/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Qt Software Information (qt-info@nokia.com) ** ** This file is part of the $MODULE$ of the Qt Toolkit. ** ** $TROLLTECH_DUAL_LICENSE$ ** ****************************************************************************/ #include "qvector3d.h" #include "qvector2d.h" #include "qvector4d.h" #include "qmath3dutil_p.h" #include QT_BEGIN_NAMESPACE #ifndef QT_NO_VECTOR3D /*! \class QVector3D \brief The QVector3D class represents a vector or vertex in 3D space. \since 4.6 Vectors are one of the main building blocks of 3D representation and drawing. They consist of three coordinates, traditionally called x, y, and z. The QVector3D class can also be used to represent vertices in 3D space. We therefore do not need to provide a separate vertex class. The coordinates are stored internally using the most efficient representation for the GL rendering engine, which will be either floating-point or fixed-point. */ /*! \fn QVector3D::QVector3D() Constructs a null vector, i.e. with coordinates (0, 0, 0). */ /*! \fn QVector3D::QVector3D(qreal xpos, qreal ypos, qreal zpos) Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos). */ /*! \fn QVector3D::QVector3D(int xpos, int ypos, int zpos) Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos). */ /*! \fn QVector3D::QVector3D(const QPoint& point) Constructs a vector with x and y coordinates from a 2D \a point, and a z coordinate of 0. */ /*! \fn QVector3D::QVector3D(const QPointF& point) Constructs a vector with x and y coordinates from a 2D \a point, and a z coordinate of 0. */ #ifndef QT_NO_VECTOR2D /*! Constructs a 3D vector from the specified 2D \a vector. The z coordinate is set to zero. \sa toVector2D() */ QVector3D::QVector3D(const QVector2D& vector) { xp = vector.xp; yp = vector.yp; zp = 0.0f; } /*! Constructs a 3D vector from the specified 2D \a vector. The z coordinate is set to \a zpos. \sa toVector2D() */ QVector3D::QVector3D(const QVector2D& vector, qreal zpos) { xp = vector.xp; yp = vector.yp; zp = zpos; } #endif #ifndef QT_NO_VECTOR4D /*! Constructs a 3D vector from the specified 4D \a vector. The w coordinate is dropped. \sa toVector4D() */ QVector3D::QVector3D(const QVector4D& vector) { xp = vector.xp; yp = vector.yp; zp = vector.zp; } #endif /*! \fn bool QVector3D::isNull() const Returns true if the x, y, and z coordinates are set to 0.0, otherwise returns false. */ /*! \fn qreal QVector3D::x() const Returns the x coordinate of this point. \sa setX(), y(), z() */ /*! \fn qreal QVector3D::y() const Returns the y coordinate of this point. \sa setY(), x(), z() */ /*! \fn qreal QVector3D::z() const Returns the z coordinate of this point. \sa setZ(), x(), y() */ /*! \fn void QVector3D::setX(qreal x) Sets the x coordinate of this point to the given \a x coordinate. \sa x(), setY(), setZ() */ /*! \fn void QVector3D::setY(qreal y) Sets the y coordinate of this point to the given \a y coordinate. \sa y(), setX(), setZ() */ /*! \fn void QVector3D::setZ(qreal z) Sets the z coordinate of this point to the given \a z coordinate. \sa z(), setX(), setY() */ /*! Returns the normalized unit vector form of this vector. If this vector is not null, the returned vector is guaranteed to be 1.0 in length. If this vector is null, then a null vector is returned. \sa length(), normalize() */ QVector3D QVector3D::normalized() const { qreal len = length(); if (!qIsNull(len)) return *this / len; else return QVector3D(); } /*! Normalizes the currect vector in place. Nothing happens if this vector is a null vector. \sa length(), normalized() */ void QVector3D::normalize() { qreal len = length(); if (qIsNull(len)) return; xp /= len; yp /= len; zp /= len; } /*! \fn QVector3D &QVector3D::operator+=(const QVector3D &vector) Adds the given \a vector to this vector and returns a reference to this vector. \sa operator-=() */ /*! \fn QVector3D &QVector3D::operator-=(const QVector3D &vector) Subtracts the given \a vector from this vector and returns a reference to this vector. \sa operator+=() */ /*! \fn QVector3D &QVector3D::operator*=(qreal factor) Multiplies this vector's coordinates by the given \a factor, and returns a reference to this vector. \sa operator/=() */ /*! \fn QVector3D &QVector3D::operator*=(const QVector3D& vector) \overload Multiplies the components of this vector by the corresponding components in \a vector. Note: this is not the same as the crossProduct() of this vector and \a vector. \sa crossProduct() */ /*! \fn QVector3D &QVector3D::operator/=(qreal divisor) Divides this vector's coordinates by the given \a divisor, and returns a reference to this vector. \sa operator*=() */ /*! Returns the dot product of \a v1 and \a v2. */ qreal QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2) { return qvtdot64(qvtmul64(v1.xp, v2.xp) + qvtmul64(v1.yp, v2.yp) + qvtmul64(v1.zp, v2.zp)); } /*! Returns the cross-product of vectors \a v1 and \a v2, which corresponds to the normal vector of a plane defined by \a v1 and \a v2. \sa normal() */ QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2) { return QVector3D(v1.yp * v2.zp - v1.zp * v2.yp, v1.zp * v2.xp - v1.xp * v2.zp, v1.xp * v2.yp - v1.yp * v2.xp, 1); } /*! Returns the normal vector of a plane defined by vectors \a v1 and \a v2, normalized to be a unit vector. Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you do not need the result to be normalized to a unit vector. \sa crossProduct(), distanceToPlane() */ QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2) { return crossProduct(v1, v2).normalized(); } /*! \overload Returns the normal vector of a plane defined by vectors \a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector. Use crossProduct() to compute the cross-product of \a v2 - \a v1 and \a v3 - \a v1 if you do not need the result to be normalized to a unit vector. \sa crossProduct(), distanceToPlane() */ QVector3D QVector3D::normal (const QVector3D& v1, const QVector3D& v2, const QVector3D& v3) { return crossProduct((v2 - v1), (v3 - v1)).normalized(); } /*! Returns the distance from this vertex to a plane defined by the vertex \a plane and a \a normal unit vector. The \a normal parameter is assumed to have been normalized to a unit vector. The return value will be negative if the vertex is below the plane, or zero if it is on the plane. \sa normal(), distanceToLine() */ qreal QVector3D::distanceToPlane (const QVector3D& plane, const QVector3D& normal) const { return dotProduct(*this - plane, normal); } /*! \overload Returns the distance from this vertex a plane defined by the vertices \a plane1, \a plane2 and \a plane3. The return value will be negative if the vertex is below the plane, or zero if it is on the plane. The two vectors that define the plane are \a plane2 - \a plane1 and \a plane3 - \a plane1. \sa normal(), distanceToLine() */ qreal QVector3D::distanceToPlane (const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const { QVector3D n = normal(plane2 - plane1, plane3 - plane1); return dotProduct(*this - plane1, n); } /*! Returns the distance that this vertex is from a line defined by \a point and the unit vector \a direction. If \a direction is a null vector, then it does not define a line. In that case, the distance from \a point to this vertex is returned. \sa distanceToPlane() */ qreal QVector3D::distanceToLine (const QVector3D& point, const QVector3D& direction) const { if (direction.isNull()) return (*this - point).length(); QVector3D p = point + dotProduct(*this - point, direction) * direction; return (*this - p).length(); } /*! \fn bool operator==(const QVector3D &v1, const QVector3D &v2) \relates QVector3D Returns true if \a v1 is equal to \a v2; otherwise returns false. This operator uses an exact floating-point comparison. */ /*! \fn bool operator!=(const QVector3D &v1, const QVector3D &v2) \relates QVector3D Returns true if \a v1 is not equal to \a v2; otherwise returns false. This operator uses an exact floating-point comparison. */ /*! \fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2) \relates QVector3D Returns a QVector3D object that is the sum of the given vectors, \a v1 and \a v2; each component is added separately. \sa QVector3D::operator+=() */ /*! \fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2) \relates QVector3D Returns a QVector3D object that is formed by subtracting \a v2 from \a v1; each component is subtracted separately. \sa QVector3D::operator-=() */ /*! \fn const QVector3D operator*(qreal factor, const QVector3D &vector) \relates QVector3D Returns a copy of the given \a vector, multiplied by the given \a factor. \sa QVector3D::operator*=() */ /*! \fn const QVector3D operator*(const QVector3D &vector, qreal factor) \relates QVector3D Returns a copy of the given \a vector, multiplied by the given \a factor. \sa QVector3D::operator*=() */ /*! \fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2) \relates QVector3D Multiplies the components of \a v1 by the corresponding components in \a v2. Note: this is not the same as the crossProduct() of \a v1 and \a v2. \sa QVector3D::crossProduct() */ /*! \fn const QVector3D operator-(const QVector3D &vector) \relates QVector3D \overload Returns a QVector3D object that is formed by changing the sign of all three components of the given \a vector. Equivalent to \c {QVector3D(0,0,0) - vector}. */ /*! \fn const QVector3D operator/(const QVector3D &vector, qreal divisor) \relates QVector3D Returns the QVector3D object formed by dividing all three components of the given \a vector by the given \a divisor. \sa QVector3D::operator/=() */ /*! \fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2) \relates QVector3D Returns true if \a v1 and \a v2 are equal, allowing for a small fuzziness factor for floating-point comparisons; false otherwise. */ #ifndef QT_NO_VECTOR2D /*! Returns the 2D vector form of this 3D vector, dropping the z coordinate. \sa toVector4D(), toPoint() */ QVector2D QVector3D::toVector2D() const { return QVector2D(xp, yp, 1); } #endif #ifndef QT_NO_VECTOR4D /*! Returns the 4D form of this 3D vector, with the w coordinate set to zero. \sa toVector2D(), toPoint() */ QVector4D QVector3D::toVector4D() const { return QVector4D(xp, yp, zp, 0.0f, 1); } #endif /*! \fn QPoint QVector3D::toPoint() const Returns the QPoint form of this 3D vector. \sa toPointF(), toVector2D() */ /*! \fn QPointF QVector3D::toPointF() const Returns the QPointF form of this 3D vector. \sa toPoint(), toVector2D() */ /*! Returns the length of the vector from the origin. \sa lengthSquared(), normalized() */ qreal QVector3D::length() const { return qvtsqrt64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp)); } /*! Returns the squared length of the vector from the origin. This is equivalent to the dot product of the vector with itself. \sa length(), dotProduct() */ qreal QVector3D::lengthSquared() const { return qvtdot64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp)); } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QVector3D &vector) { dbg.nospace() << "QVector3D(" << vector.x() << ", " << vector.y() << ", " << vector.z() << ')'; return dbg.space(); } #endif #endif QT_END_NAMESPACE