/**************************************************************************** ** ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #ifdef QT_HAVE_SSE2 #include #ifdef QT_LINUXBASE // this is an evil hack - the posix_memalign declaration in LSB // is wrong - see http://bugs.linuxbase.org/show_bug.cgi?id=2431 # define posix_memalign _lsb_hack_posix_memalign # include # undef posix_memalign #else # include #endif QT_BEGIN_NAMESPACE /* * Multiply the components of pixelVector by alphaChannel * Each 32bits components of alphaChannel must be in the form 0x00AA00AA * colorMask must have 0x00ff00ff on each 32 bits component * half must have the value 128 (0x80) for each 32 bits compnent */ #define BYTE_MUL_SSE2(result, pixelVector, alphaChannel, colorMask, half) \ { \ /* 1. separate the colors in 2 vectors so each color is on 16 bits \ (in order to be multiplied by the alpha \ each 32 bit of dstVectorAG are in the form 0x00AA00GG \ each 32 bit of dstVectorRB are in the form 0x00RR00BB */\ __m128i pixelVectorAG = _mm_srli_epi16(pixelVector, 8); \ __m128i pixelVectorRB = _mm_and_si128(pixelVector, colorMask); \ \ /* 2. multiply the vectors by the alpha channel */\ pixelVectorAG = _mm_mullo_epi16(pixelVectorAG, alphaChannel); \ pixelVectorRB = _mm_mullo_epi16(pixelVectorRB, alphaChannel); \ \ /* 3. devide by 255, that's the tricky part. \ we do it like for BYTE_MUL(), with bit shift: X/255 ~= (X + X/256 + rounding)/256 */ \ /** so first (X + X/256 + rounding) */\ pixelVectorRB = _mm_add_epi16(pixelVectorRB, _mm_srli_epi16(pixelVectorRB, 8)); \ pixelVectorRB = _mm_add_epi16(pixelVectorRB, half); \ pixelVectorAG = _mm_add_epi16(pixelVectorAG, _mm_srli_epi16(pixelVectorAG, 8)); \ pixelVectorAG = _mm_add_epi16(pixelVectorAG, half); \ \ /** second devide by 256 */\ pixelVectorRB = _mm_srli_epi16(pixelVectorRB, 8); \ /** for AG, we could >> 8 to divide followed by << 8 to put the \ bytes in the correct position. By masking instead, we execute \ only one instruction */\ pixelVectorAG = _mm_andnot_si128(colorMask, pixelVectorAG); \ \ /* 4. combine the 2 pairs of colors */ \ result = _mm_or_si128(pixelVectorAG, pixelVectorRB); \ } /* * Each 32bits components of alphaChannel must be in the form 0x00AA00AA * oneMinusAlphaChannel must be 255 - alpha for each 32 bits component * colorMask must have 0x00ff00ff on each 32 bits component * half must have the value 128 (0x80) for each 32 bits compnent */ #define INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, alphaChannel, oneMinusAlphaChannel, colorMask, half) { \ /* interpolate AG */\ __m128i srcVectorAG = _mm_srli_epi16(srcVector, 8); \ __m128i dstVectorAG = _mm_srli_epi16(dstVector, 8); \ __m128i srcVectorAGalpha = _mm_mullo_epi16(srcVectorAG, alphaChannel); \ __m128i dstVectorAGoneMinusAlphalpha = _mm_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); \ __m128i finalAG = _mm_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlphalpha); \ finalAG = _mm_add_epi16(finalAG, _mm_srli_epi16(finalAG, 8)); \ finalAG = _mm_add_epi16(finalAG, half); \ finalAG = _mm_andnot_si128(colorMask, finalAG); \ \ /* interpolate RB */\ __m128i srcVectorRB = _mm_and_si128(srcVector, colorMask); \ __m128i dstVectorRB = _mm_and_si128(dstVector, colorMask); \ __m128i srcVectorRBalpha = _mm_mullo_epi16(srcVectorRB, alphaChannel); \ __m128i dstVectorRBoneMinusAlphalpha = _mm_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); \ __m128i finalRB = _mm_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlphalpha); \ finalRB = _mm_add_epi16(finalRB, _mm_srli_epi16(finalRB, 8)); \ finalRB = _mm_add_epi16(finalRB, half); \ finalRB = _mm_srli_epi16(finalRB, 8); \ \ /* combine */\ result = _mm_or_si128(finalAG, finalRB); \ } // Basically blend src over dst with the const alpha defined as constAlphaVector. // nullVector, half, one, colorMask are constant accross the whole image/texture, and should be defined as: //const __m128i nullVector = _mm_set1_epi32(0); //const __m128i half = _mm_set1_epi16(0x80); //const __m128i one = _mm_set1_epi16(0xff); //const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); //const __m128i alphaMask = _mm_set1_epi32(0xff000000); // // The computation being done is: // result = s + d * (1-alpha) // with shortcuts if fully opaque or fully transparent. #define BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, length, nullVector, half, one, colorMask, alphaMask) { \ int x = 0; \ for (; x < length-3; x += 4) { \ const __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); \ const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); \ if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { \ /* all opaque */ \ _mm_storeu_si128((__m128i *)&dst[x], srcVector); \ } else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { \ /* not fully transparent */ \ /* extract the alpha channel on 2 x 16 bits */ \ /* so we have room for the multiplication */ \ /* each 32 bits will be in the form 0x00AA00AA */ \ /* with A being the 1 - alpha */ \ __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); \ alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); \ alphaChannel = _mm_sub_epi16(one, alphaChannel); \ \ const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); \ __m128i destMultipliedByOneMinusAlpha; \ BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \ \ /* result = s + d * (1-alpha) */\ const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \ _mm_storeu_si128((__m128i *)&dst[x], result); \ } \ } \ for (; x < length; ++x) { \ uint s = src[x]; \ if (s >= 0xff000000) \ dst[x] = s; \ else if (s != 0) \ dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); \ } \ } // Basically blend src over dst with the const alpha defined as constAlphaVector. // nullVector, half, one, colorMask are constant accross the whole image/texture, and should be defined as: //const __m128i nullVector = _mm_set1_epi32(0); //const __m128i half = _mm_set1_epi16(0x80); //const __m128i one = _mm_set1_epi16(0xff); //const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); // // The computation being done is: // dest = (s + d * sia) * ca + d * cia // = s * ca + d * (sia * ca + cia) // = s * ca + d * (1 - sa*ca) #define BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, length, nullVector, half, one, colorMask, constAlphaVector) \ { \ int x = 0; \ for (; x < length-3; x += 4) { \ __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); \ if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) { \ BYTE_MUL_SSE2(srcVector, srcVector, constAlphaVector, colorMask, half); \ \ __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); \ alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); \ alphaChannel = _mm_sub_epi16(one, alphaChannel); \ \ const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); \ __m128i destMultipliedByOneMinusAlpha; \ BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \ \ const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \ _mm_storeu_si128((__m128i *)&dst[x], result); \ } \ } \ for (; x < length; ++x) { \ quint32 s = src[x]; \ if (s != 0) { \ s = BYTE_MUL(s, const_alpha); \ dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); \ } \ } \ } void qt_blend_argb32_on_argb32_sse2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; if (const_alpha == 256) { const __m128i alphaMask = _mm_set1_epi32(0xff000000); const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); for (int y = 0; y < h; ++y) { BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, w, nullVector, half, one, colorMask, alphaMask); dst = (quint32 *)(((uchar *) dst) + dbpl); src = (const quint32 *)(((const uchar *) src) + sbpl); } } else if (const_alpha != 0) { // dest = (s + d * sia) * ca + d * cia // = s * ca + d * (sia * ca + cia) // = s * ca + d * (1 - sa*ca) const_alpha = (const_alpha * 255) >> 8; const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); for (int y = 0; y < h; ++y) { BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, w, nullVector, half, one, colorMask, constAlphaVector) dst = (quint32 *)(((uchar *) dst) + dbpl); src = (const quint32 *)(((const uchar *) src) + sbpl); } } } // qblendfunctions.cpp void qt_blend_rgb32_on_rgb32(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha); void qt_blend_rgb32_on_rgb32_sse2(uchar *destPixels, int dbpl, const uchar *srcPixels, int sbpl, int w, int h, int const_alpha) { const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; if (const_alpha != 256) { if (const_alpha != 0) { const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const_alpha = (const_alpha * 255) >> 8; int one_minus_const_alpha = 255 - const_alpha; const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha); for (int y = 0; y < h; ++y) { int x = 0; for (; x < w-3; x += 4) { __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) { const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); __m128i result; INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); _mm_storeu_si128((__m128i *)&dst[x], result); } } for (; x= 0); Q_ASSERT(const_alpha < 256); const quint32 *src = (const quint32 *) srcPixels; quint32 *dst = (quint32 *) destPixels; const __m128i nullVector = _mm_set1_epi32(0); const __m128i half = _mm_set1_epi16(0x80); const __m128i one = _mm_set1_epi16(0xff); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); if (const_alpha == 255) { const __m128i alphaMask = _mm_set1_epi32(0xff000000); BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, length, nullVector, half, one, colorMask, alphaMask); } else { const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, length, nullVector, half, one, colorMask, constAlphaVector); } } void qt_memfill32_sse2(quint32 *dest, quint32 value, int count) { if (count < 7) { switch (count) { case 6: *dest++ = value; case 5: *dest++ = value; case 4: *dest++ = value; case 3: *dest++ = value; case 2: *dest++ = value; case 1: *dest = value; } return; }; const int align = (quintptr)(dest) & 0xf; switch (align) { case 4: *dest++ = value; --count; case 8: *dest++ = value; --count; case 12: *dest++ = value; --count; } int count128 = count / 4; __m128i *dst128 = reinterpret_cast<__m128i*>(dest); const __m128i value128 = _mm_set_epi32(value, value, value, value); int n = (count128 + 3) / 4; switch (count128 & 0x3) { case 0: do { _mm_store_si128(dst128++, value128); case 3: _mm_store_si128(dst128++, value128); case 2: _mm_store_si128(dst128++, value128); case 1: _mm_store_si128(dst128++, value128); } while (--n > 0); } const int rest = count & 0x3; if (rest) { switch (rest) { case 3: dest[count - 3] = value; case 2: dest[count - 2] = value; case 1: dest[count - 1] = value; } } } void QT_FASTCALL comp_func_solid_SourceOver_sse2(uint *destPixels, int length, uint color, uint const_alpha) { if ((const_alpha & qAlpha(color)) == 255) { qt_memfill32_sse2(destPixels, color, length); } else { if (const_alpha != 255) color = BYTE_MUL(color, const_alpha); const quint32 minusAlphaOfColor = qAlpha(~color); int x = 0; quint32 *dst = (quint32 *) destPixels; const __m128i colorVector = _mm_set1_epi32(color); const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); const __m128i half = _mm_set1_epi16(0x80); const __m128i minusAlphaOfColorVector = _mm_set1_epi16(minusAlphaOfColor); for (; x < length-3; x += 4) { __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); BYTE_MUL_SSE2(dstVector, dstVector, minusAlphaOfColorVector, colorMask, half); dstVector = _mm_add_epi8(colorVector, dstVector); _mm_storeu_si128((__m128i *)&dst[x], dstVector); } for (;x < length; ++x) destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor); } } void qt_memfill16_sse2(quint16 *dest, quint16 value, int count) { if (count < 3) { switch (count) { case 2: *dest++ = value; case 1: *dest = value; } return; } const int align = (quintptr)(dest) & 0x3; switch (align) { case 2: *dest++ = value; --count; } const quint32 value32 = (value << 16) | value; qt_memfill32_sse2(reinterpret_cast(dest), value32, count / 2); if (count & 0x1) dest[count - 1] = value; } void qt_bitmapblit32_sse2(QRasterBuffer *rasterBuffer, int x, int y, quint32 color, const uchar *src, int width, int height, int stride) { quint32 *dest = reinterpret_cast(rasterBuffer->scanLine(y)) + x; const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint32); const __m128i c128 = _mm_set1_epi32(color); const __m128i maskmask1 = _mm_set_epi32(0x10101010, 0x20202020, 0x40404040, 0x80808080); const __m128i maskadd1 = _mm_set_epi32(0x70707070, 0x60606060, 0x40404040, 0x00000000); if (width > 4) { const __m128i maskmask2 = _mm_set_epi32(0x01010101, 0x02020202, 0x04040404, 0x08080808); const __m128i maskadd2 = _mm_set_epi32(0x7f7f7f7f, 0x7e7e7e7e, 0x7c7c7c7c, 0x78787878); while (height--) { for (int x = 0; x < width; x += 8) { const quint8 s = src[x >> 3]; if (!s) continue; __m128i mask1 = _mm_set1_epi8(s); __m128i mask2 = mask1; mask1 = _mm_and_si128(mask1, maskmask1); mask1 = _mm_add_epi8(mask1, maskadd1); _mm_maskmoveu_si128(c128, mask1, (char*)(dest + x)); mask2 = _mm_and_si128(mask2, maskmask2); mask2 = _mm_add_epi8(mask2, maskadd2); _mm_maskmoveu_si128(c128, mask2, (char*)(dest + x + 4)); } dest += destStride; src += stride; } } else { while (height--) { const quint8 s = *src; if (s) { __m128i mask1 = _mm_set1_epi8(s); mask1 = _mm_and_si128(mask1, maskmask1); mask1 = _mm_add_epi8(mask1, maskadd1); _mm_maskmoveu_si128(c128, mask1, (char*)(dest)); } dest += destStride; src += stride; } } } void qt_bitmapblit16_sse2(QRasterBuffer *rasterBuffer, int x, int y, quint32 color, const uchar *src, int width, int height, int stride) { const quint16 c = qt_colorConvert(color, 0); quint16 *dest = reinterpret_cast(rasterBuffer->scanLine(y)) + x; const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint16); const __m128i c128 = _mm_set1_epi16(c); #if defined(Q_CC_MSVC) # pragma warning(disable: 4309) // truncation of constant value #endif const __m128i maskmask = _mm_set_epi16(0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080); const __m128i maskadd = _mm_set_epi16(0x7f7f, 0x7e7e, 0x7c7c, 0x7878, 0x7070, 0x6060, 0x4040, 0x0000); while (height--) { for (int x = 0; x < width; x += 8) { const quint8 s = src[x >> 3]; if (!s) continue; __m128i mask = _mm_set1_epi8(s); mask = _mm_and_si128(mask, maskmask); mask = _mm_add_epi8(mask, maskadd); _mm_maskmoveu_si128(c128, mask, (char*)(dest + x)); } dest += destStride; src += stride; } } QT_END_NAMESPACE #endif // QT_HAVE_SSE2