/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Qt Software Information (qt-info@nokia.com) ** ** This file is part of the $MODULE$ of the Qt Toolkit. ** ** $TROLLTECH_DUAL_LICENSE$ ** ****************************************************************************/ #include "qmatrix4x4.h" #include "qmath3dutil_p.h" #include #include #include QT_BEGIN_NAMESPACE #ifndef QT_NO_MATRIX4X4 /*! \class QMatrix4x4 \brief The QMatrix4x4 class represents a 4x4 transformation matrix in 3D space. \since 4.6 The matrix elements are stored internally using the most efficient numeric representation for the underlying hardware: floating-point or fixed-point. \sa QVector3D, QGenericMatrix */ /*! \fn QMatrix4x4::QMatrix4x4() Constructs an identity matrix. */ /*! Constructs a matrix from the given 16 floating-point \a values. The contents of the array \a values is assumed to be in row-major order. If the matrix has a special type (identity, translate, scale, etc), the programmer should follow this constructor with a call to inferSpecialType() if they wish QMatrix4x4 to optimize further calls to translate(), scale(), etc. \sa toValueArray(), inferSpecialType() */ QMatrix4x4::QMatrix4x4(const qreal *values) { for (int row = 0; row < 4; ++row) for (int col = 0; col < 4; ++col) m[col][row] = values[row * 4 + col]; flagBits = General; } /*! \fn QMatrix4x4::QMatrix4x4(qreal m11, qreal m12, qreal m13, qreal m14, qreal m21, qreal m22, qreal m23, qreal m24, qreal m31, qreal m32, qreal m33, qreal m34, qreal m41, qreal m42, qreal m43, qreal m44) Constructs a matrix from the 16 elements \a m11, \a m12, \a m13, \a m14, \a m21, \a m22, \a m23, \a m24, \a m31, \a m32, \a m33, \a m34, \a m41, \a m42, \a m43, and \a m44. The elements are specified in row-major order. If the matrix has a special type (identity, translate, scale, etc), the programmer should follow this constructor with a call to inferSpecialType() if they wish QMatrix4x4 to optimize further calls to translate(), scale(), etc. \sa inferSpecialType() */ #if !defined(QT_NO_MEMBER_TEMPLATES) || defined(Q_QDOC) /*! \fn QMatrix4x4::QMatrix4x4(const QGenericMatrix& matrix) Constructs a 4x4 matrix from the left-most 4 columns and top-most 4 rows of \a matrix. If \a matrix has less than 4 columns or rows, the remaining elements are filled with elements from the identity matrix. \sa toGenericMatrix(), qGenericMatrixToMatrix4x4() */ /*! \fn QGenericMatrix QMatrix4x4::toGenericMatrix() const Constructs a NxM generic matrix from the left-most N columns and top-most M rows of this 4x4 matrix. If N or M is greater than 4, then the remaining elements are filled with elements from the identity matrix. \sa qGenericMatrixFromMatrix4x4() */ #endif /*! \fn QMatrix4x4 qGenericMatrixToMatrix4x4(const QGenericMatrix& matrix) \relates QMatrix4x4 Returns a 4x4 matrix constructed from the left-most 4 columns and top-most 4 rows of \a matrix. If \a matrix has less than 4 columns or rows, the remaining elements are filled with elements from the identity matrix. \sa qGenericMatrixFromMatrix4x4() */ /*! \fn QGenericMatrix qGenericMatrixFromMatrix4x4(const QMatrix4x4& matrix) \relates QMatrix4x4 Returns a NxM generic matrix constructed from the left-most N columns and top-most M rows of \a matrix. If N or M is greater than 4, then the remaining elements are filled with elements from the identity matrix. \sa qGenericMatrixToMatrix4x4(), QMatrix4x4::toGenericMatrix() */ /*! \internal */ QMatrix4x4::QMatrix4x4(const qrealinner *values, int cols, int rows) { for (int col = 0; col < 4; ++col) { for (int row = 0; row < 4; ++row) { if (col < cols && row < rows) m[col][row] = values[col * rows + row]; else if (col == row) m[col][row] = 1.0f; else m[col][row] = 0.0f; } } flagBits = General; } /*! Constructs a 4x4 matrix from a conventional Qt 2D affine transformation \a matrix. If \a matrix has a special type (identity, translate, scale, etc), the programmer should follow this constructor with a call to inferSpecialType() if they wish QMatrix4x4 to optimize further calls to translate(), scale(), etc. \sa toAffine(), inferSpecialType() */ QMatrix4x4::QMatrix4x4(const QMatrix& matrix) { m[0][0] = matrix.m11(); m[0][1] = matrix.m12(); m[0][2] = 0.0f; m[0][3] = 0.0f; m[1][0] = matrix.m21(); m[1][1] = matrix.m22(); m[1][2] = 0.0f; m[1][3] = 0.0f; m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = 1.0f; m[2][3] = 0.0f; m[3][0] = matrix.dx(); m[3][1] = matrix.dy(); m[3][2] = 0.0f; m[3][3] = 1.0f; flagBits = General; } /*! Constructs a 4x4 matrix from the conventional Qt 2D transformation matrix \a transform. If \a transform has a special type (identity, translate, scale, etc), the programmer should follow this constructor with a call to inferSpecialType() if they wish QMatrix4x4 to optimize further calls to translate(), scale(), etc. \sa toTransform(), inferSpecialType() */ QMatrix4x4::QMatrix4x4(const QTransform& transform) { m[0][0] = transform.m11(); m[0][1] = transform.m12(); m[0][2] = 0.0f; m[0][3] = transform.m13(); m[1][0] = transform.m21(); m[1][1] = transform.m22(); m[1][2] = 0.0f; m[1][3] = transform.m23(); m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = 1.0f; m[2][3] = 0.0f; m[3][0] = transform.dx(); m[3][1] = transform.dy(); m[3][2] = 0.0f; m[3][3] = transform.m33(); flagBits = General; } /*! \fn qreal QMatrix4x4::operator()(int row, int column) const Returns the element at position (\a row, \a column) in this matrix. \sa column(), row() */ /*! \fn qrealinner& QMatrix4x4::operator()(int row, int column) Returns a reference to the element at position (\a row, \a column) in this matrix so that the element can be assigned to. \sa inferSpecialType(), setColumn(), setRow() */ /*! \fn QVector4D QMatrix4x4::column(int index) const Returns the elements of column \a index as a 4D vector. \sa setColumn(), row() */ /*! \fn void QMatrix4x4::setColumn(int index, const QVector4D& value) Sets the elements of column \a index to the components of \a value. \sa column(), setRow() */ /*! \fn QVector4D QMatrix4x4::row(int index) const Returns the elements of row \a index as a 4D vector. \sa setRow(), column() */ /*! \fn void QMatrix4x4::setRow(int index, const QVector4D& value) Sets the elements of row \a index to the components of \a value. \sa row(), setColumn() */ /*! \fn bool QMatrix4x4::isIdentity() const Returns true if this matrix is the identity; false otherwise. \sa setIdentity() */ /*! \fn void QMatrix4x4::setIdentity() Sets this matrix to the identity. \sa isIdentity() */ /*! \fn void QMatrix4x4::fill(qreal value) Fills all elements of this matrx with \a value. */ // The 4x4 matrix inverse algorithm is based on that described at: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q24 // Some optimization has been done to avoid making copies of 3x3 // sub-matrices, to do calculations in fixed-point where required, // and to unroll the loops. // Calculate the determinant of a 3x3 sub-matrix. // | A B C | // M = | D E F | det(M) = A * (EI - HF) - B * (DI - GF) + C * (DH - GE) // | G H I | static inline qrealinner matrixDet3 (const qrealinner m[4][4], int col0, int col1, int col2, int row0, int row1, int row2) { return m[col0][row0] * (m[col1][row1] * m[col2][row2] - m[col1][row2] * m[col2][row1]) - m[col1][row0] * (m[col0][row1] * m[col2][row2] - m[col0][row2] * m[col2][row1]) + m[col2][row0] * (m[col0][row1] * m[col1][row2] - m[col0][row2] * m[col1][row1]); } // Calculate the determinant of a 4x4 matrix. static inline qrealinner matrixDet4(const qrealinner m[4][4]) { qrealinner det; det = m[0][0] * matrixDet3(m, 1, 2, 3, 1, 2, 3); det -= m[1][0] * matrixDet3(m, 0, 2, 3, 1, 2, 3); det += m[2][0] * matrixDet3(m, 0, 1, 3, 1, 2, 3); det -= m[3][0] * matrixDet3(m, 0, 1, 2, 1, 2, 3); return det; } /*! Returns the determinant of this matrix. */ qreal QMatrix4x4::determinant() const { return qt_math3d_convert(matrixDet4(m)); } /*! Returns the inverse of this matrix. Returns the identity if this matrix cannot be inverted; i.e. determinant() is zero. If \a invertible is not null, then true will be written to that location if the matrix can be inverted; false otherwise. If the matrix is recognized as the identity or an orthonormal matrix, then this function will quickly invert the matrix using optimized routines. \sa determinant(), normalMatrix() */ QMatrix4x4 QMatrix4x4::inverted(bool *invertible) const { // Handle some of the easy cases first. if (flagBits == Identity) { if (invertible) *invertible = true; return QMatrix4x4(); } else if (flagBits == Translation) { QMatrix4x4 inv; inv.m[3][0] = -m[3][0]; inv.m[3][1] = -m[3][1]; inv.m[3][2] = -m[3][2]; inv.flagBits = Translation; if (invertible) *invertible = true; return inv; } else if (flagBits == Rotation || flagBits == (Rotation | Translation)) { if (invertible) *invertible = true; return orthonormalInverse(); } QMatrix4x4 inv(1); // The "1" says to not load the identity. qrealinner det = matrixDet4(m); if (det == 0.0f) { if (invertible) *invertible = false; return QMatrix4x4(); } det = qrealinner(1.0f) / det; inv.m[0][0] = matrixDet3(m, 1, 2, 3, 1, 2, 3) * det; inv.m[0][1] = -matrixDet3(m, 0, 2, 3, 1, 2, 3) * det; inv.m[0][2] = matrixDet3(m, 0, 1, 3, 1, 2, 3) * det; inv.m[0][3] = -matrixDet3(m, 0, 1, 2, 1, 2, 3) * det; inv.m[1][0] = -matrixDet3(m, 1, 2, 3, 0, 2, 3) * det; inv.m[1][1] = matrixDet3(m, 0, 2, 3, 0, 2, 3) * det; inv.m[1][2] = -matrixDet3(m, 0, 1, 3, 0, 2, 3) * det; inv.m[1][3] = matrixDet3(m, 0, 1, 2, 0, 2, 3) * det; inv.m[2][0] = matrixDet3(m, 1, 2, 3, 0, 1, 3) * det; inv.m[2][1] = -matrixDet3(m, 0, 2, 3, 0, 1, 3) * det; inv.m[2][2] = matrixDet3(m, 0, 1, 3, 0, 1, 3) * det; inv.m[2][3] = -matrixDet3(m, 0, 1, 2, 0, 1, 3) * det; inv.m[3][0] = -matrixDet3(m, 1, 2, 3, 0, 1, 2) * det; inv.m[3][1] = matrixDet3(m, 0, 2, 3, 0, 1, 2) * det; inv.m[3][2] = -matrixDet3(m, 0, 1, 3, 0, 1, 2) * det; inv.m[3][3] = matrixDet3(m, 0, 1, 2, 0, 1, 2) * det; if (invertible) *invertible = true; return inv; } /*! Returns the normal matrix corresponding to this 4x4 transformation. The normal matrix is the transpose of the inverse of the top-left 3x3 part of this 4x4 matrix. If the 3x3 sub-matrix is not invertible, this function returns the identity. \sa inverted() */ QMatrix3x3 QMatrix4x4::normalMatrix() const { QMatrix3x3 inv; // Handle the simple cases first. if (flagBits == Identity || flagBits == Translation) { return inv; } else if (flagBits == Scale || flagBits == (Translation | Scale)) { if (m[0][0] == 0.0f || m[1][1] == 0.0f || m[2][2] == 0.0f) return inv; inv.data()[0] = qrealinner(1.0f) / m[0][0]; inv.data()[4] = qrealinner(1.0f) / m[1][1]; inv.data()[8] = qrealinner(1.0f) / m[2][2]; return inv; } qrealinner det = matrixDet3(m, 0, 1, 2, 0, 1, 2); if (det == 0.0f) return inv; det = qrealinner(1.0f) / det; qrealinner *invm = inv.data(); // Invert and transpose in a single step. invm[0 + 0 * 3] = (m[1][1] * m[2][2] - m[2][1] * m[1][2]) * det; invm[1 + 0 * 3] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]) * det; invm[2 + 0 * 3] = (m[1][0] * m[2][1] - m[1][1] * m[2][0]) * det; invm[0 + 1 * 3] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * det; invm[1 + 1 * 3] = (m[0][0] * m[2][2] - m[0][2] * m[2][0]) * det; invm[2 + 1 * 3] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]) * det; invm[0 + 2 * 3] = (m[0][1] * m[1][2] - m[0][2] * m[1][1]) * det; invm[1 + 2 * 3] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]) * det; invm[2 + 2 * 3] = (m[0][0] * m[1][1] - m[1][0] * m[0][1]) * det; return inv; } /*! Returns this matrix, transposed about its diagonal. */ QMatrix4x4 QMatrix4x4::transposed() const { QMatrix4x4 result(1); // The "1" says to not load the identity. for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { result.m[col][row] = m[row][col]; } } return result; } /*! \fn QMatrix4x4& QMatrix4x4::operator+=(const QMatrix4x4& other) Adds the contents of \a other to this matrix. */ /*! \fn QMatrix4x4& QMatrix4x4::operator-=(const QMatrix4x4& other) Subtracts the contents of \a other from this matrix. */ /*! \fn QMatrix4x4& QMatrix4x4::operator*=(const QMatrix4x4& other) Multiplies the contents of \a other by this matrix. */ /*! \fn QMatrix4x4& QMatrix4x4::operator*=(qreal factor) \overload Multiplies all elements of this matrix by \a factor. */ /*! \overload Divides all elements of this matrix by \a divisor. */ QMatrix4x4& QMatrix4x4::operator/=(qreal divisor) { qrealinner d(divisor); m[0][0] /= d; m[0][1] /= d; m[0][2] /= d; m[0][3] /= d; m[1][0] /= d; m[1][1] /= d; m[1][2] /= d; m[1][3] /= d; m[2][0] /= d; m[2][1] /= d; m[2][2] /= d; m[2][3] /= d; m[3][0] /= d; m[3][1] /= d; m[3][2] /= d; m[3][3] /= d; flagBits = General; return *this; } /*! \fn bool QMatrix4x4::operator==(const QMatrix4x4& other) const Returns true if this matrix is identical to \a other; false otherwise. This operator uses an exact floating-point comparison. */ /*! \fn bool QMatrix4x4::operator!=(const QMatrix4x4& other) const Returns true if this matrix is not identical to \a other; false otherwise. This operator uses an exact floating-point comparison. */ /*! \fn QMatrix4x4 operator+(const QMatrix4x4& m1, const QMatrix4x4& m2) \relates QMatrix4x4 Returns the sum of \a m1 and \a m2. */ /*! \fn QMatrix4x4 operator-(const QMatrix4x4& m1, const QMatrix4x4& m2) \relates QMatrix4x4 Returns the difference of \a m1 and \a m2. */ /*! \fn QMatrix4x4 operator*(const QMatrix4x4& m1, const QMatrix4x4& m2) \relates QMatrix4x4 Returns the product of \a m1 and \a m2. */ #ifndef QT_NO_VECTOR3D /*! \fn QVector3D operator*(const QVector3D& vector, const QMatrix4x4& matrix) \relates QMatrix4x4 Returns the result of transforming \a vector according to \a matrix, with the matrix applied post-vector. */ /*! \fn QVector3D operator*(const QMatrix4x4& matrix, const QVector3D& vector) \relates QMatrix4x4 Returns the result of transforming \a vector according to \a matrix, with the matrix applied pre-vector. */ #endif #ifndef QT_NO_VECTOR4D /*! \fn QVector4D operator*(const QVector4D& vector, const QMatrix4x4& matrix) \relates QMatrix4x4 Returns the result of transforming \a vector according to \a matrix, with the matrix applied post-vector. */ /*! \fn QVector4D operator*(const QMatrix4x4& matrix, const QVector4D& vector) \relates QMatrix4x4 Returns the result of transforming \a vector according to \a matrix, with the matrix applied pre-vector. */ #endif /*! \fn QPoint operator*(const QPoint& point, const QMatrix4x4& matrix) \relates QMatrix4x4 Returns the result of transforming \a point according to \a matrix, with the matrix applied post-point. */ /*! \fn QPointF operator*(const QPointF& point, const QMatrix4x4& matrix) \relates QMatrix4x4 Returns the result of transforming \a point according to \a matrix, with the matrix applied post-point. */ /*! \fn QPoint operator*(const QMatrix4x4& matrix, const QPoint& point) \relates QMatrix4x4 Returns the result of transforming \a point according to \a matrix, with the matrix applied pre-point. */ /*! \fn QPointF operator*(const QMatrix4x4& matrix, const QPointF& point) \relates QMatrix4x4 Returns the result of transforming \a point according to \a matrix, with the matrix applied pre-point. */ /*! \fn QMatrix4x4 operator-(const QMatrix4x4& matrix) \overload \relates QMatrix4x4 Returns the negation of \a matrix. */ /*! \fn QMatrix4x4 operator*(qreal factor, const QMatrix4x4& matrix) \relates QMatrix4x4 Returns the result of multiplying all elements of \a matrix by \a factor. */ /*! \fn QMatrix4x4 operator*(const QMatrix4x4& matrix, qreal factor) \relates QMatrix4x4 Returns the result of multiplying all elements of \a matrix by \a factor. */ /*! \relates QMatrix4x4 Returns the result of dividing all elements of \a matrix by \a divisor. */ QMatrix4x4 operator/(const QMatrix4x4& matrix, qreal divisor) { QMatrix4x4 m(1); // The "1" says to not load the identity. qrealinner d(divisor); m.m[0][0] = matrix.m[0][0] / d; m.m[0][1] = matrix.m[0][1] / d; m.m[0][2] = matrix.m[0][2] / d; m.m[0][3] = matrix.m[0][3] / d; m.m[1][0] = matrix.m[1][0] / d; m.m[1][1] = matrix.m[1][1] / d; m.m[1][2] = matrix.m[1][2] / d; m.m[1][3] = matrix.m[1][3] / d; m.m[2][0] = matrix.m[2][0] / d; m.m[2][1] = matrix.m[2][1] / d; m.m[2][2] = matrix.m[2][2] / d; m.m[2][3] = matrix.m[2][3] / d; m.m[3][0] = matrix.m[3][0] / d; m.m[3][1] = matrix.m[3][1] / d; m.m[3][2] = matrix.m[3][2] / d; m.m[3][3] = matrix.m[3][3] / d; return m; } /*! \fn bool qFuzzyCompare(const QMatrix4x4& m1, const QMatrix4x4& m2) \relates QMatrix4x4 Returns true if \a m1 and \a m2 are equal, allowing for a small fuzziness factor for floating-point comparisons; false otherwise. */ #ifndef QT_NO_VECTOR3D /*! Multiplies this matrix by another that scales coordinates by the components of \a vector. Returns this matrix. \sa translate(), rotate() */ QMatrix4x4& QMatrix4x4::scale(const QVector3D& vector) { qrealinner vx = vector.xp; qrealinner vy = vector.yp; qrealinner vz = vector.zp; if (flagBits == Identity) { m[0][0] = vx; m[1][1] = vy; m[2][2] = vz; flagBits = Scale; } else if (flagBits == Scale || flagBits == (Scale | Translation)) { m[0][0] *= vx; m[1][1] *= vy; m[2][2] *= vz; } else if (flagBits == Translation) { m[0][0] = vx; m[1][1] = vy; m[2][2] = vz; flagBits |= Scale; } else { m[0][0] *= vx; m[0][1] *= vx; m[0][2] *= vx; m[0][3] *= vx; m[1][0] *= vy; m[1][1] *= vy; m[1][2] *= vy; m[1][3] *= vy; m[2][0] *= vz; m[2][1] *= vz; m[2][2] *= vz; m[2][3] *= vz; flagBits = General; } return *this; } #endif /*! \overload Multiplies this matrix by another that scales coordinates by the components \a x, \a y, and \a z. Returns this matrix. \sa translate(), rotate() */ QMatrix4x4& QMatrix4x4::scale(qreal x, qreal y, qreal z) { qrealinner vx(x); qrealinner vy(y); qrealinner vz(z); if (flagBits == Identity) { m[0][0] = vx; m[1][1] = vy; m[2][2] = vz; flagBits = Scale; } else if (flagBits == Scale || flagBits == (Scale | Translation)) { m[0][0] *= vx; m[1][1] *= vy; m[2][2] *= vz; } else if (flagBits == Translation) { m[0][0] = vx; m[1][1] = vy; m[2][2] = vz; flagBits |= Scale; } else { m[0][0] *= vx; m[0][1] *= vx; m[0][2] *= vx; m[0][3] *= vx; m[1][0] *= vy; m[1][1] *= vy; m[1][2] *= vy; m[1][3] *= vy; m[2][0] *= vz; m[2][1] *= vz; m[2][2] *= vz; m[2][3] *= vz; flagBits = General; } return *this; } /*! \overload Multiplies this matrix by another that scales coordinates by the given \a factor. Returns this matrix. \sa translate(), rotate() */ QMatrix4x4& QMatrix4x4::scale(qreal factor) { qrealinner f(factor); if (flagBits == Identity) { m[0][0] = f; m[1][1] = f; m[2][2] = f; flagBits = Scale; } else if (flagBits == Scale || flagBits == (Scale | Translation)) { m[0][0] *= f; m[1][1] *= f; m[2][2] *= f; } else if (flagBits == Translation) { m[0][0] = f; m[1][1] = f; m[2][2] = f; flagBits |= Scale; } else { m[0][0] *= f; m[0][1] *= f; m[0][2] *= f; m[0][3] *= f; m[1][0] *= f; m[1][1] *= f; m[1][2] *= f; m[1][3] *= f; m[2][0] *= f; m[2][1] *= f; m[2][2] *= f; m[2][3] *= f; flagBits = General; } return *this; } #ifndef QT_NO_VECTOR3D /*! Multiplies this matrix by another that translates coordinates by the components of \a vector. Returns this matrix. \sa scale(), rotate() */ QMatrix4x4& QMatrix4x4::translate(const QVector3D& vector) { qrealinner vx = vector.xp; qrealinner vy = vector.yp; qrealinner vz = vector.zp; if (flagBits == Identity) { m[3][0] = vx; m[3][1] = vy; m[3][2] = vz; flagBits = Translation; } else if (flagBits == Translation) { m[3][0] += vx; m[3][1] += vy; m[3][2] += vz; } else if (flagBits == Scale) { m[3][0] = m[0][0] * vx; m[3][1] = m[1][1] * vy; m[3][2] = m[2][2] * vz; flagBits |= Translation; } else if (flagBits == (Scale | Translation)) { m[3][0] += m[0][0] * vx; m[3][1] += m[1][1] * vy; m[3][2] += m[2][2] * vz; } else { m[3][0] += m[0][0] * vx + m[1][0] * vy + m[2][0] * vz; m[3][1] += m[0][1] * vx + m[1][1] * vy + m[2][1] * vz; m[3][2] += m[0][2] * vx + m[1][2] * vy + m[2][2] * vz; m[3][3] += m[0][3] * vx + m[1][3] * vy + m[2][3] * vz; if (flagBits == Rotation) flagBits |= Translation; else if (flagBits != (Rotation | Translation)) flagBits = General; } return *this; } #endif /*! \overload Multiplies this matrix by another that translates coordinates by the components \a x, \a y, and \a z. Returns this matrix. \sa scale(), rotate() */ QMatrix4x4& QMatrix4x4::translate(qreal x, qreal y, qreal z) { qrealinner vx(x); qrealinner vy(y); qrealinner vz(z); if (flagBits == Identity) { m[3][0] = vx; m[3][1] = vy; m[3][2] = vz; flagBits = Translation; } else if (flagBits == Translation) { m[3][0] += vx; m[3][1] += vy; m[3][2] += vz; } else if (flagBits == Scale) { m[3][0] = m[0][0] * vx; m[3][1] = m[1][1] * vy; m[3][2] = m[2][2] * vz; flagBits |= Translation; } else if (flagBits == (Scale | Translation)) { m[3][0] += m[0][0] * vx; m[3][1] += m[1][1] * vy; m[3][2] += m[2][2] * vz; } else { m[3][0] += m[0][0] * vx + m[1][0] * vy + m[2][0] * vz; m[3][1] += m[0][1] * vx + m[1][1] * vy + m[2][1] * vz; m[3][2] += m[0][2] * vx + m[1][2] * vy + m[2][2] * vz; m[3][3] += m[0][3] * vx + m[1][3] * vy + m[2][3] * vz; if (flagBits == Rotation) flagBits |= Translation; else if (flagBits != (Rotation | Translation)) flagBits = General; } return *this; } #ifndef QT_NO_VECTOR3D /*! Multiples this matrix by another that rotates coordinates through \a angle degrees about \a vector. Returns this matrix. \sa scale(), translate() */ QMatrix4x4& QMatrix4x4::rotate(qreal angle, const QVector3D& vector) { return rotate(angle, vector.x(), vector.y(), vector.z()); } #endif /*! \overload Multiplies this matrix by another that rotates coordinates through \a angle degrees about the vector (\a x, \a y, \a z). Returns this matrix. \sa scale(), translate() */ QMatrix4x4& QMatrix4x4::rotate(qreal angle, qreal x, qreal y, qreal z) { QMatrix4x4 m(1); // The "1" says to not load the identity. qrealinner c, s, ic; qt_math3d_sincos(angle, &s, &c); bool quick = false; if (x == 0.0f) { if (y == 0.0f) { if (z != 0.0f) { // Rotate around the Z axis. m.setIdentity(); m.m[0][0] = c; m.m[1][1] = c; if (z < 0.0f) { m.m[1][0] = s; m.m[0][1] = -s; } else { m.m[1][0] = -s; m.m[0][1] = s; } m.flagBits = General; quick = true; } } else if (z == 0.0f) { // Rotate around the Y axis. m.setIdentity(); m.m[0][0] = c; m.m[2][2] = c; if (y < 0.0f) { m.m[2][0] = -s; m.m[0][2] = s; } else { m.m[2][0] = s; m.m[0][2] = -s; } m.flagBits = General; quick = true; } } else if (y == 0.0f && z == 0.0f) { // Rotate around the X axis. m.setIdentity(); m.m[1][1] = c; m.m[2][2] = c; if (x < 0.0f) { m.m[2][1] = s; m.m[1][2] = -s; } else { m.m[2][1] = -s; m.m[1][2] = s; } m.flagBits = General; quick = true; } if (!quick) { qrealinner vx(x); qrealinner vy(y); qrealinner vz(z); qrealinner len(qvtsqrt(vx * vx + vy * vy + vz * vz)); if (len != 0) { vx /= len; vy /= len; vz /= len; } ic = 1.0f - c; m.m[0][0] = vx * vx * ic + c; m.m[1][0] = vx * vy * ic - vz * s; m.m[2][0] = vx * vz * ic + vy * s; m.m[3][0] = 0.0f; m.m[0][1] = vy * vx * ic + vz * s; m.m[1][1] = vy * vy * ic + c; m.m[2][1] = vy * vz * ic - vx * s; m.m[3][1] = 0.0f; m.m[0][2] = vx * vz * ic - vy * s; m.m[1][2] = vy * vz * ic + vx * s; m.m[2][2] = vz * vz * ic + c; m.m[3][2] = 0.0f; m.m[0][3] = 0.0f; m.m[1][3] = 0.0f; m.m[2][3] = 0.0f; m.m[3][3] = 1.0f; } int flags = flagBits; *this *= m; if (flags != Identity) flagBits = flags | Rotation; else flagBits = Rotation; return *this; } #ifndef QT_NO_VECTOR4D /*! Multiples this matrix by another that rotates coordinates according to a specified \a quaternion. The \a quaternion is assumed to have been normalized. Returns this matrix. \sa scale(), translate(), QQuaternion */ QMatrix4x4& QMatrix4x4::rotate(const QQuaternion& quaternion) { // Algorithm from: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54 QMatrix4x4 m(1); qrealinner xx = quaternion.xp * quaternion.xp; qrealinner xy = quaternion.xp * quaternion.yp; qrealinner xz = quaternion.xp * quaternion.zp; qrealinner xw = quaternion.xp * quaternion.wp; qrealinner yy = quaternion.yp * quaternion.yp; qrealinner yz = quaternion.yp * quaternion.zp; qrealinner yw = quaternion.yp * quaternion.wp; qrealinner zz = quaternion.zp * quaternion.zp; qrealinner zw = quaternion.zp * quaternion.wp; m.m[0][0] = 1.0f - 2 * (yy + zz); m.m[1][0] = 2 * (xy - zw); m.m[2][0] = 2 * (xz + yw); m.m[3][0] = 0.0f; m.m[0][1] = 2 * (xy + zw); m.m[1][1] = 1.0f - 2 * (xx + zz); m.m[2][1] = 2 * (yz - xw); m.m[3][1] = 0.0f; m.m[0][2] = 2 * (xz - yw); m.m[1][2] = 2 * (yz + xw); m.m[2][2] = 1.0f - 2 * (xx + yy); m.m[3][2] = 0.0f; m.m[0][3] = 0.0f; m.m[1][3] = 0.0f; m.m[2][3] = 0.0f; m.m[3][3] = 1.0f; int flags = flagBits; *this *= m; if (flags != Identity) flagBits = flags | Rotation; else flagBits = Rotation; return *this; } #endif /*! \overload Multiplies this matrix by another that applies an orthographic projection for a window with boundaries specified by \a rect. The near and far clipping planes will be -1 and 1 respectively. Returns this matrix. \sa frustum(), perspective() */ QMatrix4x4& QMatrix4x4::ortho(const QRect& rect) { // Note: rect.right() and rect.bottom() subtract 1 in QRect, // which gives the location of a pixel within the rectangle, // instead of the extent of the rectangle. We want the extent. // QRectF expresses the extent properly. return ortho(rect.x(), rect.x() + rect.width(), rect.y() + rect.height(), rect.y(), -1.0f, 1.0f); } /*! \overload Multiplies this matrix by another that applies an orthographic projection for a window with boundaries specified by \a rect. The near and far clipping planes will be -1 and 1 respectively. Returns this matrix. \sa frustum(), perspective() */ QMatrix4x4& QMatrix4x4::ortho(const QRectF& rect) { return ortho(rect.left(), rect.right(), rect.bottom(), rect.top(), -1.0f, 1.0f); } /*! Multiplies this matrix by another that applies an orthographic projection for a window with lower-left corner (\a left, \a bottom), upper-right corner (\a right, \a top), and the specified \a nearPlane and \a farPlane clipping planes. Returns this matrix. \sa frustum(), perspective() */ QMatrix4x4& QMatrix4x4::ortho(qreal left, qreal right, qreal bottom, qreal top, qreal nearPlane, qreal farPlane) { // Bail out if the projection volume is zero-sized. if (left == right || bottom == top || nearPlane == farPlane) return *this; // Construct the projection. qreal width = right - left; qreal invheight = top - bottom; qreal clip = farPlane - nearPlane; #ifndef QT_NO_VECTOR3D if (clip == 2.0f && (nearPlane + farPlane) == 0.0f) { // We can express this projection as a translate and scale // which will be more efficient to modify with further // transformations than producing a "General" matrix. translate(QVector3D (qf2vt_round(-(left + right) / width), qf2vt_round(-(top + bottom) / invheight), 0.0f, 1)); scale(QVector3D (qf2vt_round(2.0f / width), qf2vt_round(2.0f / invheight), -1.0f, 1)); return *this; } #endif QMatrix4x4 m(1); m.m[0][0] = qf2vt_round(2.0f / width); m.m[1][0] = qf2vt_round(0.0f); m.m[2][0] = qf2vt_round(0.0f); m.m[3][0] = qf2vt_round(-(left + right) / width); m.m[0][1] = qf2vt_round(0.0f); m.m[1][1] = qf2vt_round(2.0f / invheight); m.m[2][1] = qf2vt_round(0.0f); m.m[3][1] = qf2vt_round(-(top + bottom) / invheight); m.m[0][2] = qf2vt_round(0.0f); m.m[1][2] = qf2vt_round(0.0f); m.m[2][2] = qf2vt_round(-2.0f / clip); m.m[3][2] = qf2vt_round(-(nearPlane + farPlane) / clip); m.m[0][3] = qf2vt_round(0.0f); m.m[1][3] = qf2vt_round(0.0f); m.m[2][3] = qf2vt_round(0.0f); m.m[3][3] = qf2vt_round(1.0f); // Apply the projection. *this *= m; return *this; } /*! Multiplies this matrix by another that applies a perspective frustum projection for a window with lower-left corner (\a left, \a bottom), upper-right corner (\a right, \a top), and the specified \a nearPlane and \a farPlane clipping planes. Returns this matrix. \sa ortho(), perspective() */ QMatrix4x4& QMatrix4x4::frustum(qreal left, qreal right, qreal bottom, qreal top, qreal nearPlane, qreal farPlane) { // Bail out if the projection volume is zero-sized. if (left == right || bottom == top || nearPlane == farPlane) return *this; // Construct the projection. QMatrix4x4 m(1); qreal width = right - left; qreal invheight = top - bottom; qreal clip = farPlane - nearPlane; m.m[0][0] = qf2vt_round(2.0f * nearPlane / width); m.m[1][0] = qf2vt_round(0.0f); m.m[2][0] = qf2vt_round((left + right) / width); m.m[3][0] = qf2vt_round(0.0f); m.m[0][1] = qf2vt_round(0.0f); m.m[1][1] = qf2vt_round(2.0f * nearPlane / invheight); m.m[2][1] = qf2vt_round((top + bottom) / invheight); m.m[3][1] = qf2vt_round(0.0f); m.m[0][2] = qf2vt_round(0.0f); m.m[1][2] = qf2vt_round(0.0f); m.m[2][2] = qf2vt_round(-(nearPlane + farPlane) / clip); m.m[3][2] = qf2vt_round(-(2.0f * nearPlane * farPlane) / clip); m.m[0][3] = qf2vt_round(0.0f); m.m[1][3] = qf2vt_round(0.0f); m.m[2][3] = qf2vt_round(-1.0f); m.m[3][3] = qf2vt_round(0.0f); // Apply the projection. *this *= m; return *this; } /*! Multiplies this matrix by another that applies a perspective projection. The field of view will be \a angle degrees within a window with a given \a aspect ratio. The projection will have the specified \a nearPlane and \a farPlane clipping planes. Returns this matrix. \sa ortho(), frustum() */ QMatrix4x4& QMatrix4x4::perspective(qreal angle, qreal aspect, qreal nearPlane, qreal farPlane) { // Bail out if the projection volume is zero-sized. if (nearPlane == farPlane || aspect == 0.0f) return *this; // Construct the projection. QMatrix4x4 m(1); qreal radians = (angle / 2.0f) * M_PI / 180.0f; qreal sine = qSin(radians); if (sine == 0.0f) return *this; qreal cotan = qCos(radians) / sine; qreal clip = farPlane - nearPlane; m.m[0][0] = qf2vt_round(cotan / aspect); m.m[1][0] = qf2vt_round(0.0f); m.m[2][0] = qf2vt_round(0.0f); m.m[3][0] = qf2vt_round(0.0f); m.m[0][1] = qf2vt_round(0.0f); m.m[1][1] = qf2vt_round(cotan); m.m[2][1] = qf2vt_round(0.0f); m.m[3][1] = qf2vt_round(0.0f); m.m[0][2] = qf2vt_round(0.0f); m.m[1][2] = qf2vt_round(0.0f); m.m[2][2] = qf2vt_round(-(nearPlane + farPlane) / clip); m.m[3][2] = qf2vt_round(-(2.0f * nearPlane * farPlane) / clip); m.m[0][3] = qf2vt_round(0.0f); m.m[1][3] = qf2vt_round(0.0f); m.m[2][3] = qf2vt_round(-1.0f); m.m[3][3] = qf2vt_round(0.0f); // Apply the projection. *this *= m; return *this; } #ifndef QT_NO_VECTOR3D /*! Multiplies this matrix by another that applies an \a eye position transformation. The \a center value indicates the center of the view that the \a eye is looking at. The \a up value indicates which direction should be considered up with respect to the \a eye. Returns this matrix. */ QMatrix4x4& QMatrix4x4::lookAt(const QVector3D& eye, const QVector3D& center, const QVector3D& up) { QVector3D forward = (center - eye).normalized(); QVector3D side = QVector3D::crossProduct(forward, up).normalized(); QVector3D upVector = QVector3D::crossProduct(side, forward); QMatrix4x4 m(1); m.m[0][0] = side.xp; m.m[1][0] = side.yp; m.m[2][0] = side.zp; m.m[3][0] = 0.0f; m.m[0][1] = upVector.xp; m.m[1][1] = upVector.yp; m.m[2][1] = upVector.zp; m.m[3][1] = 0.0f; m.m[0][2] = -forward.xp; m.m[1][2] = -forward.yp; m.m[2][2] = -forward.zp; m.m[3][2] = 0.0f; m.m[0][3] = 0.0f; m.m[1][3] = 0.0f; m.m[2][3] = 0.0f; m.m[3][3] = 1.0f; *this *= m; return translate(-eye); } #endif /*! Flips between right-handed and left-handed coordinate systems by multiplying the y and z co-ordinates by -1. This is normally used to create a left-handed orthographic view without scaling the viewport as ortho() does. Returns this matrix. \sa ortho() */ QMatrix4x4& QMatrix4x4::flipCoordinates() { if (flagBits == Scale || flagBits == (Scale | Translation)) { m[1][1] = -m[1][1]; m[2][2] = -m[2][2]; } else if (flagBits == Translation) { m[1][1] = -m[1][1]; m[2][2] = -m[2][2]; flagBits |= Scale; } else if (flagBits == Identity) { m[1][1] = -1.0f; m[2][2] = -1.0f; flagBits = Scale; } else { m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2]; m[1][3] = -m[1][3]; m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2]; m[2][3] = -m[2][3]; flagBits = General; } return *this; } /*! Retrieves the 16 items in this matrix and writes them to \a values in row-major order. */ void QMatrix4x4::toValueArray(qreal *values) const { for (int row = 0; row < 4; ++row) for (int col = 0; col < 4; ++col) values[row * 4 + col] = qt_math3d_convert(m[col][row]); } /*! Returns the conventional Qt 2D affine transformation matrix that corresponds to this matrix. It is assumed that this matrix only contains 2D affine transformation elements. \sa toTransform() */ QMatrix QMatrix4x4::toAffine() const { return QMatrix(qt_math3d_convert(m[0][0]), qt_math3d_convert(m[0][1]), qt_math3d_convert(m[1][0]), qt_math3d_convert(m[1][1]), qt_math3d_convert(m[3][0]), qt_math3d_convert(m[3][1])); } /*! Returns the conventional Qt 2D transformation matrix that corresponds to this matrix. It is assumed that this matrix only contains 2D transformation elements. \sa toAffine() */ QTransform QMatrix4x4::toTransform() const { return QTransform(qt_math3d_convert(m[0][0]), qt_math3d_convert(m[0][1]), qt_math3d_convert(m[0][3]), qt_math3d_convert(m[1][0]), qt_math3d_convert(m[1][1]), qt_math3d_convert(m[1][3]), qt_math3d_convert(m[3][0]), qt_math3d_convert(m[3][1]), qt_math3d_convert(m[3][3])); } /*! \fn QPoint QMatrix4x4::map(const QPoint& point) const Maps \a point by multiplying this matrix by \a point. \sa mapRect() */ /*! \fn QPointF QMatrix4x4::map(const QPointF& point) const Maps \a point by multiplying this matrix by \a point. \sa mapRect() */ #ifndef QT_NO_VECTOR3D /*! \fn QVector3D QMatrix4x4::map(const QVector3D& point) const Maps \a point by multiplying this matrix by \a point. \sa mapRect() */ #endif #ifndef QT_NO_VECTOR4D /*! \fn QVector4D QMatrix4x4::map(const QVector4D& point) const; Maps \a point by multiplying this matrix by \a point. \sa mapRect() */ #endif /*! \fn QRect QMatrix4x4::mapRect(const QRect& rect) const Maps \a rect by multiplying this matrix by the corners of \a rect and then forming a new rectangle from the results. The returned rectangle will be an ordinary 2D rectangle with sides parallel to the horizontal and vertical axes. \sa map() */ /*! \fn QRectF QMatrix4x4::mapRect(const QRectF& rect) const Maps \a rect by multiplying this matrix by the corners of \a rect and then forming a new rectangle from the results. The returned rectangle will be an ordinary 2D rectangle with sides parallel to the horizontal and vertical axes. \sa map() */ /*! \fn qrealinner *QMatrix4x4::data() Returns a pointer to the raw data of this matrix. This is indended for use with raw GL functions. \sa constData(), inferSpecialType() */ /*! \fn const qrealinner *QMatrix4x4::data() const Returns a constant pointer to the raw data of this matrix. This is indended for use with raw GL functions. \sa constData() */ /*! \fn const qrealinner *QMatrix4x4::constData() const Returns a constant pointer to the raw data of this matrix. This is indended for use with raw GL functions. \sa data() */ // Helper routine for inverting orthonormal matrices that consist // of just rotations and translations. QMatrix4x4 QMatrix4x4::orthonormalInverse() const { QMatrix4x4 result(1); // The '1' says not to load identity result.m[0][0] = m[0][0]; result.m[1][0] = m[0][1]; result.m[2][0] = m[0][2]; result.m[0][1] = m[1][0]; result.m[1][1] = m[1][1]; result.m[2][1] = m[1][2]; result.m[0][2] = m[2][0]; result.m[1][2] = m[2][1]; result.m[2][2] = m[2][2]; result.m[0][3] = 0.0f; result.m[1][3] = 0.0f; result.m[2][3] = 0.0f; result.m[3][0] = -(result.m[0][0] * m[3][0] + result.m[1][0] * m[3][1] + result.m[2][0] * m[3][2]); result.m[3][1] = -(result.m[0][1] * m[3][0] + result.m[1][1] * m[3][1] + result.m[2][1] * m[3][2]); result.m[3][2] = -(result.m[0][2] * m[3][0] + result.m[1][2] * m[3][1] + result.m[2][2] * m[3][2]); result.m[3][3] = 1.0f; return result; } #ifndef QT_NO_VECTOR3D /*! Decomposes the current rotation matrix into an \a axis of rotation plus an \a angle. The result can be used to construct an equivalent rotation matrix using glRotate(). It is assumed that the homogenous coordinate is 1.0. The returned vector is guaranteed to be normalized. \code qreal angle; QVector3D axis; matrix.extractAxisAngle(angle, axis); glRotate(angle, axis[0], axis[1], axis[2]); \endcode \sa rotate() */ void QMatrix4x4::extractAxisRotation(qreal &angle, QVector3D &axis) const { // Orientation is dependent on the upper 3x3 matrix; subtract the // homogeneous scaling element from the trace of the 4x4 matrix qrealinner tr = m[0][0] + m[1][1] + m[2][2]; qreal cosa = qt_math3d_convert(0.5f * (tr - 1.0f)); angle = acos(cosa) * 180.0f / M_PI; // Any axis will work if r is zero (means no rotation) if (qFuzzyCompare(angle, (qreal)0.0f)) { axis.setX(1.0f); axis.setY(0.0f); axis.setZ(0.0f); return; } if (angle < 180.0f) { axis.xp = m[1][2] - m[2][1]; axis.yp = m[2][0] - m[0][2]; axis.zp = m[0][1] - m[1][0]; axis.normalize(); return; } // rads == PI qrealinner tmp; // r00 is maximum if ((m[0][0] >= m[2][2]) && (m[0][0] >= m[1][1])) { axis.xp = 0.5f * qvtsqrt(m[0][0] - m[1][1] - m[2][2] + 1.0f); tmp = 0.5f / axis.x(); axis.yp = m[1][0] * tmp; axis.zp = m[2][0] * tmp; } // r11 is maximum if ((m[1][1] >= m[2][2]) && (m[1][1] >= m[0][0])) { axis.yp = 0.5f * qvtsqrt(m[1][1] - m[0][0] - m[2][2] + 1.0f); tmp = 0.5f / axis.y(); axis.xp = tmp * m[1][0]; axis.zp = tmp * m[2][1]; } // r22 is maximum if ((m[2][2] >= m[1][1]) && (m[2][2] >= m[0][0])) { axis.zp = 0.5f * qvtsqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f); tmp = 0.5f / axis.z(); axis.xp = m[2][0]*tmp; axis.yp = m[2][1]*tmp; } } /*! If this is an orthonormal transformation matrix (e.g. only rotations and translations have been applied to the matrix, no scaling, or shearing) then the world translational component can be obtained by calling this function. This is most useful for camera matrices, where the negation of this vector is effectively the camera world coordinates. */ QVector3D QMatrix4x4::extractTranslation() const { return QVector3D (m[0][0] * m[3][0] + m[0][1] * m[3][1] + m[0][2] * m[3][2], m[1][0] * m[3][0] + m[1][1] * m[3][1] + m[1][2] * m[3][2], m[2][0] * m[3][0] + m[2][1] * m[3][1] + m[2][2] * m[3][2], 1); } #endif /*! Infers the special type of this matrix from its current elements. Some operations such as translate(), scale(), and rotate() can be performed more efficiently if the matrix being modified is already known to be the identity, a previous translate(), a previous scale(), etc. Normally the QMatrix4x4 class keeps track of this special type internally as operations are performed. However, if the matrix is modified directly with operator()() or data(), then QMatrix4x4 will lose track of the special type and will revert to the safest but least efficient operations thereafter. By calling inferSpecialType() after directly modifying the matrix, the programmer can force QMatrix4x4 to recover the special type if the elements appear to conform to one of the known optimized types. \sa operator()(), data(), translate() */ void QMatrix4x4::inferSpecialType() { // If the last element is not 1, then it can never be special. if (m[3][3] != 1.0f) { flagBits = General; return; } // If the upper three elements m12, m13, and m21 are not all zero, // or the lower elements below the diagonal are not all zero, then // the matrix can never be special. if (m[1][0] != 0.0f || m[2][0] != 0.0f || m[2][1] != 0.0f) { flagBits = General; return; } if (m[0][1] != 0.0f || m[0][2] != 0.0f || m[0][3] != 0.0f || m[1][2] != 0.0f || m[1][3] != 0.0f || m[2][3] != 0.0f) { flagBits = General; return; } // Determine what we have in the remaining regions of the matrix. bool identityAlongDiagonal = (m[0][0] == 1.0f && m[1][1] == 1.0f && m[2][2] == 1.0f); bool translationPresent = (m[3][0] != 0.0f || m[3][1] != 0.0f || m[3][2] != 0.0f); // Now determine the special matrix type. if (translationPresent && identityAlongDiagonal) flagBits = Translation; else if (translationPresent) flagBits = (Translation | Scale); else if (identityAlongDiagonal) flagBits = Identity; else flagBits = Scale; } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QMatrix4x4 &m) { // Create a string that represents the matrix type. QByteArray bits; if ((m.flagBits & QMatrix4x4::Identity) != 0) bits += "Identity,"; if ((m.flagBits & QMatrix4x4::General) != 0) bits += "General,"; if ((m.flagBits & QMatrix4x4::Translation) != 0) bits += "Translation,"; if ((m.flagBits & QMatrix4x4::Scale) != 0) bits += "Scale,"; if ((m.flagBits & QMatrix4x4::Rotation) != 0) bits += "Rotation,"; if (bits.size() > 0) bits = bits.left(bits.size() - 1); // Output in row-major order because it is more human-readable. dbg.nospace() << "QMatrix4x4(type:" << bits.constData() << endl << qSetFieldWidth(10) << m(0, 0) << m(0, 1) << m(0, 2) << m(0, 3) << endl << m(1, 0) << m(1, 1) << m(1, 2) << m(1, 3) << endl << m(2, 0) << m(2, 1) << m(2, 2) << m(2, 3) << endl << m(3, 0) << m(3, 1) << m(3, 2) << m(3, 3) << endl << qSetFieldWidth(0) << ')'; return dbg.space(); } #endif #endif QT_END_NAMESPACE