/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Qt Software Information (qt-info@nokia.com) ** ** This file is part of the $MODULE$ of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the either Technology Preview License Agreement or the ** Beta Release License Agreement. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain ** additional rights. These rights are described in the Nokia Qt LGPL ** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this ** package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** If you are unsure which license is appropriate for your use, please ** contact the sales department at qt-sales@nokia.com. ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qquaternion.h" #include "qmath3dutil_p.h" #include QT_BEGIN_NAMESPACE #ifndef QT_NO_QUATERNION /*! \class QQuaternion \brief The QQuaternion class represents a quaternion consisting of a vector and scalar. \since 4.6 Quaternions are used to represent rotations in 3D space, and consist of a 3D rotation axis specified by the x, y, and z coordinates, and a scalar representing the rotation angle. The components of a quaternion are stored internally using the most efficient representation for the GL rendering engine, which will be either floating-point or fixed-point. */ /*! \fn QQuaternion::QQuaternion() Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0). */ /*! \fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos) Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) and \a scalar. */ /*! \fn QQuaternion::QQuaternion(int scalar, int xpos, int ypos, int zpos) Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) and \a scalar. */ #ifndef QT_NO_VECTOR3D /*! \fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector) Constructs a quaternion vector from the specified \a vector and \a scalar. \sa vector(), scalar() */ /*! \fn QVector3D QQuaternion::vector() const Returns the vector component of this quaternion. \sa setVector(), scalar() */ /*! \fn void QQuaternion::setVector(const QVector3D& vector) Sets the vector component of this quaternion to \a vector. \sa vector(), setScalar() */ #endif /*! \fn void QQuaternion::setVector(qreal x, qreal y, qreal z) Sets the vector component of this quaternion to (\a x, \a y, \a z). \sa vector(), setScalar() */ #ifndef QT_NO_VECTOR4D /*! \fn QQuaternion::QQuaternion(const QVector4D& vector) Constructs a quaternion from the components of \a vector. */ /*! \fn QVector4D QQuaternion::toVector4D() const Returns this quaternion as a 4D vector. */ #endif /*! \fn bool QQuaternion::isNull() const Returns true if the x, y, z, and scalar components of this quaternion are set to 0.0; otherwise returns false. */ /*! \fn bool QQuaternion::isIdentity() const Returns true if the x, y, and z components of this quaternion are set to 0.0, and the scalar component is set to 1.0; otherwise returns false. */ /*! \fn qreal QQuaternion::x() const Returns the x coordinate of this quaternion's vector. \sa setX(), y(), z(), scalar() */ /*! \fn qreal QQuaternion::y() const Returns the y coordinate of this quaternion's vector. \sa setY(), x(), z(), scalar() */ /*! \fn qreal QQuaternion::z() const Returns the z coordinate of this quaternion's vector. \sa setZ(), x(), y(), scalar() */ /*! \fn qreal QQuaternion::scalar() const Returns the scalar component of this quaternion. \sa setScalar(), x(), y(), z() */ /*! \fn void QQuaternion::setX(qreal x) Sets the x coordinate of this quaternion's vector to the given \a x coordinate. \sa x(), setY(), setZ(), setScalar() */ /*! \fn void QQuaternion::setY(qreal y) Sets the y coordinate of this quaternion's vector to the given \a y coordinate. \sa y(), setX(), setZ(), setScalar() */ /*! \fn void QQuaternion::setZ(qreal z) Sets the z coordinate of this quaternion's vector to the given \a z coordinate. \sa z(), setX(), setY(), setScalar() */ /*! \fn void QQuaternion::setScalar(qreal scalar) Sets the scalar component of this quaternion to \a scalar. \sa scalar(), setX(), setY(), setZ() */ /*! Returns the length of the quaternion. This is also called the "norm". \sa lengthSquared(), normalized() */ qreal QQuaternion::length() const { return qvtsqrt64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp) + qvtmul64(wp, wp)); } /*! Returns the squared length of the quaternion. \sa length() */ qreal QQuaternion::lengthSquared() const { return qvtdot64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp) + qvtmul64(wp, wp)); } /*! Returns the normalized unit form of this quaternion. If this quaternion is not null, the returned quaternion is guaranteed to be 1.0 in length. If this quaternion is null, then a null quaternion is returned. \sa length(), normalize() */ QQuaternion QQuaternion::normalized() const { qreal len = length(); if (!qIsNull(len)) return *this / len; else return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); } /*! Normalizes the currect quaternion in place. Nothing happens if this is a null quaternion. \sa length(), normalized() */ void QQuaternion::normalize() { qreal len = length(); if (qIsNull(len)) return; xp /= len; yp /= len; zp /= len; wp /= len; } /*! \fn QQuaternion QQuaternion::conjugate() const Returns the conjugate of this quaternion, which is (-x, -y, -z, scalar). */ /*! Rotates \a vector with this quaternion to produce a new vector in 3D space. The following code: \code QVector3D result = q.rotateVector(vector); \endcode is equivalent to the following: \code QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector(); \endcode */ QVector3D QQuaternion::rotateVector(const QVector3D& vector) const { return (*this * QQuaternion(0, vector) * conjugate()).vector(); } /*! \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) Adds the given \a quaternion to this quaternion and returns a reference to this quaternion. \sa operator-=() */ /*! \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) Subtracts the given \a quaternion from this quaternion and returns a reference to this quaternion. \sa operator+=() */ /*! \fn QQuaternion &QQuaternion::operator*=(qreal factor) Multiplies this quaternion's components by the given \a factor, and returns a reference to this quaternion. \sa operator/=() */ /*! \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) Multiplies this quaternion by \a quaternion and returns a reference to this quaternion. */ /*! \fn QQuaternion &QQuaternion::operator/=(qreal divisor) Divides this quaternion's components by the given \a divisor, and returns a reference to this quaternion. \sa operator*=() */ #ifndef QT_NO_VECTOR3D /*! Creates a normalized quaternion that corresponds to rotating through \a angle degrees about the specified 3D \a axis. */ QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle) { // Algorithm from: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 // We normalize the result just in case the values are close // to zero, as suggested in the above FAQ. qrealinner s, c; QVector3D ax = axis.normalized(); qt_math3d_sincos(angle / 2.0f, &s, &c); return QQuaternion(c, ax.xp * s, ax.yp * s, ax.zp * s, 1).normalized(); } #endif /*! Creates a normalized quaternion that corresponds to rotating through \a angle degrees about the 3D axis (\a x, \a y, \a z). */ QQuaternion QQuaternion::fromAxisAndAngle (qreal x, qreal y, qreal z, qreal angle) { qrealinner xp = x; qrealinner yp = y; qrealinner zp = z; qrealinner s, c; qreal length = qvtsqrt(xp * xp + yp * yp + zp * zp); if (!qIsNull(length)) { xp /= length; yp /= length; zp /= length; } qt_math3d_sincos(angle / 2.0f, &s, &c); return QQuaternion(c, xp * s, yp * s, zp * s, 1).normalized(); } /*! \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2) \relates QQuaternion Returns true if \a q1 is equal to \a q2; otherwise returns false. This operator uses an exact floating-point comparison. */ /*! \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2) \relates QQuaternion Returns true if \a q1 is not equal to \a q2; otherwise returns false. This operator uses an exact floating-point comparison. */ /*! \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) \relates QQuaternion Returns a QQuaternion object that is the sum of the given quaternions, \a q1 and \a q2; each component is added separately. \sa QQuaternion::operator+=() */ /*! \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) \relates QQuaternion Returns a QQuaternion object that is formed by subtracting \a q2 from \a q1; each component is subtracted separately. \sa QQuaternion::operator-=() */ /*! \fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion) \relates QQuaternion Returns a copy of the given \a quaternion, multiplied by the given \a factor. \sa QQuaternion::operator*=() */ /*! \fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor) \relates QQuaternion Returns a copy of the given \a quaternion, multiplied by the given \a factor. \sa QQuaternion::operator*=() */ /*! \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2) \relates QQuaternion Multiplies \a q1 and \a q2 using quaternion multiplication. The result corresponds to applying both of the rotations specified by \a q1 and \a q2. \sa QQuaternion::operator*=() */ /*! \fn const QQuaternion operator-(const QQuaternion &quaternion) \relates QQuaternion \overload Returns a QQuaternion object that is formed by changing the sign of all three components of the given \a quaternion. Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. */ /*! \fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor) \relates QQuaternion Returns the QQuaternion object formed by dividing all components of the given \a quaternion by the given \a divisor. \sa QQuaternion::operator/=() */ /*! \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2) \relates QQuaternion Returns true if \a q1 and \a q2 are equal, allowing for a small fuzziness factor for floating-point comparisons; false otherwise. */ /*! Interpolates along the shortest spherical path between the rotational positions \a q1 and \a q2. The value \a t should be between 0 and 1, indicating the spherical distance to travel between \a q1 and \a q2. If \a t is less than or equal to 0, then \a q1 will be returned. If \a t is greater than or equal to 1, then \a q2 will be returned. */ QQuaternion QQuaternion::interpolate (const QQuaternion& q1, const QQuaternion& q2, qreal t) { // Handle the easy cases first. if (t <= 0.0f) return q1; else if (t >= 1.0f) return q2; // Determine the angle between the two quaternions. QQuaternion q2b; qreal dot; dot = qvtdot64(qvtmul64(q1.xp, q2.xp) + qvtmul64(q1.yp, q2.yp) + qvtmul64(q1.zp, q2.zp) + qvtmul64(q1.wp, q2.wp)); if (dot >= 0.0f) { q2b = q2; } else { q2b = -q2; dot = -dot; } // Get the scale factors. If they are too small, // then revert to simple linear interpolation. qreal factor1 = 1.0f - t; qreal factor2 = t; if ((1.0f - dot) > 0.0000001) { qreal angle = qreal(qAcos(dot)); qreal sinOfAngle = qreal(qSin(angle)); if (sinOfAngle > 0.0000001) { factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle; factor2 = qreal(qSin(t * angle)) / sinOfAngle; } } // Construct the result quaternion. return q1 * factor1 + q2b * factor2; } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QQuaternion &q) { dbg.nospace() << "QQuaternion(scalar:" << q.scalar() << ", vector:(" << q.x() << ", " << q.y() << ", " << q.z() << "))"; return dbg.space(); } #endif #endif QT_END_NAMESPACE