image data is handled during the conversion process. \sa {QImage#Image Format}{Image Format} */ QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const { if (!d || d->format == format) return *this; if (format == Format_Invalid || d->format == Format_Invalid) return QImage(); const Image_Converter *converterPtr = &converter_map[d->format][format]; Image_Converter converter = *converterPtr; if (converter) { QImage image(d->width, d->height, format); QIMAGE_SANITYCHECK_MEMORY(image); image.setDotsPerMeterY(dotsPerMeterY()); image.setDotsPerMeterX(dotsPerMeterX()); #if !defined(QT_NO_IMAGE_TEXT) image.d->text = d->text; #endif // !QT_NO_IMAGE_TEXT converter(image.d, d, flags); return image; } Q_ASSERT(format != QImage::Format_ARGB32); Q_ASSERT(d->format != QImage::Format_ARGB32); QImage image = convertToFormat(Format_ARGB32, flags); return image.convertToFormat(format, flags); } static inline int pixel_distance(QRgb p1, QRgb p2) { int r1 = qRed(p1); int g1 = qGreen(p1); int b1 = qBlue(p1); int a1 = qAlpha(p1); int r2 = qRed(p2); int g2 = qGreen(p2); int b2 = qBlue(p2); int a2 = qAlpha(p2); return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2); } static inline int closestMatch(QRgb pixel, const QVector &clut) { int idx = 0; int current_distance = INT_MAX; for (int i=0; i &clut) { QImage dest(src.size(), format); dest.setColorTable(clut); #if !defined(QT_NO_IMAGE_TEXT) QString textsKeys = src.text(); QStringList textKeyList = textsKeys.split(QLatin1Char('\n'), QString::SkipEmptyParts); foreach (const QString &textKey, textKeyList) { QStringList textKeySplitted = textKey.split(QLatin1String(": ")); dest.setText(textKeySplitted[0], textKeySplitted[1]); } #endif // !QT_NO_IMAGE_TEXT int h = src.height(); int w = src.width(); QHash cache; if (format == QImage::Format_Indexed8) { for (int y=0; y table = clut; table.resize(2); for (int y=0; y &colorTable, Qt::ImageConversionFlags flags) const { if (d->format == format) return *this; if (format <= QImage::Format_Indexed8 && depth() == 32) { return convertWithPalette(*this, format, colorTable); } const Image_Converter *converterPtr = &converter_map[d->format][format]; Image_Converter converter = *converterPtr; if (!converter) return QImage(); QImage image(d->width, d->height, format); QIMAGE_SANITYCHECK_MEMORY(image); #if !defined(QT_NO_IMAGE_TEXT) image.d->text = d->text; #endif // !QT_NO_IMAGE_TEXT converter(image.d, d, flags); return image; } #ifdef QT3_SUPPORT /*! Converts the depth (bpp) of the image to the given \a depth and returns the converted image. The original image is not changed. Returns this image if \a depth is equal to the image depth, or a null image if this image cannot be converted. The \a depth argument must be 1, 8 or 32. If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the \a flags to specify how you'd prefer this to happen. Use the convertToFormat() function instead. */ QImage QImage::convertDepth(int depth, Qt::ImageConversionFlags flags) const { if (!d || d->depth == depth) return *this; Format format = formatFor (depth, QImage::LittleEndian); return convertToFormat(format, flags); } #endif /*! \fn bool QImage::valid(const QPoint &pos) const Returns true if \a pos is a valid coordinate pair within the image; otherwise returns false. \sa rect(), QRect::contains() */ /*! \overload Returns true if QPoint(\a x, \a y) is a valid coordinate pair within the image; otherwise returns false. */ bool QImage::valid(int x, int y) const { return d && x >= 0 && x < d->width && y >= 0 && y < d->height; } /*! \fn int QImage::pixelIndex(const QPoint &position) const Returns the pixel index at the given \a position. If \a position is not valid, or if the image is not a paletted image (depth() > 8), the results are undefined. \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload Returns the pixel index at (\a x, \a y). */ int QImage::pixelIndex(int x, int y) const { if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range", x, y); return -12345; } const uchar * s = scanLine(y); switch(d->format) { case Format_Mono: return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; case Format_MonoLSB: return (*(s + (x >> 3)) >> (x & 7)) & 1; case Format_Indexed8: return (int)s[x]; default: qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)", d->depth); } return 0; } /*! \fn QRgb QImage::pixel(const QPoint &position) const Returns the color of the pixel at the given \a position. If the \a position is not valid, the results are undefined. \warning This function is expensive when used for massive pixel manipulations. \sa setPixel(), valid(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload Returns the color of the pixel at coordinates (\a x, \a y). */ QRgb QImage::pixel(int x, int y) const { if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { qWarning("QImage::pixel: coordinate (%d,%d) out of range", x, y); return 12345; } const uchar * s = scanLine(y); switch(d->format) { case Format_Mono: return d->colortable.at((*(s + (x >> 3)) >> (7- (x & 7))) & 1); case Format_MonoLSB: return d->colortable.at((*(s + (x >> 3)) >> (x & 7)) & 1); case Format_Indexed8: return d->colortable.at((int)s[x]); case Format_ARGB8565_Premultiplied: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_RGB666: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_ARGB6666_Premultiplied: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_RGB555: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_ARGB8555_Premultiplied: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_RGB888: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_RGB444: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_ARGB4444_Premultiplied: return qt_colorConvert(reinterpret_cast(s)[x], 0); case Format_RGB16: return qt_colorConvert(reinterpret_cast(s)[x], 0); default: return ((QRgb*)s)[x]; } } /*! \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb) Sets the pixel index or color at the given \a position to \a index_or_rgb. If the image's format is either monochrome or 8-bit, the given \a index_or_rgb value must be an index in the image's color table, otherwise the parameter must be a QRgb value. If \a position is not a valid coordinate pair in the image, or if \a index_or_rgb >= numColors() in the case of monochrome and 8-bit images, the result is undefined. \warning This function is expensive due to the call of the internal \c{detach()} function called within; if performance is a concern, we recommend the use of \l{QImage::}{scanLine()} to access pixel data directly. \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation} */ /*! \overload Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb. */ void QImage::setPixel(int x, int y, uint index_or_rgb) { if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { qWarning("QImage::setPixel: coordinate (%d,%d) out of range", x, y); return; } // detach is called from within scanLine uchar * s = scanLine(y); const quint32p p = quint32p::fromRawData(index_or_rgb); switch(d->format) { case Format_Mono: case Format_MonoLSB: if (index_or_rgb > 1) { qWarning("QImage::setPixel: Index %d out of range", index_or_rgb); } else if (format() == Format_MonoLSB) { if (index_or_rgb==0) *(s + (x >> 3)) &= ~(1 << (x & 7)); else *(s + (x >> 3)) |= (1 << (x & 7)); } else { if (index_or_rgb==0) *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); else *(s + (x >> 3)) |= (1 << (7-(x & 7))); } break; case Format_Indexed8: if (index_or_rgb > (uint)d->colortable.size()) { qWarning("QImage::setPixel: Index %d out of range", index_or_rgb); return; } s[x] = index_or_rgb; break; case Format_RGB32: //make sure alpha is 255, we depend on it in qdrawhelper for cases // when image is set as a texture pattern on a qbrush ((uint *)s)[x] = uint(255 << 24) | index_or_rgb; break; case Format_ARGB32: case Format_ARGB32_Premultiplied: ((uint *)s)[x] = index_or_rgb; break; case Format_RGB16: ((quint16 *)s)[x] = qt_colorConvert(p, 0); break; case Format_ARGB8565_Premultiplied: ((qargb8565*)s)[x] = qt_colorConvert(p, 0); break; case Format_RGB666: ((qrgb666*)s)[x] = qt_colorConvert(p, 0); break; case Format_ARGB6666_Premultiplied: ((qargb6666*)s)[x] = qt_colorConvert(p, 0); break; case Format_RGB555: ((qrgb555*)s)[x] = qt_colorConvert(p, 0); break; case Format_ARGB8555_Premultiplied: ((qargb8555*)s)[x] = qt_colorConvert(p, 0); break; case Format_RGB888: ((qrgb888*)s)[x] = qt_colorConvert(p, 0); break; case Format_RGB444: ((qrgb444*)s)[x] = qt_colorConvert(p, 0); break; case Format_ARGB4444_Premultiplied: ((qargb4444*)s)[x] = qt_colorConvert(p, 0); break; case Format_Invalid: case NImageFormats: Q_ASSERT(false); } } #ifdef QT3_SUPPORT /*! Converts the bit order of the image to the given \a bitOrder and returns the converted image. The original image is not changed. Returns this image if the given \a bitOrder is equal to the image current bit order, or a null image if this image cannot be converted. Use convertToFormat() instead. */ QImage QImage::convertBitOrder(Endian bitOrder) const { if (!d || isNull() || d->depth != 1 || !(bitOrder == BigEndian || bitOrder == LittleEndian)) return QImage(); if ((d->format == Format_Mono && bitOrder == BigEndian) || (d->format == Format_MonoLSB && bitOrder == LittleEndian)) return *this; QImage image(d->width, d->height, d->format == Format_Mono ? Format_MonoLSB : Format_Mono); const uchar *data = d->data; const uchar *end = data + d->nbytes; uchar *ndata = image.d->data; while (data < end) *ndata++ = bitflip[*data++]; image.setDotsPerMeterX(dotsPerMeterX()); image.setDotsPerMeterY(dotsPerMeterY()); image.d->colortable = d->colortable; return image; } #endif /*! Returns true if all the colors in the image are shades of gray (i.e. their red, green and blue components are equal); otherwise false. Note that this function is slow for images without color table. \sa isGrayscale() */ bool QImage::allGray() const { if (!d) return true; if (d->depth == 32) { int p = width()*height(); const QRgb* b = (const QRgb*)bits(); while (p--) if (!qIsGray(*b++)) return false; } else if (d->depth == 16) { int p = width()*height(); const ushort* b = (const ushort *)bits(); while (p--) if (!qIsGray(qt_colorConvert(*b++, 0))) return false; } else if (d->format == QImage::Format_RGB888) { int p = width()*height(); const qrgb888* b = (const qrgb888 *)bits(); while (p--) if (!qIsGray(qt_colorConvert(*b++, 0))) return false; } else { if (d->colortable.isEmpty()) return true; for (int i = 0; i < numColors(); i++) if (!qIsGray(d->colortable.at(i))) return false; } return true; } /*! For 32-bit images, this function is equivalent to allGray(). For 8-bpp images, this function returns true if color(i) is QRgb(i, i, i) for all indexes of the color table; otherwise returns false. \sa allGray(), {QImage#Image Formats}{Image Formats} */ bool QImage::isGrayscale() const { if (!d) return false; switch (depth()) { case 32: case 24: case 16: return allGray(); case 8: { for (int i = 0; i < numColors(); i++) if (d->colortable.at(i) != qRgb(i,i,i)) return false; return true; } } return false; } /*! \fn QImage QImage::smoothScale(int width, int height, Qt::AspectRatioMode mode) const Use scaled() instead. \oldcode QImage image; image.smoothScale(width, height, mode); \newcode QImage image; image.scaled(width, height, mode, Qt::SmoothTransformation); \endcode */ /*! \fn QImage QImage::smoothScale(const QSize &size, Qt::AspectRatioMode mode) const \overload Use scaled() instead. \oldcode QImage image; image.smoothScale(size, mode); \newcode QImage image; image.scaled(size, mode, Qt::SmoothTransformation); \endcode */ /*! \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformMode) const \overload Returns a copy of the image scaled to a rectangle with the given \a width and \a height according to the given \a aspectRatioMode and \a transformMode. If either the \a width or the \a height is zero or negative, this function returns a null image. */ /*! \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformMode) const Returns a copy of the image scaled to a rectangle defined by the given \a size according to the given \a aspectRatioMode and \a transformMode. \image qimage-scaling.png \list \i If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image is scaled to \a size. \i If \a aspectRatioMode is Qt::KeepAspectRatio, the image is scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio. \i If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding, the image is scaled to a rectangle as small as possible outside \a size, preserving the aspect ratio. \endlist If the given \a size is empty, this function returns a null image. \sa isNull(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const { if (!d) { qWarning("QImage::scaled: Image is a null image"); return QImage(); } if (s.isEmpty()) return QImage(); QSize newSize = size(); newSize.scale(s, aspectMode); if (newSize == size()) return copy(); QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height()); QImage img = transformed(wm, mode); return img; } /*! \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const Returns a scaled copy of the image. The returned image is scaled to the given \a width using the specified transformation \a mode. This function automatically calculates the height of the image so that its aspect ratio is preserved. If the given \a width is 0 or negative, a null image is returned. \sa {QImage#Image Transformations}{Image Transformations} */ QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const { if (!d) { qWarning("QImage::scaleWidth: Image is a null image"); return QImage(); } if (w <= 0) return QImage(); qreal factor = (qreal) w / width(); QTransform wm = QTransform::fromScale(factor, factor); return transformed(wm, mode); } /*! \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const Returns a scaled copy of the image. The returned image is scaled to the given \a height using the specified transformation \a mode. This function automatically calculates the width of the image so that the ratio of the image is preserved. If the given \a height is 0 or negative, a null image is returned. \sa {QImage#Image Transformations}{Image Transformations} */ QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const { if (!d) { qWarning("QImage::scaleHeight: Image is a null image"); return QImage(); } if (h <= 0) return QImage(); qreal factor = (qreal) h / height(); QTransform wm = QTransform::fromScale(factor, factor); return transformed(wm, mode); } /*! \fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height) Returns the actual matrix used for transforming an image with the given \a width, \a height and \a matrix. When transforming an image using the transformed() function, the transformation matrix is internally adjusted to compensate for unwanted translation, i.e. transformed() returns the smallest image containing all transformed points of the original image. This function returns the modified matrix, which maps points correctly from the original image into the new image. \sa transformed(), {QImage#Image Transformations}{Image Transformations} */ QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h) { return trueMatrix(QTransform(matrix), w, h).toAffine(); } /*! Returns a copy of the image that is transformed using the given transformation \a matrix and transformation \a mode. The transformation \a matrix is internally adjusted to compensate for unwanted translation; i.e. the image produced is the smallest image that contains all the transformed points of the original image. Use the trueMatrix() function to retrieve the actual matrix used for transforming an image. \sa trueMatrix(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const { return transformed(QTransform(matrix), mode); } /*! Builds and returns a 1-bpp mask from the alpha buffer in this image. Returns a null image if the image's format is QImage::Format_RGB32. The \a flags argument is a bitwise-OR of the Qt::ImageConversionFlags, and controls the conversion process. Passing 0 for flags sets all the default options. The returned image has little-endian bit order (i.e. the image's format is QImage::Format_MonoLSB), which you can convert to big-endian (QImage::Format_Mono) using the convertToFormat() function. \sa createHeuristicMask(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const { if (!d || d->format == QImage::Format_RGB32) return QImage(); if (d->depth == 1) { // A monochrome pixmap, with alpha channels on those two colors. // Pretty unlikely, so use less efficient solution. return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags); } QImage mask(d->width, d->height, Format_MonoLSB); dither_to_Mono(mask.d, d, flags, true); return mask; } #ifndef QT_NO_IMAGE_HEURISTIC_MASK /*! Creates and returns a 1-bpp heuristic mask for this image. The function works by selecting a color from one of the corners, then chipping away pixels of that color starting at all the edges. The four corners vote for which color is to be masked away. In case of a draw (this generally means that this function is not applicable to the image), the result is arbitrary. The returned image has little-endian bit order (i.e. the image's format is QImage::Format_MonoLSB), which you can convert to big-endian (QImage::Format_Mono) using the convertToFormat() function. If \a clipTight is true (the default) the mask is just large enough to cover the pixels; otherwise, the mask is larger than the data pixels. Note that this function disregards the alpha buffer. \sa createAlphaMask(), {QImage#Image Transformations}{Image Transformations} */ QImage QImage::createHeuristicMask(bool clipTight) const { if (!d) return QImage(); if (d->depth != 32) { QImage img32 = convertToFormat(Format_RGB32); return img32.createHeuristicMask(clipTight); } #define PIX(x,y) (*((QRgb*)scanLine(y)+x) & 0x00ffffff) int w = width(); int h = height(); QImage m(w, h, Format_MonoLSB); m.setNumColors(2); m.setColor(0, QColor(Qt::color0).rgba()); m.setColor(1, QColor(Qt::color1).rgba()); m.fill(0xff); QRgb background = PIX(0,0); if (background != PIX(w-1,0) && background != PIX(0,h-1) && background != PIX(w-1,h-1)) { background = PIX(w-1,0); if (background != PIX(w-1,h-1) && background != PIX(0,h-1) && PIX(0,h-1) == PIX(w-1,h-1)) { background = PIX(w-1,h-1); } } int x,y; bool done = false; uchar *ypp, *ypc, *ypn; while(!done) { done = true; ypn = m.scanLine(0); ypc = 0; for (y = 0; y < h; y++) { ypp = ypc; ypc = ypn; ypn = (y == h-1) ? 0 : m.scanLine(y+1); QRgb *p = (QRgb *)scanLine(y); for (x = 0; x < w; x++) { // slowness here - it's possible to do six of these tests // together in one go. oh well. if ((x == 0 || y == 0 || x == w-1 || y == h-1 || !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || !(*(ypp + (x >> 3)) & (1 << (x & 7))) || !(*(ypn + (x >> 3)) & (1 << (x & 7)))) && ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) && ((*p & 0x00ffffff) == background)) { done = false; *(ypc + (x >> 3)) &= ~(1 << (x & 7)); } p++; } } } if (!clipTight) { ypn = m.scanLine(0); ypc = 0; for (y = 0; y < h; y++) { ypp = ypc; ypc = ypn; ypn = (y == h-1) ? 0 : m.scanLine(y+1); QRgb *p = (QRgb *)scanLine(y); for (x = 0; x < w; x++) { if ((*p & 0x00ffffff) != background) { if (x > 0) *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); if (x < w-1) *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); if (y > 0) *(ypp + (x >> 3)) |= (1 << (x & 7)); if (y < h-1) *(ypn + (x >> 3)) |= (1 << (x & 7)); } p++; } } } #undef PIX return m; } #endif //QT_NO_IMAGE_HEURISTIC_MASK /*! Creates and returns a mask for this image based on the given \a color value. If the \a mode is MaskInColor (the default value), all pixels matching \a color will be opaque pixels in the mask. If \a mode is MaskOutColor, all pixels matching the given color will be transparent. \sa createAlphaMask(), createHeuristicMask() */ QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const { if (!d) return QImage(); QImage maskImage(size(), QImage::Format_MonoLSB); maskImage.fill(0); uchar *s = maskImage.bits(); if (depth() == 32) { for (int h = 0; h < d->height; h++) { const uint *sl = (uint *) scanLine(h); for (int w = 0; w < d->width; w++) { if (sl[w] == color) *(s + (w >> 3)) |= (1 << (w & 7)); } s += maskImage.bytesPerLine(); } } else { for (int h = 0; h < d->height; h++) { for (int w = 0; w < d->width; w++) { if ((uint) pixel(w, h) == color) *(s + (w >> 3)) |= (1 << (w & 7)); } s += maskImage.bytesPerLine(); } } if (mode == Qt::MaskOutColor) maskImage.invertPixels(); return maskImage; } /* This code is contributed by Philipp Lang, GeneriCom Software Germany (www.generi.com) under the terms of the QPL, Version 1.0 */ /*! \fn QImage QImage::mirror(bool horizontal, bool vertical) const Use mirrored() instead. */ /*! Returns a mirror of the image, mirrored in the horizontal and/or the vertical direction depending on whether \a horizontal and \a vertical are set to true or false. Note that the original image is not changed. \sa {QImage#Image Transformations}{Image Transformations} */ QImage QImage::mirrored(bool horizontal, bool vertical) const { if (!d) return QImage(); if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) return *this; int w = d->width; int h = d->height; // Create result image, copy colormap QImage result(d->width, d->height, d->format); // check if we ran out of of memory.. if (!result.d) return QImage(); result.d->colortable = d->colortable; result.d->has_alpha_clut = d->has_alpha_clut; if (depth() == 1) w = (w+7)/8; int dxi = horizontal ? -1 : 1; int dxs = horizontal ? w-1 : 0; int dyi = vertical ? -1 : 1; int dy = vertical ? h-1: 0; // 1 bit, 8 bit if (d->depth == 1 || d->depth == 8) { for (int sy = 0; sy < h; sy++, dy += dyi) { quint8* ssl = (quint8*)(d->data + sy*d->bytes_per_line); quint8* dsl = (quint8*)(result.d->data + dy*result.d->bytes_per_line); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } // 16 bit else if (d->depth == 16) { for (int sy = 0; sy < h; sy++, dy += dyi) { quint16* ssl = (quint16*)(d->data + sy*d->bytes_per_line); quint16* dsl = (quint16*)(result.d->data + dy*result.d->bytes_per_line); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } // 24 bit else if (d->depth == 24) { for (int sy = 0; sy < h; sy++, dy += dyi) { quint24* ssl = (quint24*)(d->data + sy*d->bytes_per_line); quint24* dsl = (quint24*)(result.d->data + dy*result.d->bytes_per_line); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } // 32 bit else if (d->depth == 32) { for (int sy = 0; sy < h; sy++, dy += dyi) { quint32* ssl = (quint32*)(d->data + sy*d->bytes_per_line); quint32* dsl = (quint32*)(result.d->data + dy*result.d->bytes_per_line); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } // special handling of 1 bit images for horizontal mirroring if (horizontal && d->depth == 1) { int shift = width() % 8; for (int y = h-1; y >= 0; y--) { quint8* a0 = (quint8*)(result.d->data + y*d->bytes_per_line); // Swap bytes quint8* a = a0+dxs; while (a >= a0) { *a = bitflip[*a]; a--; } // Shift bits if unaligned if (shift != 0) { a = a0+dxs; quint8 c = 0; if (format() == Format_MonoLSB) { while (a >= a0) { quint8 nc = *a << shift; *a = (*a >> (8-shift)) | c; --a; c = nc; } } else { while (a >= a0) { quint8 nc = *a >> shift; *a = (*a << (8-shift)) | c; --a; c = nc; } } } } } return result; } /*! \fn QImage QImage::swapRGB() const Use rgbSwapped() instead. \omit Returns a QImage in which the values of the red and blue components of all pixels have been swapped, effectively converting an RGB image to an BGR image. The original QImage is not changed. \endomit */ /*! Returns a QImage in which the values of the red and blue components of all pixels have been swapped, effectively converting an RGB image to an BGR image. The original QImage is not changed. \sa {QImage#Image Transformations}{Image Transformations} */ QImage QImage::rgbSwapped() const { if (isNull()) return *this; QImage res; switch (d->format) { case Format_Invalid: case NImageFormats: Q_ASSERT(false); break; case Format_Mono: case Format_MonoLSB: case Format_Indexed8: res = copy(); for (int i = 0; i < res.d->colortable.size(); i++) { QRgb c = res.d->colortable.at(i); res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); } break; case Format_RGB32: case Format_ARGB32: case Format_ARGB32_Premultiplied: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { uint *q = (uint*)res.scanLine(i); uint *p = (uint*)scanLine(i); uint *end = p + d->width; while (p < end) { *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00); p++; q++; } } break; case Format_RGB16: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { ushort *q = (ushort*)res.scanLine(i); const ushort *p = (const ushort*)scanLine(i); const ushort *end = p + d->width; while (p < end) { *q = ((*p << 11) & 0xf800) | ((*p >> 11) & 0x1f) | (*p & 0x07e0); p++; q++; } } break; case Format_ARGB8565_Premultiplied: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { quint8 *p = (quint8*)scanLine(i); const quint8 *end = p + d->width * sizeof(qargb8565); while (p < end) { quint16 *q = reinterpret_cast(p + 1); *q = ((*q << 11) & 0xf800) | ((*q >> 11) & 0x1f) | (*q & 0x07e0); p += sizeof(qargb8565); } } break; case Format_RGB666: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { qrgb666 *q = reinterpret_cast(res.scanLine(i)); const qrgb666 *p = reinterpret_cast(scanLine(i)); const qrgb666 *end = p + d->width; while (p < end) { const QRgb rgb = quint32(*p++); *q++ = qRgb(qBlue(rgb), qGreen(rgb), qRed(rgb)); } } break; case Format_ARGB6666_Premultiplied: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { qargb6666 *q = reinterpret_cast(res.scanLine(i)); const qargb6666 *p = reinterpret_cast(scanLine(i)); const qargb6666 *end = p + d->width; while (p < end) { const QRgb rgb = quint32(*p++); *q++ = qRgba(qBlue(rgb), qGreen(rgb), qRed(rgb), qAlpha(rgb)); } } break; case Format_RGB555: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { ushort *q = (ushort*)res.scanLine(i); const ushort *p = (const ushort*)scanLine(i); const ushort *end = p + d->width; while (p < end) { *q = ((*p << 10) & 0x7800) | ((*p >> 10) & 0x1f) | (*p & 0x83e0); p++; q++; } } break; case Format_ARGB8555_Premultiplied: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { quint8 *p = (quint8*)scanLine(i); const quint8 *end = p + d->width * sizeof(qargb8555); while (p < end) { quint16 *q = reinterpret_cast(p + 1); *q = ((*q << 10) & 0x7800) | ((*q >> 10) & 0x1f) | (*q & 0x83e0); p += sizeof(qargb8555); } } break; case Format_RGB888: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { quint8 *q = reinterpret_cast(res.scanLine(i)); const quint8 *p = reinterpret_cast(scanLine(i)); const quint8 *end = p + d->width * sizeof(qrgb888); while (p < end) { q[0] = p[2]; q[1] = p[1]; q[2] = p[0]; q += sizeof(qrgb888); p += sizeof(qrgb888); } } break; case Format_RGB444: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { quint8 *q = reinterpret_cast(res.scanLine(i)); const quint8 *p = reinterpret_cast(scanLine(i)); const quint8 *end = p + d->width * sizeof(qrgb444); while (p < end) { q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8); q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0); q += sizeof(qrgb444); p += sizeof(qrgb444); } } break; case Format_ARGB4444_Premultiplied: res = QImage(d->width, d->height, d->format); for (int i = 0; i < d->height; i++) { quint8 *q = reinterpret_cast(res.scanLine(i)); const quint8 *p = reinterpret_cast(scanLine(i)); const quint8 *end = p + d->width * sizeof(qargb4444); while (p < end) { q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8); q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0); q += sizeof(qargb4444); p += sizeof(qargb4444); } } break; } return res; } /*! Loads an image from the file with the given \a fileName. Returns true if the image was successfully loaded; otherwise returns false. The loader attempts to read the image using the specified \a format, e.g., PNG or JPG. If \a format is not specified (which is the default), the loader probes the file for a header to guess the file format. The file name can either refer to an actual file on disk or to one of the application's embedded resources. See the \l{resources.html}{Resource System} overview for details on how to embed images and other resource files in the application's executable. \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ bool QImage::load(const QString &fileName, const char* format) { if (fileName.isEmpty()) return false; QImage image = QImageReader(fileName, format).read(); if (!image.isNull()) { operator=(image); return true; } return false; } /*! \overload This function reads a QImage from the given \a device. This can, for example, be used to load an image directly into a QByteArray. */ bool QImage::load(QIODevice* device, const char* format) { QImage image = QImageReader(device, format).read(); if(!image.isNull()) { operator=(image); return true; } return false; } /*! \fn bool QImage::loadFromData(const uchar *data, int len, const char *format) Loads an image from the first \a len bytes of the given binary \a data. Returns true if the image was successfully loaded; otherwise returns false. The loader attempts to read the image using the specified \a format, e.g., PNG or JPG. If \a format is not specified (which is the default), the loader probes the file for a header to guess the file format. \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ bool QImage::loadFromData(const uchar *data, int len, const char *format) { QImage image = fromData(data, len, format); if (!image.isNull()) { operator=(image); return true; } return false; } /*! \fn bool QImage::loadFromData(const QByteArray &data, const char *format) \overload Loads an image from the given QByteArray \a data. */ /*! \fn QImage QImage::fromData(const uchar *data, int size, const char *format) Constructs a QImage from the first \a size bytes of the given binary \a data. The loader attempts to read the image using the specified \a format. If \a format is not specified (which is the default), the loader probes the file for a header to guess the file format. binary \a data. The loader attempts to read the image, either using the optional image \a format specified or by determining the image format from the data. If \a format is not specified (which is the default), the loader probes the file for a header to determine the file format. If \a format is specified, it must be one of the values returned by QImageReader::supportedImageFormats(). If the loading of the image fails, the image returned will be a null image. \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ QImage QImage::fromData(const uchar *data, int size, const char *format) { QByteArray a = QByteArray::fromRawData(reinterpret_cast(data), size); QBuffer b; b.setData(a); b.open(QIODevice::ReadOnly); return QImageReader(&b, format).read(); } /*! \fn QImage QImage::fromData(const QByteArray &data, const char *format) \overload Loads an image from the given QByteArray \a data. */ /*! Saves the image to the file with the given \a fileName, using the given image file \a format and \a quality factor. If \a format is 0, QImage will attempt to guess the format by looking at \a fileName's suffix. The \a quality factor must be in the range 0 to 100 or -1. Specify 0 to obtain small compressed files, 100 for large uncompressed files, and -1 (the default) to use the default settings. Returns true if the image was successfully saved; otherwise returns false. \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} */ bool QImage::save(const QString &fileName, const char *format, int quality) const { if (isNull()) return false; QImageWriter writer(fileName, format); return d->doImageIO(this, &writer, quality); } /*! \overload This function writes a QImage to the given \a device. This can, for example, be used to save an image directly into a QByteArray: \snippet doc/src/snippets/image/image.cpp 0 */ bool QImage::save(QIODevice* device, const char* format, int quality) const { if (isNull()) return false; // nothing to save QImageWriter writer(device, format); return d->doImageIO(this, &writer, quality); } /* \internal */ bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const { if (quality > 100 || quality < -1) qWarning("QPixmap::save: Quality out of range [-1, 100]"); if (quality >= 0) writer->setQuality(qMin(quality,100)); return writer->write(*image); } /***************************************************************************** QImage stream functions *****************************************************************************/ #if !defined(QT_NO_DATASTREAM) /*! \fn QDataStream &operator<<(QDataStream &stream, const QImage &image) \relates QImage Writes the given \a image to the given \a stream as a PNG image, or as a BMP image if the stream's version is 1. Note that writing the stream to a file will not produce a valid image file. \sa QImage::save(), {Format of the QDataStream Operators} */ QDataStream &operator<<(QDataStream &s, const QImage &image) { if (s.version() >= 5) { if (image.isNull()) { s << (qint32) 0; // null image marker return s; } else { s << (qint32) 1; // continue ... } } QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png"); writer.write(image); return s; } /*! \fn QDataStream &operator>>(QDataStream &stream, QImage &image) \relates QImage Reads an image from the given \a stream and stores it in the given \a image. \sa QImage::load(), {Format of the QDataStream Operators} */ QDataStream &operator>>(QDataStream &s, QImage &image) { if (s.version() >= 5) { qint32 nullMarker; s >> nullMarker; if (!nullMarker) { image = QImage(); // null image return s; } } image = QImageReader(s.device(), 0).read(); return s; } #endif // QT_NO_DATASTREAM #ifdef QT3_SUPPORT /*! \fn QImage QImage::convertDepthWithPalette(int depth, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const Returns an image with the given \a depth, using the \a palette_count colors pointed to by \a palette. If \a depth is 1 or 8, the returned image will have its color table ordered in the same way as \a palette. If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the \a flags to specify how you'd prefer this to happen. Note: currently no closest-color search is made. If colors are found that are not in the palette, the palette may not be used at all. This result should not be considered valid because it may change in future implementations. Currently inefficient for non-32-bit images. Use the convertToFormat() function in combination with the setColorTable() function instead. */ QImage QImage::convertDepthWithPalette(int d, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const { Format f = formatFor(d, QImage::LittleEndian); QVector colortable; for (int i = 0; i < palette_count; ++i) colortable.append(palette[i]); return convertToFormat(f, colortable, flags); } /*! \relates QImage Copies a block of pixels from \a src to \a dst. The pixels copied from source (src) are converted according to \a flags if it is incompatible with the destination (\a dst). \a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy is the top-left position in \a dst and \a sw, \a sh is the size of the copied block. The copying is clipped if areas outside \a src or \a dst are specified. If \a sw is -1, it is adjusted to src->width(). Similarly, if \a sh is -1, it is adjusted to src->height(). Currently inefficient for non 32-bit images. Use copy() or QPainter::drawImage() instead. */ void bitBlt(QImage *dst, int dx, int dy, const QImage *src, int sx, int sy, int sw, int sh, Qt::ImageConversionFlags flags) { if (dst->isNull() || src->isNull()) return; QPainter p(dst); p.drawImage(QPoint(dx, dy), *src, QRect(sx, sy, sw, sh), flags); } #endif /*! \fn bool QImage::operator==(const QImage & image) const Returns true if this image and the given \a image have the same contents; otherwise returns false. The comparison can be slow, unless there is some obvious difference (e.g. different size or format), in which case the function will return quickly. \sa operator=() */ bool QImage::operator==(const QImage & i) const { // same object, or shared? if (i.d == d) return true; if (!i.d || !d) return false; // obviously different stuff? if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format) return false; if (d->format != Format_RGB32) { if (d->format >= Format_ARGB32) { // all bits defined const int n = d->width * d->depth / 8; if (n == d->bytes_per_line && n == i.d->bytes_per_line) { if (memcmp(bits(), i.bits(), d->nbytes)) return false; } else { for (int y = 0; y < d->height; ++y) { if (memcmp(scanLine(y), i.scanLine(y), n)) return false; } } } else { const int w = width(); const int h = height(); const QVector &colortable = d->colortable; const QVector &icolortable = i.d->colortable; for (int y=0; yheight; l++) { int w = d->width; const uint *p1 = reinterpret_cast(scanLine(l)); const uint *p2 = reinterpret_cast(i.scanLine(l)); while (w--) { if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff)) return false; } } } return true; } /*! \fn bool QImage::operator!=(const QImage & image) const Returns true if this image and the given \a image have different contents; otherwise returns false. The comparison can be slow, unless there is some obvious difference, such as different widths, in which case the function will return quickly. \sa operator=() */ bool QImage::operator!=(const QImage & i) const { return !(*this == i); } /*! Returns the number of pixels that fit horizontally in a physical meter. Together with dotsPerMeterY(), this number defines the intended scale and aspect ratio of the image. \sa setDotsPerMeterX(), {QImage#Image Information}{Image Information} */ int QImage::dotsPerMeterX() const { return d ? qRound(d->dpmx) : 0; } /*! Returns the number of pixels that fit vertically in a physical meter. Together with dotsPerMeterX(), this number defines the intended scale and aspect ratio of the image. \sa setDotsPerMeterY(), {QImage#Image Information}{Image Information} */ int QImage::dotsPerMeterY() const { return d ? qRound(d->dpmy) : 0; } /*! Sets the number of pixels that fit horizontally in a physical meter, to \a x. Together with dotsPerMeterY(), this number defines the intended scale and aspect ratio of the image, and determines the scale at which QPainter will draw graphics on the image. It does not change the scale or aspect ratio of the image when it is rendered on other paint devices. \sa dotsPerMeterX(), {QImage#Image Information}{Image Information} */ void QImage::setDotsPerMeterX(int x) { if (!d || !x) return; detach(); if (d) d->dpmx = x; } /*! Sets the number of pixels that fit vertically in a physical meter, to \a y. Together with dotsPerMeterX(), this number defines the intended scale and aspect ratio of the image, and determines the scale at which QPainter will draw graphics on the image. It does not change the scale or aspect ratio of the image when it is rendered on other paint devices. \sa dotsPerMeterY(), {QImage#Image Information}{Image Information} */ void QImage::setDotsPerMeterY(int y) { if (!d || !y) return; detach(); if (d) d->dpmy = y; } /*! \fn QPoint QImage::offset() const Returns the number of pixels by which the image is intended to be offset by when positioning relative to other images. \sa setOffset(), {QImage#Image Information}{Image Information} */ QPoint QImage::offset() const { return d ? d->offset : QPoint(); } /*! \fn void QImage::setOffset(const QPoint& offset) Sets the number of pixels by which the image is intended to be offset by when positioning relative to other images, to \a offset. \sa offset(), {QImage#Image Information}{Image Information} */ void QImage::setOffset(const QPoint& p) { if (!d) return; detach(); if (d) d->offset = p; } #ifndef QT_NO_IMAGE_TEXT /*! Returns the text keys for this image. You can use these keys with text() to list the image text for a certain key. \sa text() */ QStringList QImage::textKeys() const { return d ? QStringList(d->text.keys()) : QStringList(); } /*! Returns the image text associated with the given \a key. If the specified \a key is an empty string, the whole image text is returned, with each key-text pair separated by a newline. \sa setText(), textKeys() */ QString QImage::text(const QString &key) const { if (!d) return QString(); if (!key.isEmpty()) return d->text.value(key); QString tmp; foreach (const QString &key, d->text.keys()) { if (!tmp.isEmpty()) tmp += QLatin1String("\n\n"); tmp += key + QLatin1String(": ") + d->text.value(key).simplified(); } return tmp; } /*! \fn void QImage::setText(const QString &key, const QString &text) Sets the image text to the given \a text and associate it with the given \a key. If you just want to store a single text block (i.e., a "comment" or just a description), you can either pass an empty key, or use a generic key like "Description". The image text is embedded into the image data when you call save() or QImageWriter::write(). Not all image formats support embedded text. You can find out if a specific image or format supports embedding text by using QImageWriter::supportsOption(). We give an example: \snippet doc/src/snippets/image/supportedformat.cpp 0 You can use QImageWriter::supportedImageFormats() to find out which image formats are available to you. \sa text(), textKeys() */ void QImage::setText(const QString &key, const QString &value) { if (!d) return; detach(); if (d) d->text.insert(key, value); } /*! \fn QString QImage::text(const char* key, const char* language) const \obsolete Returns the text recorded for the given \a key in the given \a language, or in a default language if \a language is 0. Use text() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. */ QString QImage::text(const char* key, const char* lang) const { if (!d) return QString(); QString k = QString::fromAscii(key); if (lang && *lang) k += QLatin1Char('/') + QString::fromAscii(lang); return d->text.value(k); } /*! \fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const \overload \obsolete Returns the text recorded for the given \a keywordAndLanguage. Use text() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. */ QString QImage::text(const QImageTextKeyLang& kl) const { if (!d) return QString(); QString k = QString::fromAscii(kl.key); if (!kl.lang.isEmpty()) k += QLatin1Char('/') + QString::fromAscii(kl.lang); return d->text.value(k); } /*! \obsolete Returns the language identifiers for which some texts are recorded. Note that if you want to iterate over the list, you should iterate over a copy. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. */ QStringList QImage::textLanguages() const { if (!d) return QStringList(); QStringList keys = textKeys(); QStringList languages; for (int i = 0; i < keys.size(); ++i) { int index = keys.at(i).indexOf(QLatin1Char('/')); if (index > 0) languages += keys.at(i).mid(index+1); } return languages; } /*! \obsolete Returns a list of QImageTextKeyLang objects that enumerate all the texts key/language pairs set for this image. Use textKeys() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. */ QList QImage::textList() const { QList imageTextKeys; if (!d) return imageTextKeys; QStringList keys = textKeys(); for (int i = 0; i < keys.size(); ++i) { int index = keys.at(i).indexOf(QLatin1Char('/')); if (index > 0) { QImageTextKeyLang tkl; tkl.key = keys.at(i).left(index).toAscii(); tkl.lang = keys.at(i).mid(index+1).toAscii(); imageTextKeys += tkl; } } return imageTextKeys; } /*! \fn void QImage::setText(const char* key, const char* language, const QString& text) \obsolete Sets the image text to the given \a text and associate it with the given \a key. The text is recorded in the specified \a language, or in a default language if \a language is 0. Use setText() instead. The language the text is recorded in is no longer relevant since the text is always set using QString and UTF-8 representation. \omit Records string \a for the keyword \a key. The \a key should be a portable keyword recognizable by other software - some suggested values can be found in \l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text} {the PNG specification}. \a s can be any text. \a lang should specify the language code (see \l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or 0. \endomit */ void QImage::setText(const char* key, const char* lang, const QString& s) { if (!d) return; detach(); // In case detach() ran out of memory if (!d) return; QString k = QString::fromAscii(key); if (lang && *lang) k += QLatin1Char('/') + QString::fromAscii(lang); d->text.insert(k, s); } #endif // QT_NO_IMAGE_TEXT /* Sets the image bits to the \a pixmap contents and returns a reference to the image. If the image shares data with other images, it will first dereference the shared data. Makes a call to QPixmap::convertToImage(). */ /*! \fn QImage::Endian QImage::systemBitOrder() Determines the bit order of the display hardware. Returns QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first). This function is no longer relevant for QImage. Use QSysInfo instead. */ /*! \internal Used by QPainter to retrieve a paint engine for the image. */ QPaintEngine *QImage::paintEngine() const { if (!d) return 0; #ifdef QT_RASTER_IMAGEENGINE if (!d->paintEngine) { d->paintEngine = new QRasterPaintEngine(const_cast(this)); } #endif return d->paintEngine; } /*! \internal Returns the size for the specified \a metric on the device. */ int QImage::metric(PaintDeviceMetric metric) const { if (!d) return 0; switch (metric) { case PdmWidth: return d->width; break; case PdmHeight: return d->height; break; case PdmWidthMM: return qRound(d->width * 1000 / d->dpmx); break; case PdmHeightMM: return qRound(d->height * 1000 / d->dpmy); break; case PdmNumColors: return d->colortable.size(); break; case PdmDepth: return d->depth; break; case PdmDpiX: return qRound(d->dpmx * 0.0254); break; case PdmDpiY: return qRound(d->dpmy * 0.0254); break; case PdmPhysicalDpiX: return qRound(d->dpmx * 0.0254); break; case PdmPhysicalDpiY: return qRound(d->dpmy * 0.0254); break; default: qWarning("QImage::metric(): Unhandled metric type %d", metric); break; } return 0; } /***************************************************************************** QPixmap (and QImage) helper functions *****************************************************************************/ /* This internal function contains the common (i.e. platform independent) code to do a transformation of pixel data. It is used by QPixmap::transform() and by QImage::transform(). \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and \a xoffset is an offset to the matrix. \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a depth specifies the colordepth of the data. \a dptr is a pointer to the destination data, \a dbpl specifies the bits per line for the destination data, \a p_inc is the offset that we advance for every scanline and \a dHeight is the height of the destination image. \a sprt is the pointer to the source data, \a sbpl specifies the bits per line of the source data, \a sWidth and \a sHeight are the width and height of the source data. */ #undef IWX_MSB #define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \ if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ (1 << (7-((trigx>>12)&7)))) \ *dptr |= b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO #undef IWX_LSB #define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \ if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ (1 << ((trigx>>12)&7))) \ *dptr |= b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO #undef IWX_PIX #define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \ if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ (1 << (7-((trigx>>12)&7)))) == 0) \ *dptr &= ~b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth, uchar *dptr, int dbpl, int p_inc, int dHeight, const uchar *sptr, int sbpl, int sWidth, int sHeight) { int m11 = int(trueMat.m11()*4096.0); int m12 = int(trueMat.m12()*4096.0); int m21 = int(trueMat.m21()*4096.0); int m22 = int(trueMat.m22()*4096.0); int dx = qRound(trueMat.dx()*4096.0); int dy = qRound(trueMat.dy()*4096.0); int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2; int m22ydy = dy + (m12 + m22) / 2; uint trigx; uint trigy; uint maxws = sWidth<<12; uint maxhs = sHeight<<12; for (int y=0; y>12)+(trigx>>12)); trigx += m11; trigy += m12; dptr++; } break; case 16: // 16 bpp transform while (dptr < maxp) { if (trigx < maxws && trigy < maxhs) *((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>12) + ((trigx>>12)<<1))); trigx += m11; trigy += m12; dptr++; dptr++; } break; case 24: // 24 bpp transform while (dptr < maxp) { if (trigx < maxws && trigy < maxhs) { const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3); dptr[0] = p2[0]; dptr[1] = p2[1]; dptr[2] = p2[2]; } trigx += m11; trigy += m12; dptr += 3; } break; case 32: // 32 bpp transform while (dptr < maxp) { if (trigx < maxws && trigy < maxhs) *((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>12) + ((trigx>>12)<<2))); trigx += m11; trigy += m12; dptr += 4; } break; default: { return false; } } } else { switch (type) { case QT_XFORM_TYPE_MSBFIRST: while (dptr < maxp) { IWX_MSB(128); IWX_MSB(64); IWX_MSB(32); IWX_MSB(16); IWX_MSB(8); IWX_MSB(4); IWX_MSB(2); IWX_MSB(1); dptr++; } break; case QT_XFORM_TYPE_LSBFIRST: while (dptr < maxp) { IWX_LSB(1); IWX_LSB(2); IWX_LSB(4); IWX_LSB(8); IWX_LSB(16); IWX_LSB(32); IWX_LSB(64); IWX_LSB(128); dptr++; } break; # if defined(Q_WS_WIN) case QT_XFORM_TYPE_WINDOWSPIXMAP: while (dptr < maxp) { IWX_PIX(128); IWX_PIX(64); IWX_PIX(32); IWX_PIX(16); IWX_PIX(8); IWX_PIX(4); IWX_PIX(2); IWX_PIX(1); dptr++; } break; # endif } } m21ydx += m21; m22ydy += m22; dptr += p_inc; } return true; } #undef IWX_MSB #undef IWX_LSB #undef IWX_PIX /*! \fn QImage QImage::xForm(const QMatrix &matrix) const Use transformed() instead. \oldcode QImage image; ... image.xForm(matrix); \newcode QImage image; ... image.transformed(matrix); \endcode */ /*! \obsolete Returns a number that identifies the contents of this QImage object. Distinct QImage objects can only have the same serial number if they refer to the same contents (but they don't have to). Use cacheKey() instead. \warning The serial number doesn't necessarily change when the image is altered. This means that it may be dangerous to use it as a cache key. \sa operator==() */ int QImage::serialNumber() const { if (!d) return 0; else return d->ser_no; } /*! Returns a number that identifies the contents of this QImage object. Distinct QImage objects can only have the same key if they refer to the same contents. The key will change when the image is altered. */ qint64 QImage::cacheKey() const { if (!d) return 0; else return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no); } /*! \internal Returns true if the image is detached; otherwise returns false. \sa detach(), {Implicit Data Sharing} */ bool QImage::isDetached() const { return d && d->ref == 1; } /*! \obsolete Sets the alpha channel of this image to the given \a alphaChannel. If \a alphaChannel is an 8 bit grayscale image, the intensity values are written into this buffer directly. Otherwise, \a alphaChannel is converted to 32 bit and the intensity of the RGB pixel values is used. Note that the image will be converted to the Format_ARGB32_Premultiplied format if the function succeeds. Use one of the composition modes in QPainter::CompositionMode instead. \warning This function is expensive. \sa alphaChannel(), {QImage#Image Transformations}{Image Transformations}, {QImage#Image Formats}{Image Formats} */ void QImage::setAlphaChannel(const QImage &alphaChannel) { if (!d) return; int w = d->width; int h = d->height; if (w != alphaChannel.d->width || h != alphaChannel.d->height) { qWarning("QImage::setAlphaChannel: " "Alpha channel must have same dimensions as the target image"); return; } if (d->paintEngine && d->paintEngine->isActive()) { qWarning("QImage::setAlphaChannel: " "Unable to set alpha channel while image is being painted on"); return; } detach(); *this = convertToFormat(QImage::Format_ARGB32_Premultiplied); // Slight optimization since alphachannels are returned as 8-bit grays. if (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale()) { const uchar *src_data = alphaChannel.d->data; const uchar *dest_data = d->data; for (int y=0; ybytes_per_line; dest_data += d->bytes_per_line; } } else { const QImage sourceImage = alphaChannel.convertToFormat(QImage::Format_RGB32); const uchar *src_data = sourceImage.d->data; const uchar *dest_data = d->data; for (int y=0; ybytes_per_line; dest_data += d->bytes_per_line; } } } /*! \obsolete Returns the alpha channel of the image as a new grayscale QImage in which each pixel's red, green, and blue values are given the alpha value of the original image. The color depth of the returned image is 8-bit. You can see an example of use of this function in QPixmap's \l{QPixmap::}{alphaChannel()}, which works in the same way as this function on QPixmaps. Most usecases for this function can be replaced with QPainter and using composition modes. \warning This is an expensive function. \sa setAlphaChannel(), hasAlphaChannel(), {QPixmap#Pixmap Information}{Pixmap}, {QImage#Image Transformations}{Image Transformations} */ QImage QImage::alphaChannel() const { if (!d) return QImage(); int w = d->width; int h = d->height; QImage image(w, h, Format_Indexed8); image.setNumColors(256); // set up gray scale table. for (int i=0; i<256; ++i) image.setColor(i, qRgb(i, i, i)); if (!hasAlphaChannel()) { image.fill(255); return image; } if (d->format == Format_Indexed8) { const uchar *src_data = d->data; uchar *dest_data = image.d->data; for (int y=0; ycolortable.at(*src)); ++dest; ++src; } src_data += d->bytes_per_line; dest_data += image.d->bytes_per_line; } } else { QImage alpha32 = *this; if (d->format != Format_ARGB32 && d->format != Format_ARGB32_Premultiplied) alpha32 = convertToFormat(Format_ARGB32); const uchar *src_data = alpha32.d->data; uchar *dest_data = image.d->data; for (int y=0; ybytes_per_line; dest_data += image.d->bytes_per_line; } } return image; } /*! Returns true if the image has a format that respects the alpha channel, otherwise returns false. \sa {QImage#Image Information}{Image Information} */ bool QImage::hasAlphaChannel() const { return d && (d->format == Format_ARGB32_Premultiplied || d->format == Format_ARGB32 || d->format == Format_ARGB8565_Premultiplied || d->format == Format_ARGB8555_Premultiplied || d->format == Format_ARGB6666_Premultiplied || d->format == Format_ARGB4444_Premultiplied || (d->has_alpha_clut && (d->format == Format_Indexed8 || d->format == Format_Mono || d->format == Format_MonoLSB))); } #ifdef QT3_SUPPORT #if defined(Q_WS_X11) QT_BEGIN_INCLUDE_NAMESPACE #include QT_END_INCLUDE_NAMESPACE #endif QImage::Endian QImage::systemBitOrder() { #if defined(Q_WS_X11) return BitmapBitOrder(X11->display) == MSBFirst ? BigEndian : LittleEndian; #else return BigEndian; #endif } #endif /*! \fn QImage QImage::copy(const QRect &rect, Qt::ImageConversionFlags flags) const \compat Use copy() instead. */ /*! \fn QImage QImage::copy(int x, int y, int w, int h, Qt::ImageConversionFlags flags) const \compat Use copy() instead. */ /*! \fn QImage QImage::scaleWidth(int w) const \compat Use scaledToWidth() instead. */ /*! \fn QImage QImage::scaleHeight(int h) const \compat Use scaledToHeight() instead. */ static QImage smoothScaled(const QImage &source, int w, int h) { QImage src = source; if (src.format() == QImage::Format_ARGB32) src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied); else if (src.depth() < 32) { if (src.hasAlphaChannel()) src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied); else src = src.convertToFormat(QImage::Format_RGB32); } return qSmoothScaleImage(src, w, h); } static QImage rotated90(const QImage &image) { QImage out(image.height(), image.width(), image.format()); if (image.numColors() > 0) out.setColorTable(image.colorTable()); int w = image.width(); int h = image.height(); switch (image.format()) { case QImage::Format_RGB32: case QImage::Format_ARGB32: case QImage::Format_ARGB32_Premultiplied: qt_memrotate270(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; case QImage::Format_RGB666: case QImage::Format_ARGB6666_Premultiplied: case QImage::Format_ARGB8565_Premultiplied: case QImage::Format_ARGB8555_Premultiplied: case QImage::Format_RGB888: qt_memrotate270(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; case QImage::Format_RGB555: case QImage::Format_RGB16: case QImage::Format_ARGB4444_Premultiplied: qt_memrotate270(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; case QImage::Format_Indexed8: qt_memrotate270(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; default: for (int y=0; y 0) out.setColorTable(image.colorTable()); int w = image.width(); int h = image.height(); switch (image.format()) { case QImage::Format_RGB32: case QImage::Format_ARGB32: case QImage::Format_ARGB32_Premultiplied: qt_memrotate90(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; case QImage::Format_RGB666: case QImage::Format_ARGB6666_Premultiplied: case QImage::Format_ARGB8565_Premultiplied: case QImage::Format_ARGB8555_Premultiplied: case QImage::Format_RGB888: qt_memrotate90(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; case QImage::Format_RGB555: case QImage::Format_RGB16: case QImage::Format_ARGB4444_Premultiplied: qt_memrotate90(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; case QImage::Format_Indexed8: qt_memrotate90(reinterpret_cast(image.bits()), w, h, image.bytesPerLine(), reinterpret_cast(out.bits()), out.bytesPerLine()); break; default: for (int y=0; yformat; if (complex_xform || mode == Qt::SmoothTransformation) { if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) { switch(d->format) { case QImage::Format_RGB16: target_format = Format_ARGB8565_Premultiplied; break; case QImage::Format_RGB555: target_format = Format_ARGB8555_Premultiplied; break; case QImage::Format_RGB666: target_format = Format_ARGB6666_Premultiplied; break; case QImage::Format_RGB444: target_format = Format_ARGB4444_Premultiplied; break; default: target_format = Format_ARGB32_Premultiplied; break; } } } QImage dImage(wd, hd, target_format); QIMAGE_SANITYCHECK_MEMORY(dImage); if (target_format == QImage::Format_MonoLSB || target_format == QImage::Format_Mono || target_format == QImage::Format_Indexed8) { dImage.d->colortable = d->colortable; dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform; } dImage.d->dpmx = dotsPerMeterX(); dImage.d->dpmy = dotsPerMeterY(); switch (bpp) { // initizialize the data case 8: if (dImage.d->colortable.size() < 256) { // colors are left in the color table, so pick that one as transparent dImage.d->colortable.append(0x0); memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.numBytes()); } else { memset(dImage.bits(), 0, dImage.numBytes()); } break; case 1: case 16: case 24: case 32: memset(dImage.bits(), 0x00, dImage.numBytes()); break; } if (target_format >= QImage::Format_RGB32) { QPainter p(&dImage); if (mode == Qt::SmoothTransformation) { p.setRenderHint(QPainter::Antialiasing); p.setRenderHint(QPainter::SmoothPixmapTransform); } p.setTransform(mat); p.drawImage(QPoint(0, 0), *this); } else { bool invertible; mat = mat.inverted(&invertible); // invert matrix if (!invertible) // error, return null image return QImage(); // create target image (some of the code is from QImage::copy()) int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST; int dbpl = dImage.bytesPerLine(); qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs); } return dImage; } /*! \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height) Returns the actual matrix used for transforming an image with the given \a width, \a height and \a matrix. When transforming an image using the transformed() function, the transformation matrix is internally adjusted to compensate for unwanted translation, i.e. transformed() returns the smallest image containing all transformed points of the original image. This function returns the modified matrix, which maps points correctly from the original image into the new image. Unlike the other overload, this function creates transformation matrices that can be used to perform perspective transformations on images. \sa transformed(), {QImage#Image Transformations}{Image Transformations} */ QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h) { const QRectF rect(0, 0, w, h); const QRect mapped = matrix.mapRect(rect).toAlignedRect(); const QPoint delta = mapped.topLeft(); return matrix * QTransform().translate(-delta.x(), -delta.y()); } /*! \typedef QImage::DataPtr \internal */ /*! \fn DataPtr & QImage::data_ptr() \internal */ QT_END_NAMESPACE